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Chapter 1

Introduction

Imagine that you are sitting at your workstation, using all the processor cycles available,
while next to you another workstation lies idle. It makes sense that some of your work
should be run on the idle machine, Current systems, however, require that you explicitly
send your work to the other computer. Ideally, the system you are using should auto-
matically move your work from your machine to the idle one. This idea is known as load
sharing.

Load sharing can be viewed as a global instance of the scheduling problem. Load
sharing automatically and transparently assigns tasks to processors to reduce response
time. Thus, in the above scenario, load sharing would increase your productivity by
decreasing response time through moving work from your busy machine to the idle one in
an automatic and efficient way.

Load sharing seems easy at the two extremes of machine utilization. Almost any
Joad sharing algorithm will work well when only one machine is busy and many are idle.
Alternatively, almost all algorithms are ineffective when every workstation is busy; a
poorly conceived algorithm could easily increase response time. The important research
issues in load sharing today consider how best to handle the large area in between these
extremes.

This thesis presents the results of implementing a new load sharing algorithm at the

University of Washington. This work shows that load sharing for the workstation envi-



ronment is possible, desirable, affordable, and can be effective using simple policies. In
the course of this work, new insights about load sharing in the workstation environment

were discovered.



Chapter 2

The Environment: Distributed
Systems

Over the past decade, distributed systems have been a focal point of research, development
and debate. Liebowitz and Carson {26] offer a very general definition: “A distributed
system is one in which the computing functions are dispersed among several physical
computing elements.” Enslow [17] narrows this to those with a system-wide operating
system so that users are unaware that their work may be distributed throughout the
system as needed. Such a system would share computing resources to a high degree.
While some commercially available systems satisfy Liebowitz and Carson’s definition, ali

fall short of Enslow’s goal. Some research systems, however, are now approaching this

ideal.

2.1 The Hardware

The hardware required for implementing a system such as Enslow’s is currently available.
Processor and memory price to performance ratios have fallen to the point that powerful
single user workstations are now widely available. Meanwhile, the last decade has seen the
rapid emergence of computer networks. These provide the communication links needed

for sharing the expanding computing resources.



2.1.1 Computer Networks

Two types of networks currently dominate computer communication. Long haul networks,
such as the ARPANET, connect computers over thousands of miles via dedicated lines and
satellite and radio links. These types of networks typically have a low data transmission
rate {on the order of 56 kbps) and high latency.

Local Area Networks (LA Ns), have evolved for short haul connections. Popular exam-
ples of LANs include contention buses, of which the best known is the Ethernet [30}, and
token rings [19]. Using coaxial cable, twisted pair, and fiber optic technology, LANs offer
high data rates, on the order of 10 to 100 Mbps. This high bandwidth enables machines to
use data remotely that previously they could only access locally. The combination of high
bandwidth and low latency allows the sharing of resources over the network. Resources

such as printers and secondary memory (typically hard disks) are now commonly shared.
2.1.2 Workstations

The raison d'etre of workstations is to provide highly interactive computing. They offer
their individual users more processing power and main memory than the timeshared super-
minis of a few years back. A typical workstation today provides computing resources in
the 1 MIPS range, a large main memory (4MB is not uncommon), and a high resolution,
bit-mapped display with a pointing device such as a mouse. The workstation software
allows multi-tasking and is often a port of a traditional time-sharing system (e.g., Unix
or VMS 1),

Combining LANs and workstations has produced a new style of architecture, the disk-
less workstation (see Figure 2.1). Diskless workstations (i.e., those lacking local secondary
memory) use the LAN to get disk pages from a file server. A file server is a node on the
network with local secondary memory (e.g., a hard disk) that provides secondary memory

for the diskless workstation. The diskless workstation makes requests to the file server

! Unix is the trademark of AT&T Bell Laboratories. VMS is the trademark of Digital
Equipment Corporation.
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Figure 2.1: Architecture of Diskless Workstations.

via a network message. The file server responds with one or more network messages
containing the information requested. The benefit of this architecture is that a single
fast, large capacity disk is much more cost effective than many smaller, slower disks. The
cost advantage for secondary memory allows additional purchases of relatively inexpensive
workstations, which results in more resources for the same total system price. In addition,
file sharing is easily provided by distributed file systems that allow a workstation to access

any file on the network rather than limiting it to those on its file server.

2.2 The Software

Software technology has lagged behind hardware technology in the area of distributed
systems. While some available systems share files, secondary memory and special periph-
erals, none share processors. A major reason is that most of the software running on
workstations has been ported from the timesharing environment and was not designed
for use in distributed systems. These older systems have relied heavily on pioneering re-
search and development done at the Xerox Palo Alto Research Center. PARC developed
much of the fundamental hardware and software for distributed systems: the Ethernet;

the first workstation (the Alto); the bitmap display; the laser printer; the mouse; window



managers; program development environments; Smalltalk; InterLisp and more.

However, some significant research has been done on achieving distributed systems
that satisfy Fnslow’s definition. Some of the notable projects include Argus [27] at MIT,
Clouds [1] at Georgia Tech, Eden [2] [8] at the University of Washington, and LOCUS [43]
at UCLA. Eden was instrumental in my research and merits a brief review which will be
useful for later reference.

The Eden project’s goal was to build and use an integrated distributed computing
system. Eden views the world as consisting of Eden Objects or Objects. Each Object is
identified by a capability consisting of a unique identifier and a set of rights. An Object
supports a set of operations that it exports to the world. For example, a Directory Object
would support operations such as Insert, Delete, and LookUp. One Object asks another to
perform an operation by means of an invocation. Invocations are Eden’s Remote Procedure
Call that includes the target Object’s capability, value and result parameters, and a status
parameter. Network transparency is supported; an Object’s capability is all that is needed
for an invocation. Because Objects are conceptually always active, explicit activation is
not required.

The Eden Kernel supervises all Object activity. It has the responsibility for locating
and possibly activating a target Object. Invocations pass through the Kernel to prevent
Objects from forging capabilities or modifying their rights fields. The Kernel provides
Objects with many primitives, including the ability to create new Objects of a given type,
e.g., a new instance of the Directory Object.

The Eden Programming Language (EPL) [7] is an extension of Concurrent Euclid (CE)
[21]. EPL provides language support for invocations so that they appear as intermodule
procedure calls. Stub procedures that pack and unpack parameters for incoming and
outgoing invocations are generated automatically. Internal concurrency using lightweight
processes is provided along with monitors for concurrency control.

The Fden system has facilitated the writing of numerous distributed applications.



These include, among others, a mail system [3], personal calendar {20}, nested transactions

{34] and data replication [32].
2.3 Summary

According to Enslow, distributed systems should share all their resources in such a trans-
parent manner that users remain unaware of it. The hardware technology required for
such systems is now available but the software technology is lagging. Current software
permits the sharing of files and peripherals but not processors. However, research systems
that are capable of sharing processors are now emerging. Thus research into how best to

share processors is timely and relevant.



Chapter 3

Overview of Load Sharing

The goal of this chapter is to provide the reader with a basic understanding of load sharing.
Tt first defines load sharing and explains why it is useful. Then it presents an overview of
load sharing concepts and criteria for evaluation. Finally, a review and comparison of the

previous work in the field sets the stage for the research presented in Chapters 4 and 5.

3.1 What is Load Sharing?

In a network of autonomous computers with independent sources of work, the load on one
computer will generally differ from that on the others. This gives rise to the situation
where some machines have excess work while others remain idle [28]. A more efficient use
of resources would be to distribute the load among all the computers. Load sharing! is
a general term for efficiently sharing computing resources (processors) in a network. An
ideal load sharing system would automatically and transparently migrate work as required
from node to node so as to minimize response time. Users would not know whether their

work was executing locally or remotely.

1The term load balancing has also been used to describe these ideas, drawing on the
intuitive idea of balancing or equalizing the load among nodes. Load sharing is preferred
because it does not specify anything about how the algorithm should work. That is, the
load could be shared without being balanced.



3.2 The Need for Load Sharing in Distributed Systems

The cost of computers continues to drop while their performance continues to rise; users
have more and more processing power available. Why go to the trouble of load sharing
when users already have more power than they can use? This question has two answers.

The first looks at the traditional leapfrogging of hardware power and software needs.
Software is written to the capabilities of the available hardware. As more cycles or mem-
ory become available, software demand for hardware resources is bound to increase. Muckh
of the current software running on workstations was designed and developed on overbur-
dened timesharing systems. Consequently, it does not take advantage of the increased
capabilities of workstations. Programming environments that have been designed for use
on workstations, such as Cedar [41], require large amounts of processing power to run well.

