Acceptors from van Wijngaarden grammarst
an application of
| Programming languages for autonata!l

+*

John L, Baker
3t

70-02 -7¢0)

University of Washington
Computer Science Group
Technical Report

70~-02~10

% Research suoported in part by the ilational Science Foundation, Grant
number GJ - 66

w% Supported by IBH fellowship, 1959-70

figures

(]

N oW n

13
1l
16
19

39

ii

nunmbered formilas

symbols, with page of definition

5 (G a vifg)
*
& (G a vig)
¢
cq (G a vig)
D

(2) 5
(3) 10
(L) 1
(5) 12
(6) L9
(7 L9
(8) 50
7 G, L
7 L 7
50 Rg 7
6 rg 7
5 label{condition) (e.g.
6 (T =x)) 50

ACCEPTORS FROM VAN WIJNGAARDEN GRAMMARS:
AN APFLICATION OF 'PROGRAMMING LANGUAGES FOR AUTOCHATA'

introduction

Baker (1970) has characterized the type O and type 1 languages in
terms of van Wijngaarden grammars (vilg). It is the purpose of the present
paper to make a formal presentation of a construction which is only out-
lined there. The construction is of a nondeterministic linear bounded
automaton (1ba)- or turing machine (tm)- acceptor for the language spe-
cified by a vilg.

The construction is presented here as a schema for a program in a
language wvhich is a modification of that defined by Knuth and Bigelow
(1967). The programming language (for the classes of lba and tm) defined
here may itself be of interest, partly in confirmation of the usefulness
of the prograrming language technicque in theory of computing, partly as
an extension of the range of applicability of that technique, and pertly
for the additional language features it includes.

The section of the present paper titled 'background! is extracted
from Baker (1970). It is reproduced here to provide a setiing for the
rest of the present paper, the vrincisal purpose of which is to supply

details of the construction in the proof of theorem 2,

Tm and 1ba are here specified as sets of quadruples (p, a, b, q),
where p and q are machine states, a is a tape symbol, and b is
either a tape symbol or one of the symbols {L, R} , which indicate one-
square shifts of the tape scan point, left and right respectively. The
quadruple (p, a, b, q) occurs in the specification of a machine if and
only if the machine, in state p and scanning a on its tape, may énter
state q and (if b is a tape symbol) print b or (if b e {L, R})
shift its tape scan according to b .

These machines are nondeterministic (I.e. (p,a) P {(q, b) is not
required to be univocal.); halt only for want of an instruction (i.g.
only by reaching a state p , scanning a symbol a for which no quadruple
(o, a, b, q) occurs in the specification), and accept an input by halting
in one of a designated set of accepting states. Inputs to these machines
are assumed to be left- and right~ end-marked with '¢' and '$' respectively.
Lba differ from tm only in that, if (p, '#' [resp. '$'], b, q) occurs
in the specification of an 1lba, then b e {R, '£'} [resp. {L, '$'}l. It
is convenient here to supoose, in considering tm computations, that each
tape square not considered as input contains 1§, 133‘ to suppose that

1§t is the natural tave blank [1].

1. In the main construction of the present paper, this supposition is
only significant to the details of the operation of the srocedure 'endtape'.
The reader will have no difficulty in bringing the construction given here

into conformity with any other reasonable convention concerning blank tape.

notation

\ denotes set difference: ANB={xea |x£B}.

The notion string is not.formally defined here, but is supposed to
have the following properties: A string x has a unique length || >0 .
A string of length one is distinct from its unique component. {> is the
empty string, the unique string of length zero.

_ If S is a set, then S* is the set of strings whose components
are elements of S , and st = 5%\ <&} .

If S is a set and n a natural number, then s" is the nt'h
cartesian power of S , the set of ordered n- tuples of elements of S .,
Tt is here explicitly not assumed that "= {xe¢ s* | n=|x|}.

The vineulum () is used here to indicate a string of length one.
Thus: if x and y are strings, |x | =1, |xyl|=2, |x|-=
|x| + |y| ; also, s is the string of length one whose coaponent is the
string of length one whose component is s ; also, < # < . This
vinculum notation is used only when strings of strings are under consider-
ation, Otherwise, a string of length one is notationally identified with
its component,

liotations and definitions not otherwiss spscified follow Hoperoft
and Ullnan (1969). Invocation of 'familiar' results and techniques with-

out smecific reference may also be taken as referring to the same, in

particular to chanters 6-9.

Definition 1: A van Wijngaarden grammar (vifg) is an ordered sex-

tuple (M, N, Ry B, R, s), vhere:

M is a finite set, the metavariables.

N is a finite set, the protovariables, MNN =0 .

Ry is a finite set of metarules, X-Y,vwhere {X, Y }c
3* -
(MUN) , with ViteM (4, N, RM,‘W) a CSE

B is a finite set, the basic strings, BCH .

R is a finite set of rules (fo, £15 wees s n) (x 20),
k 3# ni+]_ . .
where ¥, _, 3ni§0 £y e (W) and h is a function,

dom(h) = { (i, §) | i ¢ {0, 1, «os, k} and f; & (vynitl

and j e {1, veuy ni} } , ran(h) c M .

*
s e N , s is the starting variable.

In this paper, it is supposed that !,' is not a meta- or protovariable
of any vilg.

To permit an explicit presentation of the notions to be defined here,
the following example of a vWg with a finite language is given. (Also

see figure 2.)

Go=({T1},
{a,d, e, £, n, py, S, V, W },
{r>f,T>p},
{d, n, v, w },
{ G, 8, 1, ¥, 1), {((2, 1), T, (L&, 1), T }),
(fa, v, 8), (pa, 8), (Te, #), (pe, 4, B) },

s) , where £, = (¢, a) and fh = (O, e)

5

(This example is suggested by a familiar analysis of a small piece

of the english language, according to the following correspondence:

tense auxiliary -ed ending future noun past sentence verb will

T a d e f n p s v W .)

Notation (for rules): The rule (fy = (Xyqs Xgys +oes ¥gn)s

£, = (xlo, Xyps eees xlnl)’ cees I = (xko, Xqr oees xknk)’
h={ (1, j), wij) | ie {0,1, esoy k}and j & {1, .oy ;3 }) may be

abbreviated

(2) Xoo¥01%01 *°* anoxono'* %ot ¥ e winlxlnl ore

01+ ey Gy, OF
fo(_w()l’ enny ‘dorlo) e fl(wll’ eawy 'w'lnl) R i‘k(qu].’ s sy ‘chk}{) >

omitiing parentheses after fi in case n; = 0.

Thus, the rules of G, may also be written:

0

*
is a vig, then c; is a function, ggg(cc) =B R ggg(cG) c(Nu {,}}",
*
defined inductively: cG(<>) = . If xe¢Bad Xe B , then
X = oyl ‘
cG(x X) = x1, cG(X) .

Thus, cGO(ﬁ W V) = n,w,v, and cGO(ﬁ vd) =n,v,d, .

Definition 3: If G = (M, N, RH’ B,R,s) isavWgand E is a

===

set, then a representation of G (ig E) is a peneralized sequential

machine {gsm) D with input alphabet E and output alphabet a subset

of NU{,}.

For example, D0 is a representation of Go s Where

DO(hyz};{c:d:H;W:_}’{d:nsv:“! 'l,e,

¥y, r}) (agsm), where g is given by:
g y z

c | {(y,v',")} g
a|{(y,a,")} g

H| {{z, h,*)} g

vl {(z,w,)} g

— g { vy, O}

Definition I (substitution in rules): If f = (xo, Xy s eees xn) E

Hyn+l *¥n
(N7 and (yl, coey yh) e (N') , then f(yi, . yh) = X%y e eV, X, &

3

N . (Incase n =

0 , understand f = x

5 as a nullary function,)

are as in definition 1, then

ea, W, R,) = {

¢ : MU { L((1, W, Ry, W)) | we M}

Vigopg W) & L(GE, N, Ry, W))

Definition 6: If G = (M, N, R, B, R, s} isawig, r= (£f55 £15

eees fi, M) e R, and & ¢ &(n, N, Ry) » then the strict rule of G

corresponding to (r, &) is

rs(r, &) = fo(yOl’ vony yOno) -*i‘l(yll, ceey ylnl) ces

k 3 - .
fk(ykl, viny ykn? s where Vi=0 \13.1__.:L yij &(h(i, J)). .

