Efficient Algorithms for Reporting Intersections

Garret Swart
Richard Ladner

Computer Science Department
University of Washington
Secattle, WA 98195
Technical Report No. 83-07-03

Abstract

The problem of taking a set of geometric objects in the plane and reporting all the pairwise intersec-
tions between the objects is considered. We introduce two new algorithms with a new supporting data
structure for solving this problem for a wide class of geometric objects. These algorithms illustrate a
new trade off in the design of plane sweep algorithms.

This research is supported in part by the National Science Foundation Grant MCS-80-03337.

Page 1

1. Introduction

The Intersection Reporting Problem is that of taking a set of geometric objects in the plane and
reporting all the pairwise intersections between the objects. This problem was first proposed by
Shamos and Hoey [10] and has applications as diverse as computer graphics, integrated circuit design
and video games. Sclutions to the problem have been given for the special cases where the geometric
objects are line segments (Bentley and Ottman [1]) and aligned rectangles (Bentley and Wood [2] and
McCreight [8]). This work has been extended to the online reporting of intersecting pairs of rec-
tilinear line segments (Vaishnavi and Wood [12] and to aligned rectangles in higher dimensions (Six
and Wood [11]). Related developments in the solution of intersection problems include detecting
whether two convex polygons or polyhedra intersect (Chazelle and Dobkin [3] and Dobkin and
Kirkpatrick [4]), determining the planar regions formed by a self intersecting polygon and finding the
intersection of two convex planar maps (Nievergelt and Preparata [9]).

In this paper we present two new algorithms, the Major Chord Algorithm and the Chain Algorithm,
for reporting all pairs of intersecting planar geometric objects. Both algorithms in their basic forms
report intersections with possible repetitions but modifications are presented to eliminate multiple
reports. The first algorithm requires the objects be convex while the sccond requires only that the
objects be simple. A planar object is simple if it is topologically equivalent to a disk. Figure 1 il-
lustrates some simple and non-simple objects.

Simple Not Simple

Figure 1: Examples of simple objects

The Intersection Detection Problem, the problem of detecting if two or more objects in a set
intersect, is trivially reducible to the Intersection Reporting Problem. The Intersection Detection
Problem for n objects is widely believed to require {i(n log n) time, and in fact does require it on a
linear decision tree, based on a reduction from point uniqueness and a result of Dobkin and Lipton
[5]. However, the relevance of this result is in question when the objects are complex as line seg-
ments because the problem cannot be solved using linear tests. Another constraint on the running
time of an algorithm solving this problem is the size of the output, the number of pairs of objects
which intersect, which we will denote by s. Thus, the best one can reasonably hope for in a solution

Page 2

to this problem is O(n log n + s5). Though the algorithms presented here do not meet this goal in
general, they have cases where they do meet it or come very close.

Both algorithms share a number of features including the fact that both are plane sweep al-
gorithms and both employ a new data structure for maintaining the information needed during the
plane sweep. The new data structure, called MV-trees (short for multiple version trees), may have

other applications.

Major Chords

Both algorithms take different views of the objects to be processed and gain in efficiency if the
objects ‘nice’ with respect to those views. The Major Chord Algorithm views each convex object
together with its major chord, the line segment from its left-most, top-most point to its right-most,
bottom-most point. Figure 2 illustrates a convexz obiect together with its major chord.

Major Chord

Object

Figure 2: Ezxample of a convex object with its major chord

Typical convex objects we are considering include convex polygons, cllipses, and composite objects
whose boundary is made up of line segments and arcs. For the algorithm to be weil defined we must
be able to (i) compute the intersection of an object and a line and (ii) detect the intersection of two
objects. For our computations of running times we will assume that the objects are convex polygons,
in which case the computations (i) and (ii) can be done in time O(log k), where k is the number of line
segments in the polygon. Chazelle and Dobkin [3] and Dobkin and Kirkpatrick [4] present algorithms
which solve these problems for convex polygons; they may be modified to deal with convex composite
objects. Table 1 summarizes the running times of the Major Chord Algorithm.

The trivial algorithm of checking all possible pairs for intersection runs in time O(n? log k) which
is better than the Major Chord Algorithm when the depth of intersection is &(n). However, if the
depth of intersection is small then the new algorithm performs much better than the trivial one. The
algorithm’s performance meets the asymptotically optimal bound of O(n log n + s) in the case where
both 4 and k are bounded by a constant.

