An Investigation into the Design Costs of a
Single Chip Multigauge Machine

Lawrence Snyder, Chyan Yang

Department of Computer Science FR-35
University of Washington
Seattle, WA 98195
Technical Report 86-06-01

June 2, 1986

This work was supported in part by ONR Contract NO2014-85-K-0326 and DARPA MDA907-85-K0072

An Investigation into the Design Costs of a Single
Chip Multigauge Machine®

Lawrence Snyder, Chyan Yang
Department of Computer Science .
University of Washington

i)

Abstract

Multigauge computers can operate either with their full datapath
width or with the datapath split into separate narrower width machines.
Such a concept has been previously shown to provide parallelism when
the data values are small. This paper reports on the costs of gauge-
shiftable computers. Specifically a single chip microprocessor, the 32-
bit Quarter Horse machine, is redesigned to be gauge shiftable under
software control to two 16-bit microprocessors. A complete accounting
of the effects of gauge shifting on computer architecture is thus realized.
Care is taken to identify the effects on the design of SIMD and MIMD
executions. The general costs of gauge shifting for other implementation
strategies are also identified. !

1 Introduction

Multigauge parallel machines are parallel architectures whose processor ele-
ments can be split up to operate on smaller size data values; for example, a
32-bit machine might be divided into four 8-bit machines to work on charac-
ter data. The chief benefit is that the normally serial processor elements are
converted into parallel processors with the attendant speedup. Multigauge
computation was argued to be fundamentally different from serial compu-
tation, and especially beneficial to an important class of algorithms called
two-tier algorithms, algorithms with a massive amount of “low level” data
processing on “small” data values coupled with “high level” processing [1).
Having previously identified substantial benefits for multigauge computation,
we now consider its costs.

There are a variety of ways of assessing costs. We have selected a mixed
strategy that assures both that we will be complete and precise and that the
results will be generally applicable: We analyze how to convert a particular’
single chip sequential computer, the Quarter Horse microprocessor [2],

* Funded in part by ONR Contract N00014-85-K-0326and DARPA MDA907;85-K0072.

1

to be a multigauge computer. Then for cach modification we assess both
its consequences for the Quarter Horse, and whether this modification is a
general phenomenon or simply unique to this particular machine. In this
way no architectural effect of multigauging will be missed, yet the general
consequences of the concept will also be clear.

The Quarter Horse is a 32-bit microprocessor implemented at the Univer-
sity of Washington as a single custom chip in 3 CMOS {2]. The name derives
from the fact that it is a standard reduced instruction set architecture, a sim-
ple “workhorse” computer, whose original development was accomplished in
only 90 days. The computer used here is a compact version of that original
design, the Quarter Horse II (QH2). This machine has approximately 40%
of the die free and was designed to be easily enhanced. Secveral extensions
are planned. The importance of using this Quarter Horse Il as the basis
of a multigauge machine is this: The absolute performance smprovement of
multigauging can be established by comparison with the base machine, and
the relative improvement can be established by comparison with other exten-
stons that utilize the available silicon differently. The value of multigauging
to processor element design can thus be determined by fair experimentation.
Notice that this comparative performance analysis is the subject of a future
paper to be written when all designs arc completed and fabricated; this pa-
per addresses the design requirements of multigauge computation and their
impact on sequential processor architectures.

1.1 Multigauge Architecture Review

Recall [1] that a multigauge architecture utilizing its full B-bit datapath
width is said to be executing in wide gauge or wide track mode. When the
datapath is partitioned into k scparate machines each with a b-bit wide
datapath (kb = B) the machine is said to be in narrow gauge or narrow track
mode. For this analysis, B = 32,b = 16,k = 2. The narrow gauge machines
can be of two varieties: SIMD, in which they exccute the same instruction
stream, and MIMD in which they execute separate instruction streams. We
will consider the impact of both cases here.

1.2 Quarter Horse Architecture Review

Recall [2] that the Quarter Horse is a 32-bit dual bus architecture with a
reduced instruction set. Figure 1 shows a schematic of the datapath, Figure
2 shows a floor plan of the chip, and Figure 3 shows the instruction format.

