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A Lace for Ada’s Corset

Abstract

Lace, a Low-level Adaptable Common Executive, is a specification for an executive that implements a model
of real-time, lightwelght tasks. Lace is designed to string together Ada’s Corset — a compact runtime support
environment for tasking, described in a companion report [1].

Lace/I iz a prototype Lace lmplementation designed for multiprocessor configurations of the MIL-STD-
1750A instruction set architecture with shared memeory. This is a decentralized “self-service™ design in which
each task executes its own run-time service calls, and each processor does its own dispatching out of a global
task pool, thus antomatically balancing the load between different processors.

Although specified in Ada, Lace’s interface is the familiar procedure call interface, and therefore Lace
could be tailored for use as a low-level real- time mubtiprogramming kernel with any contemporary sequential
programming langunage.
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1 Introduction

Lace is a specification for a low-level executive fthat implements a simple tasking paradigm. Its design was driven
by the desire to provide an efficient executive that was rich enough fo support a complex tasking paradigm,
such as full Ada tasking, while remaining sitnple enough so that direct nse of its primitives would result in =
system with real-time performance suitable for embedded real-time applications.

Specific goals of the Lace interface as well as of the Lace/I prototype inclnde the desire to experiment with
providing:

» low overhead - in particular, aveid unnecessary saving and restoring of task state both during context

switches and in interrupt handlers;

s localized cost - implement simple functions efficiently; their performance should not be degraded because
of side effects of implementing more complex functions, even if this means slowing down already costly
operations;

» predictable performance - use simple, deterministic algorithms, where possible (e.g. design the dispatcher
with a minimum namber of locks and so that interrupts never have to be disabled);

¢ limited capacities - Tesirict capacities (e.g. number of tasks, range of priorities) to obtain greater efficiency;

+ adaptability - adhere to an interface that is Implementable for various processor configurations, as well
a8 modifications to the tasking paradigm.

Lace is not a compleie runtime environment. It only provides for management of task execution, through
allocation of tasks to processors. In particular, it does not provide directly for intertask communication or
memory management. Such services are presumed to be layered on top of Lace, using the Lace operations
in their implementation. Corset/I (a2 COmpact Runtime Support Environment for Tasking), described in a
eompanion report {1}, illustrates how a complete runtime support environment for Ada can be built using Lace.

Bection 2 presents the Lace tasking paradigm of lightweight tasks. This is followed in Section 3 with a
discussion of Lace’s interface and usage. Section 4 describes Lace/l, a prototype implementation of Lace for a
multiprocessor configuration of the MIL-STD-1750A processors with shared memory,

2 Tasking Paradigm

A Lace task is simply a “thread” of control, represented by a set of register values. It is presumed to have a body
of code and a working storage area, but the management of storage for code and data is not a responsibility of
Lace. An implementation of Lace provides a primitive set of operations for creating, synchronizing, executing,
and recycling tasks. In addition, a Lace fasking environment includes interrupt handlers whose operations are
transparent to Lace tasks. This environment is represented pictorially in Figure 1.

The Lace tasking paradigm can be understood as a finite state system where each state is characterized by a
sef of attributes. At any point in time, a Lace task has a set of boolean attribuies that determine the allowable
operations on the fask. These attributes are organized hierarchically as shown in Figure 2. Conceptualily, the
leaves in this hierarchy are task states and the path from the root to a leaf (state) enumerates the atiributes
of the state. We assume that all tasks in the system are Lace tasks (the root atiribute). The other atiributes
of interest are:

¢ allocated - the task is a valid Lace task;
enabled - the task is eligible for execution on a processor;

assigned - the task is executing on a processor;
preemptible - task may be preempied on its processor by a higher priority Lace task.

Most Lace operations foggle task atiribute values, as shown in Figure 2, and therefore cause state transitions,
as shown in Figure 3. For example, a task in the contending state has the attributes that it is aliocated,
is enabled and i& contending. Performing the HOLD operation on this task foggles the enabled attribute,
hence revoking any other sub-attributes such as contending (see Figure 2} and causing a state transition from
contending to 2 disabled state (see Figure 3}. Similarly, when the DISPATCH operation selects a contending
task for execution, that task toggles from contending fo assigned and becomes preemptible.

Note that when an executing task becomes disabled, due to a HOLD operation, it continues to execute until
it calls DISPATCH or is preempted. Thue a task A may wait for a reply from another task B by doing a HOLD
on itself, posting a request for service to B in & buffer, and then calling DISPATCH. When B completes the
service, it does a RELEASE on A. If, due to there being more than one processor, B gshould release A before
A calls DISPATCH, A may refurn immediately from the call to DISPATCH, without needing to wait a$ all.
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Otherwise, A will wait until it is released. In either case, task A may be delayed in returning from DISPATCH
if there is a higher priority task contending for the same processor.

Although technicaily they are not Lace tasks, interrupt handlers can also be responsible for state transitions,
as indicated by the shaded arcs in Figure 3. Interrupt handlers can always interrupt Lace tasks. If, when
an interrupt handler is invoked, the currently executing (assigned} task on the interrupted processor is in a
preempiible state the handler can cause the task to be preempted, by calling the Lace entry PREEMPT. Cn
the other hand, i the current task is not preemptible, the inferrupt handler must restore the state and return
control to that task. Thus interrupts are transparent to a nonpreemptible task, although they may degrade
the rate of the task’s progress.

The operation PREEMPT is ounly intended to be used by interrapt handlers. I has the effect of saving
the state of the preempted task and invoking DISPATCH. Lace also provides operations for determining a
task’s identity {SELF), altering a task’s priority (SET_PRICRITY), and for forcing a task to call a specified
procedure (FORCE..CALL). This latter feature is used primarily for handling exceptional conditions. Its efect
i3 also asynchronous.

Note that the operation DISPATCH should never be performed by a task in a preemptible state. Note
also that there is a preemptible disabled state. If a task in this state is preempted it will not resume exection
until explicity released by another task. This state iz included because it might be of use in constructing
interrupt-driven task schedulers, which could hold a task and preempt it, and later release it again.

Examples of the use of Lace operations to implement higher level task intercommunication operations can
be found in {1].

3 Lace External Interfaces

The interface to Lace is a set of procedures that are invoked by user programs that wish to either execute as
Lace tasks or manipulate other Lace tagks. Although not necessarily implemented as procedures, Lace entries
have the property that, barring exceptional conditions such as abortion, they will eventually return to the user
program at the point following the location of the call.