The set of strict rules of G is

Rg(G) = { rg(r, €) | r e R and & ¢ C(4, N, R)).

For example,

Rs(G,) = {Eﬂﬁi‘Q(ﬂ\'ri‘h(yflys {f,pllu{fa~w,

pa=+ O, e+ O, pe~+d)

St am — - et me e

={s*nfavfe,s5+*npavpe,fa"w,pa—><,

fe > <, pe>d }, since

L(({T}’ {a, 4, e, T, n, p, S, v, W}, {1, T"p}, T)) = {E: P }.

ipition 7: If G = (M, N, Ry B, R, s) isavgand D is a

representation of G , then the language specified by G is
3# * #_ .
LG) = {XeB |s g X } , where 5> 1is the reflexive-

3* .
transitive closure of the binary relation {=}> in (N*) » which is
defined by:

XY if and only if 3

& () * X=U{'V and Y = UX'V

{u,vi c
and (X' = Y') ¢ R (0G) ;

and the representation language specified by (G, D) is

L(6, D) = DM ({ eq(X) | X & L(G) 1) .

For example,

LGy = {nwv ,nvd} and L(G,, Dy) = {Hwe ,Hed }.

n*1 then the weight

of £ is |£f] = Zii‘o lxil . Note that the weight of f is the length

of its abbreviation (2) , ignoring metavariables.

Pumpep——

- —

a rule abbreviated as {2) is ¢s if and only if every metavariable occurs
at least as often in the rhs as in the lhs and, ignoring metavariables,

its rhs looks no shorter than its lhs.

Definition 10: A vWg is cs if and only if each of its rules is cs.

By way of example, note that the following rules fail to be cs:

abcw ~+ aW U , abeW = abU abeV , abcW — abWUV ,
where a, b, ¢ are protovariables, U, V, W are metavariables.

The following is an obvious consequence of the above definitions.

§> Xm , then [XO] = {xl] S eee [xm] .

Theorem 1: If G is a [es] grammar, then there is a [cs] vWg G

and a representation D of G' with L(G', D) = L(G) .

Proof: See Baker (1970).

Lemmg 1: If G = (M, N, R, B, R, s) is a [es] Wg, then there is
a [es] Wg G' = (', N', R ', B!, R', 5') with Vel QL L((I-I',IJ',RM',N))
and L(G') = L(G) .

Proof: By a familiar result, there is, given We M, a csg
(i, My Ry W) with L{(, N, R,y W) = L{(4, W, R T\ {O) .
Without loss of generality, suppose the MW (WeM) and M, N are

pairrise disjoint, and that, in each rule of each RW s some element of

Mﬁ occurs on the lhs. Then the Rw are also pairwise disjoint. Define:

Mt =,

N'" =N,
Bt =8B,
st =g ,

Ryt = U { R, fweHM}, and
= ¢ W v ¢o-'l s
GO Ny, | Fooloror *+* ongong
xlol.Jllxu' e w-lnl}:lnl sew xl{o-'.'IkJ-x-kl + o i lgllcx]mk) [A R
and viI:O vjzi (w:':,j = Wij or (O e L((M, W, B W))
: W =
arid Jij <>)) } .

10

It is easy to see that RS(G‘) = RS(G) , whence, since G' and G
have the same protovariables, basic strings, and starting string, L(G')

= L(G) . Evidently, G' dis cs if and only if G is.

Theorem 2: If G is a viig [resp. a2 cs vigl} and D is a represen-
tation of G , then there is a nondeterministic tm [resp. lba] which
accepts L{(G, D) .

Proof: By construction, given G = (M, N, Ry B, R, s) ,of a
nondeterministic tm [resp. lba)] A , acting, by familiar techniques,

on a six-track tape. In discussing the construction, it is convenient

to make the following definitions:

(3) ¢ is a function, dom(c) = ((N U M)*)* , ran(c) c(NUHMU {,})* ’

e(O) = O , (inductively) if x ¢ (NUM)”,
X e (UMY, then c(X X) = x1,%(X) .

aug is a function. If Xe (8 U {,)*, then aug(X) is the
six-track string with X on track 1, blanks on tracks
2 through 6.

D, is a gsn, identical to D , except that D, outputs aug(X)
whenever D outputs X .

I is a function. If X is a six-track string, then I(X)

is the part on track 1.

n

Immediately from the definitions, c¢ is one-to-one, I(aug(X)) =X,

and D _(Y) = { aug(c(X)) | e(X) ¢ D(Y) } . In the canstruction to be given,

(L) A accepts T={X | I{X) s c(L(G)) } .

.ty G .

By definition, Da"l(T) ={Y|D()NT#P). Terefore, by the
present remarks, Da_l(T) ={Y| 3, c(2) ¢ c(L(G)) and c(2) ¢ D(Y)‘}
= L(G, D) , and, by the familiar result that the set of languages zccepted
by tm [resp. 1ba] is closed under inverse gsm mappings, the construction
of A satisfying (L) is sufficient to prove the existence of the required
acceptor of L(G, D) .

A produces on its track 1 , given input X , a sequence X, Xl, sos

with X = I(X) , v, c“l(x.ﬂ) 5> c"l(xi) [and |X | 1. a

1 j_+l| :
accepts X if and only if c-l(Xb) £ B and 3x = c(s) . Therefore,

i

Tc{X| I(X) e c(L(G)) } . A produces X, from X; by selecting

+1
(nondeterministically) a rule (Y = Z) ¢ R (consider the rule to be
written in the form (2).) ; placing c¢(Y) on track 3 and c(Z) on

track 2 , each left-justified with Xi ; generating (nondeterministically)
a strict rule (Y' = 2') ¢ RS(G) from (Y - 2) with e(¥') on track 3
and c(Z') on track 2 , each still left-justified with Xi ; shifting
tracks 2 and 3 right (nondeterministically) k squares (k >0);

and finally, in case X, = Uc(Z2')V and [V =k and (U=< or U

ends with ',') , replacing X, on track 1 by Xig = Ue(Y')V . Tracks

+1
L, 5, and 6 are used in the generation of (Y' = 2') from (Y - 2Z) .
(See figure 1.) A1l strict rules of G which could be used in a deriva-

tion s => c-l(Xb) are available for selection by A at each stage,

s

12

since there is no restriction on its choices. [resp. since the only re-
strictions on its choices are [e(Z!')| +k < |X0| s le(¥)] +x < 1%51 >
le(2)] = Ix5| 5 and |e(¥)| s {Xy] » a1l of which follow (via theorem 0)

in case G is c¢s and

(5) VWSH < £ L{(M, N, RM’ W),

from the obvious restriction [e(2')] +k < {%;| on the applicability of
(¥' =+ 2t) ; and since lemma 1 shows there to be no loss of generality in
supposing G to satisfy (5).] Therefore, if (5 = Xgds Xy 5 eees X

is a derivation in G , then A can produce the sequence c(Xn), c(xn_l),
eeay c(XO) on its track 1 , given input ggg(c(xn)) o lee. { X

IX) e c(u(G)) }c=1T .

Figure 1 is another outline of the algorithm embodied in A , with
some further details. (In figure 1, T.i denotes the contents (non-
blank) of track i .)

Figure 2 is an examole of the operation of such an algorithm corres-

ponding to the grammar G0 .

Corgllary (main result): A language L is type O [resp. type 1]

if and only if there is a vWg [resp. a ¢s v¥g] G and a representation
D of G with L = L(G, D) .

Proof: By familiar results, directly from theorems 1 and 2.