The second reason is that load sharing can provide an inexpensive way to increase
the potential amount of processing power available to each user. In a network of twenty
nodes, for example, each user could potentially use all twenty computers. Consider what
could happen when a user compiles a program. With load sharing, the individual files
or even the separate passes of the compiler could be executing concurrently on separate
workstations. Although most of the time some of the other workstations will be busy,

there are indications that they are often idle [42].

3.3 A Load Sharing Taxonomy

When only one node is busy and the rest lie idle, almost any plan to migrate work from
the overloaded node to the rest will result in better response time. Conversely, if all the
nodes have more work than they can handle, moving work around will not help. Between
these extremes, the questions of where and when to migrate work, and what work to select,
remain open. As the number of proposals have increased, taxonomies have emerged to
organize and compare them (e.g., Wang and Morris [44]).

My own taxonomy looks at five issues in load sharing: static versus dynamic algo-
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rithms, information policies, load assessment policies, migration policies, and preemption

versus nonpreemption.

e Static versus Dynamic:
A static algorithm decides the migration path a priori, based on the average rather
than the current state of the system. A simple example of a static algorithm is for
node A to always send work to node B whenever A is busy. Static algorithms are
useful when the workload is well defined in advance because they allow calculation
of an optimal assignment of tasks to processors before execution begins. The daily
transactions of a bank or a factory might fit this description. Static policies are ap-
pealing because they do not require communication of state information throughout
the system and any required migration calculations take place off line. Thus the cost

of computing a new workload distribution does not contribute to the system load.

The problem with static policies is that they perform poorly when the actual system
state is different from what was expected. Using the above example, if nodes A and
B both are busy but node C is idle, then node C should receive work from node A,
rather than node B. Unfortunately, most environments are incapable of providing

an accurate profile of their average system state in advance.

Dynamic algorithms use current state information when making load sharing de-
cisions. The flexibility of dynamic algorithms, due to their ability to react to the
state of the system, permits them to work in almost every environment. This flex-
ibility, however, brings with it the disadvantage of having a higher cost than static

algorithms.

Dynamic algorithms can either be distributed or centralized. In a distributed algo-
rithm, each node autonomously makes the migration decision in cooperation with
the recipient node. This contrasts a centralized algorithm where a node must contact

a central authority which provides the load sharing decision.
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o Information Policy:
An information policy answers the question: “What do I know about my load and
what do I know about the loads on other machines?” The information policy selects
the data to be gathered locally, decides what will be passed to other nodes, and
chooses the manmner in which to communicate it. For example, a simple policy could
measure the queue length of runnable processes and broadcast its value to all other

nodes every second.

Information policies must take into account the impact on a workstation from tak-
ing local measurements. The more often we meter our node, the more timely our
information; if we meter too often, however, we affect the very load we are trying
to measure. A similar situation arises in transmitting our node’s state to the rest of
the network. Frequent broadcasts, especially as the size of the network grows, begin
to clog the communication medium and force other nodes to spend time processing
the messages. There is not one “best” information policy; each algorithm will have
different requirements. Every policy, however, must balance the benefits of timely

information with the costs to the nodes and the network.

s Load Assessment Policy:
The load assessment policy, closely associated with the information policy, asks the
question: “Should I Joad share now, and if so, which job?” It uses the data provided
by the information policy to calculate the load existing on a node. Using this load
level along with other information (e.g., the type of program, special resources re-
quired, etc.), the load assessment policy decides if this process should be moved. For
example, a simple load assessment policy could classify a node as busy whenever the
length of its run queue exceeded one and move jobs off the machine as dictated by
the algorithm. Answering the question of which process to move can be as simple
as “move the next one created” or as complicated as considering resource usage of

all jobs in light of the other jobs on their processors. This question is dependent
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on many other aspects of the load sharing algorithm, such as the type of program

(interactive or batch), and is discussed further.

Migration Policy The migration policy asks the question: “Which node should re-
ceive (or send) the migrated process?” It decides this by using data from the infor-

mation policy and/or by obtaining other information at that moment.

A migration policy can be either sender or receiver initiated. Sender initiated means
that the node dispatching work is responsible for locating a willing recipient. An
example of a sender initiated policy is the “Shortest Runnable Queue” policy, which
selects as the destination the node with the shortest queue of runnable processes.
Another example is “Random”, which selects a node at random regardless of the

node’s current state.

In a receiver initiated policy, a potential host asks for work from another node. A
busy node then migrates extra work to the requesting node. Examples of receiver

initiated policies include “Longest Runnable Queue” and “Random”.

Sender and receiver initiated policies perform best at opposite ends of the machine
atilization spectrum. Compare what happens to each type when all of the nodes in
the network are busy. In the sender initiated version, each busy node wastes time
futilely seeking an idle node to accept its work, although none exists. In contrast,
the teceiver initiated version does not attempt to load share because there are not
any idle nodes seeking work. The converse occurs when the network is lightly loaded;
idle “receivers” spend time looking for the small amount of work that does exists.

Although the waste is “free” in this case, the efficiency of the algorithm still suffers.

The performance difference between the two schemes has been explored by Fager,
Lazowska, and Zahorjan [15]. They found that sender outperformed receiver initi-
ated at light to medium loads while receiver proved better at heavy loads. Under

their assumptions, although individual nodes might be heavily utilized quite often,
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high levels of total system use would be rare. Thus they concluded that sender
initiated offers a distinct advantage. Wang and Morris {44], however, came to the
opposite conclusion by arguing that efficiency counted more when system utilization

was high rather than low.

Other initiation strategies are possible. For example, every node could periodically
reevaluate itself and then contact other nodes to either look for more work or send
off excess work. The algorithm presented in Section 5.2 is a hybrid combining sender

initiated and receiver initiated components.

s Preemption versus Nonpreemption:
The final point asks the question: “At what point can a process be migrated?” The
two apparent possibilities are: at any time and only when a task is created. Process
preemption means that a process can be migrated between nodes throughout its
lifetime. Nonpreemption limits migration to the moment of process creation. Pre-
emption allows greater flexibility and potentially more efficiency in the load sharing
algorithm than one limited to nonpreemption. For example, if both nodes A and
B have two jobs and both jobs on A finish, preemption allows for one of B’s jobs
to be moved to A. Without preemption, A will remain idle until the next process
is created. Some algorithms require preemption and so are limited in that respect

while others can use either.

Implementing process migration during execution is nontrivial. Process state must
be saved, any current operations suspended, and the forwarding of messages to the
process at its new site must be done. Preemption has recently heen achieved in a

few systems: Demos/MP [33], Locus {11] and the V-system [42] .
3.4 Basic Criteria for All Load Sharing Algorithms

Evaluation of any load sharing algorithm should consider three criteria: stability, flexibil-

ity, and effectiveness. The algorithm must be stable at all load levels so that the system
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does not come to a stop or cease to perform useful work. The flexibility of the algorithm in
handling computers of differing power, size, and architecture must be considered. Finally,
the load sharing algorithm must be effective; the response time of a program must be
reduced or, at a minimum, never increased.

At least two types of instability can occur in an algorithm. One type, called process
thrashing, can occur in algorithms that allow both process preemption and multiple mi-
grations of a process. At high levels of machine utilization, processes constantly move
from one busy node to another without ever executing; each node spends all of its time
sending and receiving jobs. The second type involves the overloading of idle nodes. When
a node becomes idle, work should be migrated in an orderly fashion preventing all of the
busy nodes from suddenly swamping the idle node. For example, suppose 20 nodes each
have one excess process. If one node becomes idle, it would be a mistake for all other
nodes to simultaneously send their excess process to the idle node.

The flexibility of a load sharing algorithm must be considered since the last thing re-
maining constant these days is the type of computers attached to a network. An algorithm
that works with only one model of computer on a network of fixed size would soon be
discarded. Any algorithm should be able to accommodate computers of differing power
and size. Accommodating differences in architecture (heterogeneity) is a more difficult
challenge since it involves juggling binary programs for the various types of machines.

Other questions about an algorithm’s flexibility should be asked. Is the algorithm
restricted only to workstations or timesharing systems? What happens when special re-
sources (e.g., a main frame, vector processor, or processor pool) are added to the network?
Can they be easily integrated into the load sharing model? Does the algorithm contain
parameters that allow for fine tuning or modification of the work flow? How does the algo-
rithm resolve the conflict between personal ownership and communal use of workstations?