TT 1 T 317

ks

DATA % ADDR
S B 2 E P2
b I (™) o L) PORT
PORT by
TS —
o | V[controL
NIR/IR A PLA

Figure 1: Datapath Schematic of Quarter Horse

Table 1 shows the instruction set. Several aspects of the architecture deserve
special mention. = ‘

There is an address port through which all addresses to main memory
pass and a data port through which all instruction and data values pass.
Although the Quarter Horse Il only uses 67 pins for external communication
(including 3 reserved exclusively for testing), it will not be assumed here
that there are suflicient pins for each narrow gauge machine to have 32 pins
allocated to each port; the partitioning of the ports is a problem we will
solve. o

The Quarter Horse is microprogrammed using a finite-state PLA for con-
trol. Microinstructions execute at 75ns each; a typical macroinstruction re-
quires six microinstructions, although some instructions are shorter and oth-
ers, such as the load character and store character, are much longer. There
are no external clocks in the datapath; all external clocking is used to drive
the PLA which in turn controls the datapath. It is not possible for more
than one sequence of control signals to be derived simultancously from the
PLA, so the various gauges of machines will require separate control.

Pad_ranne

*Rcqintert

\

LOUNS AL

spag Frimd

©erREE_SPACT

SFACE_SPACC

+Pad _frama

ALY . \

e

“PLA IO

+PLA

SFACE _SPALE

sPay Jirana

Figure 2: Floor Plan of Quarter Horse
~
. A8 1t Immediale '
. dpcode | LM RD AR)
! CiM
) -3 23121 2 16 1 6

SCC: Set Condition Code
{MM: use immediate

R0: Destination Register

RA: Source Register A
RO: Source Register B

Figﬁrc 3: Instruction Format of Quarter llorse

'

OVPCODE T INSTRUCTION <Muemonic» | EFEFECT

00 ADD ADD kD) <— R{A] + R[]

ot Add with carry ADDC R[D] <— R[A] + R[B] + C
02 Subtract suB R[D] «— R[A] - R{B]

03 Subtract with carry suBC R[D] «— R{A]- R[B]. C
o4 Subtract inverse suBt R{D] «— R[B] - R|A]

05 SUBI with carry SUBIC R[D] «<— R[B] - R{A] - C
10 Shift left logical SLL

11 Shift right logical SRL

12 Shift left arithmetic SLA

13 Shift right aritmetic SRA

14 Rotate left RL

15 Rotate right RR

20 Store STO Mca] <— R[D]

21 tore character sTOC *

22 Load LD R[D] <— M]ea]

23 Load character 1.bC*

24 Conditional jump JMP PC «— eaif cond

25 Call CALL R{D] ¢~ PC * PC €—e¢a
28 Store relative STOR

29 Store character relative STOCR *

2A Load relative LDR

2B Load character relative LDCR *

2C Conditional relative jump | IMPR

2D Call relative CALLR

30 " 1 Restore PSW RPSW

31 Save PSW STPSW R[l)] <— PSW

80 bitwise CLEAR CLR (D) ¢-- 0

81 bitwise NOR NOR R[D] <— R[A] NOR R[]
82 bitwisc A AND B NAAD R[D] <— R[A] AND R[B]
83 bitwise NOT A NOTA R[D] <— RIA]

84 bitwise A AND D AANB R{D] <~ R|A] AND R(B]
85 bitwise NOT I NOTB R{D] < R(B]

56 bitwise XOR XOR R[D] <— R[A] XOR R[B]
87 bitwise NAND NAND R{D] «<— R{A] NAND (B
§8 bitwise AND AND R{D] < R{A] AND R[B]
89 bitwise XNOR XNOR R[D) <— R[A] XNOR R[B}
BA bitwise B B R[D] <— R[B]

80 bitwise A OR D NAOD R|D] <— R[A] OR R(B]
§C bitwise A A R[D] <— R[A]

8D bitwise A OR B AOND R|D] <— R[A] OR R[B]
¢E bitwise OR OR R[D] <— R[A] OR R{D]
133 bitwise SET SET R[D] <— 1

* The microcode for these instructions is given as an example of liow extensions
may be made to the basic instruction set.
Table 1. QI Instruction Set {

2 Overview

In this section we analyze the transformations to the QI2 required to create
a single chip multigauge machine design. For this discussion of the 32-bit
processor, the WG machine refers to the whole 32-bit datapath, NG, and
NG, refer to two datapath partitions [bit0, bit15] and [bit16, bit31], respec-
tively.

