DATA STRUCTURES FOR EFFICIENT
IMPLEMENTATION OF STICKY POINTERS
IN TEXT EDITORS*

(Extended Abstract)

Michael J. Fischer & Richard E. Ladner
Department of Computer Science
University of Washington

Seattle, Washington 98195

Technical Report 79-06-08
June 1979

*Research supported by NSF Grant No. MCS77-02474.

This paper has been submitted to the 20th Annual IEEE Symposium on
Foundations of Computer Science to be held in October 1979.

Introduction

Text editing is a fundamental activity in computing, yet there has
been very little theoretical research directed toward understanding the
data structures and algorithms underlying text editors. The principal
example of such research is the literature on the pattern matching prob-
lem [KMP 77], [BM 771, [FP 74].

In this paper we investigate the problem of implementing sticky
pointers in text strings. If we imagine a text string as a linked list
of characters, then a sticky pointer is a pointer to a member of the list.
So, despite subsequent insertions and deletions in the text string the
sticky pointer remains fastened to the character to which it was originally
pointing. If the character is subsequently deleted, two natural conven-
tions are for the sticky pointer not to point to the text at all or for
it to point to the next character still in the text.

There are several drawbacks to a linked list implementation of text
strings. (i) It increases the storage requirement severalfold over a
packed representation. (ii) The text must be copied to a buffer for
transfer to or from a disk file. (iii) Text searches are restricted to
sequential scans through the text, precluding use of efficient algorithms
such as the Boyer-Moore string matching algorithm [BM 77]. (div) Linked
list structures tend not to have good paging performance in a virtual memory
environment.

We propose a compromise data structure for implementing a text string.
A text string is implemented as a doubly-linked list of segments, where
each segment is a node which points to a string of characters packed in an

array. (This representation was suggested to the first author by R. S. Boyer.)

In such a structure, the text strings in the array are never copied or
moved. To handle an insertion into the middle of a segment, the original
segment node is replaced by three new segment nodes. The first points to
the portion of the original text up to the point of the insertion, the
second points to the inserted text (which can be placed at the free end of
the character array), and the third points to the portion of the original
text following the point of insertion. Deletion is handled similarly by
splitting segments.

We use additional structure to handle sticky pointers. A design
goal of our structure is that it not be necessary for the system to keep
track of all instances of sticky pointers. This permits such pointers
to be passed around freely just like any other data. It also precludes
various obvious implementations which require updating the sticky pointers
when doing insertions and deletions.

Our implementation of sticky pointers maintains a family of trees
whose leaves are the segment nodes representing the text string. The trees
encode enough of the history of insertions and deletions to enable an old
sticky pointer to be brought up-to-date. The details of the implementation
are given later. Some of its properties, however, are that insertions can
be done in constant time, independent of the length of the text string, the
number of editing operations done so far, and the number of pointers.
Similarly, deletion within a segment takes constant time, and an arbitrary
deletion takes time proportional to the number of segments containing the
deleted text. The time to "find" the place in the text string pointed to by
a sticky pointer depends only on the number n of insertion and deletion
operations done so far. Although the worst-case time is Q(n), two sets
of reasonable assumptions for average case time give upper bounds of

0(log n) and 0(1) respectively.

The worst-case time can be reduced to 0(log n) by employing tree-
balancing techniques based on single and double rotations like those used
in AVL trees [AVL 62] or the dichromatic trees of Guibas and Sedgewick
[GS 78]. Since such rotations do not preserve the conditions needed for
the basic sticky pointer structure, we add yet more structure to permit

the balancing.

Formal Specification of Sticky Pointers

To formalize our notions, let I be a finite alphabet of text characters

and let T be a (possibly infinite) set of sticky pointer objects. An edit

object is a pair (w,Yy), where w ¢ I* and Y: I >IN is a partial function such
that y(p) < |w| whenever y(p) is defined. Intuitively, w is the text string
of the edit object, and y(p) is the position in the text indicated by the
pointer object p. We think of p as pointing to the place between the Y(p)th
and the y(p) + lSt characters of the text.

The basic edit operations are now defined on edit objects. Let (w,Y),

(w',y') be edit objects, p, q ¢ I', and x ¢ L~.

1. Insertion.

(1) w' = W xw, where w = wyw, and |wll = v(p);
y(r) if y(r) is defined and y(r) < v(p);
1) v'"(r) = ¢ v(r) + |x| if y(r) is defined and y(r) > y(p);
undefined otherwise.
Intuitively, insert(x,p) means to insert the string x immediately

following the Y(p)th character of w.