The effectiveness of an algorithm involves whether its cost exceeds its benefit. An

algorithm’s benefit comes from a reduction in a program response time while the algo-
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rithm’s cost can be broken down into three different parts. The first is the cost of the
information policy. Policies such as “Shortest Queue First” (mentioned in Section 3.3)
require state information about the entire network. The expense from frequent broad-
casts of this information can dramatically increase as the network grows in size [28]. In
general, the more timely the information and the wider its distribution, the greater its
cost. The second cost involves the additional time required to locate an acceptable host
for a task in the migration policy. This must consider both the time for success and that
of failure. Clearly each must be reasonable with respect to total execution time. The
third is the cost of migration and remote execution. This includes the transferance of
binary programs, any required data, and the higher expense of communications between
the remote program and the local user’s display. In this respect, diskless workstations
operating with a distributed file system have an advantage (or disadvantage). They never
experience any added cost for remote execution because all the files must be transmitted
over the network regardless of the locations of the user and the exccuting node. They are

subject, however, to the higher cost of communications.

3.5 Review of Previous Work

3.5.1 Static Algorithms

Static policies drew most of the initial attention in load sharing for two reasons. The first
is that the model a static algorithm requires is of a well behaved, well understood system
with a good characterization of the workload. This simple model invited an analytical
solution while more complex models did not. The second was that during the late 19707,
people began to attach minicomputers to large main frames in a star network configuration.
Comnsequently, these people were interested in the problem of partitioning work between
the central and the satellite processors in the most efficient manner.

Stone [39] used network flow models to deterministically find the optimal placement

of processes so as to minimize the total response time. This technique was expanded and
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enhanced by others [9]][13]. Additional efforts to solve the problem included Chu [14] using
linear integer programming and Ma [29] with a branch and bound method. Each solution
required significant computational effort. More recently, Tantawi and Townsley rejected

deterministic procedures in favor of probabilistic methods in a new static algorithm [40].
3.5.2 Dynaimic Algorithms
Simulations

The model required by static algorithms did not correspond to the distributed systems
emerging in the 1980’s. These systems needed algorithms based on the model that the sys-
tem’s state changes dynamically. Although many dynamic algorithms have been proposed,
most have only been simulated while few have been implemented.

Livny and Melman [28] looked at three different node information policies: broadcast
state when a process starts or finishes; broadcast when idle, and poll when idle. Using
simulation, they concluded that each works best under certain conditions. They also
noted the rising communication costs of using network broadcasts as the number of nodes
increases. In addition, they found that there is a high probability that there will be an
idle node when other nodes have excess work.

Bryant and Finkel [10] proposed a preemptive algorithm based on the observation that
the amount of time a job has already run provides a good estimate of a job’s remaining
amount of computation. They used this fact to select the best node for a task on the
basis of the total amount of processing time remaining per node. More recently this idea
was verified by Leland and Ott [25]. Analyzing three years worth of data from Unix
systems revealed three types of processes: “CPU hogs”, “I/0O hogs”, and everything else.
This third category accounted for 98% of the number of processes but only 35% of the
total amount of CPU consumed. After three seconds of CPU time, a linear relationship
emerged between the amount of CPU used and the mean amount of CPU eventually

needed. Their algorithm used this relationship in deciding to migrate only older tasks.
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Their information policy consisted of broadcasting messages that contained the number
of processes and amount of CPU time each process had used on each node. This global
information allowed the migration of the CPU hogs to computers without CPU hogs.
Simulation of this algorithm showed a great benefit in response time for CPU hogs with
some minor improvement for the other type of processes. They also noted problems with
their algorithm as the number of nodes in the system increased. It remains to be seen if
the findings of Leland and Ott are duplicated in other environments.

Bidding algorithms have been proposed that would have nodes bid for work whenever
new processes were created; the winner would be the highest bidder [18]. A receiver initi-
ated variation of bidding called drafting was proposed by Ni, Xu, and Gendreau [31]. The
information policy specified three types of load classes: light (can accept work), normal
(can not accept work but does not need to migrate work), and heavy (needs to migrate
work). Each node kept a table consisting of hosts and their state. To minimize state
broadcasts, the authors considered two alternatives to always broadcasting: piggyback-
ing information about transitions from normal to heavy on other messages and a mixed
updating approach. The load assessment policy used the number of processes per node.
Simulation of the algorithm showed a significant improvement in response time over no
load sharing at all for a five processor network.

Eager, Lazowska, and Zahorjan [16] argued that simple policies performed adequately
and scaled well. They noted that even complex algorithms would sometimes make mis-
takes, especially as they responded to minor variations in load. They felt that a simple
policy could reduce response times substantially (although not optimally) with very low
cost. Since the use of broadcasts does not scale well to very large networks, they pro-
posed information and migration policies that operate without them. To verify the utility
of their analysis, they simulated three migration policies: randomly selected nodes; ran-
domly selected with probe; and shortest queue. Each policy used the length of the queue

of runnable processes as its load factor. The load assessment policy used the idea of setting
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a threshold; a node would attemps to migrate work whenever the length of the run queue
exceeded one. In the first version, when a node had more than one runnable process it
randomly selected another node and sent it the new process. A process would be migrated
only once to prevent process thrashing. The second policy selected some small number of
nodes at random (this number being referred to as the probe limit) and asked (probed)
each selected node if it was under threshold. If one was, it would receive the work. The
final policy assumed global knowledge of the queue lengths for all the nodes (at no cost)
and would send work to the node with the shortest queune length. This excellent but nor-
mally expensive policy was included for comparison against the other two. In addition,
models of the system without load sharing (M/M/1 model) and with perfect load sharing
(M/M/N model for N nodes) were used as asymptotic limits. The analysis showed that
even the Random policy did much better than no load sharing at all and Random with
Probe did almost as well as the Shortest Queue policy. This study pointed out that load

sharing did not have to be complicated to help at almost all levels of network loads.

Implementations

Research based on implementations rather than simulations has begun to surface as the
state-of-the-art in distributed systems has advanced. LOCUS, a distributed version of
Unix, has been in operation at UCLA for more than two years. Although no paper on
automatic load sharing has been published, the tools for process preemption have been
implemented and ideas on load sharing have been outlined [11]. A user initiated mechanism
is provided in the command interpreter on a per command basis [43].

Barak and Shiloh [4] designed a preemptive algorithm using an information policy that
consisted of nodes frequently exchanging a small vector describing workstation loads. The
exchange took place between nodes selected randomly; each node took the information
received from the other and updated that currently held. The authors prove that this

method allows load information to be kept current in the network with high probability
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at low cost. This algorithm was implemented in a small network running the MOS system
and performed very well when the workload remained constant.

The Maitrd system [6], done at the University of California at Berkeley, allowed for
Unix applications (properly modified) to migrate between Unix hosts. This nonpreemptive
system used the length of the run queue exponentially smoothed over time (the Unix load
average) for assessing load. The node had a threshold value for the load average. The value
of the load average with respect to the threshold determined if the node would or could
not accept work from other nodes. Any change of state was broadcast to the network.
Each node maintained a list of hosts along with their current state. When migration was
required, this list was traversed in a round-robin fashion so that the previously selected
node was the last checked in the next search. Currently only the C and Pascal compilers
have been included in the Maitrd system. Bershad reports improvements from 78% for
interactive programs (due to less competition from compilations) to 69% for compilations.

Anocther system from UCB investigated use of a mixture of load factors in load as-
sessment. Zatti [45] did preliminary research that showed no one load factor adequately
covered both CPU and I/0 intensive work. For CPU bound work, the CPU utilization
fared poorly as a predictor of run time. The large variations in response time seen were
attributed to the policies of the Unix scheduler. Zatti concluded that a vector contain-
ing various load factors could best predict response time. His nonpreemptive algorithm
specified an information policy similar to many above. The nodes kept a list of the other
nodes that included their availability for CPU and I/0. A node was in one of four states:
not available; CPU available; I/O available; and both available. All state changes were
broadcast to the network. The load assessment policy was a set of thresholds for CPU and
1/0 loads. Zatti experimented with two methods of storing state information. A binary
vector simply stated the availability of the resource while a real valued vector contained
actual load levels for each resource. When a process required more resounrces than locally

available, the node scanned the host list looking for an appropriate node. The recipient
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had the chance to migrate the new process if it could no longer accept it. A pracess could
migrate a maximum number of times to prevent process thrashing. Zatti found that bi-
nary and real schemes worked comparably and, in general, his algorithm reduced response

time for all classes of jobs.