The interfaces between Lace and user code can be categorized into the following three views corresponding
to the three major entities in Figure 1:
1. Lace as seen by the compiled user code;
2. the compiled code, as seen by Lace;
3. Lace, as seen by an interrupt handler,
We will consider each of these in turn.

3.1 The Compiler’s View

To the compiler, a task is simply an integer of type TASK_ID. A task may also have an associated priority.
Tasks are created by NEW -TASK, where the initial state of a task is given by specifying the initial machine
state {register values - in particular the program counter and probably a stack pointer} for the processor when
executing the task. The interface presented by Lace to a compiled user program is described ideally by the
following packages.

The type TASK_ID is used by Lace and Corset, both internally and as part of their external interfaces,
Because the package below is also part of the Lace and Corset internal interfaces, the full type declaration is
given. However, for external interface purposes, all that should be assumed about this type is that it is an
integer type of a certain size; that is, the range is not part of the interface.

with SYSTM; use BYSTM;
package TASK_IDS is
type TASK_ID is new DOUBLE_WORD_BIT_POSITION;
NULL_TASX: constant TASE_ID:= TASK_ID'first;
end TASK_IDS;

with TASK_IDS; use TASK_IDS;
with BYSTM, use BYSTNM;
package LACE is
MAX_PRIORITY, MIN_PRIORITY: INTEGER;

All procedures with arguments of type TASK_ID require that the id be “alive”. That Is, it must have been
returned by NEW..TASK and COLLECT_II must not have been called for it since then.
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3.1.1 Preemptible Procedures

The following procedures are reguired to be implemented so that they do not require waiting for any locks,
and 8o may be called from interrupt handlers, as well as from tasks.

function SELF return TASK_ID;

procedure DISABLE_PREEMPTICHN;

procedure HOLD(T: TASK_ID);

procedure RELEASE(T: TASK_ID);

procedure COLLECT_ID(T: TASK_ID);

procedure SET_PRIODRITY{T: TASK_ID: P: INTEGER):

Function SELF returns the id of the task which calls it, except if called from a hardware interrupt handler,
in which case it returns the ID of the task which was executing when the interrupt occurred.

Procedure DISABLE..PREEMPTION makes the resideni task not preemptible by the dispatcher. The
effect is undone (only) by procedure DISFPATCH.

Procedure HOLD disables dispatching of the task T, If it is running, the task will continue until it next
calls dispatch, or is preempted by an interrupt.

Procedure RELEASE enables dispatching of task T. If T is already enabled, there is no change. How soon
T gets to run depends on its priority and the activitiea of higher priority tasks.

Procedure COLLECT.ID deallocates the task ID T. It assumes that T is not executing or contending for
a processor (i.e. it is the caller’s responsibility to insure this).

Procedure SET..PRIORITY sets the dispatching priority of T to P, H P is a priority value supporied by the
Lace implementation. Otherwise, the priority is set to the nearest supported value. A task with a numerically
larger priority number always has preference for dispatching.

3.1.2 Noopreemptible Procedures

Because the implementation of the following procedures is anticipated to involve waiting for and holding locks,
we require that before they are called the processor be made nonpreemptible. Failure to follow this Tule will
lead to system failure. They should never be called from an interrupt handler.

procedure DISPATCH;
procedure FORCE_CALL{T: TASK_ID; PROC, PARAM: ADDRESS):
function NEW_TABK(STATE: FULL_STATE) return TASK_ID;

Procedure DISPATCH is called to choose the next task to execute on the processor on which it is called,
and transfers control to this task {which may be the calling task, if it is enabled). If there is no task eligible for
execution, the dispatcher idles. Though it may switch to another task, from the point of view of the caller this
behaves like any other procedure. That is, it eventually returns to the instruction following the call {barring
exceptions). Calling the dispatcher is the normal means of return from service routines of an RSE built on
Lace.

Note that DISPATCH is the only way to unde the effect of DISABLE_PREEMPTION. This is because
interrupts that arrive during nonpreemptible pericd may cause the release of tasks which shonld be executed
ag soon as the processor becomes preemptible.

Procedure FORCE_CALL forces task T to call a procedure at address PROC, with parameter value
PARAM. TRis procedure can be used to raise exceptions in tasks and to abort them, by forcing them to
execute appropriate procedures. The effect is asynchronous, and does not take efect until T iz next djs-
patched. If FORCE_CALL is called again for the same task before a pending forced call has taken effect, the
later call will override., The practice of overriding pending forced calls should be avoided, because how soon
a call will take effect cannot in general be predicted. {Nested calls may also cause space problems, as noted
below.)

Care must be taken that every task has enough excess work space to tolerate any forced calls. Of course
this is already true of other RSE calls, but is especially critical here because of the interaction with exception
recovery. If STORAGE.-ERROR is raised and if exception recovery is through such a forced call, i the exception
recovery procedure uses storage, cycling could result. The obvious sclution is to write all such routines to use
only statically allocated global data and registers, or at least to use a predictable bounded amount of stack
space.

Function NEW _TASK allocates a new TASK_ID and returns it. It returns NULL_TASK if it cannot
allocate a new task id. The new task starts out disabled, and its state is initialized to 8. The priority of a new
tagk is MIN_PRIORITY. Note that in order for the new task to begin execution it must later be enabled (via
RELEASE).
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3.1.8 Interrupt Handler Support

The procedures below are provided to support writing of hardware interrupt handlers. An illustration of how
guch a handler would be structured is given by procedure HANDLER, in Section 3.3.

function DISPATCHING_PRIDRITY(T: TASK_ID) return INTEGER;
Tunction PREEMPTION_OK return BOOLEAN;
procedure PREEMPT(S: FULL_STATE};

end LACE;

Function DISPATCHING. . PRIORITY returns the current dispatching priority of task T.

Function PREEMPTION_OX returns TRUE iff the current task is preemptible.

Procedure PREEMPT preempts the current task, and calls the diapatcher. This should never be called
unless PREEMPTION_OK returns TRUE, otherwise chaos will ensue. It should only be called from an
interrupt handler, since it presumes that interrupts are already disabled, and does not return to the point of
call. If should only be called at the conclusion of the handler (at the point of return) and assumes the handler
has saved the state of the task T to be preempted in S. The processor will be preempted from the current task
and the dispatcher will be invoked to determine which fask executes next.

