The Triangle:
A Multiprocessor Architecture
for Fast Curve and Surface Generation

Tony D. DeRose

Thomas J. Holman

Department of Computer Science, FR-35
University of Washington
Seattle, WA 98195

Technical Report 87-08-07
August 1987

ABSTRACT

In this paper, we describe the architecture and operation of the Triangle,
a pipelined, parailel multiprocessor architecture for the computation and ren-
dering of line segments, conic sections, spline curves, triangular patch surfaces,
and tensor product surfaces. Based on a generalization of de Casteljau’s al-
gorithm for computing points on Bézier curves, the Triangle can be used as
an accelerator to dramatically enhance the performance of standard graphics
workstations.

Although there is a wide spectrum of possible implementations, we esti-
mate that a custom VLSI implementation that is currently being designed will
be capable of peak rates well in excess of one million points of evaluation per
second. Assuming a Motorola 68020 host, such a processor should be capa-
hle of completely recomputing 65 bicubic patches in real-timne, at a density of
1,000 points per patch.

KEYWQORDS: Bézier curves, B-splines, computer-aided geometric design, curves and sur-
faces, graphics hardware.

This work was supported in part by the National Science Foundation under grant number DCI-8602141, the
Office of Naval Research under grant number N000G14-86-K-0264, and the Digital Equipment Corporation.

1. Introduction

It is now becoming quite common to design geometric objects with the aid of an
interactive computer modeling program. In this type of design, the designer may begin
with a mental image of the desired shape, the goal being communication of that shape to
the system. The system in turn stores some internal representation of the shape.

For “free-form” shapes such as the outline of a character in a typography system, spline
representations have become popular. The design of a spline typically begins by having the
designer specify a sequence of controlling points, collectively called a control polygom. It
is the responsibility of the system to transform the control points into a smoothly varying
spline curve. Of course, there are many ways the system could construct such a mapping,
two possibilities of which are Bézier and Lagrange curves [5, 6] (see Figure 1).

OO Control Polygon

Bezier Curve

............. Lagrange CBI‘VC

Figure 1. Bézier and Lagrange Curves.

Based primarily on the visual appearance of the curve, the designer may wish to move
a control point, thereby changing the shape of the curve. An example of this type of
modification is shown in Figure 2. Ideally, the system would dynamically track the pointing
device and redraw the curve in real-time, 7.e., at least thirty times per second. Even
more desirable is the ability to dynamically deform spline surfaces. Unfortunately, dynamic
recomputation at these speeds is simply not possible on serial processors.

In this paper, we address the problem of dynamically recomputing points on line
segments, conic sections, and spline curves and surfaces at real-time rates. We argue that it is
possible to build a simple, practical, single-board multiprocessor — using either off-the-shelf
parts or custom VLSI — that meets or exceeds the stated requirements. More specifically,

THE TRIANGLE 2

QOriginal Polygon

O - O Modified Polygon

Original Curve

cvess s Modified Curve

Figure 2. Movement of a Control Point

we show that if the spline representation is in a certain class (a class that contains virtually
all the representations in wide-spread use), then it is possible to build a multiprocessor using
current technology whose performance is in excess of one million points of evaluation per
second.

The architecture we propose, called the Triangle, was motivated by recent work on urn
model descriptions of curves [16, 17], which in turn was partially motivated by de Casteljau’s
algorithm [5, 6] for computing points on Bézier curves and surfaces. By generalizing
the algorithm of de Casteliau, points on other types of splines including B-spline and
Lagrange curves and surfaces [5, 6] can also be computed at peak throughput. If the spline
representation is not in the class directly implemented by the Triangle, conversion to a
representation that is implemented can be performed as a preprocessing step. For instance,
Beta-spline curves and surfaces [3, 4] cannot be directly implemented, but there exists a
relatively simple algorithm for converting the segments of a Beta-spline into cubic Bézier
form [7].

Although a prototype has not vet been completed (a fully custom VLSI implementation
is currently underway), we envision using a Triangle as a single-board peripheral device in
a graphics workstation.® The host initializes the device by configuring it for the curve or
surface scheme of interest (Bézier, B-spline, Lagrange, etc.}, then supplies the control points
for the particular curve or surface to be generated. A short time later points lying on the

* Nonetheless, when we speak of the aperation of a Triangle it will be in the present tense.