3.6 Comparison of Algorithms

A complete comparison of the above algorithms is beyond the scope of this thesis, but
some things do stand out. The information policies of most algorithms rely on network
broadcasts to share information, although at least two [28] [25] note that the cost becomes
prohibitive as the network grows. Alternatives to broadcasts become more attractive [16]
[4] if the current trend of bigger and bigger networks continues.

Many algorithms use the length of the run queue (e.g., the Unix load average) in
assessing the load. The alternatives to this include the per process CPU usage [10] [25]
and the rate of I/O pages (along with the run queue) [45]. No evidence of how these
different load factors compare has been presented.

The majority of algorithms presented are sender initiated. Taking the conclusions
reached by Eager, Lazowska, and Zahorjan [15] this makes sense for networks that do not
normally expect to be operating at high utilization.

Preemption appears to be a popular idea since almost all algorithms call for its use.
It gives an algorithm the opportunity to exploit every imbalance in a systems load; this
improves performance but also carrys the risk of instability. Nonpreemption seems to be

used only when the host system does not offer preemption.

3.7 Sumimary

Load sharing assigns tasks to processors so as to reduce their response time. Although
more powerful computers are continually becoming available, load sharing will remain a

useful tool. The previous research in load sharing has investigated many of its fundamental
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aspects and some important points have become clear. Frequent use of network broadcasts
incurs costs proportional to the size of the network. Even the simplest policies perform
better than no load sharing at all, indicating that complex algorithms are not necessarily

required. However, many other questions remain to be answered.



Chapter 4

Research on the Accuracy of
Load Indicators

Load assessment is an important part of a load sharing algorithm. Incorrect or poor judge-
ments undermine the effectiveness of any algorithm. My hypothesis was that an accurate
indication of load should produce an accurate estimate of a job’s expected response time.
A migration policy would have an easy decision if given the expected response time of a
job on each potential recipient.

Very little research has been published about the accuracy of various factors in indi-
cating machine load. Many published load sharing algorithms used the number of tasks
waiting for service as their load metric, but the evidence of the accuracy of this measure
as a load indicator had not been conclusively presented. Zatti [45] did some work in this
area. Personal experience with the Unix “load average”, a time averaged value of the
queue length, led me to believe that it did not always accurately measure the true load of
the system. Zatti showed that the Unix load average did not correlate well for 1/0 bound
jobs.

Thus the initial research goal was to study which load factors could accurately predict

response time.
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4.1 Design of the Experiment

To correlate load factors with response time, clearly one must measure both and then
analyze the results. This was accomplished by recording various aspects of load in an
operating system just before running a specific test (probe) job, and then measuring the
response (elapsed) time of the test program. A log file received the values of the load
factors and then the job’s response time.

The experiment took place on Sun2 [5] workstations running the Eden system (see
Section 2.2) on top of Sun Unix. The probe jobs were Objects running under a modified
version of the Eden Kernel. The Kernel measured the various Unix load factors at five
second intervals, which is the rate at which the Unix kernel updates these values. The
values for the previous five intervals were written into a log file just before an Object
began execution. Recording five intervals rather than just one allowed correlation of time
averaged as well as instantaneous load.

Selection of the the load factors used in the experiment was based on my intuition

about how well each measured load. The factors examined were:
s Utilization of

— main memory
-~ SWap space

— CPU (i.e., per cent idle)
e The number of

- context switches
— device interrupts,
— page faults

- swap faults
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e The number of processes waiting for

- the disk
— for a page

- in the run queue,

These measures are available from the Unix system by reading the device /dev/kmem.
The code for this was adapted from Unix utilities that use this information (e.g., ps).
Before and after a program ran, the probe job added a line with the current time into a
log file. Postprocessing of this file gave the response time of the program.

There were three types of probe jobs: CPU intensive, I/O intensive, and balanced.
The CPU intensive task calculated varions mathematical functions such as square, square
root, logarithm, etc.. The I/O intensive program sequentially read through four very large
files while writing each page into a file consisting of a single page, overwriting the previous
page on each write. The balanced process used the CE compiler to compile the Dispatcher
module from the Eden library.

The experiment ran on workstations during their normal daily use. A command script
controlled the experiment by executing the CPU, 10, and compile Objects sequentially,
five minutes apart. This loop was repeated every 30 minutes over approximately an eight
hour period. The logfile was then interpreted by a program that printed the type of
program, its response time, and the Joad factors recorded before execution. This output
was read by another program which organized the data by load factor. Tt then wrote the
response time, the value of the load factor and program type into a file, one file per load
factor. A typical line in the file for the CPU Utilization might be: 69 101 <. This meant
that the CPU was initially 69% idle before executing the CPU intensive job, which had a
101 second response time. These load factor files were then graphed as scatter plots using
the Unix graph utility and displayed on the Sun. A total of 176 tuns were recorded per

type of probe job.
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Surprising Data Points

Response | »

Time

e Expected Correlation

Load Factor
Figure 4.1: Expected Correlation and Surprising Results.
4,2 TUnexpected Findings

The hypothesis that some combination of load factors would provide an accurate prediction
of response time was not supported by the results of the experiment. As Figure 4.1 shows,
rather than exhibiting a well defined relationship between load factor and response time,
the data for both instantaneous and time averaged values of load factors did not display
any obvious correlation with response time at all. This surprising result prompted further

investigation into the experimental design and the workstation environment.

After considering both the design and the environment, two significant aspects of
our workstation environment were clarified: workstations load is basically binary (idle
or busy), and their source of work is a single person. The former occurs because our
workstations are primarily used for program development. This consists of the cycle: edit
a program, compile it, run the new version, and debugit. This cycle consumes resources in
a very erratic manner. The CPU remains idle during editing, while compiling completely
consumes all available cycles. Running and debugging a program require varying amounts

of tesources depending on the application, although debugging is usually interactive (ie.,
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Figure 4.2: Liffects of Bursty Workload on Response Times.

not CPU intensive). This usage pattern results in workstation being idle a large percentage
of the time [42], but being swamped at other times as shown in Tigure 4.2. Users of
timesharing systems also exhibit this patfern but when their patterns are superimposed,
the individual variations merge together resulting in a more stable load (see Figure 4.3).

Since workstations only have a single user they always see the individual fluctuations.

Combining these two aspects of a workstation yields a bursty pattern for the workload
and explains the unusual experimental results. Given the length of response time for the
probe jobs, it is unlikely that a workstation remains at a constant level until a probe job
finishes, Figure 4.2 illustrates this problem for four probe jobs. Jobs A and B experience a
constant level of load and their response times correlate well with the initial level of load.
Job A initially sees a light heavy load and its response time is long while Job A encounters
a light load and correspondingly takes less time to execute. The opposite occurs during
jobs X and Y. The workstation is initially idle just before Job X begins but becomes
heavily loaded moments later. The result is that job X takes longer to finish than would
be expected from the initial level of load.

This explanation was verified by artificially raising the load to a constant level by

running namerous jobs in the background on a continuous basis. Under this constant
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Figure 4.3: Merging of Two Individual Workloads Under Timesharing.

workload, some of the load factors exhibited the expected correlation. Work by Zatti [45]
offered further support of this explanation. His graphs indicated that at light load levels
program response time displayed a large variance. Better correlation occurred only at
relatively high levels of load.

Due to the bursty workload, future load cannot be predicted with much accuracy. The
lesson to be learned is that rather than attempting to make highly accurate predictions
of response time, one should simply look for other workstations with a significantly lower
level of activity. The inability to accurately predict future load continues but the problems
that it causes are mitigated by the ability to load share. Consider what happens when
an idle workstation, after receiving work from other nodes, begins producing additional
work itself. Under load sharing, there are attempts to migrate some of the work to keep
the overall load level down. This helps to keep the load on each workstation closer to the
level predicted. Could load sharing have scolved this problem in the above experiment? It
could have helped to some extent, but not sufficiently well to allow accurate predictions

of response time,
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4.3 Summary

My hypothesis failed not because the load level of a workstation can not be measured,
but because it assumed that using the current load one could predict response time. This
assumption proved invalid due to the bursty nature of workstation workload. Timesharing
systems suffer less from this problem since the bursty behavior from individual users
combines to give a more stable load. The lesson learned is that it makes more sense to
look for gross differences in load rather than trying to accurately predict response time

for each node.



Chapter 5

A New Load Sharing Algorithm

The experimental results of the previous chapter changed the direction of my research.
Instead of looking at the ability of different load indices to predict response time, [ shifted
my focus to examining the ways in which the workstation environment affects the design
of a load sharing algorithm. This chapter is devoted to outlining these effects, explaining
the design and implementation of the algorithm, describing the experiment to test the

algorithm’s effectiveness, and interpreting the experimental results.