3.2 Lace’s View

In order to implement Lace functions such as DISPATCH and FORCE_CALL, Lace needs to know how the
compller used to create user programs has implemented procedure calls. Such information is required to
determine which registers must be saved in the event of a task switch and how to simulate a task calling a
user-defined procedure. The following package encapsulates the dependencies of the procedure calling protocol.
The requirement that this package imposes on the compiler is that there must be a way to implement the
procedures it containa. In particular it must me possible to implement FAKE_CALL in such a way that no
matter when a fask may be preempted a fake call can be forced on it. This constrains the implementation of
exceptions and procedure calls.

with BYSTM: use SYSTNM;

package PROCEDURES is
procedure CALL_ PROCEDURE(PROC, PARAM: ADDRESS);
procedure FAKE_CALL(PROC,PARAM,RET: ADDRESS);
procedure SAVE_BASIC_STATE(STATE: out FULL_STATE);
procedure RESTCGRE _BASIC_STATE(STATE: in FULL_STATE);

end PROCEDURES;

Procedure CALL_PROCEDURE calls the procedure with entry address PROC and one parameter, located
at address PARAM. The semantics of the call are the same as those for an ordinary Ada procedure call.

Procedure FAKE_CALL is like CALL_PROCEDURE, except that RET is the return address (and point
of exception propagation). We assume that procedure calls and activation records are implemented in such a
way that a task may be interrupted at any time and forced to execufe a faked procedure call.

Procedure SAVE..BASIC.. STATE saves any registers that are expected to be preserved by an ordinary Ada
procedure. We assume this is much less than the full set of registers. Procedure RESTORE..BASIC..STATE
restores the values of the registers saved by SAVE_BASIC_STATE.

3.3 An Interrupt Handler’s View

Facilities for interrupt handlers to synchronize with Lace tasks are provided by the functions DISPATCHING..-
PRIORITY and PREEMPTION.OK, and the procedure PREEMPT. In addition, interrupt handlers may also
invoke those other Lace entries that do not require waiting for locks. It is assumed that interrupt handlers
execute with interrnpts disabled.

Interrupt handlers for the MIL-STD-1750A are expected to {ake the form of the template “procedure”
HANDLER below, which uses operations exported by Lace to preempt the task which it interrupts and to
release other tasks. Nofe that this is not truly an Ada procedure, and is presented as one for exposition
purposes only. We presume that in practice the would be generated by an Ada compiler for an accept body,
or written in assembly language. As interrupi handlers are likely to be hand coded in machine language, an
optimization to the following code is to save and restore only those registers actually altered by the individual
handler.

Note that the declarations imported from packages CORSET and LOW_LEVEL_TASKING are also pro-
vided directly by the Lace interface.
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with SYSTM; use SYSTM:
with CORSET; use CORSET;
with LOW_LEVEL_TASKING; use LOW_LEVEL_TASKING.
procedure HANDLER is
T: TASK_IbB;
C_STATE: CDRE_STATE;
F_STATE: FULL_STATE;
procedure RESTORE FULL_STATE(S: FULL_STATE) is

begin null;, -- a dummy for & machine-level operation.
end RESTORE_FULL_STATE;
begin

At this point code would be incladed to do the following, if it has not already been done by the hardware
before execution reaches this peoint. If is likely to be hand-coded and specific to the pariicular interrups.
1.} Save CORE_STATE of SELF in parameter C_STATE.
2.) Save any registers used internally in this procedure in F_STATE.
3.} Do any interrupt-specific work.
4.) Determine which task{s)are to be enabled as a result of this interrupt. (The remaining code assumes either
0 or 1 tasks are enabled, and that the task to be enabled is 'T.)

if T/=NULL_TASK
then RELEASE(T);
-~ See if a local preemption is possible and worthwhile.
if PREEMPTION _OX and then
DISPATCHING_PRIGRITY(T) > DISPATCHING PRICRITY{INTERRUPTED_TASK)
then PREENPT(F_STATE);
-~ Will no% return

end if;
end if;
RESTORE_FULL_STATE({F_STATE);
end HANDLER;

Note that in theory the call to RESTORE_FULL..STATE above would only restore the CORE_STATE
and those other registers. that were saved in (2} above, hence the effect of this statement may well vary from
interrupt handler to interrupt handler. In any case, the desired result is return from interrupt to the interrupted
task.

4 Lace/I - a Multiprocessor Implementation

This section describes a prototype implementation of Lace for a multiprocessor configuration of MIL-STD
1750A processors with shared memory. It iz included here primarily to help explain, operationally, the intended
functions of the executive and to demonstrate that it can be implemented efficiently for a multiprocessor shared-
memory system. This is only one of many possible implementations of the Lace interface, which is designed to
be adaptable to a variety of hardware configurations and dispatching policies {within priority classes).

The reader iz warned that though the description is expressed in Ada it iz not intended to be executable
code. To produce an executable implementation some portions will need to be coded in assembly language or as
machine-code insertions. Especially, some operations which can be performed atomically as machine operations
would not be correct if implemented as shown in Ada {because they would rot be atomic}. An attempt has
been made to isclate most of these operations into separate packages, but there remain some dependencies
that may not be obvious. In particular, we assume that assignment fo an element of a bit-vector can be done
atomically, wherever this occura.

Internally, Lace/1 is composed of the following packages:

1. TASK_IDS (described above} exports type TASK_ID and constant NULL_TASK as well as other related
types.

2. SYSTEM is the standard Ada predefined package, with some implementation-specific extensions as per-
mitted by the Ada standard [3].

3. MISCELLANY confains a number of miscellaneous declarations that are not central to the purpose of this
document, but are required to make it consistent and complete enough enough to be compiled. Most are
operations that are expected to be implemented via machine code and which cannot be coded accurately
in machine-independent Ada.



A TLace for Ada’s Corset

4, LACE contains the actual data siructures and code of the Lace implementation.