2.1 Instruction Set

Although there is no necessity for the wide gauge and narrow gauge vari-
ants of a multigauge machine to execute the same instruction repertoire,
there are benefits in doing so. First of all, code generation by the compiler
may be unified with a common set of instructions. Second, the functional
components implementing the instructions may be shared. For example, the
carry chain can be used in segments (with added logic) by the narrow gauge
machines. If the logic is not sharable then at least the design can generally
be reused. Thus, the availability of the circuitry or the design motivates
multiple use. Third, the control circuitry for the wide gauge machine may
be usable for controlling the narrow gauge machine(s). This is likely in the
SIMD case; also it is somewhat more likely with microcode than hardwired
control and may justify using microcode over multiple copies of hardwired
control. Again, even if the control logic itself is not rcusable, the fact that
the design can be reused favors common instruction sets.

Compelling as the argument may be for a common instruction set, there
are arguments for different instruction sets. The primary justification is to
overcome difficulties introduced by gauge shifting. For example, as described
in section 2.3 and 2.4 special segment registers may be used to overcome the
problems of narrow address width caused by partitioning the address pins
among the narrow gauge machines. Manipulating the segment tegisters will
require special instructions. As another example, it may be sufficient to
provide the interrupt support instructions for only the wide gauge machine,
since narrow gauge machines are not likely to do interrupt handling. Another
problem involves the use of wide, B-bit, values in narrow gauge MIMD mode:
The need for wide values is for such things as saving addresscs on subroutine
calls. If full registers are used, then instructions to manipulate the separate
b-bit units are necessary; if only portions of registers are used then several
must be employed causing instructions like call to operate differently, that is,
they require different control logic in the different modes (see section 2.5.1).

6

The problem does not arise in SIMD mode.

Perhaps the most difficult problem with the instruction set is caused
by the fact that the port through which the instructions are fetched from
memory must be shared among narrow gauge MIMD machines. If it is
time-multiplexed among the narrow gauge machines, then the same size and
format instruction can be used in both wide and narrow gauge modes, but
there is a potential bottleneck. Alternatively, if the pert is partitioned, the
bottleneck is removed but the instruction size of the narrow gauge machine
is now a fraction of that of the wide gauge machine. This means that the
instruction must either be formed with parts from multiple fetches or must
be of a different size and format. This severely complicates the problem of
making the instruction sets the same. The problem does not arise in SIMD
mode. |

For the multigauge Quarter Horse, we have chosen to use a 16-bit instruc-
tion for the narrow gauge machines. This imposes the following modifictions
to the base instruction set.

1. The register set is reduced from 32 to 16 to save an address bit in each
operand.

2. Condition codes are automatically set for arithmetic instructions rather
than being optionally set, removing a tag bit.

3. The instructions are two operands, saving an operand addressing field.
4. The immediate data is 16 bits and is stored in the next half word.

5. The interrupﬁ instructions have been removed; interrupts automatically
return to wide gauge mode.

Implementing the remaining instructions, plus the mode shift and seg-
ment registers manipulation instructions can be done exactly in the seven bits
of the limited opcode; the instruction format is shown in Figure 4. Clearly,
the control circuitry cannot be shared!