STRICT = ho element
oL M occurs ih T.Z orT.3

prROtO = ho element

of M Occurs Ih T4
matchl Z(T1=TU T2V

ahd [U[=Kkand (U= or

U ends with 7))
macch2 = (T4=U T5V

Select and [U]=K)
(Y=2)e R |
N3 Replace U
T2 :=c(7) with T4
T3:=c(Y) throughout
Z TZ ahod T.3
Select
T4:=1 (W"‘X)ERM
/
no /
STRICT select UEM T5:=W
T6:=X
Ves
select k=0 select k20

T1:=UT3V T4 :=U T6V

figure 1.

figure 2,

h,v,d, n1V:d’l h,Vad, ‘n,V,PE,
d, d} d’
‘Q?pe’ _——— pe,_€> pe,
hsv.pe,] [.v,Dpe, [n_,Pa,v,pe,
pa, || P2, || pa, ~
h,pa,Vv,pe, h,Pa,V,Pe, h,pa,v,pe,
h,Ta, Vv, Te, h,Ta,v,Te, h,Ta,v,Te,
S S, S,
’ iy B
b
p
h,Pa,y,Pe, h,pa,v,pe, .51
h’Ta,V’Te! n’pa‘;V7pe) n)pa’V’pe7
s, S, S
o ‘€>p “ﬁ?p’
T T
P 14 P

15

the programming language, informally

Knuth and Bigelow (1967) have defined, in detail, a programming
language for the class of deterministic stack automata (dsa). A program
with lisp-style conditional statements., The language defined is a progran-
ming language in the sense that it permits an intuitively orderly, easily
documentable, and rcasonably compelling presentation of an algorithm. It
is a language for the class of dsa in the sense that each progran in it
is mechanically translatable into a usual sort of specification of a dsa.

The language to be defined in the present vcaver will follow the gen-
eral outlines of that of Knuth and Bigelow {1967). It will differ in
detail from the latter to the end that each program will not specify a
dsa, but rather a nondeterministic tm and a nondeterministic lba. It
will also differ in detail in that some familiar 'programming techniques'
for automata, namely variables and multiple tracks, are explicitly pro-
vided for in the lanpuage design. Another difference arises from the
differing mathematical intents of the two papers. Knuth and Bigelow (1967)
used their programming language to specify one particular dsa (diagonal-
izing the lba), whereasthe present paver will use its prograrming lap—
guage to show how to specify a tm or lba for each vig. I.e. the present
paper requires a notation for tm- or lba- schemata.

Figure 3 exvposes most of the ideas and constructions of the tm-1ba

prograrming language to be defined here.

16

begin
G.1> tracks: 2; alphabets: ({a; | ie {1, «ooym} |, 1y (L #)s
{3.2> variable x & ({ a, | ie 1, eeey n} | , B;

procedure rewind;

begin [# =>R ; => L, repeat] end rewind;

3.3> { procedure bumpi(var);
begin [var = a, => var <= a,) end bump,
Gl | ie {1, sveeyn-1} |5 1
{Choose k > 1 ., Underline the first k symbols with '+!.>
<{3.5> R, [=> 2.+, R, repeat or rewind],
{Check that the underlined symbols are all a; (i =1 initially).?
36> 8: [2.+ => [1x =>R], repeat ; =>],
{If '$' follows the underlined symbols and the a, have been checked, accept.?
B [$=>[x=

<If a5 follows the underlined symbols, set i <= i+l .0

a, => accent] ;
B.8> {lia,,, =>bump,(x) | i¢e {1, ooy 01} | ; }1, L,
¢Shift the '+' to underline the next group of k symbols, then go to 3.6 .0

R ; => L, repeat],

[1.x == go to S => 2e_ => 2.4, [£ = R; 2._=>
2. y R 3

=> R, repeat 1, reveat]

Figure 3.

17

Figure 3 is a program schema which becomes a nrogram upon fixing an
integer n >1 and symbols (al, 8ny esey an) « For such a fixed choice,
it is a program specifying 2 tm and an 1ba accepting {alkaak...ank | k > 1} .

The portions of figure 3 in broken brackets ('{!, '>') are commentary,
and are ignored in parsing and translating the program.

The construction { X(u) | ¥(u) | 2 } , which oceurs in lines 3.1, 3.2,
3.3-l, and 3.8, realizes the schemztic character of the example. Y(u) is a
formal statement (a predicate), possibly involving u as a free variable,
vhose content is fixed by the choice which turns the schema into a program.
For example, in line 3,1, where u =i and Y(i)=i e {1, ..., n} , the
choice n = 3 would fix the content of Y(i)= i ¢ {1, 2, 3} . For each
choice turning the schema to a vrogram, it must be the case that each ex~
pression Y(u) occurring in the orogram is satisfied by finitely many u .
X(u) is an expression which, for each choice of u satisfying Y(u) , is a
string of symbols of the prograsming language. 2 1is a string of symbols,
used as a delimiter. If the choice turning the schema to a program fixes
Y(u) so that it is satisfied only by {ul, Upy voey um}‘, then { X(u) | ¥(u)
| 2} is deemed, for purposes of the translation, to be replaced in the
schema by X(ul)ZX(uz)Z...ZX(um) . The order of the solutions to Y(u) is
only fixed if they are all integers, in which case they are taken in their
natural order. (If an expression Y{(u) with non-integral solutions is used
in a sch=ma, the schema generally fails to have a unique expression as a
nrogram, even when Y(u) is snecified., It is intended that in this case
the languapge be so usad that the automata sopecified by various orderings of
the solutions to Y(u) are strongly isomorchic. This is so in the main

construction of the present paper.)

18

In the present example, suppose n = 3 and (al, ans a3) = (a, b, ¢)
are fixed, Then 1{ a; | i e {2, veep n} | , }¥ in lines 3.1 and 3.2
is replaced by 'a, b, ¢! . Also,
t{ procedure bumpi(var);
begin [var = a; => var <-a, .] end bump;
| ie {1, .veyn1} | ; B
in lines 3.3-4 is reolaced by
'procedure bumpl(var);
begin [var = 2 => var < b] end bump, ;
procedure bunpa(var);
begin [var = b => var < ¢) end bump, ;' .

Also, '{ lea, . => bumpi(x) | ie {,.00, n-1} | 3 }' in line 3.8 is

+1
replaced by 'l.b => bumpl(x) ; lc => bump2(x)' .

From a logical point of view, the revlccements just described must be
made prior to any steps in the translation of the program, since, until
the replacements are made, there is no program, only a schema. Further-
more, elimination of the { X | Y | Z } construction may not be sufficient
to sovecify the orogram. For examnle, it is also necessary in the present
case to reolace 'a ' in line 3.7 by 'c' .

The first sten of the translation vrocess itself is the elimination
of the declared procedures and of all references to them. As in Knuth

and Bigelow (1967), the procedures are really macros. They are eliminated

by being cooied, with argurents suitably replac=d, in place of their calls,

19

In the present examole, still supposing (a.l, 500 an) = (a, b, ¢) ,
'rewind' is replaced in line 3.5 by '[# =>R ; => L, reogeat]',
'bwnpl(x)' is replaced by !'[x=a=>x <b]!, and 'bumpz(x)' is
replaced by '[x = b => x <= ¢]t , For this exanple, then, figure 6

is the program to be translated.

begin

<&.l> tracks: 2; alphabets: (a, b, c), (_, +);

&1.2> varisble x & (a, b, ¢);

4.3 R, [=>2.+, R, reveat or [£ =>R; => L, repeat]],
Q> St [2.+4=>[1x=>R], repeat ; => },

&5> [$=> [x=c=>accept] ;

Qb> 1b=>[x=a=>x<0b];

Q7> lee=>[x=b=>x<c]] L,

GB> [lx=>pgotosS;=>[2, =>2.4+, [£=>R; 2. =>R; =>1L, reveat 1,
<. 2., R
<& .10p => R, reveat], repeat]

end

[rr—

Figure b.

The remaining declarations (in lines li.1 and L.2) specify that the
machine's tape is to be considered as divided into two tracks, one to be
marked with the symbols {a, b, c} , the other with {_, +} , and that
its finite control is to be usedto store as the value of a variable x

an element of {a, b, ¢} , initially 'a' , the first one listed.

20

By convention, the input is the initial contents of track 1 (the one
whose alphabet is {a, b, c}), and the remaining track is initially to be
filled with the first symbol of its alohabet, ' ' [°], The left- and
right- end-marks, ‘'¢' and '$' , resvectively, do not lie on any track,
but each occupies one whole tape square. The initial scan point is 1'#' .

The rest of the program (after the declarations) consists of a list
of actions of one sort or another, separated by commas. The basic flow
of control in the vrogram is from the first of these (‘E') to the second
('*{ =>2.+.,.]]'), and so on. There are, however, labels, such as
'St in line L.k, and jumps, such as 'go to S' in line L.8, which modify
the basic flow in an obvious way.