4.1 System

This version of the standard package SYSTEM has been augmented (as permitted by the Ada standard) to
include additional machine- and configuration-dependent declarations. Note that we call this package SYSTM
here to permit syntax-checking the code included in this report with a non-cooperative compiler. The decla-
rations of ADDRESS, and NULL..ADDRESS are commented out and replaced by dummies, using unchecked
conversion, for the same reason.

with SYSTEM; with UNCHECKED CONVERSION;
-— package SYSTEM is
package SYSTM is
type HAME is (MIL_STD_1750A);
SYSTEM_NAME: constant NAME:= MIL_STD_17VEOA;

type BYTE is range -~16#80# .. 18#7F¥;
for BYTE'size use 8;

type WORD ie range -18#8C00# .. 16#7FFF#;
for WORD'size use 16;

type DOUBLE_WORD is renge -16#80000000# .. 16#7FFFFFFFH;
for DOUBLE WORD’size use 32;

STORAGE_UNIT: constant:= 18;

subtype BYTE_BIT PUSITION is BYYTE range 0..7;

subtype WORD BIT_POSITION is BYTE range 0..15;

subtype DOUBLE_WORD _BIT_POSITION is BYTE range 0..31;

~~gubtype ADDRESS is WORD;

--KULL_ADDRESS: comstant ADDRESS:= O;
subtype ADDRESS is SYSTEM.ADDRESS;
Tunction COFRCE is new UNCHECKED_CONVERSION{INTEGER,ADDRESS):
NULL_ADDRESS: constant ADDRESS:= COERCE(D);
MEMORY_SIZE: constant:= 18#10000#;
subtype EXTENDED ADDRESS is DOUBLE_WORD range C. . 18#FFFFF#;
EXTENDED _MEMORY _SIZE: constant:= 16#FFFFF#;

MAX_PROCESSORS: constant:= 1

type PROCESSOR_ID is range O..MAX PROCESSORS;
BULL_PROCESSOR: consiant PROCESSOR_ID:= O;

subtype PROCESSORS is PROCESSOR_ID range 1. .MAX PROCESSORS;
function THIS_PROCESSUR return PROCESSORS;

type CORE_STATE is record IC,MK,SW: WORD; end record;
type FULL_STATE is record CORE: CORE_STATE;
RO,R1,R2,R3,R4,RE,RB,R7,
R8,R9,R1C,R12,R13,R14 ,R156: WORD;
end record;

MIN_INT: constani:= -16#80000000#; -- = DOUBLE_WORD'first
MAX _INT: constant:= 16#7FFFFFFF#; -- = DOUBLE_WORD'last
MAX_DIGITS: constant:= 12;

MAX MANTISSA: constant:= 3%;

FIKE_DELTA: constant:= 16#0.00000002#; -~ = 2%£-31.

TICK: comstant:= 0.0001;

MAX PRIORETY, MIN_PRIORITY: INTEGER;
gubtype PRIORITY is INTEGER range MIN_PRIORITY..MAX_PRIORITY;
end SYSTM;

We assume 16-bit addressing, so that if extended memory is present, it is accessed by an application through

10
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read and write operations made available via a package interface. We also assume extended floating point, with
40-bit mantissa, i supported.

Values of the type PROCESSORS represent the actual processors in the configuration. The constant
NULL_PROCESSOR does not represent any actual processor. The function THIS.PROCESSOR returns the
ID of the processor on which it is called. It would most likely be implemented as a constant in the processor’s
private memory, or as an /O instruction. Type CORE_STATE represents the set of registers saved by the
interrupt mechanism.

Since dynamically adjusting priorities for rendezvous is costly, we would prefer not to allow specification
of Ada priorities. By making the range of priorities nonstatic, we defer this decision to the runtime support
implementation, which may choose to limit thie range to a single value, effectively ignoring pricrities. The
variables MAX . PRIORITY and MIN_PRIORITY are therefore set by the runtime support implementation.

4.2 Miscellany

Package MISCELLANY contains a number of miscellaneous declarations that are not central to the purpose of
this document, but are required fo make it consistent and complete encugh to be compiled. Procedure ASSERT,
which checks the validity of an assertion, is called in some places to document an important precondition. If
implemented, it presumably would halt the program and report a fault. The other exports are operations
which we expect would be implemented via machine code, and which cannot be coded accurately in machine-
independent Ada.

with SYSTM; use SYSTM;
package MISCELLANY is
procedure ASSERT(A: BOOLEAN);
procedure ENABLE INTERRUPTS;
procedure DISABLE_IRTERRUPTS;
procedure RESTORE_FULL_STATE(S: FULL_STATE);
procedure RESTORE_ALL_BUT_IC{S: FULL_STATE);
generic
type POSITION is range <>;
type BIT_VECTOR is array (POSITION) of BOOLEAN;
function CHOOSE_BIT(V: BIT_VECTOR) return POSITION;
AVAILABLE: constent BOOLEAN:= FALSE;
generic
type POSITION is range <>;
type BIT_VECTOR iz array (POSITION) of BOOLEAN;
procedure AWAIT_BIT{V: in out BIT_VECTOR; I: POSITION);
generic
type PUSITION is range <>;
type BIT_VECTOR is array (POSITION) of BOOLEAY;
procedure TEST_AND SET BIT(V: in out BIT_VECTOR;
I: POSITION;
B: out BOULEAN);
generic
type POSITICE is range <>;
type WORD is range <>;
procedure SET BIT(W: in out WORD;
I: POSITION;
B: BOOLEAN);
procedure GUTO_VARIABLE(A: ADDRESS);
end MISCELLANY;

Procedure RESTORE.FULL..STATE restores the full (register) state of the machine to S, which implies
a goto the given IC {instruction counter) value. It does not return. In contrast, procedure RESTORE_ALL_-
BUT_IC restores all of the full state to 8, except for the IC, so that it returns normally.

A number of operations use words as bit-vectors. Procedure CHOOSE_BIT returns the position of the
first nonzero bit in V. This ie efficiently implementable on the 1750A via the FLOAT operation, provided
POSITION is & subrange of 1..31.

Other operations use bits of a bit vector as semaphores or signals. When a bit vector iz used for such a
purpose we usually call it a “right®. The constant value AVATLABLE is used to denote a right that is available.

11
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Procedure AWAIT_BIT is a busy-wait test-and-set semaphore operation on B(I). Procedure TEST_AND_SET
performs B:=V(I}; V(I};=TRUE as one atomic operation, with memory access locked during the operation.
Procedure SET_BIT seis the Ith bit of W to B in one atomic operation. In addition to these operations, we
asgume that assignment to a single bit of an array of boolean can be done in one atomic operation, even if the
array is packed as a bit-vector.

Procedure GOTO_VARIABLE sets the IC to A, effecting a transfer to the instruction at thai address.