THE TRIANGLE 3

curve or surface begin to emerge from the Triangle.

We imagine the Triangle being used in surface design applications as follows. Initially,
the designer is presented with a smooth-shaded representation of the surface being designed.
He is then is allowed to modify the surface by “grabbing” a control point, typically by
having the position of the point attached to a pointing device. In response to movement of
the pointing device (and hence, movement of the control point), the host uses the Triangle
to compute a stream of points that lie on the surface. Visually, the affected portion of
the surface changes from a smooth-shaded appearance to a dense arrangement of dots that
pepper the surface. The Triangle is used to dynamically update the “dot-representation”
while the designer is moving the control point. Since the cycle time of the Triangle is very
fast, a dense dot-representation can be generated in a short period of time, fast enough in
fact to present the designer with the impression of a smoothly deformable surface. When
the designer releases the control point, the host is free to invoke more complicated surface
rendering algorithms to redisplay the modified surface in smooth-shaded form.

One potential problem with the above design recipe is that two-dimensional projections
of dot-representations of surfaces can be confusing to the viewer. We plan to minimize the
confusion by using stereo-graphic imagining of the surface, giving the user the illusion of
a true three-dimensional display. This type of three-dimensional stereo-graphic display of
dot-representations of complex surfaces has been used effectively for some time in molecular
modeling applications, so it is reasonable to expect that it will also work well in geometric
design. The only complication introduced by stereo-graphic viewing is that points of
evaluation must be passed through two perspective transformations — one for the left eye
image and one for the right eye image — before being written 1uto display memory. These
transformations can be implemented in hardware using several LSI chips or a small amount
of custom VLSI (see Section 8).

The presentation is structured as follows: in Section 2, we briefly introduce the theory
upon which the architecture is based; in Section 3, we develop the basic architecture, provide
performance estimates for several possible implementations, and show how the Triangle can
be used as a powerful accelerator to enhance standard graphics workstations; in Sections 4,
and 5, we show how the basic architecture can be used as a building block in the construction
of multiprocessors for generating conic sections, rational polynomial curves, and tensor
product surfaces; in Section 6, we show that a variant of the Triangle can be used to
generate triangular Bézier surface patches; in Section 7, the Triangle is compared to two
other architectures for generating polynomial curves, one based on forward differencing and
one based on the subdivision algorithm for Bézier curves; finally, in Section 8, implementation
details in various technologies are compared and contrasted.

2. Theoretical Foundations

The Triangle is based on the theory of certain discrete probability distributions known as
urn models. The application of urn models to computer-aided geometric design is currently
under development, primarily by Goldman and Barry [I, 2, 15, 16, 17]. Rather than

THE TRIANGLE 4

introducing the theory in the context of urn models,f in this section we present an equivalent
characterization based on ideas that more closely embrace the issues involved in defining and
implementing the Triangle.

O——0O Conwrol Polygon

Curve

Figure 3. A Stylized Script 5

To motivate the underlying theory, consider the design of a stylized script “S” shape as
shown in Figure 3. The designer can communicate the basic shape by specifying a control
polygon that in some sense approximates the desired shape. The system typically maps the
controlling points V; into a parametric curve Q(t) according to the formula

Q(t) =3 ViBi(t), te€l[to,t] (2.1)

where the functions B;(t) are “weighting”, “blending”, or “basis” functions, usually polyno-
+
mials or piecewise polynomials, chosen to endow the curve with a given set of properties.

For instance, if the blending functions are chosen to be the Bernstein polynomials

B(t) = (Cj) £ —)

f The interested reader is referred to [15] for an introduction to the theory of urn models.
4
+ For a good discussion of how blending functions influence the resuiting curve, the reader is encouraged to consuit

Bartels el af [5].

THE TRIANGLE

it

then the curve

Q(t) = i ViBi(t), te[0,1]

1=0
is a Bézier curve of degree d.