2.2 Control

There are three possible control strategics: hardwired logic, true micropro-
gramming, and PLA. (Notice that we use PLA to refer to a programmable
logic array with feedback state bits, i.e., a PLA is a finite state machine.)

r

| |
; 0Prode lL,m ‘ an i

XXX-

|
| 0 9 ‘Lg

| Cppv—_—— —— RO -

an: Source/Jestination Negister

Figure 4: Narrow Gauge Quarter Horse Instruction Format

There is little to distinguish the three alternatives for use in gauge shifting
that does not also apply to a single sequential machine. The main consider-
ations seem to be area and power, since multiple copies of the control will be
required. For MIMD multigauge computation, k+1 control units will be re-
quired; for SIMD multigauge machine 2 control units, one for wide track and
one to be shared by the narrow track machines will be required. A careful
design based on a common instruction set could possibly reduce the SIMD
case to a single control unit; a multiported microcode for narrow gauge com-
putation could concervably reduce the MIMD case to 2 control units, one for
each gauge.

In the multigauge Quarter Horse design three PLA control units are used
for the MIMD mode design, and two for the SIMD mode design. PLAs were
chosen simply because that was what was used for the original Quarter Horse.
A similar number of branch PLAs are also required since their outputs are
control inputs. '

Because control logic is such a significant part of the multigauge design,
the ared utilization is of some importance. The size of the wide gauge PLA
is '

1782p x 2162p = 3.85mm?

while the size of narrow gaugé PLA is estimated to be
1351 x 2024 = 2.73mm?.

These componenté ‘are sufficiently large and bulky that they complicate the

floor plan considerably. Figures 5-1 and 5-2 show the organization for the
MIMD and SIMD cases.

2.3 Memory Addressing

When considering the memory addressing of a multigauge machine, we en-
counter a dilemma between inadequate addressability and insufficient silicon

!
e]
!
|

[P TpTRS SRS PSS S e n_,.‘
l
!
i

i

1o

l ¢
! ! o I ;

' Lok P
~ Datapath ‘1 e; ‘ Datapath !
. S t
o . e |
Bl | |
Ee T T N R !
L2 f 5 ! ! 2 ' ! : f ! ‘ 2 ‘ s ;
EIEER N A LR
-i&r;z:‘::,-j.;»w -t .","::"‘"‘"-- \: I' l ,,--,.J'_ e i R i v_j” }

|
' | ‘ i
- . pop. - e - i | e ~(
5-1 5-2

Figure 5: MIMD and SIMD floorplans

area. If the silicon space is considered to be the scarce resource, we can
split a 32-bit wide gauge PC (program counter and memory address regis-
ter) into two 16-bit narrow gauge PCs for supporting MIMD. Then, each
narrow gauge processor will have a smaller address space and the addressed
word is 16 bits shorter. In other words, the wide gauge PC has an address
space of 2% x 32 bits while the two narrow gauge processors together have
2 x 2'% x 16 bits address space. Thus partitioning the PC prevents the nar-
row gauge machines from referencing the wide gauge machine’s whole address
space. In MIMD mode, since we would like the narrow gauge machines to
operate’ independently for operations such as increment, interrupt and ad-
dress generation, each narrow gauge processor should have its own counters
and latches. Therefore, we need an extra PC for the narrow gauge processors
and this extra PC should be of the same size as the 32-bit one.

The two PCs can be time-multiplexed through the same address port,
but thig will cause a potential performance bottleneck. Having no extra pins
for the memory address poft;, seems to imply in the MIMD case that we
must split the 32-bit PC into two 16-bit fields. In order to have a similar
addressing capability between wide gauge mode and narrow gauge mode, we
have to have segment registers in the memory module and special instructions
for handling them. A similar argument is applicable to SIMD mode.

1]

2.4 Memory Interface

As a consecjuence of the discussion on memory addressing (section 2.3), a
single chip multigauge machine requires that its memory have compatible
support. The memory interface includes at least one pin to receive a signal
from the processor indicating which mode, wide gauge or narrow gauge, is
currently operating. Another pin is required to distinguish a regular memory
access from a request of load/store segment register. When operating in
narrow gauge mode, special instructions for handling a segment register could
be issued, e.g. loading(storing) a value from(to) a segment register. Whether
to separate the program into two partitions in memory, instruction and data,
is another research topic in multigauge machine performance. To simplify
our discussion, we do not separate them here. Consequently, we can have a
segment register for each narrow gauge machine which is used for accessing
both instructions and data. These two segment registers in the memory
module are disabled when the machine is operated in wide gauge mode.
Separate address registers for each narrow gauge machine are also required.