4.3 Lace

This design for a Lace implementation restricts the range of permissible task IDs, so that if can use bit-vector
operations to speed processing. The range of permissible priorities is also restricted, for the same reason.
Test-and-set operations on elements of bit vectors are used for synchronization, and to claim “rights® to shared
TESOUrCes.

with TASK_IDS; use TASK_IDS;

with MISCELLANY; use MISCELLANY;

with SYSTM; use SYSTM;

with PROCEDURES; use PROCEDURES;

with UNCHECKED CONVERSION;

package body LACE is
type TASK_BIT_VECTOR is srray (TASE_ID) of BOOLEAN;

- for TASK_BIT VECTOR’size use 32;
type TASK_TASK_VECTOR is array (TASK_ID) of TASK_ID;
type TASK_INTEGER_VECTOR is array (TASK_ID) of INTEGER:
procedure TEST_ARD_SET is new TEST_AND_SET_BIT(TASK_ID,TASK_BIT_VECTOR);

type TASK_PRIODRITIES is range O..31;
BULL_PRIORITY: constant TASK_PRICRITIES:= 0;
-- is not & priority to which a task can be assigned.

type PROCESSOR_BIT_VECTOR is array (PROCESSORS) of BOOLEAN;
procedure TEST_AND_SET is new TEST_AND_SET_BIT(PROCESSURS,PROCESSOR_BIT_VECTOR);

PREEMPTIBLE,

SKIP_DISPATCH: PROCESSOR_BIT_VECTOR:= {others =>FALSE):;
RIGHT_TO_DISPATCH: TASK_BIT_VECTOR:= (others=> AVAILABLE);
ASSIGHED,

ENABLED: TASK_BIT VECTOR:= (others=> FALSE);

-~ Task state varisbles.

PREEMPTIBLE(P) is true if and only if processor P can safely be preempted from the task it is currently
executing. It is unset (to false} by the resident task, buy calling DISABLE_PREEMPTION, but should only
be set {to true) by the dispatcher executing on processor P when it is called {voluntarily} by the resident task.

SKIP_DISPATCH(P) is unset (to false) to force full execution of the dispatcher algorithm. It is used as part
of an optimistic heuristic to avoid performing the entire dispatching algorithm. It is set after every dispatch
and is unset only when a change in a task state may have made it necessary to choose a dif and only ierent
task (on some processor).

RIGHT _TO_DISPATCH is used to ensure that the same task is not dispaiched concurrently on more
than one processor. If is alao needed fo insure taske are dispatched in priority order. Only RIGHT.TO..-
DISPATCH(1) iz used; it is a bit vector only because we have only declared TEST_AND..SET for bit vectors.
This right is used as a lock around the loop that selects the next task to execute. The value is true {not
AVAILABLE) ¥ and only If another processor is executing the selection loop.

ASSIGNED{T) is true i and only if T is assigned to a processor. It is set by the dispatcher (via TEST_-
AND_SET) and is reset by the dispatcher and handlers (in the case of a preemption)}.

ENABLED(T) is true if and only if T is to be considered for dispatching, if not already assigned. It can be
set and reset by anyomne, but resetting is risky programming unless done to self.

SAVED_STATE: array (TASK_ID) of FULL_STATE;

SAVED_STATE is the storage area for states of disabled and preempted tasks. SAVED _STATE(T) is the
contents of the registers of T if T is not executing.

12
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type REQUEST is record PROC, PARAM: ADDRESS; end record;

FORCED_CALL_REQUEST: array (TASK_ID) of REQUEST:=

{others =>{NULL_ADDRESS, NULL_ADDRESS));
FORCED CALL_BUFFER: array (PROCESSORS) of REQUEST;
RIGHT _TO_FORCE_CALL: TASK _BIT_VECTOR:= {others=> AVAILABLE};

FORCED_CALL..REQUEST(T) is the current pending forced call request for task T, if any. We permit
only one forced call to be pending for a given task at any time. A forced call request specifies the address
PROC of a procedure to be called and the address PARAM of a parameter.

FORCED_CALL_BUFFER holds a copy of FORCED _CALL_-REQUEST during the time the call is being
forced. It is needed to preserve a reguest from being overwritten once we have decided to dispatch the forced
call, daring the time between the release of RIGHT _TO_FORCE_CALL and the actual forced call.

RIGHT .. TO_FORCE_CALL(T) is a lock used to insure that FORCED-CALL_REQUEST(T) and FORCED -
CALL_BUFFER(T) both remain consistent, since these each consist of two words and so cannot be updated
atomically. The value is true (not AVAILABLE) if and only i data in FORCED..CALL-REQUEST(T) is
busy.

PRIGRITY: array (TASE.ID) of TASK_PRIORITIES:=
(others =>TASK_PRIDRITIES *liast):
HAS_PRIDRITY: array {(TASK_PRIORITIES) of TASK _BIT VECTOR:=
(TASK_PRIDRITIES first..TASK_PRIORITIES 'last-1=>
(TASK_ID'first..TASK_ID'last=> FALSE)},
TASK_PRINDRITIES’last. . TASK_PRIORITIES 'last=>
(TASK_ID'firset. . TASK_ID first=> FALSE,
TASK_ID'first+1..TASK_ID’last=> TRUE));
type PRIORITY_BIT _VECTOR iz array (TASK_PRIGRITIES) of BOOLEAN;
CONSIDER_PRIORITY: PRICRITY_BIT _VECTOR:= (FALSE, others=> TRUE);

PRIORITY is the internal priority assigned by the dispatcher to a task. It need not correspond exacily to
the Ada priority of the task, so long as the relative ordering of tasks is consistent with relative ordering of Ada
priorities. For 1750A implementation reagons, these priorities are stored inverted, so that 1 iz the “highest”
priority.

Since task priorities need not be unique, one can view the priority scheme a8 a two dimensional structure
with rows being priority levels and columns being tasks. Thus HAS. . PRIORITY(P) is the row in this structure
that tells which tasks have priority P.

Initially, all tasks are in the lowest priority level, as per the initial value of PRIORITY.

Operations on variables of type PRIORITY_BIT_VECTOR are assumed to be bit operations (as for type
TASK..BIT.VECTOR.)

CONSIDER.-PRIORITY is used as a heuristic to speed up the task selection phase of DISPATCH. H bit i
is true then we asgume there are tasks at priority level i which need dispatching attention. If bit i is false then
there are no priority i tasks ready for dispatching.

ACTIVE_TASK: array (PROCESSORS) of TASK_ID:= (others =>NULL_TASK);
ALLOCATED: TASK_BIT_VECTOR:= {others=> FALSE);

ACTIVE_TASK(P) tells which task is executing (resident) on processor P. If the active task is the null task,
it means procedure DISPATCH is executing and there is no resident task. If iz incorrect to query ACTIVE.-
TASK for any processor other than THIS _PROCESSOR. This array is used only to allow the current executing
task to determine its TASK_ID, and probably would be replaced in and actual implementation by a simple
variable replicated in the private memory of each processer.