In different applications the depth of intersection is bounded. For example, a VLSI layout has a
small fixed number of layers in which components may overlap without an error occurring, so the
maximum depth of intersection in a error free layout is constant. A VLSI design rule checker could

Page 3

Major Chord Algorithm O(nd*logk +ndlogn +sd log k)
Best case d = O(1) O((n + s)logk +nlogn)
Worst case d = 6(n), s = O(n?) O(n® log k)

where,

n = number of polygons

k = number of line segments per polygon

s = number of polygon-polygon intersections (the things we are interested inf)

d = maximum depth of intersection, maximum number of polygons containing any one point on the
plane.

Table 1: Running Times of the Major Chord Algorithm

be designed to check that intersections between objects occur only between the expected pairs but
even an erred layout would not be expected to have a depth of intersection more than a constant
factor greater than the number of layers. In a video game the general situation may have no objects
intersecting and an intersection may indicate that the player has just crashed and that the game is

over.

Chains

The Chain Algorithm views its simple, possibly non-convex, objects as bounded by a set of
chains, where each chain is a connected sequence of segmenss ordered by increasing x-coordinate. A
segment is a non intersecting curve which intersects any vertical line at most once (i. e. the intersec-
tion must be connected} and intersects any other segment at most a constant number of times. Seg-
ments considered include line segments and arcs of ellipses. Figure 3 illustrates the decomposition of
a simple object into chains.

A=1,2,3,45678

B=10,9,8
C=10,11, 12
D=1,13,12

Figure 3: Ezample of a simple object decomposed into chains

For the Chain Algorithm to be well defined we must be able to compute (i} the intersection of two
segments and (ii) compute the intersection of a segment and a line. In the cases we will consider these
operations can be computed in constant time, as they can in the case of simple polygons. Table 2

Page 4

Chain Algorithm O({r +nk)(logk + logn) + 3)
Best case k = O(1) O((s + n) log n)
Worst case r = 6(::25:2) O(nzkz(log k +log n)
where,

n = number of chains

k = number of scgments per chain

s = number of object-object intersections (the things we are interested inl)
r = number of scgment-segment intersections.

Table 2: Running Times of the Chain Algorithm

summarizes the running times for the Chain Algorithm for simple polygons. A trivial algorithm for
checking all possible object-object intersections runs in time O(n? k log k) so if the number of actual
scgment-segment intersections is @(nzkz) then the Chain Algorithm is worse than the trivial algorithm.
For many cases the Chain Algorithm will perform much better. In the case of objects of bounded size
the algorithm runs in time very close to optimal. In many situations in vector computer graphics the
number of segments making up any one object is bounded and the Chain Algorithm runs in time
O((s + n) log n).

2. Common Features of Both Algorithms

Both the major chord and chain algorithms share the plane sweep algorithmic structure and share
the use of the underlying MV-tree data structure.

Plane Sweeps

A plane sweep algorithm proceeds by conceptually sweeping a vertical line from left to right,
keeping track of the input objects as they intersect the sweep line and solving the problem as the line
sweeps forward. There are two structures common to all plane sweep algorithms, a To-Do-List of work
yet to be done and a y-structure representing the one dimensional information needed to be main-
tained about the intersections of the objects with the current sweep line. The To-Do-List is a priority
queue of activitics, ordered by the x-coordinates of the points where the activity is to take place. The
priority queue, in effect, implements the sweep line by the correspondence that the x-coordinate of
the top element of the queue is the current position of the sweep line. As new activities to be done
are found they are inserted into the queue. New things to be done are always found to the right of
the current sweep line, thus the sweep line never backs up. The To-Do-List has operations:
‘insert(thing)’, where ‘thing’ is an activity to be done, and ‘thing « top’, where ‘thing’ becomes the next

activity to be done.

Typically, the y-structure represents some of the information about the intersection of the
geometric objects with the sweep line. As such it must change dynamically as the sweep line is ad-
vanced. It also must represent the objects in such a way that the problem restricted to the sweep line
may be solved. The activities placed on the To-Do-List do one or more of the following (i) cause
changes to the y-structure to take into account the new position of the sweep line, (ii) add new ac-

Page §

tivities to the To-Do-List (iii) incrementally solve the complete problem. An example of the third type
of activity is the checking and reporting of intersections. All plane sweep algorithms have the same
basic control structure as given below in Figure 4.