The memory space of the wide gauge machine is divided into two parts
and each narrow gauge machine addresses one of them. During narrow gauge
mode, each narrow gauge machine sends a 16-bit PC value to the memory,
and the memory can be viewed as blocks of 64K (2'®) words. For each narrow
gauge machine, the address register is formed by the concatenation of the
segment register value and the value received from the PC. When executing
the load segment register instruction, the PC value received should be routed
to the specified segment register. Program locality will guarantce infrequent
updates of segment registers.

2.5 Datapath

The datapath is the real “workhorse” of the processor since it is the only
place information is manipulated. In this section we describe what we have
to do to make a datapath gauge shiftable. In the following discussion, two
buses are overlayed horizontally on the datapath while all datapath control
lines and internal power lines go through it vertically. This arrangement of
the datapath has been frequently adopted by most recent processor designs
[3, 4, 5]. Design issues will be identified and then design strategies will be
proposed. The gauge switch, G, is a slice of transmission gates or pass tran-
sistors inserted between bit15 and bit16 and controlled by the gauge shifting
instruction. In general, the area expansion duc to insertion of transmission

10

gates is significant for most processors’ datapath.

2.5.1 Registers

The bit slice in a register is independent of its position, i.c., any #* bit
slice has nothing to do with its neighbors. Therefore, a register requires less
effort to split into two than other components. We discuss the modifications
required for SIMD mode first, and then for MIMD mode.

The register array requires no modification for SIMD mode. As the nar-
row gauge instruction can address only 16 registers (section 2.1}, half of
the registers are invisible to narrow gauge machines. This can be accom-
plished by setting the most significant address bit, an input to the register
decoder, to zero. No other modifications are required for the registers to
support SIMD multigauge computation. With a moderate cost of having
an extra decoder, both narrow gauge machines in SIMD mode can use all
the 32 registers. Then, when a branch instruction is executed, ‘the memory
address could be formed by concatenating two narrow gauge registers. In
fact, registers appear logically a 32-bit capacity to the PC and the memory
address register. Both narrow gauge machines may set their condition codes
asynchronously; a delayed no-op mechanism may resolve them gracefully.

Recall [6] that for a regular register design, a word line runs through each
bit slice. Therefore, a register nceds some muxes and pass transistors to par-
tition it for independent operation in MIMD mode. To be specific, in MIMD
mode, the wide gauge register array needs pass transistors to connect vertical
word lines between bit15 and bitl6. In addition, a column of transmission
gates should be inserted between word15 and word16 for isolating the two
narrow gauge machines. Moreover, the register array needs pass transis-
tors connecting bus and data lines. The result of these modifications is two
narrow gauge machines split the wide gauge register array into 4 parts and
each machine uses only a quarter of it: NG, uses [bit0, bit15] and [word16,
word31], NG; uses [bit16, bit31] and [word0, word31]. For MIMD mode,
besides setting the most significant bit to zero like the SIMD mode does, the
register decoder should have a column of transmission gates inserted between
word15 and word16 for isolating the two narrow gauge machines.

Alternatively, with moderate costs, we can have an extra decoder to sup-
port the MIMD mode without introducing the transmission gates inserted
between word15 and word16. All 32 registers are available to each narrow
gauge machine. Each narrow gauge machine can use 16 registers for regu-
lar operations and the other 16 registers for internal storage such as values

11

of memory scgment registers. With as little as one micro-operation cycle
we can efficiently achieve memory interface support. Two decoders may or
may not stack on the same side of register depending on the specific de-
sign. SIMD mode doesn’t require additional 1/0 circuitry but MIMD may
require separate I/O circuitry. If a four-ported register file is available, all
the modificaions discussed above could be greatly simplified.

