Research in Real-Time Systems

by
Alan Shaw, Carl Binding,
Wei-laung Hu, and Kevin Jeffay

Department of Computer Science FR-35
University of Washington
Seattle, WA 98195
Technical Report 85-12-05
December 1985

This work was supported in part by the Washington Technology Center
and Boeing Aerospace Corporation.






December, 1985

Research in Real-Time Systems

by
Alan Shaw, Carl Binding, Wei-laung Hu, and Kevin Jeffay
Department of Computer Science FR-35
University of Washington
Seattle, WA 98193

1.0 Introduction

This research project, started in summer 1984, is concerned with methods and tools for
generating real-time software. A general theme and objective is to include time as a first-
class object in programs. Typical applications are air traffic monitoring and control, avionics
systems used for guidance and control in air and space vehicles, life support systems in
hospitals, and robotics where the software controls robots that perform manufacturing and

testing operations.

The systems which we are investigating have a number of features and requirements that
distinguish them from more conventional software and applications. The most important is
the existence of strict timing constraints; correct systems performance involves not only
standard correctness notions for software and hardware (e.g. computing the right answers)
but also timing correctness such as responding to external events within a specific time
interval or meeting given start and completion times for varicus applicatior: processes.
Other characteristics are the need for reliability and fault tolerance, both physical and logical
concurrency, stand-alone and applications-specific hardware/software configurations, and
difficult but critical pre-testing and certification. Some emphasis has also been given to
graphics interfaces for users, both for real-time applications and for program design and

generation systems.

As an empirical basis for developing and validating our ideas, we have selected a particular
real-time application that has all the features of the general problem area and that can be
attacked at a variety of levels. The problem is the design and implementation of an air

traffic monitoring system (ATM) that tracks and communicates the positicn of all aircraft in



a given airspace volume. Real-time inputs and outputs inciude radar signals and controi,
communications received when new aircraft enter the volume and sent when aircraft leave
the volume, operator input for querying and controlling the system, and one or more screen

displays showing aircraft tracks and various textual data.

The following sections describe cur current work and approach. Presently, it is concentrated
in four related areas: timing specifications in concurrent programs, operating systems and
concurrent programming languages, programming in the large, and simulator/prototype

implementations.

2.0 Specification of Timing Constraints in Concurrent Programs

The problem is how to deal with time and clocks at different levels of abstraction and within
the context of a general specification methodology for software. We have focussed on timing

issues in real-time programs and in interactive graphics interfaces.

For specification purposes, it is uscful to assume the co-existence of a variety of clocks and
timing mechanisms. There may be many local (sometimes "virtual”) clocks, one or more per
process; there may also be global clocks that are used collectively by process families or the
entire system. Clocks have different granularities, covering a broad range from very fine to
very coarse. There are the "standard” clocks that generate software accessible ticks and
counts at fixed time intervals; we also need variable interval timers to act as alarm clocks. A
clock or timer is conveniently viewed as a scparate process, implemented in hardware or
software, that produces tick, current "time”, and timecut messages and that can receive
requests for such tasks as setting or resetting itself. (Clock synchronization problems, for

example in distributed systems, have not been a part of this work.)

Flow expressions [Shaw 78], a language-based formalism for expressing concurrent and
interleaved behaviors, are being studied as a means for specifying directly the behavior of
systems of processes including clocks and timers. The descriptions are essentially sets of

interacting regular expressions (or finite state machines) that synchronize and communicate



through a semaphore-like scheme.

A higher-level specification of the ATM software and its timing constraints has been written
using flow expressions [Shaw 84] (One example of a timing constraint for ATM is that every
aircraft track must be displayed at least once every three seconds). We have also used the
notation for describing several instances of uscr interface elements [Chi 85; Chi and Shaw
85]. Examples are descriptions of a rotating globe, where either the rate of rotation or a
sampled angle of rotation are synchronized with a local timer, and clicker software for a
mouse input device, that recognizes single and double clicks according to the time intervals

between pressing and releasing mouse buttons.

The principal research problems are finding the "right” software abstractions for the various
timing constraints and creating a higher-level specification mechanism expressing these

abstractions.

3.0 Operating Systems and Concurrent Programming Languages

The state of the practice of real-time design appears to be divided into two main brancies.
The first uses the generic operating systems tasking mode!, characterized by high lcvel
concurrency and synchronization constructs, such as processes, monitors, rendezvous, and
condition variables. Here process scheduling is not explicitly dealt with by the programmer.
Instead, scheduling occurs through the synchronization mechanisms and is often based oo a

priority scheme. The second style of real-time design has lead to models with explicit

processor scheduling. Such systems rely mainly on statically-defined scheduling discipli:

e g
i

based on timing constraints.

Tasking models have the advantage that a system’s logical correctness can be reascned atout,

While they are general in nature, they have often been considered too inefficient for cozl-

i
g

time programming. In addition, they provide no basis for discussing a system’s t!

properties. The explicit scheduling approach, while being a lower level methodolozy, <ocs

provide a framework for controlling time in a system, permitting efficient implementaticzs.