" Such a curve can be displayed on a graphics screen by computing points on the curve
for various values of the parameter #, connecting adjacent points of evaluation with straight
lines to obtain a piecewise linear approximation to the true curve (see Figure 4). Naturally,
the larger the number of points of evaluation, the closer the approximation will be to the
true curve.

TR RE O I BN B B B B

True curve

P o
Approximation

Figure 4. A Piecewise Linear Approximation

In the case of Bézier curves, the “obvious” method for computing the point on the curve
corresponding to a fixed but arbitrary parameter value ¢ can be stated as:

Bézier{ Vi, ..., Vg, t)
/* Return Q(t) */
Q « (0,0)
fori+— 0 to d do
Q — Q+Vi(fjin -
endfor
return Q

Algorithm 1

This straight-forward algorithm is improved upon by the following elegant method due
to de Casteljau (see Boehm et al[6]}):

THE TRIANGLE 6

Bézier(Vg, ..., Vy, t)

/* Return Q(t) using de Casteljou’s Algorithm™/

forz —0toddo
VI V;

endfor

for j — 1 to d do
fori«0tod—jdo

Vi (1= VIt eV

endfor

endfor

return V§

Algorithm 2

Geometrically, each of the computed points Vf , 7 > 0, lies on the line segment V! —IVf;ll
so as to break the segment into two parts of relative lengths ¢ and 1 —t, yielding a geometric
interpretation of the algorithm as shown in Figure 5 for a cubic curve. The algorithm
of de Casteljau can also be viewed as a data-flow type computational graph, as shown in
Figure 6 for the case of a cubic curve. Circles denote addition nodes, and the labels on the
arcs of the graph indicate that data flowing along the arc should be multiplied by the value
of the label before being input to the incident addition node. '

de Casteljau’s algorithm for a cubic Bézier curve can therefore be viewed as a three-level
labeled digraph with a regular triangular interconnection, henceforth called a triangular
graph or a triangular computation. In general, computation of a point on a Bézier curve of
degree d can be viewed as a triangular graph with d levels.

Oyl) Given
V{) * - -¢ Computed

Figure 5. Cubic de Casteljau Diagram

THE TRIANGLE 7

Figure 6. Cubic Computation Graph

Each node V] in a triangular computation graph has two incident arcs, one from the
left and one from the right. For the de Casteljau algorithm, all left arcs are labeled with the
function L{t) = 1 —t and all right arcs are labeled with the function R(t) = t. The theory
of urn models states that de Casteljau’s algorithm can be generalized to encompass other
blending functions, and hence other curve schemes, by extending triangular graphs to allow
arbitrary functional labels on the arcs, subject to three restrictions. With the notation that
Lf(t) and RJ() denote the left and right labels incident upon the node ‘VJ the restrictions
can be stated as:

(i) All labels must be linear functions of the parameter t.
(a1 LI(¢) + R(t) =1 for all ¢ and j.
(iii) R(t)=t.
Before justifying these restrictions, let us briefly examine how general triangular com-

putations are used to define parametric curves. Just as for de Casteljau’s algorithm, a point
on a curve generated by a triangular computation with labels

L), By, j=lad, i=0,..d~],

is defined to be the value produced at the apex of the triangle. More precisely, if A(f)
represents the parametrized curve described by the triangular computation, then

A(t) « V¢

where

Vi VT« RIGVIDEL = 1ad, i=0,.,d—],

THE TRIANGLE 8
and where
VY Vv, i=0,..,d.
A general triangular computation can also be viewed as a geometric construction algorithm
since a computed point V! will divide the segment V/ _1Vf;§ into relative lengths R(%)
and LI(t), as shown in Figure 7 for d = 2.

v,

Figure 7. General Quadratic Construction

Restriction (i) for the functional labels of a triangular computation guarantees that the
parametrized curve produced by a d-level triangular graph will be a parametric polynomial
of degree d. Restriction (i¢) guarantees that the relationship between the curve and its
control polygon remains unchanged under rotation. translation, and scaling (in the jargon
of computer-aided geometric design, restriction (i) guarantees that each of the intermediate
points VY are affinely invariant [6]). Finally, restriction (12} provides a normalization of the
parameter range to the interval {0, 1}; that is, the curve segment is traced when 0 < ¢ < 1.