Having discussed the modificaions required for a general register design,
we now turn to the case study chip, the QH2. The insertion of G into
QH2 should be implemented by a row of transmission gates since we are
using CMOS and pass transistors are not adequate for conducting logic-1.
The current QH register array has vertical polysilicon word lines which are
too dense to insert transmission gates into for gauge shifting control. The
insertion of the transmission gates also makes the register array irregular,
unless the size of the entire array is doubled. If we use two decoders to
support MIMD mode, these two decoders should be on the opposite sides of
the register array since we cannot stack up two decoders on the same side
of the array. The power net (Vdd and GND) for the register file does not
require much surgery. If we do not want to insert the costly transmission
gates between bit15 and bitl6, i.e., the gauge switch, we might physically
cut off all vertical control lines. Then, in the wide gauge operating mode, we
have to connect each PLA datapath control line to both sides of datapath,
assuming the open space between bit15 and bit16 due to the cut-off is not
too large.

2.5.2 Shifter

A barrel shifter can shift a datapath word left /right an arbitrary number of
bits and is found in many datapath implementation {2, 3, 4, 5]. Figure 6
shows a schematic of a 4 x 4 barrel shifter which could easily be found in a
dual bus microprocessor [2, 3, 4]. Connected to shifter 1/O lines bitg and
bit, through a special designed 1/O circuitry, data buses are horizontally
overlayed on the top of the shifter and are not shown in the figure.

The shifter is basically a two dimensional logic, i.e., it is diagonal in
nature. This can be demonstrated by a simple example of its ‘operation: a
right shift (logical) by two positions. In Figure 6, when shifter is ready to
shift and the shift2 line is active (at any time only one shift constant line
could be activated), the data to be shifted are presented on bitg lines. The
values input as bitg; and bitps are output as bityo and bity,, respectively.
When the shifter is operating a left shift the data traverse in the opposite

12

e,

a
d

.

nr

Tr— L 1 1 .
it O R
Tr 11 o
1 < bivga
briy

-7 Rl R Rl
— 1 r — o
: < bigy

-

- Nl

p—

SR

shifee shifet ahfer shifed

Figure 6: Barrel Shifter Schematic

direction as a right shift. Notice that with moderate overhead a barrel shifter
can support rotate and sign extension for arithmetic shift [6].

No additional decoder is needed for SIMD mode but a separate one for
MIMD mode is required. Insertion of a slice of transmission gates will at
least double the shifter size, which is too costly. Merely a cut-off between
bit15 and bit16, imitating the strategy used in register file, will not make
it a wide gauge shifter nor two narrow gauge shifters. One dimensional
slicing is not sufficient for splitting a “two dimensional” device and preserving
its functionality. Because of the tremendous costs involved in splitting a
barrel shifter, it is not worth trying to provide a shifter for the narrow
gauge machines. This decision will reduce the PLAyg size although it is
not significant.

The shifter used in QH is a barrel shifter based on the RISC barrel shifter
[3]. In short, to transform the QI into multigauge suggests not directly
supporting shifting instructions.

2.5.3 ALU

The two major parts in the ALU are the ALU-flags and the ALU-array. The
ALU-array, either implemented by a carry chain or carry look-ahead logic,
contains 32-bit slices. In general, a carry look-ahead ALU is not regular

13

and takes a lot silicon arca in VLSI design. Therefore most processors are
designed with carry chain ALUs [4, 5]. ALU-flags collectively refers to the
circuitry for computing flags and the registers holding the values.

We now examine the case of the Quarter Horse design. Without support-
ing interrupts for narrow gauge mode (sec section 2.5.4), we can simplify the
modifications of the ALU. If we cut off all control lines as that in register
case, the gauge switch only needs a “carry” connection and a moderate ex-
pansion for the overflow detection of the narrow gauge mode. The condition
codes are automatically set in narrow gauge mode depending on the result of
the arithmetic operation. We may duplicate the flag logic for supporting the
conditional branch instructions. However, the insertion of the flag logic will
increase the vertical dimension of the datapath and lose the pitch matching
we have now. ‘

2.5.4 Program Counter

If it were not for pad limitations, we can simply add an extra PC for MIMD
mode. A single PC for instruction addressing is adequate for SIMD mode.
For both SIMD and MIMD modes, there may require a duplicate memory
address register. Therefore, if we do not have enough silicon to have the
luxury for having an extra PC, we have to split a 32-bit PC into 2 16-bit
PCs. A counter is a unidirectional device, its carry may propagate from bit0
to bit3l. In PC, fortunately, only the “carry” line requires a transmission
gate to achieve the gauge switching property; this cost is moderate. The
implications of shorter PCs, however, are important and have been discussed
in sections 2.3 and 2.4.