5.1 The Effects of Workstations on Load Sharing

The experiment described in Chapter 4 highlighted a difference between a workstation
environment and a collection of networked timesharing systems. This difference prompted
me to consider what other distinctions exist between the two types of systems. Two other
points soon emerged that caused a fundamental rethinking of how an eflective load sharing

algorithm should be constructed.
5.1.1 The Goal of a Workstation

The first difference that came to light involved the purpose of each system. The primary
goal of a workstation is to provide a responsive, highly interactive work environment;
users of workstations expect and demand immediate interactive response. In contrast,

a timesharing system attempts to supply a moderate number of computing cycles to a
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large number of users; it does not offer the type of CPU intensive interfaces possible with
workstations. Since workstations strive to reduce interactive response, it seemed logical
that load sharing in this environment should share this goal.

This new goal of reducing interactive response time conflicts, however, with the tra-
ditional goal of load sharing. Traditionally, load sharing sought to minimize the average
response time per node or globally, regardless of the type of the work being done[44].

Such a point of view disregards research on users perceptions {36]. Users can perceive
relatively small delays in interactive response, such as a slow or erratic repaint of a page
in a screen editor. They find these delays very annoying and irritating; more importantly,
the delays adversely affect user productivity. One reason why an interactive delay leaves
a user frustrated is that people are more sensitive to delays as the expected response time
grows shorter. Since the expected response time for interactive processing (e.g., moving
a cursor in an editor) tends to be much shorter than batch processing {e.g., compiling a
program), interactive response is more susceptible to negative user perceptions. During
program development, a user spends a large amount of time using interactive programs
such as screen editors, symbolic debuggers, electronic mail handlers, etc.. Minimizing the
response time for these programs should increase programmer productivity by reducing
interactive response time and frustration.

Programs encounter delays when they compete with other programs for resources. But
since workstations have a single user, the only competitors of an interactive program must
be noninteractive programs (e.g., compilations and text formatting). Thus, load sharing
should favor interactive programs over noninteractive programs in order to minimize in-
teractive response. Considering how people react to delays, it makes sense to reduce the
interactive delays even at the expensive of overall longer batch delays. A one time 20% to
50% increase in the time for a noninteractive program such as a compilation will not be as
annoying as many shorter interactive delays. Note that while people are less susceptible

to batch delays, they will not accept them if the delays become unreasonably long. Giving
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interactive programs higher priority, however, still enables the user to run background

work concurrently while not degrading interactive response time.
5.1.2 Workstation Ownership

The second important difference between workstations and timesharing systems is how
users of each system perceive ownership of computing resources. A workstation has a
single user who often considers the resources to be personal property. This contrasts to
the more communal attitude required when using a timesharing system. These users may
grumble about not getting enough of the resources, but they do not consider the machine
to be their personal fief. Consequently, load sharing must take into account the impact
of migrated work on a local user’s response time. H users perceive that outsiders are
consuming too much of their personal workstation, they will rebel against load sharing.

Thus, locally generated work should have a priority over foreign generated work.
5.1.3 Summary

Three unique characteristics of the workstation environment affected the design of my load
sharing algorithm. Workstations have a bursty workload that prevents using fine grained
indicators of current load to predict response times. As a result, a load sharing algorithm
must instead exploit gross load differences between nodes, Workstations seek to provide
highly interactive computing so that the algorithm should emphasize reducing interactive
response time while still offering reasonable batch response. Finally, the algorithm should

respect the concept of ownership of personal workstations.

5.2 Description of the Load Sharing Algorithm

This algorithm is based on one published by Eager, Lazowksa, and Zahorjan [16] called
“Random with Probe”. A number of significant modifications to the original algorithm
were incorporated. Eight separate load factors, rather than just the length of the run

queue length, are used. The use of equivalence classes simplifies the comparison of load



32

between workstations. Introducing feedback into the sender initiated component while
adding a receiver initiated component enhances the algorithm’s performance and stability
at high levels of utilization. Yet the algorithm retains the simplicity and low cost of the

original algorithm.
5.2.1 Using Equivalence Classes

Assessing levels of workstation load in the migration policy can be a difficult task. Com-
paring raw data such as CPU utilization and swap rate will not always produce an obvious
choice. The use of equivalence classes to classify the load level of a node simplifies this
problem. The algorithm also becomes more modular so that changing the tests for inclu-
sion into a class does not affect other aspects of the algorithm. The classes are ranked
by the “<” relation with its usual properties. A workstation’s load assessment policy
considers its load and places it into a class. The migration policy then uses this class for
purposes of comparison with other nodes when locating a host for migration.

Deciding how many classes suffice becomes the next question. This involves examining
the amount of activity on a node and whether or not it has an active user. Analysis of the
previous experiment indicated that workstations were either idle or busy implying that
only two levels of activity are needed. But another load problem sometimes occurs in daily
experience. Operating systems, such as Unix, provide a fixed amount of resources. For
example, there is a maximum number of processes allowed or a finite amount of disk space
available for swapping. Attempts to exceed these limits result in the death of the offending
process. The importance of avoiding such a drastic response argues for the addition of a
third category. This gives three levels of load: idle, busy, and full.

On a workstation without an active user, the load must be, by definition, noninterac-
tive. With a goal of reducing interactive response time, it seems sensible to prefer using
workstations without active users to ones with them. Given that two nodes have equiv-
alent loads but only one has an active user, selecting the workstation without the user

reduces the impact on the active user’s response time. This distinction results in two
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operating modes: interactive and noninteractive.

The combination of the three load levels and two operating modes produces five load
Classes. Quiet and Quiet Noninteractive means a node can comfortably handle the current
level of activity. Busy and Busy Noninferactive indicates more work exists than resources.
The two noninteractive Classes indicate that the workstation does not have an active
user. When a node is Full, crucial resources are close to depletion. Note that the state
of interaction is irrelevant for the Full class because a node in such a situation should
attempt to migrate its tasks and refuse any foreign ones regardless of the presence of a
user. Classes are ordered: Quiet Noninteractive < Quiet < Busy Nonlnteractive < Busy

< Full.
5.2.2 The Information Policy

The load factors selected for the information policy came out of experimental work of
Chapter 4 and continued observations during the experiments that followed. The final set

consisted of:
» Utilization of the

— CPU (percent idle)
— Swap area

— Main memory
¢ Number of

— Context switches
- Swapped pages
— Empty process slots

o Length of the run quene

s The keyboard idle time.
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These factors are gathered after specific time intervals or ticks'.

Unlike many other algorithms, the nodes do not exchange state information on a
regular basis, but only in the process of migration (see Section 5.2.4) or when a node
has been idle for a long time. The latter involves each node checking for the number
of consecutive ticks it has been Quiet or Quiet Noninteractive. If the number of ticks
exceeds ConsecQuietTime ? ticks, an JamQuiet message is sent to four randomly selected
nodes. The recipient workstations add the node to a list of idle nodes called the Quiet
List. (The Quiet List contains the names of workstations known to have been Quiet
or Quiet Noninteractive. Its use is described in Section 5.2.4.) This mechanism allows
idle nodes to seek out work and adds a Receiver Initlated component to the algorithm.
This component improves the algorithm’s performance at higher 1e{rels of utilization. The
message is repeated after every ConsecQuietResend ticks. The flag indicating that an
IamQuiet message should be sent is reset after ConsecBusyTicks ticks. This prevents

messages going out alter ephemeral Busy periods.
5.2.3 The Load Assessment Policy

After each tick, every node obtains the latest values for its own load factors and reevaluates
its Class. If the load during the tick satisfies the criteria described below, the tick is
designated as a spike. The activity level of the node is found by looking at the recent
spike history.

A spike is found by checking four of the load factors: the length of the run queue; the
number of context switches; the number of swapped pages and the CPU utilization. These
four were used because they showed good correlation with response time at higher load
levels during the previous experiment. Each load factor has a corresponding threshold. For

example, the threshold for the number of context switches (ContextSwitchThreshold) is

1Each tick is five seconds, since this is the rate at which the Unix kernel updates this
information.

2 Algorithm parameters are printed in typewriter font. A list of their values during in
the experiment is provided in Appendix A.



35

50 . If the number of factors exceeding their threshold values totals SpikeThreshold or
greater, the tick is recorded as a spike in a history kept of the previous ticks. The spike
history maintains TickHistory entries.