The square-bracketed portions of the program, which are lisp-style
conditional statements, provide a further modification of the control
flowy. These conditional statements consist of a segquence of expressions,
each donincted by '=>!', separated by semi-colons. The portion of each
such expression left of '=>' is a condition which may be satisfied or not.
The action of the whole conditicnal statertent is to examine the conditions,
one at a2 time, from left to right, until one which is satisfied is found;
then to perform the list of actions, which may be empty, right of the '=>!
associated with that condition; then to go on with the next action following
the whole conditional statement. (But see the description of 'reveat!?,
below.) If no condition is satisfied, the effect is that the machine

halts without accepting the input.

2. This convention is adopted for the sake of the nresent examnle. Its
effect is incornorated into the design of A (see theorem 2) in the

main construction, so that it need not be assuned there.

—— =

2l

Some possible conditions are: that a particular symbol is being
scammed ('#' in line 4.3, '$' in line 4.5); that the tape square being
scanned has a particular symbol on a particular track ('2.+' in line
L., '1.b" in line L.6); that the tape square being scanned has, on a
particular track, the symbol which is the current value of a narticular
variable ('l.x' in line h.h); that a particular symbol is the current
value of a particular variable ('x = ¢' in line L.5); the empty condition,
which is always satisfied (twice in line li.3, four places elsewhere).

An additional effect on the flow of control due to conditional state-
ments is orovided by the atomic action 'renmeat'. Its action is to cause
the smallest conditional statement of which it is a constituant to be
performed again.

Additional atomic actions are: to write a narticular symbol on a
particular trac: of the currentl: scanned tave square (*2.+' in lines
L.3 and 4.8, *2, ! in line h.9); to shift the scan point left or right
('E' and 'R! respectively); to set the current value of a particular
variable ('x <= b' in line L.5); to halt the machine, accepting the input
('accept!' in line 4.5).

The reader should now be able to verify the following descriotions:
The effect of the inner nested conditional on line lj.3 is to position
the scan point just right of '¢', The effect of the innermost nested
conditional on line 4.8 is te position the scan point just right of the
rightmost square which is left of or at the oresent scan point, and which

has ' ' on track 2; or, if there is no such square, then just right of 1£4,

22

The effect of the intermediately nested conditional on lines L.8-10 is

to replace the leftmost '_!' on track 2 which is at or right of the present
scan point with a '+', and torenlace the leftmost '+! on track 2 which

is at or left of the new '+! with a '_' (Recall that only '_' and !+!
occur on track 2,), all unless there is no * ! at or right of the present
scan voint, in which case the effect is to fail to accent the input.

(In the 1lba translation, the failure is due to an 'attempted' right

shift scanning '$'. In the tm translation, the failure is due to an
interminably repeated right shift, since '$' is the natural tape blank.)

The effect of the conditional in lines 4.5-7 is given by the following

table:
value contents of tape square under scan
of
x (a,) (ay #) (b,) (b, +) (e,) (e,) £ $
a fail fail x<-Db x <b fail fail fail fail
b fail fail fail fail x < ¢ x <=c fail fail

fail fail fail fail fail fail fail accept

The nondeterminism of the machine specified by this nrogram is due
to the 'or' in line L.3. In general, an action can be a list of actions
senarated by 'or's, in which case any of the listed actions may be chosen.
In particular, the effect of line h.3 (noting that it is at the beginning
of the »rogram) is to write one or more '+'s on track 2, beginning at its
left end, then to nosition the scan voint just right of '#', i.e. at the
first '+! written,

The reader should now be able to verify the descriotions given as

k

L
commentary to figure 3, and that it specifies an acceptor for { al"a .

ki,
a | kz1}.

23

The oresent section specifies which strings of symbols are (syntac-

tically) valid

(1) program schemata,

(ii) programs (with p ocedures), and

(iii) procedure-free progranms,
and what tm [resp. 1ba] are specified by such strings. Logically, the
definition for (iii) is prior to that for (ii) and similarly (ii) prior
to (i). The definitions are oresented here in the reverse of this logical

order, to provide better motivation.

Definition 11: A program schema S depending on formal parameter

P is yalid over a set P if and only if each choice of P ¢ B turns
S into a valid program (with procedures) X by the process outlined in
the preceding section. For such 8, B, X , the tm [resp. lba] corresponding

to Pe B specified by S is the tm [resp. 1lba] specified by X .

For example, if (al, Bsy ses) is some fixed non-repeating sequence
of symbols, then figure 3 is a program schema devending on formal para-
meter n valid over the set of positive whole nurbers. Also: the main
construction of the present mper is a program schema depending on fornal
parameter G (asserted to be) valid over amy set of vig.

The lack of formality in definition 11 ('Turns into' is ill-defined.)
is justified by the fact that it applies to objects explicitly presented,
indeed, for the main vurpose of the oresent paper, to just one such object,

namely the program schema depending on G for the acceptor A of theorem 2,

24

The alternative to this style of w-resentation is the formal introduction
of another metalinguistic level, the details of which would be more dis-
tracting than enlightening.

Knuth and Bigelow {1967) give a syntax fa ovrocedure declarations
and statements (calls) which requires only changes in character set to
serve here, and which will not be repeated here., It is sufficient to.
note that such a syntax serves to ensure that the procedure constructs
have the general appearance of the corresponding algol 60 constructs,
and have the following proverties:

Each procedure call occurs in a textual setting in which a <{statement
1istD) is valid. (See below. The syntax of <simple statement) is expanded
to include procedure calls.) Each actual -arameter of each procedure
call is a string of symbols in which commes only occur within properly
nested varentheses and brackets, and in which all parentheses and brackets
are properly nestcd. The actual parameters of each orocedure call agree
in number with the formal parameters of the associated procedure declara-
tion, and, if the actual parameters are substituted for the corresponding
formal paramecters throughout the body of the procedure declaration, the

resulting text between 'begin'! and 'end' is a valid {statement list).

if the followinz transformation nrocess terminates when applied to X,
with the result a valid procedure-free program Y . For such X,.Y , the

tm [resp. 1ba) specified by X is the tm [res». lba] specified by Y .

25

Tronsformation Process (Elimination of -rocedure constructs):

Step 1: If there are no procedure calls in the text (as trans-
formed so far), erase all procedure declarations and halt. Other-
wise go on to step 2.

Step 2: Transform the text by copying the appronriate procedure
body (between 'begin' and 'ggg'), with actual parameters substituted
throughout for formal rarameters, in place of the first nrocedure
call in the text. Go on to sten 3.

Step 3: Revlace each label and each reference to it throughout
the modified mr ocedure body just copiedin steo 2 by a new label (not

occurring elsewhere in the text). Return to step 1.

The selection and transformation nrocess implicit in definitions
11 and 12 is exemolified in the oreceding section: If (al, 35y 83y ees)
= (a, b, ¢, «e.) , then the tm [resv. 1ba] corresponding to (n =) 3
specified by figure 3 (a rogram schema) is the tm [resp. lba] specified
by figure b (a orocedure-free program).

The remainder of the present section defines (syntactic) validity
for procedure-free programs, and defines a transformation of valid pro-
cedure~free programs into quadruples specifying tm [resp. lba] in the
manner indicated in the introduction to the oresent naper. Validity is
defined in terns of a backus-form grammar with restrictions (stated in
prose). The transformation to quadruples is defined in terms of three func-
tions, whose arguments are strings of prograrming language symbols and some
bookkeeping quantities. These restrictions and function definitions are

intersversed with the backus-form syntax equations.

26

An informal description of the functions used to define the trans-

formation to quadruovles follous:

quad(X, p, q, s5) is the set of quadruples corresponding to
the occurrence of program string X starting at position number p
(in the fr ogran string), ending at position number q , with s
the '"first new available' position number just left of X .

Cquad(X, p, q, s, E) is the set of guadruples corresponding
to X, p, 9, s as for quad . X must be a part of a conditional
statement (in fact, a <{conditional tail)>), and E is the set of
conditions specified left of X ,

next(X, s) is the 'first new available' position number right
of the program string X, suoposing s to be the !'first new available'

nosition number just left of X .

Ho formal statement of the possible values of the arguments of these
functions needs to be made, since the functions are usefully evaluated
only in response to the requirements of definition 13 and their 'recursive
calls' on one another. For the same reason, the order of their evaluation
(with various argurents) in transforming a snecific valid procedure-free
program is, to sone extent, fixed. Accordingly, the reader may wish to
regard them as snecifying a mechanical translation procedure {dynamic),
as well as a transformation (static) of strings to sets of quadruples.