Within each of these classes, we have identified and studiel specific instances of real-time

design methodologies.

Within the tasking approach, concurrent programming languages have provided useful
paradigms for the construction of large systems. Systems developed with languages such as
Mesa, Ada (in the future) and Modula fall into this category. (Modula-2 is an intriguing
high-level language that does not bind the programmer into a specific model of concurrency;
instead it provides lower level primitives which allow the designer to implement the most
appropriate form.) An alternate method has been to provide a library of concurrency
primitives that can be invoked from an essentially sequential programming language. This
"tool-kit" idea is found in many commercial real-time development systems, such as IRMS 86

and VAXElan.

Systems within the explicit process scheduling class may have a static ordering of the real-
time tasks or they may be decomposed into schedulable units called slices, strips or chunks.
The cyclic executive approach, popular for example in avionics, often employs static, table-
driven schedules for these slices. Part of our work has been to define a practical instance of
a strip-based model [Baker and Scallon 85]. Other work has studied the implementation of
these kinds of systems using higher level languages such as Ada [Shaw 85]. We have also
experimented with a general hierarchic scheduler organization as well as explicit scheduling

policies [Hu 85].

One aim of our current research in this arca is to combine the flexibility, elegance, and
generality of concurrent programming languages with the explicit scheduling and efficiency
of the strip-based methodology. (e.g. [Donner 80]). Experiments with an Ada system are
being considered to test our ideas. Longer term research will also address the effect of

alternate hardware architectures on our solutions.

4.0 Programming in the Large for Real-Time Systems

A long term goal of our project is to provide interactive tools to design, test, and generate



real-time systems. One result may be executable specifications and/or various software
generators. The MASCOT programming methodology [MASCOT 80] and the PegaSys system
[Moriconi and Hare 85] exhibit some of the desirable features and requirements for these

tools.

For this programming environment, we consider a real-time system to be composed from a set
of program component types and interconnection types, such as modules, processes and different
interprocess communication mechanisms. Instances of these types, the actual component and
interconnection elements, provide specific functional abstraction or dynamic behavior. These
elements are assembled together in order to realize a final application system. We started by
identifying some reusable operating system components and interconnections, and examined
how they could be linked together to produce a variety of OS kernels. This first effort was
at the level of semaphores, process management modules, clocks, buffering modules,

schedulers, and other kernel elements.

Currently we base the intended programming environment on the more general
entity-relationship model. Entities represent reusable system components and relationships
model the various interconnections between these components. A directed graph underlies
the front-end in the preliminary implementation design. Properties are associated with both
edges and nodes, including their images or iconic representations for the graphical display. It
is still an open research question how to display various module interconnections types in a
meaningful graphical way. Traditional methods include flow-charts, module interface
dependency graphs, or data flow models, but none of these methods alone seems powerful
enough. The user interface tools and model [Binding 85b] are being extended so that they
may be used to construct a generalized graph editor which in turn will permit some

experimental work in this area.

5.0 Implementations

Two major implementations efforts have been completed. We built a prototype ATM syztem

to understand the problems of real-time design in general and to gain insights iuto one



&

specific real-time program organization. We also constructed a simulator to compare various
scheduling policies that might be used in real-time systems and to compare various possible

organizations for a given application.

5.1 ATM Prototype [Binding 85¢c]

For the ATM prototype, the C programming language was expanded with a simple
concurrency mechanism providing non-preemptable (light-weight) processes [Binding 85a].
We built the prototype using a process-oriented model. In essence, one tracker process is
associated with each individual aircraft. Tracker processes communicate with various other
system components via a shared database. Although our implementation is only a rough
prototype, its design is highly modular and easy to extend and maintain; we believe that this

is a result of using the generic tasking or process model.

A major part of the ATM prototype is devoted to the user interface realized on 2 high-
resolution bitmap device and using an interactive pointing device. Similar to our
programming-in-the-large effort, we have tried to divide the user interface into a set of
reusable components that in this case are high level, two dimensional /O abstractions with
specific interactive behavior. The user interface package [Binding 85b] provides various
generally useful interface components that were employed to build the ATM operator
interface. Although the ATM and other interfaces have been constructed with this package,
the underlying user interface model needs extensions in order to coherently incorporate
primitive drawing facilities along with the windowing, text, menu, and othcr existing

components.

5.2 Simulator [Hu 85]

The scheduling algorithms which we have integrated in this simulator are the deadline



scheduling algorithm (also rcferred to as due-dates scheduling), a priority preemptive
scheduling algorithm, and a combination of these. The latter uses a hierarchy of three task
priority categories: high, low and fill. In general, high pricrity tasks are periodic, have a
short execution time and a stringent timing requirement, and are non-preemptable. Low
priority tasks are either periodic or sporadic (aperiodic) [Mok 83], have some tolerance for
delays, and are preemptable only at specific execution states. Fill tasks can be considered as

background tasks and have relative priorities.