The workstation activity level is next determined. The activity level is labeled Busy

if any of four criteria are met:
o The previous tick is a spike. This detects a potential increase in node activity.

o The spike history contains more than SpikeRatio spikes. This permits an idle node
that has been continually Busy a small period of reduced activity. It also prevents
ephemeral light loads from fooling the node into believing that it should accept more

work.
e Memory utilization exceeds MemThreshold, implying that swapping is soon expected.

e A new process commenced during this tick. This prevents a node from accepting

too many processes before they consume enough of the resources to alter the node’s

Class.
A node is Fuﬂ. when any of the following occur:
s Utilization of swap space exceeded SwapFull.
e Less than ProcSlotsFull process slots are available.
o The length of the run queue is more than RunQFull.

The first two factors are observed to be the limits most likely to abort a process. The last
one is included from an intuitive feeling that there should be an limit to the number of
jobs that a workstation should ever be attempting to execute. It differs from the first two
in that it detects a situation where the process will run very slowly rather than aborting.

If none of these tests are satisfied, activity level is declared Quiet.
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The Class is finally determined by the inspecting the interactive state. If the keyboard
or mouse had not been used within KeyboardIdleTime minutes, the workstation mode
becomes Nonlnteractive. Combining the activity level and interactive mode produces the
Class unless the activity level is Full, in which case it remains Full.

With the introduction of Classes, the decision about when to migrate becomes straight-
forward. If the system offers only nonpreemption of processes, the workstation checks its
Class when creating a new process. If the Class is Quiet NonInteractive or Quiet, the
creation occurs locally. Otherwise the node attempts to find another host with a more
preferable Class. If preemption is available, much more flexible policies could be consid-

ered. This is discussed in Section 6.1.
5.2.4 The Migration Policy

Since the information policy does not produce data on the state of other workstations,
the migration policy must rely on querying potential recipients at migration time. The
migration policy selects a small number of nodes (Probelimit) to be sent query (probe)
messages. These potential nodes are chosen by first using those found in the Quiet List (de-
scribed later in this section) and then randomly selecting as many more nodes as needed.
The probe message, consisting of the sender’s Class, is sent to each of the probed work-
stations using multicast, or by sending each message asynchronously. Probed machines
ignore the query message if their Class is greater than or equal to the sender’s Class. The
work is sent to the first node to reply on the assumption that the least loaded node will
reply first [28] . If no workstation replies to the query, migration fails and the process is
created locally. Omne could attempt another round of selections and probes but research
has shown that this will not generally improve the results [16].

The migration policy uses a feedback mechanism to limit the probing of other worksta-
tions to times when a success query is likely. This mechanism adds stability and efficiency
to the algorithm when most other nodes are also Busy. Each node uses a counter to

keep track of the number of failures, i.e., no node replied to the query messages. Each
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failure increments the counter while each success decrements it. The counter is checked
before attempting a probe of other nodes. When it exceeds MaxFail, the node does not
attempt to contact other nodes but just creates the job locally. The node sets a timeout
of length ResumeProbeTMO which decrements the counter when it expires. This permits
the node to periodically attempt to load share. The counter is also decremented whenever
an JamQuiet message is received.

The Quiet List contains the names of workstations known to have been Quiet or Quiet
Noninteractive. When a Quiet or Quiet Noninteractive node replies to a probe message,
it is added to the list. Nodes of other Classes and those that do not reply are removed

from the list.
5.2.5 Priority of Interactive and Foreign Work

To help fulfill the goal of reducing the response time of interactive programs, work is di-
vided into Interactive and Everything Else. Interactive work executes at a higher processor
priority than Everything Else. For example, a text editor would have higher priority than
a compilation. If a user simply does nothing while waiting for a compilation to finish,
then the compilation’s reduced priority won’t have any effect. Because many interactive
programs access the user’s display very frequently, local execution of interactive programs
is very desirable. The communications overhead for these programs could be prohibitively
expensive if they execute remotely. Thus, Interactive work is only migrated when a node
is Full. This view could change as extremely efficient graphical protocols become available
[23].

Deciding whether a program is Interactive or not remains subjective. Some choices
such as animation, text editing, debuggers, and iconic interfaces stand out among the
many types of Interactive programs. Compilations, text processing, and VLSI design
rule checkers could clearly be excluded. Program characterization is further discussed in
Section 6.2,

Reducing the negative impact of migrated work on a user of a personal workstation is
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also important. Load sharing will not be accepted by users if unacceptable local delays
occur. To avoid this, the algorithm executes work received from other nodes at a lower
processor priority so that the local user does not perceive an increased delay for local work.
Consequently, all work is classified as either Local or Foreign. All subsequently created
work would retain its parent’s heritage.

Combining these two concepts produces four levels of processor priority in the order:

Local Interactive > Foreign Interactive > Local Noninteractive > Foreign Noninteractive.
5.3 Description of the Experiment

This load sharing policy was tested on the Eden system. The experiment was designed
to answer the following questions. Does this algorithm work at all? Does it reduce the
response time for interactive programs? What are the effects of lowering the priority of

noninteractive and foreign programs? What are the costs of load sharing?
5.3.1 The Experimental Environment

Two environments were combined in the experiment. A network of eight diskless Sun2
workstations running 4.2 Berkeley Unix [35] connected by a 10 MB Ethernet [30] provided
the physical computing facilities. Each Sun2 had 4Mb of main memory but lacked a local
swapping disk. The Suns were configured with two other Sun2 nodes acting as disk servers
for clusters of four workstations. Sun’s distributed file system, NFS, was not installed.
The Eden operating system (see Section 2.2) provided the distributed operating system
capabilities for the experiment since Unix does not provide the necessary distribution
primitives. Eden provides Createdt and ActivateAtl primitives that allow the Eden client
to specify a destination for an Object. Eden did not provide automatic load sharing so that
some modifications to the Eden Kernel were required. New message types and handlers
for Probe, Probe Reply, and lamQuiet messages were added. Code for accessing the Unix
kernel’s load data as well as a random node selection routine was required, The addition

of 800 lines of code increased the size of the Eden Kernel by 9%.
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Eden does not provide preemption of Objects. As a result, migrations only occurred

when an Object was being created by the Kernel.
5.3.2 Experimental Controls

To minimize experimental error, no other users were allowed access during the experiment.
Furthermore, file servers were not used as hosts during the experiment. This is due to the
demand on the disk server CPU when satisfying a disk request from a diskless workstation
[24]. Not using the disk servers as hosts prevented intermittent delays for diskless I/0
due to congestion at the server CPU. Identical Suns were used to minimize processor or
memory differences affecting measured response time. Note that this is not a requirement
of the load sharing algorithm but simplified analyzing the results. Machines of differing
power and size can be easily accommodated by changing the values of the algorithm’s

parameters,
5.3.3 Description of the Workload

My interest in program development environments prompted me to use a workload that
reflected those requirements. Eden currently does not provide full program development
facilities, Consequently, I used Unix programs to simulate this workload. Since Unix
does not offer distribution primitives, Eden became the distribution agent for these Unix
programs. While the experimental workload provides only a single data point with respect
to all possible workloads, it was developed after discussion and review with the members

of the local user community and presents a typical interaction in that community.

Types of Programs

The simulated program development cycle workload consists of reading mail, editing a
program with a screen editor, compiling the program, running the program, and debugging
it with a symbolic debugger. Using the standard Unix mail program, mail [37], four

messages are read and rteplies are sent for two. The emacs screen editor [38] edits the
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sources for more, a Unix file display utility. Compilation uses the cc C compiler while the
symbolic debugger dbz acts as the debugging agent.

Running each program involves using aspects of both Eden and Unix. The workload
simulation Object is created on the node selected by the load sharing algorithm. It then
spawns the Unix program to be executed. The interactive programs, such as emacs,
expect input from a user typing at the keyboard. The Object acts as the user by sending
characters to the interactive programs so that they are received as keyboard input. This
is accomplished by redirecting the input of the interactive program to receive output
from the Object using a mechanism called a pseudo-teletype or pty. The source of the
keyboard input comes from a script file read by the Object. It reads the script and sends
the keystrokes at the rate of 5 per second to the interactive program via one of the ptys.

As previously mentioned, a single user presents a bursty workload. This workload
involves batch type programs, such as a compiler, and interactive programs, such as an
editor. Interactive programs, while not being CPU intensive, also are subjected to a user
“think time”. During this is period of time the user does not submit new work and is
not waiting for the completion of previous work. To simulate this, the scripts specify user
think time and the Object waits for this amount of time before sending the next set of
input.