The following definition is given out of order to provide better
motivation. ILogically, the backus-form grammar and the definition of the

three functions described above are prior to it.

27

Definition 13: A procedure-free program is valid if and only if it

is a terminal vroduction of {programy. If a <{program has {statements)

L and {declarations) specifying variable set Y and initial variable Vo s
then it specifies the tm [resp, lba] with quadruples quad(L, 1, -1, 2) [3]
whose states are (a subset of) {-1, 0, 1, ..., next(L, 2) -1 } x XY,

whose initial state is (1, v,) , and whose set of accepting states is

o} xx.

{program® - begin <declarations) <{statements> end

{declarations® = <track declaration) <alphabet declaration)
<{variable declarations) <{track variable declaration)
{class declarations)

{statements) - <{statement list)

{rack declaration) -* tracks : <unsigned integer) ;

For the remainder of the present descriotion, the value of

&uinsigned integer) in the <{track declaration) will be referred to as K .

{alphabet declaration) = alvhabets : <zlphabets) ;
{alphabets) + <{repeated alphabet) | <alphabets) ,
<{repeated alphabet)

{repeated alphabet) + {set> | {unsigned integer> x <set)>

3. The usefulness of '1' and '2' here should be clear from the informal
descrintion of gquad. The '-1! is a technical device to vermit quad to
be applied even to strings including the end of the program. io quadruples
corresponding to moves from states of the form (-1, v) are generated by
definition 13, so the effect of the '-1' on control flow is that 'falling

through! the vrogram is a failure to accept the input.

28

The alphabet specified by the <{alphabet declaration)

alohabets : il x (a-ll’ 312, seny aljl)’ i2 x (a21’ 3223 Seey

a2:j2)’ coey i, X% (azl’ 8,05 sers az:jz) 5

is (If an ‘i, x' is omitted, 'L x' is asswied.) :

i times

{té', '$*}u ({a'll’ B1ps eeey aljl} X see X {all’ 105 eees aljl}

i2 times
x {8.21’ 322’ lll, a-2j2} x [N N] x {a21, a22, LA | a2j2} x LR N
iz times
X {azl, 8,55 weny azjz} X g.e X {azl, 8,09 vers azjz}) .
. . 2. L ‘o . !
It is required that 2= 1o k . For the remainder of the present

description, the alphabet specified will be referred to as A = {'¢', '$'} U

(A x Ay x coux4) .

{variable declaraticns) = {empty) | <variable declaration)
{variable declarations)
<variable declaration) —* variable {identifier) ¢ <{set) 5

<track variable declaration) = track varizble {identiliers) 3

The variable set specified by the <{variable declarztions) and

{track variable declaration)

29

variable fl’ 22, cory 2i1 £ (all’ ayps eees 3131) H

variable £i1+l’ iil+2, . 212 e (azl, Bons sees a2j2) 3 ees

variable

iiz_l""l’ £i2_1+2’ LA] xiz S (azl’ azz’ * 4 ey azjz) ;

track variable €., 62, seey £n;

il times

lg1s 2105 wees g X een oy, agp, ooy 3y)

i2 times

.x {a2l, 8.22, a8 sy a2j2} x LN) x {321’ a22’ LR 3-232} x LN

m= iz times

-

x {azl, azg, seey A _ . }x see X {aZl, azz’ seey az. }

2])p Jz
n times

x{l, 2, seay k}x 'le{l, 2’ LN | k} Ld

For the remainder of the sresent descrintion, the variable set soecified

will be referred to as Y =X x X, x ... x X x {1, 2, ..., x}* , and

the varizbles declared referred to as ﬁi, £2, 5000 ﬁh, fl’ ﬁz, So08 ﬁn 5
The initial varisble specified by the same {variable declarations)

and <track variable declaration) is:

il times 12 times iZ times n times

(ﬁl’ ¢s ey ﬁl, 8-21’ LN] 321, LACE N] az].’ LI N] azl, 1’ seo a0y l) L

{class declarations) — <{emoty> | <class declaration)
{class declarations)

<class declaration) = class (identifiers) = (set) ;

The class set specified by the <{class declarations)

) Kzs saey Kil = (all’ 8oy vy al"}l) 3
K .

i i (azl, Bony sees 3232) $ eee

[e]
]_l
jit]
w
7

> ='=>'_?<:

Q
=t
[+
7]
«
=

1y3+1? Kiz,_1+2’ e Kiz = (a5, 2,55 +oe az;jz) 5

il times

{all’ Aor eees alJl} X ses X {811, Byps eees a.lJl}

12 tines

X {azl’ a22, LR RN] aajz }x ees X {azl’ 322, sy a2j2} X PR

nt = iz times

x {215 855 cors aZjZ} X cee X {20, 38 55 eees aZjZ} .

For the remainder ol the oresent descrintion, the class set snecified
will be referred to as K1 x K2 X iee X Km' , and the class variables

L) N

declared referred to as Kl’ K2, ceey Km' .
{identifiers) — {identifier) | {identifier) , <identifiers)

No {identifier) is permitted to occur more than once in the

{declarations),

{statement list) — <nondeterministic list) |

<{nondeterninistic 1list) , {statement list>

K1l

If Ly =N','L ,¥ isa {nondeterministic list), and L, isa

{statement list), then

quad(L,, p, g, s) = quad(N, p, s, s+1)
U quad(L,, s, q, next(¥, s+1)} and

next(Ly, s) = next(L,, next(N, s41)) .

<ondeterministic list) — {statement) |

{statement) or <nondeterministic list)>

If W, = S tor! M, , S is a {statement), and N2 is a

<nondeterministic 1list), then

Q\Eg(Nl: p, 4, §) = {((P,V): a, a, (§,v}) I achAandve ¥ and
§ ¢ {s, s#1}} U quad(s, s, q, s+2)
U gl_le_;.c_l(lez, s+l, q, next(S, s+2)) and

next(Ny, s) = next(l,, next(S, s+2))

{statement) = <identifier) : <statement) | (<statement list>) |

[<conditional tail) | <{simple statement.

In the first case, the {identifier?, which must not occur anywhere
else in the <program) except in a <{jump), is said to be a (valid) label.

If 8 =TI"%'S I is an {identifier), and S, is a

2 3
{statement list), then

quad(S, ©, q, s) = quad(S,, 0, 9, s) and next(S,, s) = next(S,, s) .

In this case, any state (o, v) , v & Y, is said to correspond to I .

T W s TT—— e ——— . — —

32

If S=1(' 1L ')t and L is a {statement list), then
QEQQ(S, P, Q, S) = 92§§(L’ Py, q, s) and EE{E(S: s) = EEEE(L! s) .
If S=3["'T and T is a <{conditional tail), then

QEEQ(S: Py Q, 8) = EQEEQ(T’ p, 9, 5, #) and

next(S, s) = next(T, s) .

<conditional tail) -] | ; <conditional tail) |

{conditiony => <statement list) <conditional tail)
Qgggg(']': P, 4, S, E) =@ and EQEE(']': s) =s

If T, =130 T, and T

1 ' T, o is a {cond. tional tail), then

EQEEQ(le Ps 9, §, E) = QSEEQ(TQJ p, 4, S, E) and
next(Tl, 5) = EE:EE(TQ’ s) .

If T, =C'=>'LT,, C isa <onditiond, L isa

{statement list)>, and T2 is a <conditional tail), then
Qgggg(Tl, P, q, S, E) = {({p,v), a, a, (s,v)) | a ¢ A and
v = (}L.L, cees Xy by, eeny 'bn) e Yand (a,v) e D(C)\ E }
U quad(L, s, q, s+l1)
U Qgggc_l(Tz, p, q, next(L, s+1), EU D(C)) and
gf_az_c_t_.(Tl, 5) = gg:_cg(T? next(L, s+l}) , where H
D(C) = {(a,v) [acAand v = (xl, ey Xy By euny tn) e Y

and F,(C) } and P, is given below, in table 1,

33

{condition) — {identifier) (relation) <expression) |
{track expression) . {class expression) |

<whole tape symbol) | <empty)

In the first case: (i) If the <identifier” occurred in a
{track variable declaration’, then the <relation” must be '=! or '#',.
and the {expressior> a <track exvression). (ii) If the <identifier?
occurred in a <variable declaration), then: IT the <expression? is not a
<symbol expression), it must be a <class expression) and the <relation)
must be 'st or '£', If the <exoression) is a <symbol expression), the

{relationy must be t=! or '#'. (i) or (ii) must be satisfied.

c €i = j ﬁi £3j l ﬁi = ﬁj I ﬁi # ﬁj I %5 e Kjl 2 £ Kjl £ =c
Pb(C) to=3]t £ t, = tj ty # tj X; € Kj X, £ Kj X, =c
c R £c £ = 2, 2 # ﬁj 1.Kj i.c l'ﬁj ﬁi.Kj
a (a g eswy) a-nd
PAC) || %, #ec | x. =x; | x. #x. |=-emmemmmgq=—- LR s
© * * J * J|a, ek a,. =c {a, =x, | a,_ €K,
i j i i J b3 J
c 'ei.C -Ei.xj ! é $ (cl, LEAS | ck) O
a = (ay, vevy &) and
Py(C) }|--—- i S X 20 a =16 | a=1§" [a=(cg, «er) ck) true
2 =cla =gx vevines
ty ty J

Table 1. (Quotation marks omitted.)