While triangular computations are one possible generalization of de Casteljau’s algo-
rithm, it must be demonstrated that they represent a useful generalization. To provide
evidence that triangular computations are indeed useful, below we cite several results due
to Goldman and others that show that virtually all of the curve techniques in widespread
use in computer-aided geometric design can be obtained via triangular computations (or
equivalently, via urn models).

A particular technique can be described by a triangular computation if it is possible
to appropriately choose the functional labels so as to obtain an algorithm for computing
points on such a curve. For instance, we have already seen that Bézier curves can he
obtained by setting all left labels to 1 — ¢, and all right labels to ¢, thereby resulting
in de Casteljau’s algorithm. Perhaps less obvious is the ability to generate arbitrary B-
splines [6]. The functional labels necessary to generate B-splines are provided by the Cox-
deBoor algorithm [6]. It is also possible to generate cubic Catmull-Rom curves [9], Polya
curves [16], generalized Pélya curves [1], and hence Lagrange curves [1, 5, 6] as a special
case. A detailed assignment of labels for these curve schemes is given in Appendix 1.

THE TRIANGLE 9

3. The Basic Architecture

The Triangle is essentially a hardware implementation of triangular graphs, and is
composed by associating a processing element (PE) per node in the triangular computation
graph, connecting the processors as dictated by the arcs of the graph. Referring to Figure 8,
all processors are identical, with each one receiving three inputs, Vi, Vg, and ¢, and
generating one output V. The resulting architecture for a cubic Triangle is shown in
Figure 9.

Vout
PE ~— ¢
Vi Vg

Figure 8. Processing Element

As an optional initialization step, the Triangle can be configured for a particular set
of blending functions (i.e., a particular curve scheme) by percolating appropriate linear
functions into each PE. Actually, only one of the linear functions, say the one from the right,
needs to be specified, the other being implied by restriction (72). Since a linear function can
be completely characterized by two scalar coefficients, each PE must possess two registers to
record the labels incident upon it. If each PE stores the value of the right label for ¢ = 0 and
¢ = 1 in registers [%p and Ry, respectively, then all other values of the label can be computed
from R{t) = (1 — t)Ry + tRy. Thus, the configuration procedure requires that the ¢ PE on
level j is given the values R!(0} and R}(1). A processing element can now be modeled by
the pseudo-code:

PE(V[, Vg, i)

Local register fiy, f;
e (1 - i)R(} + tRy
Vout <~ (1 =R}V, + BVp
return (Vi)

Algorithm 3

High performance is achieved by synchronously pipelining the computation of many
points of evaluation, treating each level of the Triangle as a stage in the pipeline. In general,

THE TRIANGLE 10

PE

.-J t-generator
PE |+ PE

PE [+ PE PE-—J

illlljl

Va Vi V, Vs

Figure 9. Basic Architecture

the points on the curve corresponding to a large number of parameter values {g, t1,..., %
are required to achieve a dense dot-representation of the curve. In other words, if Q{?) is
the curve generated by the Triangle, we seek the points Q(to),...,Q(tx). By attaching an
external “t-generator” as shown in Figure 9, parameter values can be supplied fo each level
of the Triangle according to the scheme shown in Figure 10. During the first time step, the
processors on level one are fed the parameter value to. They perform the computation of
Algorithm 3 with ¢ = #, and pass their output up to the processors at level two by the end
of time step one. During time step two, the processors on level two are fed %y, while those
on level one are fed #1. The process proceeds in this lock-step fashion until at the beginning
of time step four, the point Q(4g) emerges from the apex of the Triangle, followed by the
point Q(t1) on the next time step, and so on.

There is a rather wide spectrum of choice for the implementation of the processing
elements of a Triangle. The spectrum extends from microcomputers such as the NMOS
Transputer [18] and Motorola 68020 on one end, through off-the-shelf MSI parts and gate
arrays, to custom VLSI on the other end. Several possible implementations and estimates
of their performance are developed in Section 8. The results of this analysis are summarized
in Table 1.