ALLOCATED(T) is true if and only if task ID T is allocated to a live task {in use).

type STATUSES is new BYTE range 0..7;
RUNNING: constant:= 0,
PREEMPTED: constant:= 1;
FORCED_CALL: constant:= 2;
NORMAL _RUNNING: congtant STATUSES:= 2#001#;
NORMAL_PREEMPTED: constant STATUSES:= Z#010#;
STATUS: array (TASK_ID) of STATUSES:= (others=> NORMAL_PREEMPTED);

STATUS{T) is a bit vector which expresses the state of task T. RUNNING is the position of the status bit
telling whether T is running. PREEMPTED is the position of the status bit telling whether T was preempted;

B
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if this bit is 0 the task was not preempted, and may be running or voluntarily switched out via a call to the
dispatcher., FORCED.CALL is the position of sfatus bit telling whether T has a pending forced call
NORMAL_RUNNING is that status of a task that is running with no pending forced call. NORMAL -
PREEMPTED is the status of a preempted task that is normal in the sense that there Is no FORCED._ CALL
pending.
The following are local procedures used within the Lace implementation.

procedure AWAIT is new MISCELLANY.AWAIT_BIT(TASK_ID,TASK _BIT VECTOR);
function CHEOSE is new
CHOOSE_BIT(TASK_PRIORITIES,PRIODRITY_BIT_VECTOR):
function CHOOSE is new CHOOSE _BIT(TASK_ID,TASK_BIT_VECTOR);
function COERCE is new UNCHECKED_COXVERSION (WORD,ADDRESS);
procedure DO_FC{PROC, PARAM: ADDRESS);
procedure DO_FC_PREEMPTIVE;
procedure MAKE_PREFMPTIBLE_AND_GOTO(A: ADDRESS);
procedure SET is new
SET_BIT(BYTE_BIT_POSITIDY,STATUSES);

The following procedures are exported from Lace.

procedure DISABLE_PREEMPTICH is
begin PREEMPTIBLE(THIS_PROCESSOR) := FALSE;
end DISABLE PREEMPTION;

procedure HOLD(T: TASK_ID} is

pegin ENABLED{T) .= FALSE;
if T=BELF
then SKIP_DISPATCH(THIS_PROCESSOR):= FALSE;
else SKIP_DISPATCH:= (others=> FALSE);
~- Without locking (i.e. possibly waiting here and in other
-- more time-critical placea) we cannot accurately
-- determine where T is execubing, hence we warn every
-- processor to perform the full dispatch algorithm.
end if;

end HOLD;

procedure RELEASE(T: TASK_ID) is

begin EMABLED(T) := TRUE;
SKIP_DISPATCH:= (others=> FALSE);
~= & new task is eligible for dispatching. By forcing everybody to
== perform a full dispatch, we ensure T executes ASAP.
CONSIDER_PRIORITY(PRIDRITY{T)) := TRUE;

end RELEASE;

Procedure DISPATCH (below) assumes the processor is not preemptible when it is called. When it returas
the processor iz preemptible.

This implementation assumes that any processor can execube any fask. If makes use of the lock RIGHT .-
TO_DISPATCH(1) to insure that at most one processor is executing in the task selection loop at any one time.
This version idles inside the selection loop, with the lock held, when there is no task to dispatch. This is safe,
given the assumption that any processor can execute any task. If this assumption is not true, idling would
need to be done without holding the lock, by testing SKIP_DISPATCH{THIS _PROCESSOR).

procedure DISPATCH is
CHOICE: TASK _ID;
T: TASE_ID;
P: TASK_PRIORITIES;
CAN_SKIP: BOOLEAN;
CONTENDING: TASK_BIT_VECTOR,
-~ Will be all and only those tasks eligible for dispatching.
begin assert{not PREEMPTIBLE(THIS_PROCESSUR));
TEST_AND_SET{SKIP_DISPATCE,THIS_PROCESSCR,CAN_SKIP);
if CAN_SKIP

14
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then PREEMPTIBLE(THIS PROCESSOR) ;= TRUE; return; end if;
AWAIT(RIGHT _TO_DISPATCH,1);

The highest priority task is chosen via bit-vector operations, first by choosing the highest priority level, P,
where there may be a task contending, and then by choosing a contending task ab that level. The heuristic for
considering priority classes is: unless you are certain there are no more tasks remaining at priority P, assume
there are more. If no tasks are found at level P, the next lower level is iried, If P=0 the dispatcher is idling,
waiting for some task fo be released.

leop CONTENDIKG:= not ASSIGNED;
CONTENDING{SELF) :» TRUE;
CONTENDING:= ENABLED and CONTENDING;
P:=CHOOSE{CO¥SIDER_PRIORITY);

if P/=0

then CONSIDER_PRIORITY(P):= FALSE;
CHOICE:» CHOOSE(CONTEXNDING and HAS PHICRITY(P)).
if CHOICE/=XULL_TASK
then CONSIDER_PRIORITY(P):= TRUE:

end
end if;
end loop;

ASBIGNED(CHOICE) := TRUE;
RIGHET_TO_DISPATCH(1) := AVAILABLE;

~- We have & task, releass the lock.
exit;
if;

Execution of the chosen task, CHOICE, is now resumed, based on its STATUS. A case-structure is suggested
here, to speed up branching.

case STATUS(CHOICE) is

when 2#000#=>

when 2#001f=>

when 2#010#=>

= CHOICE had voluntarily called DISPATCH.

if SELF/=NULL_TASK

~= Put caller of DISPATCH to saleep.

then SET(STATUS(SELF}, RUENI¥G, FALSE);
SAVE_BASIC_STATE(SAVED_STATE(SELF));
ASSIGNED(SELF):= FALSE;

end if;

ACTIVE _TASK(THIS_PROCESSUR) := CHODICE;

-- now SELF=CHOICE.

SET(STATUS(SELF), RUNNING, TRUE);:

RESTORE_BASIC_STATE({SAVED_STATE(SELF));

PREEMPTIBLE(THIS_PROCESSOR) := TRUE;

return;

- tagk that called DISPATCH is Belected for execution.

~~ {i.ae. CHOICE & SELF are the same.)

PREEMPTIBLE(THIS _PROCESSOR) ;= TRUE;

return;

-~ CHOICE was preempted by an interrupt.

if SELF/=NULL_TASE

-~ Put caller of DISPATCH to sleep.

then SET(STATUS(SELF), RUNNING, FALSE):
SAVE_BASIC_STATE(SAVED_STATE{SELF));
ASSIGNED{SELF):= FALSE;

end if;

ACTIVE_TASK(THIS_PROCESSOR) := CHOICE;

-« now SELF=CHOICE.