Initialize the To-Do-List with basic information from the input;
y-structure - @;
while To-Do-List is not empty do
Do-It «~ top
case Do-It of
{Each type of activity on the To-Do-List is listed.
Each activity consists of one of more of the following:
updating the y-structure,
inserting new activities on the To-Do-List,
producing output.}
end
end.

Figare 4: Control structure of a plane sweep algorithm

There are several approaches to making a plane sweep algorithm efficient: (i) try to minimize the
number of activities that are put on the To-Do-List, (ii) try to make the y-structure simple so that it is
efficient to maintain, and (iii) make the y-structure comprehensive so that finding intersections with it
is efficient. There is an obvious trade off between (ii) and (iii), making the y-structure simple makes
maintaining it fast and using it to find intersections slow, while making the y-structure complex makes
using it to find intersections fast and maintaining it slow. The major chord algorithm has a relatively
simple y-structure and spends a large portion of its time checking intersections between objects. The
chain algorithm, on the other hand, has a comprehensive y-structure and spends most of its time main-
taining it. In any case an efficient data structure implementing the y-structure is desirable.

MV -trees

In our algorithms, the underlying data structures implementing the y-structure share a common
feature. Both maintain families of subsets of an ordered set § and use the following operations.
® Maintenance
O insert{x, V) — insert x into the set V,
O delete(x, V) — delete x from the set V,

O W ~ copy(V) — create a new set W which is identical to V.

Page 6

¢ Quecries
O search{x, V) € {T, F} — if x ¢ V then T else F,

o list([x.y], V) € § — the set of all the members of V which are between x and y in-
clusive,

o count([x.y], V) € Z* — the number of members of V which are between x and y in-
clusive.
forx,y €Sand W,V CS.

A standard search structure like a balanced binary search tree could be used to support all the
operations except ‘copy’. Several of the balanced binary tree algorithms can be meodified to support
copying efficiently as well as the standard operations. To this elegant modification we give the generic
name multiple version trees (MV-trees). With MV-trees the ‘insert’ and ‘delete’ operations on a set of
size n can be done in time O(log n) and ‘copy’ can be done in constant time. The ‘search’ and ‘count’
operations can also be done in O(log ») time. The ‘list([x.y], V) operation takes time O(log n +
Hz €V:x=szs=sy}).

Consider a balanced binary tree algorithm that relies solely on balancing actions on the path of
insertion or deletion. Dichromatic trees, 2-3 trees, and AVL-trees are examples of algorithms that can
be modified to become multiple version trees [7, 6]. The task is done by judicious coping and sharing
of nodes. A sct is represented as a pointer to a balanced tree. The operation, W « copy(V), is imple-
mented by simply setting the value of W to the value of V. Insertion and deletion are done in the
usual way but new nodes must be allocated on the path from the root to the external node invelved in
the insertion or deletion. Each node that would have been modified by the algorithm is first copied
then modified; the original is left intact. Figure 5 illustrates an example.

.
bt

insert /

Figure 5: Insertion of a node with a rotation for balancing in an MV-tree

As the algorithm proceeds nodes can become unreachable. For example, in Figure § if nothing is

Page 7

pointing to the root of the the tree after the insertion then the root has become unreachable. Because
the data structure is inherently acyclic a simple reference counting scheme can reclaim all the un-
reachable nodes with no increase in the asymptotic running time.

3. Major Cherd Algorithm

The major chord algorithm is based on a particular characterization of the pairwise intersections
between convex objects. To explain this characterization we will use the following ideas in addition to
that of the major chord.

Given a set of convex objects and a point x in the plane, the objects at x is an ordered set of
objects which intersect the vertical line through x. This set is ordered by the y-coordinate of the inter-
section of the object’s major chord and with the vertical line through x. The interval of P at x is the
subset of the objects at x whose major chords intersect the object P. Note that this subset is an inter-
val in the set of objects at x. The intervals of two objects are adjacent at x if the two intervals do not
intersect but the union of the two intervals forms an interval in the set of objects at x. These concepts

are illustrated in Figure 6.

T

p(s

©
Y,

X

The objects at x are (R, ¢, P, §,T). The interval of P at x is {Z, P, §), the interval of R at x is just (R)
and the intervals of 7 and % are adjacent at x.