34
If S is a <{simple statement), then
next(s, s) =s .
{simple statement) -+ Grited | <store) | <shift)> | <{jump>

rite) = {track expression) . <symbol expression) |

<whole tape symbol)
If W is a <write>, then

gl_léf_l('-'-’, P, 9, s) = {((p,v), a, b, (q,v)) | {a, PlcAandve

and P (W) } , where P is given in table 2.

W Pl(W)
£ b=1£" [and a # '$']
$ b=1t$ [and a # '¢']
(cl, vens ck) b = (cl, v, ck) land a £ {1¢', '$1}]
i.c bi =c E
'and a = (81’ oeey a'k)
i.%, by = x. |
’ J land b= (b, ..., b)
€. .c b, =¢ !
* ty ! k
* + ! and V_le;!i=>b=a
'e-oi. b = x. : e= e e
i"™j 'bi J i

Table 2.

¥

{store> =+ <identifier) <- <symbol expression) | {identifier)

< &rack expression) . | {identifier) <~ <track expression)

In the first two cases, the {identifier) must have occurred in a
<{variable declaration?., In the third case, the <{identifier) must have
occurred in a <track variable declaration).

If V is a <{store), then

gl_}E_B.C_l(V, Dy g, 8) = {((D’(xl’""xm’tl""’tn))’ a, a, (Qs(ylstﬂ
m n

Yoty e oot))) | 2 ¢ A and Vezl{xe,ye} c Xand Vo {t_ ,ul

c{1,...,k} and P2(V) } , vhere P, is given in table 3.

2
v P, (V)
[]
£ — = 1
%, <c y; = ¢ :
= i m] = =
:’Ei<—:2j ¥y = %y iandVeEle#:. > Vo = %
. ! n
— = = 1 =
)’Ei < j. a (al, ceey ak) and y, a, | and V__, u =t
1
= = 1
i’i <— ﬁj. a (al, ceey a.k) and y; at"_j : .

- n . -
e < ¢ W and vy =x_ and Ve Fis=>u =t
i MY

o, —— 0 = i =

Table 3.
$hift> > L | R
If M is a <shift>, then

quac_]‘(”: ps @, 5} = {({p,v}, a, i, (q,v)) jaefand ve Y

[and M= L' =>a #'¢' and M= 'R! =>a £1§1] },

36

Jumpy —* {empty> | accent | go to <identifier) | repeat

The <identifier) following 'go to' must be a valid label. (See
syntax for <{statement).)
trepeat! must lie within a <conditional statement).

If J is a <jump), then

quad(J, », q, s) = {((p,v), a, a, (r,v)) |ac 4 and ve Y},

vhere:

If d=¢{ , then r=gq.

If J = 'accepnt! , then r =0 .
If J = 'go to' , then necessarily, in the evaluation of the function

quad avplied to the program, the function quad is applied exactly once with
first argument I ':' § for some <simple statement) S . r is the
second argument of quad in that application,

If J = ‘repeat! , then necessarily J 1lies in sone <{conditional tail).
Let T be the shortest <{conditional tail) including (the »resent instance
of) J . In the evaluation of the function quad anplied to the vrogram,
the function Cquad is anplied with first argument T . r is the second

argunent of Cquad in its anplication to (the present instance of) T.,

{expression) = {class evnressiony | <track expression)

{class expression) —* <identifier) | {symbol expression)

If the <identifier) is not a <symbol expression), it rust have

occurred in a <class declaration),

37
Csymbol expression> = (symbol) | <identifier)

The <{identifier) must have occurred in a <{variable declaration).
{track expression) —+ <{unsigned integer) | {identifier)

The {unsigned integer) must have a value ¢ {}, ..., k} . The

{identifier must have occurred in a <track variable declaration).,
<whole tape symbol) + ¢ | $ | <set>
The {set) must have k components.

{relationp == | # | e | £
{set) + (<symbols))

{symbols) ~ {symbol)> | <symbol)> , <symbols)

The syntax for {gymbol) varies with ths aoplication.

The syntax for <identifier>, dunsigned integer), and <empty, is
usual.

Figures 5§ and 6 illustrete the annlication of definition 13 to
the procedure-free orograin of figure L. In figure 5, the program is marked
so0 as to show the nrogrant nositions corresponding to the first component
of the tm lresp. lbalstates. Figure 6 shows the quadruoles of which the
tm [resn. 1lb2] corres-onding to figure § is composed, tabulated as a
‘move function'. ZEntries marked '[]' are to be included lresp. omittedj.
The table is abbreviated, shcwing the second (variable set) coroonent of
a state only where oertinent, and omitting tane symbols in the body of the

table unless they indicate a change in tame contents.

39

Figure 6.

{page 1/2)

1 21 3| &4 5 6 71 8 9 10 n

a_ | 2,R | L1 i5,a+ | 6, [7or8 {2 |20] 3,R 1,L 8
at ! 2,R (L 13} 5 6,R [7or8 |2 |20 3,R 1,L 8
b | 2,R | k|16 |50b+| 6,k | 7or8 |2 |20 3,R 1,L 8
b+ | 2,R | L |13]| 5 6,bR [7or8)21{10] 3,R 1,L 8
c.| 2R | L |16 |5,c+| 6,R |Tor8 {2 |10]| 3,R 11,L 8
e+ | 2,R |k 13} 5 6,R {7or8 12 !10] 3,R 11,L 8
£ 2,k | b |16 6, | 7or8|2| 9] 3,k [12,LL)| 8
$ | 2,R0] (L {26 6,R[] { 7or8 |2 |10]3RI | 1nn,L 8

12 |13a b ¢ | 1k 15 16 17 1Bab c |19 | 20ab ¢
a_ 15 3| 1bL,R {22 | 24,L 19 o2
a+ 15 3 W, |12 | 24,L 191 0, 2
b_| 20 15 3| w,r |12 | 24,L 19| 021
b+ | 20 15 31 1R |12 | 24,L 19| o2
c_ | 22 15 { 3| 1,R |22 | 24,L 19 0|21
c+ | 22 15 3| 1,R |12 2l,L 19 0 {21
¢ 3] 1b,E |12 | 24,Li) 19| o2
$§ |18 3| W,RI0] {12 | 24,L 19| 0ola

21 | 22ab ¢ |23 |2ab c |25 |26 |27 | 28 29 | 30
a |16 23 |17 (252626 | 3|28 |2 | 29,a¢ | 32 | 38
a+ | 17b 23 17c | 25 26 26 I 313 (k| 29 33§ 35,
b_ | 17b 23 17c | 262526 | 3 {28 | 2k | 29,b+ | 32 | 35
b+ | 17b 23 17c 1 262526 | 3136 12y ! 29 33 | 35,b_
c_ |17 23 17c [26 26 25 | 3|28 | 24 | 29,e+ | 32 | 35
ct | 17b 23 17c {26 2625 31 36|24 | 29 33 | 35,c_
£ | 17b 23 lrc | 262626 | 3| 36| 2k 31
$ |1 23 17c | 26 2626 | 3| 3% : 2l 33

bepin
tracks: 2; alohabets: (a, b, ¢), (_, +);
variable x ¢ (a, b, ¢);
A R, <@ | => WD 2.4, GO R, 6> <T> reveat or B> [£ => R ;
=>Q0> L, <11)> reoeat] 1,
DSt [2,4 => A [1ax = 5> R I, <UD repest 3 => <A6> 1,
Q2> [§=><A8> [x=c => <19 accept] ;
1b=>Q)> [x=a=>QLx<b];
Tee =>QRD [x=b=>LPx<=cl], ADL,
RU> [Lex => <250 go to S ; => Q26> | 2, => B> 2.+, @ [£ => BI>R;
2._=> 2> R ;
=> (33 L, b reveat],
300 2., <Y R;
=> <Y R, 37> reveat],
@7 repeat]
<-1>

end

Figure 5.