Once the Triangle is “full”, one point of evaluation per time step emerges from the apex
of the Triangle — independent of the degree of the curve. For typical design applications,
the degree of the curve is small, generally less than five, so the time to configure and fill the
Triangle is small compared to the (roughly) 100 to 1,000 time steps that the Triangle runs at
full throughput. For instance, assuming a Motorola 68020 host, we estimate that a custom
VLSI Triangle can be configured for and generate 200 points on a cubic curve segment m
5645, implying that over 300 cubic curve segments can be completely redisplayed at real-time
rates.

THE TRIANGLE 11

T Results : Qlto) Q(t1) Qlt2) Qlts) -+ -
PE E=x x tg t1 tz tz ty
1
| |
PE PE e ¢ to 15 t2 t3 ty ts
| |1
{ | |
PE PE PE lk=—1t, t t; ta ts ts te

l l 1. 2. 3. 4 5 6. T
Vo Vi V, Vs TIME STEP

Figure 10. Pipelining Schemata {x = don’t care)

Values/second | Processors/sq.in.
Transputer 149,000 0.13
MSI 2,000,000 0.18
Gate Array 5,000,060 30
CMOS VLSI 1,060,000 50
MAC 13,300,000 0.18

Table 1: Performance Estimates

Transputer [18] estimates are for a software implementation of the scaled computa-
tion (see Section 8) executed on a model T414 running at 20 MHz. The binary search
implementation described in Section 8.1 using Fairchild FAST [14] components pro-
vided the MSI estimates. Gate array estimates are for the implementation of this MSI
design using an LSI Logics LCA10129 [8], with 129,042 gates. A 40% gate utilization is
assumed. Estimates for custom VLSI are for this same binary search implementation,
and are based on a comparison of the specifications for the above gate array and a
2um generic CMOS process. The MAC {multiplier/accumulator) estimates are from
the example in Section 8.2.

Several remarks are in order at this point:
o The use of a Triangle obviates the need for specialized line and circle drawing hardware.
Indeed, the line segment connecting two points Py and Py can be generated by

THE TRIANGLE 12

configuring the Triangle as shown in Figure 11; the generation of circles and ellipses
will be presented in Section 4.

PO Pl X x

Figure 11. Labels for Line Generation (x = don’t care)

e Referring to Algorithm 3, it is apparent that the calculation of the x- and y-components
of Vgyut are independent. Thus, instead of building a Triangle for vector-valued
computations, it is possible (and probably more desirable) to use two Triangles, each
doing a scalar component computation (see Figure 12).

Q(t) = (2(t), y(t) z(t) y(t)

! L |
Vo o Vi Vag -+ Vag Vyo - Vg

Figure 12. Scalar Triangles

¢ Although Algorithm 3 suggests that each PI must perform a floating point computation,
by representing the control points directly in device coordinates the computation can be
integerized in a number of ways (see Section 8). The particular integerized form can be

chosen to optimize the capabilities of the PLs.

4. Generating Rational Polynomial Curves and Conic Sections

Although polynomial curves are quite flexible, they cannot exactly reproduce circles.
In fact, the only conic section that can be exactly reproduced by polynomial curves is the
parabola. However, by generalizing to rational polynomial curves, reproduction of all conic

THE TRIANGLE 13

sections is possible. For more information on the representation of conic sections by rational
polynomial curves see Boehm et al[6] or Penna & Patterson [21].

If the polynomial curve
) d
Q(t) = »_ ViBi(t)
1=0
can be generated by a triangular computation, then so too can the rational polynomial curve
o wiBi(t)
= (X(1),Y(1))

where wg, ..., wq are scalar “weights” associated with each of the points [6, 21]. The rational
polynomial curve P(#) can be generated using two dividers and three scalar Triangles {one
for the x-component of the numerator, one for the y-component of the numerator, and one
for the denominator) arranged as shown in Figure 13.

z(t) y(t)

weVzg rwgVay woVyoe waVys wg --- Wy

Figure 13. Generating Rational Polynomials

5. Generating Tensor Product Surfaces

The Triangle can also be used as a basic building block in the generation of tensor
product surfaces such as bicubic B-spline and Bézier surfaces.