Figure 6: Rclationships between objects

Using these concepts we can characterize intersecting pairs of objects as follows.

LEMMA 1: If two convex cbjects P and @ intersect then there is an x such that the intervals of P
and @ at x are adjacent or intersect.

Page 8

PROOF: Assume to the contrary that P and @ intersect and there is no x such that the intervals

of P and @ are adjacent or intersecting.

Pick any point p in the intersection of P and Q. As P is convex, a vertical line through p inter-
sects P in a vertical line segment, similarly for Q. Since p is contained in both P and Q these vertical
line segments themselves intersect. By assumption the intervals of P and Q are not adjacent or inter-
secting at any point and in particular at p there is at least one object R separating the interval of P and
. Since the interval of P at p does not include R, P does not intersect the major chord of R at p.
Likewise @ does not intersect the major chord of R at p. On a vertical line through p, P and Q are
separated by the major chord of R, contradicting our assumption that P and Q intersect at p. ||

We use this lemma as the basis of our algorithm. Instead of checking each pair of objects against
each other for intersection we check only those objects whose intervals are adjacent or intersect. The
y-structure maintains the information which allows us to check the conditions of the lemma easily. It
maintains the ordered sct of objects and the interval of cach of the objects at x. The intervals are
maintained in such a way that at any one time one interval may grow or shrink by one object. Thus
for two intervals to intersect, they must start out intersecting or adjacent, or at one point they must
become adjacent. In this way we need only check two objects P and @ for intersection when

@ a new object P is being inserted in or adjacent to the interval of an object @
or
& the intervals of P and @ become adjacent.

The y-structure can change only in the following situations:

1. Start of an object. At the left-most point of an object, it must be inserted into the set
objects at the current sweep line position and inserted into the intervals of objects which
contain the left-most point of the object.

2. Major chord-major chord intersection. When the major chords of two objects intersect,
the order of the objects must be switched.

3. Boundary-major chord intersection. This occurs when an object @ intersects the major
chord of P. This can happen in four different ways as illustrated in figure 7. In the first
two ways the interval of Q expands, in the other two, the interval of Q contracts.

4. End of an object. When the right-most point of an object is reached, it must be removed
from the set of objects.

An example of a set of objects, its activities and the evolution of its y-structure is given in figure 8.

Implementation of the To-Do-List

As the sweep progresses, the To-Do-List contains entries for each event which causes a change to
the y-structure. The To-Do-List initially contains entries to indicate the start and end of each of the
objects in the input. These are placed at the x-coordinate of the left and right ends of the major
chord. The major chord of a convex object, denoted mc(P), may be found in time O(log &) using the
standard technique of maximizing and minimizing a bimodal function (see Chazelle and Dobkin [3]).
Once computed the major chord of each object is stored. Added to the To-Do-List during the plane

Page ¢

—————.

———ss s,

/
/

From below From above From below From above
Concave down Concave up Concave up Concave down

Figure 7: Four kinds of Boundary-major chord intersections.

sweep are entries for major chord-major chord and boundary-major chord intersections. These are
recognized and placed on the To-Do-List when the cbjects become adjacent and when the object and

the interval become adjacent respectively.

Implementation of the y-structure

The ordered set of objects at x is represented as a balanced tree. Also maintained are pointers to
the objects currently above and below each object P, denoted above(P) and below(P) respectively.

The intervals at x are maintained using three sets for every object at x. For each object P,
TOP(F) is the set of objects whose intervals have P as their largest element, BOT(P) is the set of ob-
jects whose intervals have P as their smallest element and MID(P) is the set of objects whose intervals
contain P, but not as the largest or smallest element. The sets TOP(P) and BOT(P) are implemented as
balanced trees, while MID(P) is implemented as an MV-Tree. The ordering used in these sets is ar-
bitrary and static (say based on their order within the input or in memory); this is distinct from the

dynamic ordering of the set of objects at x.

Specification of actions

The algorithm will now be completely specified by giving the actions to be performed when each
type of entry reaches the top of the To-Do-List. The total running time for each step is given in
brackets at the end of the step. This does not include the time to insert entries onto the To-Do-List.
The algorithm is analyzed in terms of the following quantities, some of which appeared in table 1.