Lo

31 32 33 || 3 % |37
a_| 30,8 | 30,8 | XL |29| 27,8 | 37,k | 26
at | 30,R ¢ 30,R [3u,L 29 27,R | 37,R | 26
b_ | 30,E |} 30,8 | 34,L [290} 27,R | 37,R | 26
b+ | 30,R 30,R A,L | 29 | 27,R 3R | 26
c_{ 3R | 30,R | 3L [29| 27,R | 37,R |26
e+ 3, | 302 | AL | 29| 27,R | 3T,R |26
4 30,R 30,2 | 3u,LL) [29 | 27,R 37,8 | 26
$ | 30,80 | 0,R00 | 34,k |29 | 27,r0) | 37,Ri) | 26

Figure 6. (page 2/2)

The present section consists mainly of a program schema depending on
G= (M, N, Ry, B, R,) , a ¥Wg, in the language of the preceding sections.

Even for fixed G , the ultimate transformations of the schema into
tm and lba will differ. Accordingly, as a schema, it has two sets of
properties. lMatter (in the commentary) enclosed in square brackets refers
to its properties as an lba-language progranm schema,

Variations on 'y is pushed right on track t to make room for
x b £ occur in the commentary. Their meaning is: !If the contents of
track t 1is xy(_)k and |®] = |x| , then the present action is {to fail
if |®| - |x] > k , otherwise] to place fy(_)ﬁ on track t , where
R =max {0, k = (|%] - |x])}.

Some other notations used in this and the followring section are:

T.i denotes (as in preceding sections) the string on track 1
left of the leftmost occurrence on track i of ' ',

If x is(declared to be) a variable, then (x) denotes its value.

The notations ¢ and I (as a2t (3)) are retained.

berin
tracks: 6 ;

alphabets: 6 x ({a |ae {_, +JUHUN or a=, |, })

e

variable x1, x2 ¢ ({a | ae {_, +}UH UL or a=, |, D ;
variable x3 e {({a |ae M|, D ;

track variable t

s

class H= ({a | a zif

k2

procedure rewvind;
{Rositions tape scan just ripght of '¢'.D

begin | € => R ; => L, reveat] end rewind;

procedure wind;

Positions tape scan just left of '$' end-mark.)

begin [§ => L ; => R, repeat] end wind;

procedure clear(track);
<Fills track with blanks.)>

begin
rewind, [§ =>; => track, , R, repeat]
end clear;

procedure endtape;
{If entered scannine '$1, writes a six-track blanic, otherwise fails.
Recall that '§' is the natural tape blank to see this adds one all-
blank square at the right end of information if the '$§' scanned is
the rignt end-mar!:. [Reso. always fails.]D>

9 3 s __)] end endtave;

begin [§ => (_s
{procedure check,;

Fails unless the string x is on track 1, just right of tihe scan

point, in which case tave contents are unchanged.)

{ [l.ai =>RJ|x= dpesed, and ic {1,..0,k} | » }

end c:hE:ckJ'c

| xeBU{s}|; };

43

procedure check;
3
<{Fails unless the contents of track 1 are c(X) for some X e B ,

in vhich case tape contents are mchanged.)
begin
rewind,
[$=>;=>{checkx|xeB[9£}, [1., =>R], repeat J
end check;

procedure test;
{Accepts if T.1 = &',! , otherwise does not affect tape contents -
rewind,
checks, L 1., =>R 1, [$ => acceot or ; l._ =>R, repeat ; => J
end test;

{procedure entcrx(track);
{If the specified track has a string of |x| blanks just right of
the scan voint, this enters the string x there. It suffices
{resp. does not suffice] for the specified track to have only blanks
betireen the scan point and '$' end-mark.)
{ |l track._ => track.a;, R ; => endtape, repzat]
| x = aje..3 and i {1,000k} | , }
end entcr:,c

| x=, or Bya(luri)* ({(x—+y) e Ry or (y »+x) ¢ B.M)

or 3.5 3iz(0,..., fr]2} X=Ts 3}

{procedure loadr;

Sets T.,2 = rl','...rlrl_l',' and T.3 = rg'," [space permitting]).)>

clear(2), clsar(3),
rewind, { enterri(Z), enter’(Z) fie {1,eee,lri-2} |, },
rewind, enterrb(B), enter’(3)
end loadr
lreR |3 };
procedure fudsrc(class, fail};
<Uumps to fail if no member of class occurs on tracks 2 or 3, other-
wise positions tape scan and sets track variable t so that the
symbol scanned on track (t) is the leftmost (with track 2 lelt of
tracl: 3) occurrence of a member of class on tracks 2 or 30
begin
t < 2, rewind,

[tuclass =>; § => [+t

n

3 => go to fail ;

[
]

2 =>t <= 3, rewind], repeat ;

reneat

1

\Y

(=)
-

end fwdsrc;

procedure budins(stoo, track, insert);
{If there is an occurrence of stoo on the tape, this places the
symbol insert on the specified track just right of the rightmost
occurrence of ston and leaves the scan noint there, having pushed

that track risht to make room for the insertion.)

us

begin
wind,
L track._=>1L, | stop => R, track.insert, go to B ;
=> x1 <~ track. , track._, R, track.xl, L 1,
repeat ;
=> R, endtape, reoeat], B:
end budins;
procedure findall(class, action);
Reveatedly performs action, each time having vositioned the scan
point and set track variable t so that the symbol scanned on
track (t) is the leftmost (with track 2 left of track 3) occurrence
of a member of class on tracks 2 or 3.
berin
{ => fudsrc(class, F), action, repeat], F:
end findall;
{procedure metaload ;
Sets T.5 =x and T.b =y, where r = (x +y) [space permitting]l.)
clear(5), clear(6),
rewind, enterx(S'),
rewind, entery(é)

end metalo:zdr

| x=>y)=rer |; };

hé

procedure shift(mtec, sre);

Pushes 21l of tracks mtc and src right to make room for a string of

blanks on each.>

begin

[=> (bwdins(¢, mte, _), bwdins(#, src, _), reneat) or]

end shift;

procedure setscan(src);

<{8ets the scan point to the leftmost non-blank square on track §£2.>

begin rewind, [src._ => R, repeat ; =>] end setscan;

procedure subs(dst, mte, sre);

<If the portion of track dst right of the scan point is ux , the

portion of trock mitc right of the scan point is uy , the portion of

track src right

of the scan point is vz , each of y and 2z is

either empoty or begins with a blank%, and u and v include no

blanks, then this pushes x right to make room for the substitution

of v(+)* for u,where i =max {0, Juj - |v| }.>

begin
[§ =3

mte._ => [sre._

{mtc.a => [dst.a

I

=>;
=> x2 < srec, , L, | ¢ => budins(#, dst, x2) ;

=> src,+, budins{src.+, dst, x2)],

=» [sre., =>dst.+;

{src.b =>dsteb [b e MUNU {,} |5 1]], R, regeat

laenunu {,}|; 11

end subs;

L7

procedure anply?2;
{londeterministically: fails or, if T.4 =u T.5 v , replaces T.5

with T.6 in T.h , pushing v right to make room.,
begin shift(5, 6), setscan(6), subs(l, 5, 6) end apply?;
procedure metagen;
Qlondeterministically sets T.h & L{M, I, Ry (x3)) [space permiftingj
or fails. See lemma 2,.
MD): clear(ly), rewind, L.x3,
[=> rewind, Ml: [L1 => ; b, =>go to 15 or ; § => go to IF or ;
=> R, repeat],
M2: {metaload | re Ry | or} , M3: apply2, Hy: repeat 1, i5:
end metagen;
procedure copy;
{Pushes the vortion of track (t) right of the symbol initially
scammedright to permit the substitution of T, for the symbol
initially scanned. Fails if T4 = O 0
tot, X2 < _,
[=> rewind,
[ko =>hex2, Cl:t L, x2 <= k. , be_, L,
[¢ =>R, hox2, [to+t.=>tx2 ;