SET({STATUS{SELF)}, PREEMPTED, FALSE);

SET{STATUS(SELF), RUNNING, TRUE);

-~ Set bite separately to avoid erasing an incoming

-~ forced call.

RESTORE_ALL_BUT_IC(SAVED_STATE{SELF)):;

MAKE_PREEMPTIBLE AND_GOTO(

15
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COERCE {SAVED _STATE(SELF) .CORE_1C));
-- will no% return.
raise PROGRAM ERROR; -- should never get here.
when 2#011#=> -- 13 imposaible, since a preempted task can’t be running.
raise PROGRAM_ERROR;
when 2#100%=> -- CHOICE voluntarily called BISPATCH and while it
-~ was inactive somecne has forced a call on it.
if SELF/=XULL_TASK
-~ Put caller of DISPATCH to sleep.
then SET(STATUS{SELF), RUNNING, FALSE);
SAVE_BASIC, STATE(SAVED_STATE{SELF)};
ASSIGEED(SELF) := FALSE;
end if;
ACTIVE_TASK(THIS_PROCESSOR) := CHUICE;
-~ now SELF=CHOICE.
AWAIT(RIGHT_TO_FORCE_CALL,SELF);
STATUS(SELF) := NORMAL _RUNNING;
-- is ingide the locked region, to avoid
-~ missing further forced calls.
FORCED_CALL_BUFFER(THIS_PROCESSOR) :=
FORCED_CALL_REQUEST (SELF) ;
-- Copy data to avoid race with incoming forced call.
RIGHT_TO_FORCE_CALL(SELF) :» AVAILABLE;
RESTORE_BASIC_STATE(SAVED STATE{SELF));
Do _FC(
FORCED_CALL_BUFFER(THIS_PROCESSOR) .PROC,
FORCED_CALL_BUFFER(THIS_PROCESSOR) .PARAM);
PREEMPTIBLE(THIS_PROCESSOR) := TRUE;
return;
vhen 2#110#=> -- CHOICE was preempted (by an interrupt) and while it
-~ wag preempted someone has forced a call on it.
it SELF/=NULL_TASK
-~ Put caller of DISPATCH to sleep.
then SET(STATUS{SELF), RUNNING, FALSE);
SAVE_BASIC_STATE(SAVED_STATE(SELF));
ASSTGNED (SELF) := FALSE;
end if;
ACTIVE_TASK{THIS_PROCESSOR) := CHOICE;
-~ now SELF=CHOICE.
AWATT({RIGHT_TO_FORCE_CALL,SELF);
STATUS(BELF) := NORMAL_RUNNING;
FURCED_CALL_BUFFER(THIS_PROCESSOR) :=
FORCED_CALL_REQUEST(SELF) ;
-~ Copy data to aveoid race with incoming forced call.
RIGHT _TO_FDRCE_CALL(SELF):= AVAILABLE;
RESTORE_BASIC_STATE(SAVED_STATE(SELF));
FAKE_CALL(DO_FC_PREEMPTIVE’address, KULL_ADDRESS,
COERCE(INTEGER (SAVED_STATE(SELF) .CORE.IC))):
raise PROGRAM_ERROR; -- should never get here.
when Z#101#=> -- Task thai called DISPATCH is selected for execution,
= but at some point since its last dispatch
-~ gomeone has forced a c¢all on it
AWAIT(RIGHT_TU_FORCE_CALL, SELF);
STATUS(SELF) := NORMAL_RURNING;
FORCED_CALL_BUFFER(THIS_PRUCESSOR) :=
FORCED_CALL_REQUEST (SELF) ;
~~ Copy data to avoid race with incoming forced call.
RIGHT TO_FORCE _CALL (SELF):= AVAILABLE;
DO_FC(
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FORCED_CALL_BUFFER(THIS_PROCESSCR) .PRUC,
FORCED CALL BUFFER(THIS_ PROCESSOR) .PARAM);
PREEMPTIBLE(THIS _PROCESSOR) := TRUE,
refurn;
when 2#111#=> raise PROGRAM_ERROR;
~~ A preempted task can’'t be runningt
end case;
end DISPATCH;

Procedure FORCE..CALL posts a request for a forced call. Locking is used to prevent interleaved updating
of the fields PROC and PARAM. Since it cannot tell where any other task is executing, unless the forced call
is to the current task this procedure uses SKIP. DISPATCH to warn all other processors that they need %o
check for a forced call on the next execution of DISPATCH.

procedure FORCE_CALL(T: TASK_ID; PROC, PARAM: ADDRESS) is
begin assert(not PREEMPTIRLE{THIS_PROCESSOR)) ;
AWAIT (RIGHT_TO_FORCE_CALL,T);
FORCED_CALL_REQUEST(T):= (PROC, PARAM);
SET(STATUS{T), FORCED_CALL, TRUE)};
RIGHT_TO_FORCE_CALL(T) := AVAILABLE,;
if T=SELF then SKIP_DISPATCH{THIS_PROCESSOR):= FALSE:
elee SKIP_DISPATCH:= (others=> FALSE);
end if;
end FORCE_CALL;

Procedure COLLECT _ID presumes that the ID is not assigned and not enabled. For efficiency, however,
an implementation would not attempt to check these assumptions.

procedure COLLECT_ID(T: TASK_ID) is

begin assert(not ASSIGNED(T) and mot ENABLED(T));
ALLOCATED(T) := FALSE;

end COLLECT_ID;

function NEW_TASK(STATE: FULL_STATE) returm TASK_ID is
CHDICE: TASE_ID;
BUSY: BOOLEAK,
begin CHOICE:= NULL_TASK;
-~ Find the first unclaimed TASK_ID
for I in TASK_ID’first+l .. TASE_ID’last
-~ we reserve TASK_ID'first for the null task.
loop TEST_AND_SET(ALLOCATED,I,BUSY);
if not BUSY then CHOICE:= I; exit; end if;
end loop;
it CHOICE/=NULL_TASK
then SAVER_STATE(CHOICE):= STATE; end if;
HAS_PRIORITY{PRIORITY{CHOICE)) {(CEROICE) := FALSE;
PRICRITY(CHOICE) := TASK_PRIDRITIES'last;
HAS_PRIORITY{PRIDRITY{CHOICE)) (CHOICE):
STATUS (CHOICE) ;= NORMAL_PREEMPTED;
return CHOICE;
end NEW_TASK;

TRUE;

function SELF return TASK_ID is
begin return ACTIVE_TASK(THIS PRUOCESSUR);
end SELF,;