One potential problem is the interactive program falling behind while reading the
keyboard input. Suppose that the editor cannot keep up with its input and the input
buffer begins to fill up. When the Object stops for the specified amount of think time,
the editor will still process its input as fast as it can until the input buffer is empty.
Because the response time for the editor is found by subtracting the timestamp taken
before it starts from one taken after it completes, the actual amount of delay would not
be accurately measured. To avoid this, an explicit “think” command was added to each
interactive program. The Object sends the think command along with its duration to the

interactive program before it “thinks” for itself. In the above example, the editor will read
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the input including the think command. It then stops reading for the specified amount
of time, even after the Object has continued to send it input. “Think” was implemented
using the Unix sleep library routine. Extensive testing showed sleep as very accurate with

no more than 3% error being observed for the times involved.

Levels of Load

The initial research showed that the load due to the program development workload did
not overwhelm the workstations. However, background processes and modern window
managers facilitate adding noninteractive work to a node. This situation is represented
by creating a background workload. Compilations with cc and cec, the Concurrent Eunclid
compiler, along with text formatting using latez {22] provide noninteractive load. These
programs run sequentially in a loop every one or two minutes. This workload operates
concurrently with the program development workload.

Three levels of activity were tested. A Light load consisted only of the program
development workload. A Medium load added one background workload while a Heavy
load used two background workloads. The background workloads ran concurrently with

the interactive workload.
5.3.4 Design of the Experiment

To answer the questions posed in Section 5.3 the experiment varied the dependent variables

s0 as to isolate their effects. The dependent variables of the experiment were:

» Whether or not load sharing was used

Utilization level (the number of nodes generating work under load sharing).
¢ The level of load activity on each node
¢ Distinguishing between Interactive and NonlInteractive program

¢ Distinguishing between Local and Foreign programs when load sharing
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When load sharing was not in use, distinguishing between Foreign and Local work as well
as varying the number of nodes generating work became irrelevant. The four values for
the utilization levels under load sharing were one, two, four, and six active nodes out of
a total eight workstations. Three levels of load activity (detailed in Section 5.3.3) were
used. The values of the other variables were binary. All other aspects of the experiment
remained constant (e.g., the type of computer).

The primary metric for the experiment was the response time for the program devel-
opment workload components. Response time was calculated by subtracting a timestamp
taken before execution from one taken afterwards. Since the user think time was a con-
stant value for each type of program, it was subtracted from the measured response time
leaving only the response time from processing. The throughput and response time of the
batch programs in the background workload were also recorded. This allowed for analysis

of the effects of the various aspects of the load sharing algorithm on batch programs.

Auxiliary Programs

A number of auxiliary programs and command scripts were essential in running the ex-
periment. A command script, called TestMonitor, controlled each run of the experiment.
After selecting the experimental values, I then ran TestMonitor and supplied it these values
on the command line. TestMonitor first checked the experimental values for consistency
and then ensured that only the experimental version of the Eden Kernel was running on
the network by first killing off all the den Kernels and then starting the experimental
versions. Subsequently, TestMonitor set the kernel parameters for load sharing and For-
eign program priority on each experimental node. It then executed another command
script, called RunWindows, on each of the nodes to run the Sun window manager using
three windows for program output and a console window for system messages. In addi-
tion, RunWindows started a graphical monitor (described below) of the load factors being

measured by the algorithm’s information policy. TestMonitor finally created an Object,
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called NodeWork, on each node that was to be a source of work and waited for all of them
to finish. It cleaned up by removing the window managers and reinstalling the normal
Eden Kernels in the network.

The NodeWork Object created another Object, called DoProgram, for each Unix pro-
gram to be run. Each part of the workload had a concurrent process inside the NodeWork
Object. Thus, when a NodeWork Object was running the Heavy workload, three concur-
rent processes were active. Without load sharing, DoProgram Objects executed locally;
with load sharing, they could execute on any node. After creating a DoProgram Object,
NodeWork sent it a Start invocation containing all the dependent variables and the type
of Unix program to be begun. A Status invocation immediately followed, which blocked
this concurrent process in NodeWork until the DoProgram Object replied with the pro-
gram’s response time. NodeWork wrote this response time into a logfile using a monitor
to prevent simultaneous writes by other concurrent processes.

A graphical monitor of the load factors proved valuable in determining what was going
on. Changes were made to the Sun utility perfmon to look at different load factors as well
as keeping a history of the output in a file. The new program, myperfmon, ran on each
node to record the effects of a load level on a workstation. To interpret the history file,
more changes were made to perfrmon so that instead of actively monitoring current load, it
displayed the input from the myperfmon history file. This program, showperf, read input
from the history file allowing one to roll forwards and back through the data. Figure 5.1
is an example of showperf output. The horizontal lines with the short vertical lines is the
time line and each short vertical line is a tick. The other horizontal lines are thresholds
for the various load factors. This figure shows the node experiencing a series of heavy
activity and node’s Class responding. Note that for the measurement of MyClass, Quiet

Noninteractive corresponds o 0 and Full to 4.

Tuning of the numerous parameters in the algorithm required running the experiment

many times in various different modes. A significant number of changes and additions to



44

&
Runnable
Proce f

COﬁtBXL

Suitches

B TR i

&% Memory
Used

1gg SmT——
% Swap
Used

i e e S — : —
#3p/CSp i ‘ { l g
lyClass

58
Swap
Activity

6o "

FFDC@SS W%

ﬁ%ots

Figure 5.1: Sample Cutput From the Showperf Graphical Monitor.



45

the algorithm resulted from observations during this pretest phase. Measuring the swap
rate was added to the load factors after it became clear that almost any swapping resulted
in very poor response. The Full Class was included after having experiments fail due to
Objects exceeding resources on a workstation. Two of the four tests for detecting the Busy
activity level were added after noticing the problems from a node responding too slowly
to an increase of work. Using myperfmon and showperf eased the task of deciphering the
causes of poor response or strange load sharing decisions.

The logfiles from the NodeWork Objects containing the results of the each experimental
run were located in a well known directory on each participating node. After running the
experiments, all the log files were moved to a single node for analysis. A program called
stat read in the contents of all the log files. Certain consistency checks were performed on
the data to ensure its validity, For example, results from an incomplete experiment due
to the failure of a workstation would not be used. Staf then produced a table of results
with mean response time and standard deviation for interactive programs and the mean

response time and mean throughput for batch programs.
5.3.5 Running the Experiment

The values of the dependent variables were chosen so as to provide the most information
in the fewest number of experimental runs. Since batch programs were not vying with
interactive programs for the processor under Light loads, load sharing did not affect these
interactive response times. Thus, the results from all the Light runs, regardless of the
values of the other dependent variables, should be basically the same. Consequently, the
experiment was run with a Light load only a few times in order to find the base response
times for the interactive programs and to verify that the experiment was working properly.
The values for the other runs were selected so that effects from the dependent variables

would be most visible,



46

5.4 Results of the Experiment

Load Sharing and Interactive Priority Reduce Response Time

The results from the experiment clearly show that using load sharing and running inter-
active programs at higher process priority both significantly reduce interactive response
time. Table 5.1 presents a small portion of the results that best illustrate the effects of
using load sharing and higher interactive priority. The numbers given in the table in-
dicate the increase in response time over a base (i.e., nonloaded) response time for the
editing session. The worst response time occurred with the combination of not having
load sharing and not favoring interactive programs. Using either load sharing or a higher
interactive priority produced similar improvements while using them together gave the
best response. It is interesting to note that load sharing also improved the response time
for batch programs. This is surprising since improving batch response time was not a de-
sign goal and every choice in the algorithm favored interactive programs. The reason for
the batch improvement is that load sharing uses of all of the processors. Batch programs
are moved to idle processors so that even batch programs receive more cycles since there
are now more cycles to go around. This shows that load sharing, even at high levels of

system utilization, more efficiently uses available resources than not load sharing.

Helping Local Processes is Inconclusive

The results are inconclusive regarding the hypothesis that running Local processes at a
higher priority decreases the impact on local interactive response time. One would expect
to find improvement only at high levels of utilization because only then do processes
migrate to other nodes in large numbers. But no significant effects were seen. However,
this experiment does not conclusively rule out that running Foreign tasks at a Jower
priority benefits local interactive response due to a flaw in the experimental design. In

this experiment, each active node produced work at the same rate with the effect that
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Increase of Response Time Over An Unloaded Response
With 6 of 8 Nodes Producing a Heavy Activity Load
Increase for: Editing Compiling

What Type | No L.5. L.S. No 1.5, L.S.