2. Deletion.
(w,v) —QE-I-EEEEBLSZ—>(W',Y') if y(p) < v(q) and
(i) w' = W Wy where w = LERALY |wl| = y(p), and [wly[= v{(q);
y(r) if y(r) is defined and v (r) < yv(p);
(ii) v'"(r) = y(r) - |y| if y(r) is defined and v(r) = v(q);
undefined otherwise.
Intuitively, delete(p,q) means to delete the text between positions
p and q.
Other operations like moving a sticky pointer to a new position, searching
texts for a pattern, moving text, copying text, finding the i-th character
of the text and others could also be defined formally. In most cases the
sticky pointers are used to access the text. Any operétions that modify the

text could be defined using insert and delete so that we concentrate on them

and how they affect the ability to access the text using sticky pointers.

Basic Implementation

A node is a structure with four fields: TEXT, LENGTH, LLINK and

RLINK. If TEXT # nil then the node is called a segment node, otherwise

the node is called an internal node.

LLIH; LENGTH \BLINK
< -

14

this is a text

SEGMENT NODE

In a segment node the TEXT field points to a directly addressible text
string. The LENGTH field holds the length of the string pointed to by
TEXT. LLINK and RLINK point to the previous and next segment nodes,

respectively. The complete text string can be read by traversing the

segment nodes from left to right.

LLINK ' RLINK

INTERNAL NODE

In an internal node the LLINK and RLINK fields are tree links in a binary

tree. Each internal node was originally a segment node. The value it had

in its LENGTH field remains when it becomes an internal node. Segment nodes

become internal after an insertion or deletion. Iterated insertions and

deletions will cause a family of pairwise disjoint trees to be created whose

leaves are the segment nodes. An insertion or deletion at the end of a seg-

ment will not necessarily force the segment node to be internal. A deletion

covering more than one segment is implemented by repeated use of deletion

within a segment.

X

Ux = wz, vy inserted after w

A
iw v }z
INSERTION
A

lJ/ X = wyz, v deleted

DELETION WITHIN A SEGMENT

A sticky pointer is a structure with two fields SEG and DISP for segment

and displacement, respectively. Initially a sticky pointer points directly

to a segment node.

DISP

yw

this is an exampple of text
means

this is an ex ampple of text

P

STICKY POINTER

Of course, the segment node originally pointed to by a sticky pointer may
become an internal node after a sequence of inserts and deletes. When a
sticky pointer is accessed the text associated with it must be found. To

do this we define a procedure FIND(p) which given a sticky pointer p updates
the SEG and DISP fields so that p points directly to a segment node. Once

p points to a segment node, then the text associated with p can be directly

accessed through the TEXT field of the segment node.

procedure FIND(p);
s « SEG(p); d <« DISP(p);
while TEXT(s) = nil do
n <« LENGTH(s);
ml « LENGTH(LLINK(s));

m, <« n - LENGTH(RLINK(s));

case
d < mois <« LLINK(s);
m1 <d < m, ! p points to deleted text;

m, 2 d : s+« RLINK(s); d « d - m,

end;

if d > LENGTH(s) then p points to deleted text
else [SEG(p) <« s; DISP(p) <« d]

end

Example:

13
A4 1/

this is_an exampple of text

JJ/ insert "good " after "an "
P

A L{/‘A 13

this is an good _ exampple of text

delete '"n" in "an"
P

13

this is a good exampple of text

10

| delete first "p" in "exampple"

P
/_/ 13
B
this is a good _ exam ple of text

this is a good exam ple of text

11

It is important to notice that the sticky pointer P does not need to be |,
touched during the insertions and deletions. It remains attached to the
node A until it is needed in some operation. Before it is actually used
it is "pushed" down to a segment node using FIND. Should P be the only

sticky pointer attached to A, then after FIND(P) is executed, A becomes

garbage which could be collected by the storage manager.

Performance of the Basic Implementation

Since we have FIND we can assume that insertion and deletion always
occur directly at a segment node and consequently have constant cost. We
investigate the cost of FIND after n insertion and deletion operations.

In the worst case FIND can cost ©(n) for consider for consider the
case of n insertions into an initial text where each insertion occurs in

the right-most segment.

12

insert
—_—
__.7)

n-1 insertions

n insertions into right-most segment.