A tensor product surface patch S(t.u) {in the most general setting) is defined by two
sets of blending functions, call them A = (A4¢{{},..., An()) and B = (Bylu),.... Bnlu}) of
polynomial degree n and m, respectively, together with a rectilinear net of control points
{Vz‘,j}:;@?;o according to

T T

S(t,u) = > ¥ VijAi(t)Bju), (tou) € [6,1] x [0,1]. (5.1)
F=0i==0

THE TRIANGLE ' 14

If curves defined by the set of blending functions A and B can be generated by triangular
computations, then so too can the tensor product surface of Equation (5.1). To see this, we
rewrite Equation (5.1) as

S(tu) = > Q;(0)Bs(w),

j=0
where

n
Q;(t) = 2_ Vi, Ai(D),
1=0
showing that a tensor product surface can be thought of as blending the curves Q;(t) together
with the functions Bo(u), ..., Ba(u). The required blending can be accomplished by a set of
Triangles organized in the prismatic arrangement shown in Figure 14. Each Triangle in
the triangular prism is configured to generate one of the curves Q;{t), with the parameter
values supplied by an external t-generator. The outputs of these are fed to another Triangle
configured for the B blending functions. Parameter values for the Triangle spanning the
prism can be supplied by an external u-generator. The grid of control points is input on the
bottom face of the prism and the points of evaluation of the surface appear at the apex of
the Triangle that spans the prism.

Once the prism is configured, the entire surface patch can be generated without Lost
intervention. Assuming a Motorola 68020 host and a VLS implementation of the Triangles,
we estimate that a prism can be configured for and generate 1,000 points on a bicubic patch in
just over 500us, implying that 65 surface patches can be completely redisplayed at real-time
rates.

(s,

Figure 14. Prismatic Structure for Surface Generation

THE TRIANGLE 15

6. Generating Triangular Bézier Patches

In Section 5 is was shown that the Triangle could be used as a building block in
the construction of a multiprocessor to generate points on tensor product Bézier surfaces.
Although tensor product forms are well-known, another surface form known as the triangular
Bézier patch is more appropriate for some applications (see Farin [13] for an excellent
treatment of triangular Bézier patches). In this section we point out that by extending
the triangular topology of the Triangle to a tetrahedral arrangement, points on triangular
Bézier surfaces can be generated at the same rate as the Triangle can compute points on a
Bézier curve. .

Very briefly, a triangular Bézier patch of degree d is defined by a triangular net of
control points {Vj,i,i5} Where the indices 17,129,%5 take on all non-negative values such that
i1 + i2 + i3 = d. The control points are blended together to form surface patch according to

t U, U Z Viltzia zlzgzg(t U, ’{’) (61)
i1,i2,13
where

1. The summation is taken over all non-negative values of 1,173,473 such that
i+ g + i3 = d.

2. The parameters (¢,u,v) are restricted to be non-negative, and in addition, they
must satisfy ¢ + u -+ v = 1. Thus, although we have written the surface patch
as a function of three parameters, the fact that they must sum to unity implies
that only two of the parameters are independent.

3. The functions Bnms(t,uvv) are bivariete Bézier basis functions of degree d, and
are defined by
)
d _ 13,1 .
Bt;_z-)ta (t:\u1v) - 21122;33’75 u'?ptd (62)

Just as for Bézier curves, there is a recursive algorithm due to de Casteljau for computing
points on a triangular Bézier surface. The algorithm is a relatively simple extension of the
de Casteljau algorithm for curves, and may be stated as [6]:

TriangularBézier(Vg0, Vd~1,1,0s - Vood, £, 4, V)

/* Return S(t,u,v) using de Casteljau’s Algorithm */

for all 4;,is,75 > 0 such that iy +iz+i3 =d do
Vit < Vitizia

endfor

for j — 1 toddo
for all #y,i2,73 > 0 such that 31 41413 =d—j do

Vf}lzls tvfﬁ}l 12,13 + uvn zz+1 i3 + Lviz 112 ta-+1

endfor

endfor

return Vgoo

Algorithm 4

THE TRIANGLE 18

This algorithm can be viewed as a data-flow graph of tetrahedral topology, as shown
schematically in Figure 15. The implementation of the tetrahedral computation in hardware
is straightforward, leading to a variant of the Triangle where each processing element accepts
three input points and two parameters, ¢, and u, say, and generates one output.