=> R, repeat], go to C2 ;

=> bwdins(t.+, t, x2)] ;

$ => go to CL ;

=> R, repeat], repeat], C2:

end copy;

48

procedure generate;

{ondeterministically: fails or, for each u e M , replaces each

occurrence of u on tracks 2 and 3 with some fixed element of

L(u, W, Rygs u), pushing those tracks right as necessary.)

begin findall(M, (x3 <~ t. , metagen, findall(x3, copy))) end generate;
procedure smash;

{Repeatedly, if T.1 =u *+' v and u includes no '+'s , this

sets T.1 = uwv . Hence this removes all '#!s from track 1.

begin

rewvind,

{3

1-+=>B,[$=>L, 1. H

1

>3
=> x] <~ 1., , L, l.x1, R, R, repeat], rewind, repeat 3
=> R, reveat]
end smash;
procedure avplyl;
{llondeterministically: fails or, if Tl =uT.2 v , and u = <
or u ends with t,!, replaces T.2 with T,3 in T.l , pushing
v right to make roon.>
shift(2, 3), setscan(3), L, [1., =>; ¢ =>], R, subs(1, 2, 3), smash
end applyl;
¢nain line of program (See lemmata 2 and 3.)>
FO: check, [=> PL: test, P2: {loadr | r ¢ R | or}, P3: generate, Pi: applyl,

F5: reveat J

end

L9

It remains to be argued that, for given [cs] vig G = (4, N, R, B, R, 5) ,
the tm {resp. 1bal A corresponding to G specified by the program
schema of the preceding section has the property (4). It is not the intent
of the present paper to give a rigorous proof of this fact, or even to
develop the machinery to do so. The proofs of the propositions of the
present section depend on the accuracy and completeness of the descrip-
tions given as commentary in the program schema.
Two remarks are in order concerning the commentary given in the

progran schema: First, each assertion like
(6) 'This procedure affects the tape in mammer F,’

may, in view of its role in a formal proof, be considered as an abbrev-

iation for one like

(7) 'If the state vart of an instantaneous description I, of 4
corresponds to the initial position of an instance of this procedure,
and the state vart of an instantaneous descriotion 12 of A
corresponds to the final position of the same instance of this pro-
cedure, and the state parts of Il’ 12 do not differ otherwise,
then there is a sequence of computational steps of A leading from
I1 to I2 if and only if the tape part of 12 can be derived from

the tape part of I1 in manner F .!',

and similarly for corments descriking jumps, acceptance, rejection, and

50

the assignment of values to variables. Second, except possibly in Lhe
case where a lemma is provided here, the reader should not find it dif-
ficult to convince himself of the truth of the assertions so abbreviated,
since the programming techniques used are not complicated,

In accordance with the general intent of the nresent paper and, in
particular, with the fact that the translation (6) + (7) is not formally
specified, the language of the vresent section will have formality between
that of (6) and that of (7). Instantaneous descriptions will be (par-

tially) specified as:
(8) L(c) ,

where !L' is a label occurring in the program schema and C is a con~
dition on tame contents and values of variables, Zach occurrence of the
notation (8) in an assertion may be taken to abbreviate sone complete
instantaneous descrintion whose state satisfies the condition C and
corresponds to the label !L' , and whose tape contents satisfy the con-
dition C , The existence of a sequence of computational stens of A
leading from one instantanecous description, Li(cl) to another, LQ(CZ)

is asserted thus:

L(C)) 1= 1,(C) .
In the remoinder of the vresent section, let G = (I, I, RM’ B, R, s)
be a fixed [cs] vig satisfying (5). Lemmata 2, 3, and L refer to the
tm [resp. 1ba] & corresponding to G specified by the program schema

of the preceding section.

51

Lemng 2: For U e M, let Gy = (M, N, Ry U) . In the procedure
metagen, MO((x3) = U) |~ M5(T.ly = x) if and only if x e L(Gy) [and
|x| s |X] , vhere X is the input to A].

Proof: The conditional statement at Ml assures that if ML(T.L = x)
|- M5 , then x ¢ N » Conversely, the same conditional statement pernits
ML(T.h = x} |~ M5 . In each case, the passage M. |- M5 entails no change
in tape contents. Accordingly, it suffices to show MNO((x3) = U) |-
ML(T.4 = x) if and only if Ugﬁx [and x| = {X]| 1.

(u ggx land x| < |X|] => M0((x3) = U) |- 1L(T.k = x)): By

induction on the length of a derivation U gg x ¢+ If length is 0O , then

x = U, Clearly, MO((x3) = U) |- 1(T.k = U) [and |U] =1 < |X| unless

A

X = ¢, in vhich case (U g; x and |x| £ |X|) is impossible by the
assumption that G satisfies (5).] If length is > 0 , then Bya(I—lJI‘I)*
U gﬁ ¥y and y =>x via sone (F>%)e RM « By inductive hypothesis
(Cy] 2 1= 2 1X1DI, m0((x3) = U) |- M(Td = y) . Alvays 10 |— iR
with no change in tape contents, so ML(T.L =y) |- 12(T.s = y) .
[ifl = 12| < Ix} < 1x] , s0] 1R(Th =y) [-13(Th =y and 7.5 =3F
and T.6 =2%) via netaload s , 5y . Finally, M3{T.h =y and T.5 =7§
and T.6 = R) |- 1M(T.L = x) via a suitable shift during avplication of
applye .

(((x3) = U)|-12(Th =x) => UZ>x [and |x| <|X|]): By

G
u
induction on the smallest number of occurrences of () states in a

computational sequence MO((x3) = U) |- ML(T.k = x) : If smallest number

of occurrences is 0 , then x = U , If smallest number of occurrences is

52

>0 , then 3 qpy* W((x3) = U) |- (T =y) and M(Th =¥) |-
ML.(T.h = x) with exactly one occurrence of an Mi() state. By induc-

*
tive hypothesis, U 65 ¥ « The necessary passage 13 r— ML assures that

=>x , LIn any case, arrival

an applicable rule was selected at M2 , 80 ¥ &5

at ML(T.y = x) dnsures |[x| £ {X| .1

3; In the main line of the progrem, if Z e (N #)¥ , then

Lerm

um

FL(T.1 = x) |= F1{T.1 = c(Z)) if and only if 3p wys X = c(X) and
25X,
*

Proof: ((HX ey X e(X) and 2 => X) => PL(T.1 = x) |-
PL(T.L = c(2))) :+ By induction on the length of a derivation Z §> X :
If length is O , then X =2 , x = c(Z) . If length is >0 , then
BYB(N*)“ yA > Y and Y g> X via same strict rule (Yi'* Xl) derived
from some (Y2 *'Xz) ¢ R . [Because G satisfies (5), ic\Yz); < |cLYl)|
and |c(X2)| < |c(x1)| . Because G is cs, |c(Yi)l < |c(X1)l . Hence,
by definition of '=>1, Ic(Yl)I < le(®)] , |c(X1)| < le(X)]| , and je{Y) |
< |e(X)] + Therefore space permits representation of 211 of I, Y, ¥,,
X, % .] Wow PFL{T.lL = x) |- P2(T.l = x) |~ P3{T.1 =x and T.2 = e(X,)
and Te.3 = c(Yz)) |— Hi{T.2 =x and T.2 = C\Xl) and T.3 = c(Yl)) [—
F1{T.1 = c(Y)) by stated properties of procedures (with approoriate
choices). By inductive hypothesis, FL(T.l = e(Y)) |- PL(T.1 = c(Z)) .

. , * .

(PL(T.1 = x) |- PL(T.1 = ¢c(2)) => (3y () c(X) and 2 5>X)):

By induction on the snallest number of occurrences of B() states in a

computational sequence FL(T.1 = x) |- PL(T.1 = ¢(2)) 3+ If smallest

nunber of occurrences is 0 , then x = c{2) . If smallest number is

Baker, J. L. {(1970). The syntax of algol 68, property grammars, and

context-sensitive languages. Unoublished. (Submitted to Information

and Control.)

relation to automata. Addison-Wesley. Reading, Mass.

Kputh, D. E. and R. H. Bigelow (1967). Programming languages for automata.

JACH 1k , 615-635.