= number of objects

= number of segments per object

= number of object-object intersections

= number of major chord-major chord intersections
number of boundary-major chord intersections

= maximum cardinality of any individual TOP or BOT set

n
k
s
r
u
m

® Start of an Object P.

1. Insert P into the ordered set of objects at x based on the y-coordinate of its left-most
point. [O(n log n)]

Page 10

i Activity at i

oo~ O W R e

bbb b
N O

.Startof A

. Start of B

. Int. 8(B) and mc(A)
. Start of C

. Int. 8(C) and me(B)
. Int. me(B) and me(C)
. Int. 8(4) and me(C)
. Int. 8(B) and me(C)
. Int. &(B) and mc(A)
. End of B

.Endof C

.End of A

Activities and the y-structure
(3(A) is the boundary of A, me(4) is the major chord of A}

Ordered set
of objects
ati

AB
AB
ACB
ACB
ABC
ABC
ABC
ABC
AC

Interval of A
ati

AB
AB
ACB
ACB
ABC
AB
AB
AB

Interval of B
ati

AB
ABC
ACB
ABC
ABC
AB

Figure 8: The steps of the Major Chord Algorithm

Interval cf C
ati

cB
BC
BC
BC
BC

Page 11

2. Check for intersection of me(P) and me(above(P)) and insert a major chord-major
chord intersection into the To-Do-List if they do. [8(n)]

3. Similarly check me(P) and me(below(P)). [&(n)]
4. MID(P) ~ copy{(MID{above(P))). [O(n}]
5. fer all Q € TOP{above(P)) do insert(Q, MID(P)). [O(n m log n)]
6. Report intersection of P with all objects @ € MID(P). {O(5)]
7. TOP(P) - BOT(P) ~ {P}. [&(n)]
8. Exccute the following loop:
for all Q € BOT(above(P)) do
check P and @ for intersection and report it if they do;
if Q and me(P) intersect then
insert a boundary-major chord intersection in the To-Do-List;
end
[C(n m log &)}
© Major chord-major chord intersection between P and @ (P initially above Q).

1. Switch BOT(Q) and BOT(P), switch TOP(Q) and TOP(P) and switch P and Q in the
ordering of objects at x. [@()]

2. Check me(P) against me(below(P)) inserting a major chord-major chord intersection
in the To-Do-List if they do. [@(r)]

3. Similarly check mec(Q) against me{above(Q)). [0(r)]

© Boundary-major chord intersection between me{P) and Q. Assume Q is coming from below
and is concave downwards, the other three cases are similar.

1. delete(Q, TOP(below(P))); insert(Q, TOP(P)) and insert(Q, MID{below(P))).
[O(u log n)]
2. Check @ for intersection with mc(above(P)) and insert a boundary-major chord inter-
section if they do. [@(u)]
3. for all R € BOT(above(P)) do check Q and R for intersection and report it if they do.
[O(u m log k)]
@ End of object P
1. Execute the following loop:
for all Q € BOT(above(P)) do
for all R € TOP(below{P)}) do
Check Q and R for intersection and report it if they do
end
end.

[O(n m? log k)]
2. for 2ll Q € (TOP(P) — {P}) do insert(Q, TOP(below(P))). [O(n m log n)]
3. for ail Q € (BOT(P) — {P}) do insert(Q, BOT(above(P))). [O(n m log a}]

4. Check for intersection of below(P) with mc(above(P)) and insert a boundary-major
chord intersection into the To-Do-List if they do. [@(n)]

5. Similarly check above(P) with me(below(P)). [@(n)]

Page 12

Running time

The total running time of this algorithm including the time needed to initialize and maintain the

To-Do-List is given by
O((* +u)logn+nm?logk +nmlogn +umlogk + s).

This depends on the number of each type of intersection and the sizes of the intervals of the objects.
No object may be in the intervals of any more than d objects, where 4 is the maximum depth of the
overlap of objects, so we can bound m by d. The number of cach type of intersection is bounded by
the number of object-object intersections so ¢ and » are bounded by s. We then have the following
theorem.

THEOREM 2: The Intersection Reporting Problem for n convex polygons with O(k) sides can be
solved in time

O(ndziogk+ndlogn+sdiogk),

where s is the number of intersections and d is the maximum depth of intersection.