Tasks of the highest priority category are scheduled at fixed points in time according to an a
priori established scheduling table. The scheduling of tasks of the other categories is done
dynamically: low priority tasks are scheduled according to their deadlines and fill tasks are
scheduled based on their relative priorities. Further input to the simulator - beside the
schedule table for high priority tasks - models the occurrence of interrupts, describes the

execution times for individual tasks and gives the preemption points of low priority tasks.

Deadline scheduling works best when all tasks have the same priority. Some systems,
however, contain tasks with differing tolerances for delays and therefore we belicve that the
hierarchical scheduling policy might yield better results. Using the simulater on our sample
ATM problem and other real-time system examples, we hope to demonstrate this. The
simulator will also be used to evaluate the high-level, general tasking model against the
lower-level, explicit scheduling model of tasks. At this point, the simulator has been

validated with a particular ATM organization.

6.0 Summary and Acknowledgements

This research is part of a long term research project on software generation. Our emphasis is
on real-time systems and on the paramount role of time as a design and programming cbject
[Shaw 84]. It is a joint industrial and academic project, partially supported by th

Washington Technology Center and Boeing Aerospace Company. In addition to the authors,
other contributors to the project are Theodore Baker (Florida State University), Gregory

Scallon (Boeing), Edwin Stear (Washington Technology Center), and Russell Wilson



(Boeing).

References

[Baker 85] T.P. Baker. An Ada Runtime System Interface.
Technical Report 85-06-05, Dept. of Computer Science, University of
Washington, Seattle, WA, June 1985.

[Baker and Riccardi 85] T.P. Baker and G.A. Riccardi. Implementing
Ada Exceptions. Technical Report 85-06-01, Dept. of Computer
Science, University of Washington, Seattle, WA, June 1985.

[Baker and Scallon 85] T.P. Baker and G. Scallon. An Architecture
for Real-time Software Systems. Technical Report 85-06-04, Dept. of
Computer Science, University of Washington, Seattle, WA, June 1985.
(To appear in IEEE Software).

[Binding 85a] C. Binding. Cheap Concurrency in C. SIGPLAN
NOTICES 20(9): 21-26, September 1585.

[Binding 85b] C. Binding. User Interface Components based on a
Multiple Window Package. Technical Report 85-08-07, Dept. of
Computer Science, University of Washington, Seattle, WA., October
1985.

[Binding 85c] C. Binding. Prototypical Implementation of an Air
Traffic Monitoring System. Internal Report, Real-Time Software
Generation Project, Dept. of Computer Science, University of
Washington, Seattle, WA., December 1985.

[Chi 85] U.H. Chi. A Model and Notation for Specifying User
Interfaces. Technical Report 85-07-02 (Ph.D. Thesis), Dept. of
Computer Science, University of Washington, Seattle, WA, July 1985.

[Chi and Shaw 85] U.H. Chi and A.C. Shaw. Using Flow Expressions
to Specify Timing Constraints in Concurrent Programs. Technical
Report (in preparation), Dept. of Computer Science, University of
Washington, Seattle, WA, 1985.

[Donner 85] M.D. Donner. The Design of OWL, a Language for Walking.
Proc. SIGPLAN ’83 Symp. on Progr. Lang. Issues in Software
Systems. In SIGPLAN NOTICES 18(6):158-165, June 1983.

{Hu 85] W.L. Hu. The Guaranteed Clocked Schedule and Simulator.
Internal Report, Real-Time Software Generation Project, Dept. of
Computer Science, University of Washington, Scattle, WA., December
1985.



[MASCOT 80] Mascot Supplier Association. The Official Handbook of
MASCOT. Computing Standards Section, Royal Signals and Radar
Establishment, Worcestershire, UK, 3 December 1980.

[Mok 83] A.K. Mok. Fundamental Design Problems of Distributed
Systems for the Hard Real-Time Environment. MIT Technical Report,
MIT/LCS/TR-297, 1983 (Ph.D. Thesis).

[Moriconi and Hare 85] M. Moriconi and D.F. Hare. PegaSys: A System
for Graphical Explanation of Program Designs. In Proc. ACM
SIGPLAN 85 Symp. on Language Issues in Programming Environments,
pages 148-160. SIGPLAN NOTICES, July 1985.

[Shaw 78] A.C. Shaw. Software Descriptions with Flow Expressions.
IEEE Trans. on Software Engineering SE-4: 242-254, May 1978.

[Shaw 84] A.C. Shaw. Final Report : Development of Software Tools
and Techniques for Automatic Sof tware Program Generation. Technical
Report, Boeing Aerospace Company, Seattle, WA, December 1984,

[Shaw 85] A.C. Shaw. Concurrent Programming and Slice-Based
Scheduling. Internal Report (in preparation), Dept. of Computer
Science, University of Washington, Seattle, WA, December 1985.