The analysis of the QH2 implementation revealed that we do not have
enough spare pads. Therefore, we can not have duplicated PCs of 32 bits
due to pin limitations, although for easy addressability and compatible com-
putation power we need one for each narrow gauge (sce section 2.3). In
other words, the MIMD mode necds separate program counters for NG,
and NG;; each of them can have only 16 bits. We can only partition the
current counter into two for narrow gauge machines by gauge switch, which
is too costly. The current PC can count up to 28-bit since 4-bit slices are
used for flags traffic to the PSW. In other words, for the MIMD mode we
need to count up to 32-bit and remove the PSW since we need not support
the interrupt mechanism for both wide gauge and narrow gauge cases. This
reduces PC size in the horizontal direction. In SIMD mode, we need only
one counter to address instructions, i.e., all 32 bits can be used. Like the

14

control path in the register file, the vertical control lines can be cut off at
the boarder of bit15 and bit16. By doing so, separate control paths should
be provided for both narrow gauge datapaths.

2.5.5 Other Components

Generally, each bit slice of either an instruction register (IR) or a memory
data register (MDR) is basically independent of its position, i.e., it is “bit-
sliceable”. Sign extension logic is tied to the MDR; therefore, it should go
with the MDR.

QH2 has one level of instruction prefetch and the prefetched instruction is
latched in the nezt instruction register (NIR). QH2 squeezed its IR, NIR and
MDR into customized tri-state pads. The strategy was to take advantage of
unused silicon real estate. However, in order to have these three components
reside in a tri-state pad, we are forced to use both wider sides of the pad frame
for the instruction/data port. Therefore, IR, NIR and MDR are distributed
along the opposite borders, and two separate control buses are required.
Also, the sign extension for an immediate addressing was implemented within
the pad corresponding to the most significant bit of immediate value. If it
were not for the sign extension support for both the wide gauge and narrow
gauge modes, splitting up these components into narrow gauge mode could
be easily achieved. Since NIR, IR and MDR are tightly coupled into the pad
no free space can be found to support the immediate addressing in narrow
gauge mode. We now prefer to carve these three components out of the
tri-state pad and let them occupy the inner silicon area leaving the space of
pad frame for testability design, if any.

3 Tweaking the QH Floor Plan

To simplify our estimation of the floor plan, let us assume that the datapath
with its power net still remains the same size as QH2, i.e. 5448p x 3477p.
The insertion costs of the gauge switch are assumed negligible, i.e., we are
tweaking the QH floor plan to make it gauge shiftable only based on the sizes
of PLAs and the size of current datapath. We do so to illustrate that even
in the best case we find it difficut to make it gauge shiftable." _

The sizes of PLAwg and PLAng are 1782p x 2162 and 1351p x 2024
respectively (see section 3.2). The branch PLAs are omitted in the floor plan
since they can be located undernecath the metal-2 ground strip at bottom of

15

datapath. QH2 uses an 84-pin pad frame with die size of 7900p x 9200u. If
the pads are excluded, the size of inner silicon area is 6420p x 7720p.