To eliminate the multiple reporting of object intersections an additional set for each object may
be maintained to keep track of the objects which have been reported as intersecting. This data struc-
ture could be checked before reporting the intersection. Implementing this set as a balanced tree, the
running time of the algorithm is bounded by

O((r 42 + s d) (log n + log k)).

4. Chain Algorithm

This algorithm is based on a much simpler characterization of intersections between simple ob-
jects. Two objects intersect if and only if their boundaries intersect or one object is inside the other.
We store the information needed to check these conditions in the y-structure. The y-structure of this
algorithm indicates precisely which objects intersect any point on the sweep line. To implement this,

Iet us define the following sets which will be maintained.

The chains ar x is the ordered set of chains which intersect the vertical line through x. This set is
ordered by the y-coordinate of the intersection of the chain with the vertical line through x. Given a
chain C, the family of C ar x is the set of objects which contain the half open segment of the vertical
line through x starting from its intersection with € and going down to, but not including, its inter-
section with the chain below C in the ordering of the chains at x. An example of these ideas are given
in figure 9.

X

The family of C is {P, @} and the family of D is {0}.

Figure 9: Families of chains

Implementation of the To-Do-List

As the sweep progresses, the To-Do-List contains entries for each event which causes a change to
the y-structure. The entries in the To-Do-List are initially: starts of chains; chain bends, a transition
between one segment and the succeeding one within a chain; and ends of chains. These are inserted
during an initial scan of the entire input. Added to the To-Do-List during the plane sweep are entrics
for segment-segment intersections. A segment-segment intersection is discovered when the chains the
segments are a part of become adjacent in the set of chains (Bentley and Ottman [1] discuss reporting
intersections of line scgments). Since the boundary is topologically equivalent to a circle, chains start
and end in pairs. There are two ways chains can start or end and these are shown below in figure 10
along with the other entries which may be placed on the To-Do-List. The input objects are split into
chains and the chains are classified as part of the initial scan of the input.

o
||

ql

!
Chain Start 1 Chain Start 2 Chain Bend Segment Int Chain End 1 Chain End 2

Figure 16: Entries on the To-Do-List in the Chain Algorithm

Page 14

Implementation of the y-structure

The y-structure maintains the chains and their families at the current sweep line position. The
ordered set of chains at x is represented as a balanced tree. Each chain has one segment which is
active at any one time, the active segment is a segment intersected by the sweep line. For a chain C,
we maintain a pointer to the current segment, denoted seg(C), pointers to the chains above and below
it in the ordering of chains at x, above(C) and below(C), and a pointer to the object the chain is a part
of, object(C). In addition, each chain can be categorized by whether the inside of the object is above
or below it, if the latter then r0p(C) is true, otherwise false. The family of a chain C is implemented
as an MV-Tree, denoted as FAM(C).

Specification of actions

The algorithm can be completely specified by the actions needed for every entry on the
To-Do-List. This is given below along with the total running time for each step. The quantities used

in the analysis, including those given in table 2 are

n = number of chains

k = number of segments per chain

p = total number of segments

s = number of object-object intersections (the things we are interested inf)
r = number of segment-segment intersections.

® Start of Chains type 1. (C is above D).
1. Insert C and D into the y-structure based on their y-coordinate. [O(n log n)]

2. If this is first start of chains in this object then report intersection of object(C) with
everything in FAM (above(C)). O(s)

3. FAM(C) - insert(object(C), copy(FAM(above(C)))). [O(n log n)]
4. FAM(D) - copy(FAM (above(C))). [®(n)]

5. Check for intersection between seg(C) and seg(above(C)) and if so insert the
segment-segment intersection into the To-Do-List. [@(n)]

6. Similarly check for intersection between seg(D) and seg(below(D)). [©(n)]

& Start of Chains 2. (C above D)
1. Insert C and D into the y-structure based on their y-coordinate. [O(n log n)]

2. FAM(C) « delete(object(C), copy(FAM (above(C)))). [O(a log n)]
3. FAM(D) « copy(FAM(above(C))). [©(n)]

4. Check for intersection between seg(C) and seg(above(C)) and if so insert the
segment-segment intersection into the To-Do-List. [@(n)]

5. Similarly check for intersection between seg(D) and seg(below(D)). [@{n)]

® Bend in chain C, new segment is a.