A FIND in the right-most segment requires a traversal of n internal nodes.

13

The average performance of the basic implementation is difficult to
assess because of the indeterminability of a random editing sequence. To
gain some understanding of average behavior we examine two extreme situa-
tions. 1) Small-length insertions and deletions are made randomly in a
very long segment and 2) Moderate to long-length insertions are made randomly
in an initially empty text.

To idealize the first situation we assume that all insertions and dele-
tions are made in the original text, that the probability of an insertion or
deletion in a particular segment is proportional to the length of the segment,
and that the sticky pointer we are accessing after n inserts and deletes is

in the original text.

Theorem 1. The expected cost of FIND after n small insertions and

deletions in a very long text is 0(log n).

Although Theorem 1 is intuitively true because we are forming a random
binary tree, we give a careful analysis of the expected external path length
of a binary tree with weighted leaves which is formed by n splitting opera-
tions. The probability of a leaf being split is proportional to its weight
and splitting it consists of giving it two children with random weights
which add up to the weight of the split node. The expected path length is
exactly 2(Hn-l), where Hn is the n-th harmonic number = 1 + 1/2 + ... + 1/n =

0(log n).

To idealize the second situation we again assume all the insertions are
the same size and that the probability that an insertion is made in a
segment is proportional to the length of the segment. The difference here
is that the probability of inserting into a previously inserted segment is

no longer negligible.

14

Theorem 2. The expected cost of FIND after n approximately equal size

insertions in an initially empty text is 0O(l).

In this case we give a careful analysis of the expected external path
length in a forest with weighted leaves which would correspond to those in
our data structure after n approximately equal size insertions into an
initially empty text. The expected path length (EPL) is given by

n-1
EPL(n) = I 2(Hm+l—l) g(m,n)
m=0
where g(m,n) is the probability that a tree in the forest has exactly

mtl leaves. It can be shown that EPL(n) < 1 for all n.

We examined these two situations because they were interesting and
analyzable. We suspect that the actual behavior of the algorithm lies

somewhere between these extremes.

Balanced Tree Implementation

A scheme for balancing binary trees based on single and double
rotations [AVL 62] [GS 78] can be used to keep the trees in the data
structure balanced. However, the rotations destroy the properties needed
by the simple mechanism for "finding" the segment associated with a sticky
pointer so additional data fields and a more complicated algorithm are
needed. A find now will traverse up the tree to some node, then down the

tree to the "correct" segment.

15

FIND in a balanced tree.

We need extra fields PARENT, ADJ (adjustment) as well as any additional

fields needed by the balancing algorithm.

N\PARENT

\)@‘\C’@ Y

LLINK RLINK

NODE IN BALANCED TREE IMPLEMENTATION

The PARENT field is used to move up the tree and the ADJ field is used to
help decide which way to go, up, left or right. Surprisingly, this local
information is enough to figure out where to go yet not so much that it
cannot be updated when rebalancing. The details of traversal and updating
are left to the full paper. The balancing unfortunately adds to the cost
of insertion and deletion so that they can no longer be done in constant
time. Since inserts and deletes are always preceded by finds in either

of our implementations the loss of constant time for these operations may

not be significant.

16

Theorem 3. The worst case cost for FIND, INSERT, and DELETE after n

insertions and deletions in the balanced tree implementation is 0(log n).

[AVL 62]

[BM 77]

[FP 74]

[GS 78]

[KMP 77]

REFERENCES

Adel'son-Vel'skii, G.M., and Y.M. Landis. "An algorithm for

organization of information." Dokl. Akad. Navk SSSR 146, 263-

266 (in Russian). English translation in Soviet Math. Dokl. 3

(1962) 1259-1262.

Boyer, R.S., and J.S. Moore. "A fast string searching algorithm."

Communicationslgg the ACM 20, No. 10, (1977) 762-772.

Fischer, M.J., and M.S. Paterson. '"String-matching and other

products.”" in Complexity of Computation, volume VII of SIAM-AMS

Proceedings, American Math. Soc., Providence, R.I., 1974, 113-126.
Guibas, L.J., and R. Sedgewick. "A dichromatic framework for
balanced trees." Proceedings of 19th Annual Symposium on

Foundations of Computer Science. (1978), 8-21.

Knuth, D.E., J.H. Morris, Jr., and V.R. Pratt. '"Fast pattern

matching in strings." SIAM Journal on Computing 6, No. 2, (1977)

240-267.