The SIMD and MIMD cases are essentially the same; we treat the SIMD
case. If we place the datapath along the longer dimension, the 7720p side,
and if the PLAs are placed at its left with the width of PLAw¢g = 2162, we
get a total of 7610y horizontally (see Figure 7-1). This means that we have
only 110y left for routing and other logic, such as IR and MDR, which is
not sufficient. If we rotate both PLAs 90 degrees, the situation is improved
by increasing a 380y channel which is not enough for sharing the routing of
PLAwc and PLAng output lines to both sides, top and bottom, of datapath
(see Fig. 7-2). Another approach is to place the PLAs at the bottom side
of the datapath, which will give us about 900y for routing. A wide gauge
datapath alone, will take up all this space if we want its output lines to go
onto both sides of the datapath (sce Fig. 7-3). Alternatively, we may place
the datapath as QH2 did, i.e., the datapath is located along the shorter
side of the frame (see Fig. 7-4). By doing so, the open space available, the
space for routing, is not enough for routing two PLAs outputs to both sides
of datapath, and this does not count the necessary data/address routing.
Note that our analysis is a first order approximation since it does not take
into account of power net, components other than datapath and PLAs, and
routing at chip assembly level. Putting all the components together will
make the situation worse. In these trial floorplans, we have seen difficulties
finding enough room to put the PLAwg and P LAy onto the same chip area
as QH2 used, even though other detailed routing wires are not estimated.

L4

4 Conclusion

We have reviewed the concept of multigauge architecture and the Quarter
Horse architecture. Careful considerations of single chip multigauge design
has been discussed in section 2, for both the gencral case and for the specific
Quarter Horse case. The difficultics of splitting a case study chip, the Quarter
Horse II, have been illustrated. With careful design based on a common
instruction set, it could be possible to reduce the SIMD case to a single
control unit; hence it is easy to make a single chip multigauge machine for
SIMD. MIMD mode, however, is much harder.)

From the analysis, we also confidently believe that it is very difficult
to do gauge shifting narrower than 16-bit due to multiple copies of control
PLAs and wiring complexity. In other words, the SIMD threshold is really

16

L
o
P
I
w,
M,

i

!

:

: |
M i
| !
! ;
m |
! m
i

t ;
m 1
S ,
i

Datapath

bos e e am e w v e mas e

" p—— - T Y A —_

Lo ———
o | .
i = . WG
A | I : , :
oo O i i
N < T '
i ! “ -3 ! H
S e M - w
H . i t . i !
Cob Lo _ i
i NG
L | o
w SO S “

i
!
|

| w

t T itv&x.mm

e i

; , WG

; o |

! ot gl

m = ;

!]

! [=%

i o

i -2

“ e

e ¥
: .ZQ— [}
R
I— .

7-4

7-3

Figure 7: SIMD Floor Plaﬁ for QH

17

16, not 8 as was suggested in the previous paper [1]. Memory addressing is a
tough problem but can be solved by the mechanisms we have proposed, e.g.,
memory segment registers and special instructions for handling them.
Although the datapath is the “heart” of a processor, it is not the whole
problem one has to solve. Other significant costs are also of concern such
as the insertion of the gauge switch and addressing complexity. An open
question remains for further research: Is splitting a single chip processor for

SIMD mode really a win?

18

References

1. L. Snyder,
“An Inquiry into the benefits of Multigauge Parallel Computation,”
IEEE ICPP 1985, pp. 488-492.

2. S Ho, B. Jinks, T. Knight, J. Schaad, L. Snyder, A. Tyagi, and C.
Yang,
“The Quarter Horse: A Case Study in Rapid Prototyping of a 32-bit
Microprocessor Chip,” IEEE ICCD: VLSI 1985, pp. 161-166.

3. R. W. Sherburne, Jr., M. G.H. Katevenis, D. A. Patterson and C. H.
Séquin,
“Datapath Design For RISC,” Proceedings of the 1982 Conference on
Advanced Research in VLSI, MIT, pp. 53-62.

4. C. Mead and L. Conway,
Introduction to VLSI Systems, Addison-Wesley, Reading, Massachus-
sets, 1980.

5. L. A. Glasser and D. W. Dobberpuhl,
The Design and Analysis of VLSI Circuits, Addison-Wesley, Reading,

Massachussets, 1985.
i

6. S Ho, B. Jinks,& T. Knight, J. Schgad, L. Snyder, A. Tyagi, and C.
Yang,
“The Architecture of the Quarter Horse,” Technical Report, University
of Washington, 1985.

19