1. Update seg(C) - a. [0(p)]

2.Check for intersection betwecen seg(C) and seg(above(C)) if so insert the
segment-segment intersection into the To-Do-List. [@(p)]

3. Similarly check for intersection between seg(C) and seg(below(C)). [0(p)]

Page 15

@ Segment-scgment intersection between C and D (C initially above D).
1. Report intersection between object(C) and object(D). [6(r)]
2. Switch € and D in y-structure. [8(r)]
3. if 10p(C) then delete(object(C), FAM(D)) else insert(object(C), FAM(D)). [O(r log n)]
4_if top(D) then insert(object(D), FAM(C)) else delete(object(D), FAM(C)). [O(r log n)}

5. Check for intersection between seg(C) and seg(below(C)) and if so insert the
segment-scgment intersection into the To-Do-List. [6(r)]

6. Similarly check for intersection between seg(D) and seg(above(D)). [0(r)]
® End of Chains 1 or 2.
1. Remove € and D from the y-structure.

Running time

The total running time including initialization and maintenance of the To-Do-List is
Clp+n+rylogp+(p +n)logn+s).
Noting that p = O(n k) we have the following theorem.

THEOREM 3: The Intersection Reporting Problem for » simple polygons with O(k) sides can be

solved in time
O((r +nk)(ogn +log k) +5),

where s is the number of intersections and r is the number of segment-segment intersections.

To eliminate the multiple reporting of object intersections we can, as in the major chord alge-
rithm, keep for each object the set of intersecting objects. The running time of the algorithm with
this modification is asymptotically the same as above.

5. Conclusion

We have presented two plane sweep algorithms which solve much the same problem. The two
algorithms have one general difference. The Major Chord Algorithm has relatively little information
in its y-structure and spends a large portion of its time checking intersections between objects. The
Chain Algorithm on the other hand has complete information in its y-structure and spends most of its
time maintaining that structure. Further work may find a better compromise between the two, keep-
ing cnough information in the y-structure to quickly solve the problem while not incurring high main-

tenance costs.

The simple algorithms presented here illustrate some of the data structures and techniques which
are extended to higher dimensions and to hidden line removal problems in a sequel.

(1]

[2]

(3]

(4]

(5]

(6]

7]

(8]

(9

[10]

Page 16

References

Bentley, J. L., Ottman, Th.
Algorithms for Reporting and Counting Geometric Intersections.
IEEE Transactions on Computers C-28:643-647, 1979.

Bentley, J. L. and Wood, D.
An Optimal Worst Case Algorithm for Computing Intersections of Rectangles.
IEEE Transactions on Computers C-29:571-576, July, 1980.

Chazelle, B. and Dobkin, D. P.

Detection is Easier Than Computation.

In Proceedings of the 12th Annual Symposium on Theory of Computation. ACM Special Interest
Group on Automiton and Computability Theory, 1980.

Dobkin, D. P. and Kirkpatrick, D. G.
Fast Detection of Polyhedral Intersections.
1982. Manuscript.

Dobkin, D. P., Lipton, R. L.
On the Complexity of Computations Under Varying Sets of Primitives.
Journal of Computer and System Sciences 18:86-91, 1979.

Guibas, L. J. and Sedgewick, R.

A Dichromatic Framework for Balanced Trees.

In Proceedings of the 19th Annual Symposium on F oundations of Computer Science. IEEE Com-
puter Society, 1978.

Knuth, D. E.
The Art of Computer Programming. Volume 3: Sorting and Searching.
Addison-Wesley, Reading, Mass., 1973.

McCreight, E. M.
Efficient Algorithms for Enumerating Intersecting Intervals and Rectangles.
Technical Report CSL-80-9, Xerox PARC, June, 1980.

Nievergelt, J. and Preparata, F. P.
Plane-Sweep Algorithms for Intersecting Geometric Figures.
Communications of the ACM 25:739-747, 1982.

Shamos, M. I. and Hoey, D.

Geometric Intersection Problems.

In Proceedings of the 16th Annual Symposium on Foundations of Computer Science, pages 151-162.
IEEE Computer Society, 1975.

Six, H-W. and Woad, D.
The Rectangle Intersection Problem Revisited.
BIT 20:426-433, 1980.

Vaishnavi, V. K. and Wood, D.
Rectilinear Line Segment Intersection, Layered Segment Trees and Dynamization.
Journal of Algorithms 3:160-176, 1982.