No

Interactive 113% 57% 125% 85%

Priority

Interactive | 5o0f 19% 125% | 85%

Priority

L.5. & Prio help Ounly L.5. helps
Important equally well. Best batch
Result:

when together. response,

Table 5.1: Sample Results of Using Load Sharing and/or Processor Priority to Reduce
Interactive Response Time for 6 of 8 Nodes Running 1 Interactive Job Stream and 2 Batch
Job Streams.

each node was coping with locally generated noninteractive programs as well as migrated
work. As a result, no difference should be expected in the interactive response times on
each node. A more effective test would run nodes at varying levels of activity, with and
without higher priority for Local programs. This permits a comparison between nodes
running at high and low activity levels and highlights any effects of migrating Foreign
tasks. If the hypothesis is correct, then the response times on lightly loaded workstations

should remain stable as the number of other busy workstations increases.

Selected Load Factors Work Well

The selected load factors worked well. More work is needed to identify the minimal set of
factors required and to see in what context each is important. For example, for a diskless
workstation with insufficient main memory, the swap rate is a vital sign. The degree to
which these factors are operating system or architecture dependent remains to be seen.
Two interesting lessons were learned regarding load factors. The first is that load

factors are not always independent. Using myperfmon to graphically display the load
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factor output revealed that CPU Utilization and Context Switches mirrored each other
and either one of these would suffice (see Figure 5.1). The second is that CPU Utilization
acts as a poor load factor when used alone because it does not give any indication of what
percentage of the CPU would be available to a new process. This value can be determined
in conjunction with the length of the run queue. For example, when the CPU utilization
registers 100% busy, a new process can receive up to 50% or as little as 10% of the CPU

cycles whether one or nine other processes respectively also require service.

The Problem with Nonpreemption

A key problem of nonpreemption emerged during the course of the experiment. The
problem is that nonpreemption does not permit an algorithm to recover from making
a poor load sharing decision; a mistake can be corrected only by waiting for processes
to finish executing. One example of such an error occurs when too many processes are
accepted by a node before any of them use enough resources to have the node classified
as Busy. The root of the problem is that the algorithm must be able to accurately predict
short term load levels. This problem can be eased by using heuristics to predict potential
increases in a workstation’s load. Since accurate predictions of load are not possible,
the henristics must be paranoid and always correctly predict a load increase even at the

expense of many false alarms.

Costs are Affordable

The costs of load sharing appear very affordable. The time for a successful probe is
61 milliseconds. Each probe involves two Unix IPC messages which require about 18
milliseconds or 30% of this total. Other systems have reported IPC times of 1 millisecond
[12] thus this total cost could easily be reduced by one third. Even without this reduction,
the time required is comparable to that needed fo create a Unix process. One expects

that if the load sharing policy were part of the operating system rather than running as



49

an application this cost would drop significantly.

The price for failing to find a node equals the length of the timeout for the IPC message.
During this experiment, the timeout was three seconds but this value could be reduced to
twice the expected length of time for a successful probe. In any case, this relatively rare
event still is a fraction of the execution time for most processes worth migrating.

The cost of measuring the load factors appears insignificant. For this implementation,
reading the Unix load factors for the information policy took 81 milliseconds every five
minutes. This amount could be reduced to nearly zero if load sharing were part of the
operating system and the needed measurements kept as part of normal operations. For
example, the Unix kernel currently does not keep a count of the number of processes in
use. During the experiment, the Eden Kernel read the entire process table to calculate

this simple value.

5.5 Conclusions

The conclusions of this thesis are clear. Load sharing is possible, effective, stable and
affordable in a workstation environment using a relatively simple algorithm. An important
point was the extent that the environment affected the implementation of the algorithm.
This point stresses the need to analyze the target environment for its unique characteristics
before considering the implementation. Each environment offers its share of advantages
and problems that must be understood in the context of solving a problem. In this case,
the goal of load sharing was modified to stress reducing interactive response time in light of
the similar purpose of workstations to provide highly interactive computing. In addition,
the bursty workstation workload altered the way the algorithm was implemented.

The results clearly show that load sharing and favoring interactive programs improve
interactive response time to about the same extent while combining them provides the
greatest improvement. One somewhat surprising difference between the two changes is

that load sharing also improves batch response time. This point underlines the fact that
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load sharing more efficiently uses available resources.

There are other interesting results from the experiments. Load factors should be used
to indicate general levels of load and not be expected to yield precise results. This is a
consequence of the bursty workloads experienced in the workstation environment: multi-
user environments might not suffer from this problem. The use of equivalence classes
solves the problem of comparing numerous load factors from different nodes and increase
the modularity of the algorithm. The inability of nonpreemption to correct mistakes
became apparent as a critical problem during the course of the experiment. When using
nonpreemption, nodes must quickly respond to increases in load, even at the expense of
numerous short-lived Busy peaks. Overall, striving for the simple yet useful seems to work
extremely well.

The algorithm presented is easy to implement since it does not require special proto-
cols or unusual information. It provides stability at all load levels by including a hybrid
of sender and receiver initiated components and feedback for high utilization levels. Be-
cause it does not maintain state information on other nodes it avoids problems with stale
information. Lacking the need to broadecast information, it can easily scale to any size
network. Finally, it provides tunable parameters for flexibility in light of changing systems

capabilities.



Chapter 6

Further Work

6.1 Future Algorithm Research

Many aspects of these load sharing results deserve further attention. How many classes
should be used? Should some be added or deleted? Should the load level be a combination
of activity level and keyboard idle time or should they be considered separately? What are
the best combination of load factors? Should thresholds be adjusted dynamically? The
experiment should be run again with differing sizes of the Probe Limit to see its effects.
Clearly much work on tuning the numerous parameters would be required before using
this algorithm in a production system. The load assessment policy and Class selection
criteria also merit further study.

If process preemption were available, how would the algorithm be changed to take
advantage of this? A number of possibilities arise. A node could attempt to migrate work
whenever its Class increases. Selecting the process to migrate should use research done
on process runtimes and their eventual requirements [25]. Thresholds could be changed
so that a node did not go to Busy at the first hint of work increase. Quiet nodes could

request work with their lamQuiet status messages.
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6.2 Program Characterization

The question of what work to migrate always arises. Some programs should never be
migrated, either due to their nature or the short time required to execute. One example
of the former informs the user of the name or IP address of the user’s machine. Other
programs such as printing the date or listing the contents of a directory simply take an
insubstantial amount of time to execute. If a node knew the expected requirements of a
program, it could decide whether to bother load sharing or not. Characterizing a program
has been done in Maitrd [6], Locus [11], and other systems to a limited degree. But a
more general mechanism is needed.

One possibility is registering programs with a characterization service (analogous to a
naming service). Complete characterization would not be needed; rather general guidelines
would suffice. Important factors include when to migrate (e.g. always, never, after N
seconds of CPU usage), whether it is highly interactive, required resources (e.g. array
processor), etc..

Many methods for entering or changing a classification would be needed. A system
administrator could perform it for well known programs such as formatters, compilers,
editors and debuggers. Another would allow users to register their own programs. This
could be done directly with the classification server or using language support. Authors
would include a hint to the language translator giving the program’s migration require-
ments, level of interaction, etc.. Users should be able to override a default except when
it would cause an error. For example, a user’s request for migration of a specific program
would be overridden if the program could only run locally or if no available nodes were
found. Before executing a program, the operating system would query the service abont
the program’s class and take into account any other requests. Omne problem with this
method is detecting and fixing incorrect classifications.

Another method looks to the history of a program to decide what it will do in the

future. The operating system would gather statistics on programs after each execution
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and update the program’s history. The location of this history could be with a classification
service, an auxiliary file, or in a header within the executable itself. The problem with
this method is deciding what statistics are important and drawing the correct conclusions

from them.

6.3 Load Sharing With Computation Servers

If workstations shared their network with main frames computers then another type of
load sharing could be used. As mentioned in Section 3.5.2, two interesting aspects of
general computing are that most programs have a very short lifetime and a small fraction
of all programs consume the majority of processing cycles. Using these characteristics, a
very simple load sharing algorithm is possible.

The load sharing algorithm only intervenes after a program has spent a certain amount
of time on a workstation (e.g., 3 seconds) and exceeds some resource consumption to time
alive ratio {(e.g., 75 % busy). This solves the problem of load sharing short-lived processes
noted in the previous section. These programs are then sent to the main frames, which act
as dedicated computation servers. This simple algorithm has many attractive properties

and deserve further research as the cost of hardware continues to drop.
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