Procedure SET..PRIORITY assumes that the selection loop of the dispatcher is protected by a lock, so
that only one processor may be locking at the priority tables at any time. It need not be executed without
preemption, but to insare that the priority change is immediate the caller may wish to firat disable preemption.
Note that this procedure inverts the priority as specified by parameter P, in order to better fit the MIL-STD-
1750A machine operations. After inversion, the ‘highest® priority is 1 and the owest’ priority is 31.
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procedure SET_PRIORITY(T: TASK_ID; P: INTEGER) is
OLDP, NEWP: TASK PRIOURITIES,
begin OLDP:= PRIDRITY(T);
NEWP:= TASK_PRIORITIES last+1-TASK_PRIGRITIES{P);
if FEWP>TASK _PRIODRITIES®last
then NEWP:=TASK PRIORITIES lasi;
elsif NEWP<=TASK_PRIORITIES'firet
then NEWP:=TASK_PRIORITIES*first+l,
end if;
HAS_PRIORITY(NEWP){T):= TRUE;
PRICRITY (1) := NEWP;
HAS_PRIORITY (DLDP) (T} := FALSE;
CONSIDER_PRIDRITY(WEWF) := TRUE;
SKIP_DISPATCH:= {others=> FALSE);
end SET_PRIORITY;

The following operationsare exported to support interrupt handlers. Of these, procedure PREEMPT is
peculiear. It assumes that interrupts are disabled and the processor is preemptible, and does not return in the
sense of an ordinary procedure. Instead, it invokes DISPATCH to choose a task to resume execute.

function DISPATCHING_PRIORITY(T: TASK_ID) return INTEGER is

begin return INTEGER(TASK_PRIORITIES®last+1-PRIORITY(T));
-~ due to internal inversion of priorities.

end DISPATCHING_PRIORITY;

funcetion PREEMPTION _OX return BOOLEAN is
begin return PREEMPTIBLE(THIS_PROGCESSOR);
end PREEMPTION_OK;

procedure PREEMPT(S: FULL_STATE) is

begin DISAELE_PREEMPTION;
SAVED STATE(SELF):= 8;
SET(STATUS{SELF), PREEMPTED, TRUE)};
SET(STATUS(SELF), RUNNING, FALSE);
ASSIGHED(SELF) := FALSE;
ACTIVE_TASK(THIS_PROCESSOR) := NULL_TASK;
ENABLE_TNTERRUPTS;
DISPATCH;

end PREEMPT;

Note that in procedure PREEMPT the enabling of interrupts aand the following call to DISPATCH maust
be inseparable. This is insured by the MIL-STD-1750A operation for enabling interrupts, which does not take
effect until after the following instruction.

The following procedures are not exported, but are used internally within the Lace implementation.

Procedures DO..FC and DO_FC_PREEMPTIVE, below, call the procedure PROC with parameter at
address PARAM. The extra level of indirect calling which this introduces buys the ability to force a call
with interrupts enabled. The two versions are required to handle the diference between preempted tasks and
tasks that are suspended during a call to DISPATCH. DO_FC_PREEMPTIVE assumes that the calling task,
which is SELF at the time of call, was previously preempted and its state can be recovered from SAVED . .-
STATE(SELF). It assumes it is called via FAKE_CALL, for reasons explained further below.

Both procedures assume that the processor is not preemptible, and that all parameters are passed by value.
Thus, parameters and state information can be safely copied into local storage before the processor is made
preemptible again. Both procedures restore the state of the processor to preemptible.

procedure DO_FC(PROC, PARAM: ADDRESS) is

begin PREEMPTIBLE(THIS PROCESSCR) := TRUE;
CALL_PROCEDURE{PROC, PARAM):

end DO_FC;

procedure DO_FC_PREEMPTIVE is
PROC: ADDRESS:= FORCED_CALL_BUFFER{THIS_PROCESSOR).PROC;
PARAM: ADDRESS:= FORCED_CALL_BUFFER(THIS_PROCESSOR) .PARAM;
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8: FULL_STATE := SAVED_STATE(SELF);
begin PREEMPTIBLE(THIS_PROCESSCR) := TRUE;
CALL_PROCEDURE(PROC, PARAM});

RESTORE_FULL _STATE(S):
end DO_FC_FREEMPTIVE;

Note that in the procedure above restoring the full state effectively pops the activation record stack and
resumes the preempted task, if the forced call to PROC returns normally. Otherwise, if an excepfion is
propagated out, the state will not be restored. The exceplion will propagate further oui, to the point where
the current task was preempted, due to the action of FAKE..CALL, which should have arranged for this.

The following procedure provides a way to resume the execution of a preempted task without having to
disable interrupts. At entry, the task’s state is presumed to have been restored except for the IC, whose value
us passed as a parameter. It presumes that the processor is not preempiible. There iz no return; execution
resumes at the parameter IC value, with preemption enabled.

procedure MAKE_PREEMPTIBLE_AND GOTO(A: ADDRESS) is

begin PREEMPTIBLE(THIS_PROCESSCR) := TRUE;
GOTO_VARIABLE(A);

end MAKE PREEMPTIBLE _AND_GOTO;

The package body of Lace must initialize the variables which export the maximum and minimum priority
values which it supports. Of course, these could be preinitialized, at load time.

begin MAX_PRIODRITY:= INTEGER(TASK_PRIORITIES *last);
MIN_PRIORITY:= INTEGER(TASK PRICRITIES*first);
end LACE;

b Summary

Lace is still under development, though there is presently no plan to change the interface. Additional operations
have been considered, and may eventually be added if they can be implemented without harming the efficiency
of the core Lace operations. For example, two such operations are KILL and MAXE_ _PREEMPTIBLE.

The effect of procedure KILL would be similar to that of HOLD, but permanent. That is, dispatching of
the task T would be disabled and any subsequent calls to RELEASE would not reenable it., This capability is
needed for Ada task abortion, and can be implemented more efficiently in Lace than at the next level above it.
However, we have chosen not to do this, in order to keep Lace simple.

Work on a MIL-8§TD-1750A implementation of Lace is under way at the Boeing Aerospace Company in
Kent, Washington. Comments (especially critical ones) on the Lace interface or Lace/I design are solicited,
and should be directed to:

Professor T.P. Baker
Department of Computer Science
Florida State University
Tallahassee, 'L 32306-4016

phone: (804) 644-5452
(i no answer) 644-2296
net mail: TBAKERG@ADA20.ISIL.EDU.ARPA
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