S{tu,v)

Data Flow

=~ Control Net

Figure 15. Tetrahedral Structure for Triangular Patch Generation

7. Comparison to Previous Work

Two alternatives to the Triangle for the generation of curves are architectures based on
forward differencing and subdivision. In this section we briefly describe a parallel architecture
for each method, and compare the performance of these architectures with the Triangle.
Table 2 gives an implementation-independent summary of the resuits of this comparison for
generating curves of degree d.

The first row of Table 2 corresponds to the time for initialization of the hardware and
any necessary host precomputation; the second row corresponds to the time needed to re-
initialize due to the movement of a control point; the third row corresponds to the time to
compute a point of evaluation once the pipeline has been filled; the fourth row denotes the
number of processing elements required; finally, the fifth row reflects the numerical stability
of the computation.

The first three columns of Table 2 concern the performance of the Triangle. The first
column refers to the generation of uniform urn models such as Bézier curves and uniform
B-splines (in general, a curve technique is said to be uniform if the blending functions do
not change from one segment to the next). Initialization for this case is done by simply
down-loading the control points, requiring order d time. Perturbation due to control point
movement is also very fast since only the point that the designer has moved needs to be
updated.

The second column refers to the generation of non-uniform urn models, i.e., urn models
such as non-uniform B-splines where the blending functions do change from one segment to

THE TRIANGLE ' 17

the next. In this case, the Triangle must be reconfigured by percolating in new labels, a
process requiring O(d?) time.

The third column refers to the generation of a curve such as a Beta-spline that is not
represented as an urn model. To generate such a curve with the Triangle, a change of basis
algorithm must be performed by the host, requiring O(d?) time in general.

The fourth column of Table 2 is explained in Section 7.1, and the last two columns are
explained in Section 7.2.

Triangle Forward Subdivision
Uniform | Non-uniform | Non-urn model | Difference | Bézier | Non-Bézier

Initialization

Time O(d) O(d%) O(d*) O(d®) O(d) O(d*)
Perturbation

Time 0(1) O(d?) O{d*) O(d?) 0(1) o(d®)
Computation

Time/Value o) 0{1) 0(1) 0(1) o(1) o)
Hardware

Required 0(d?) O(d%) 0(d?) O{d) O{d?) O(d?)
Numerical

Stability good good good poor good good

Table 2: Comparison of Parallel Architectures for Degree d Polynomials

7.1. Forward Differencing

Forward differencing is a well known and commonly used technique for generating points
on curves and surfaces [5]. The basic forward differencing algorithm for computing the
points of a degree d polynomial p(u) begins by computing d+ 1 values p(ih), 7 = 0,....4d,
of the polynomial, and from these computes d + 1 forward differences. This is essentially
a change of basis step, requiring O{d®) time in general. Once the forward differences have
been computed, the values p((d + j)h), j = 1,.., N, can be computed at a cost of O{d) per
point on a serial processor. However, it is possible to pipeline this computation so that a
point can be generated in a constant time with O(d) hardware.

While the forward differencing technique can rapidly generate points using very little
hardware, it has some drawbacks. One of the major ones is that it is nurnerically unstable.
As iteration along the curve proceeds, errors are propagated, potentially making the overall
error large. Controlling this error requires that the computation be carried out with a large
number of significant digits. For example, evaluating 256 points of a cubic polynomial for a
512x512 display will require in excess of 32 bits of accuracy [5]. Moreover, this cumulative
error makes it difficult to generate curves with degree much greater than three [5. In

THE TRIANGLE 18

contrast, the Triangle is numerically stable for common curve schemes, requiring at most 16
bits of accuracy for a 1024x1024 display (see Section 8).

The second difficulty with forward differencing is that the step size must be chosen
small enough to make the curve appear smooth, yet must be maintained as large as possible
to control cumulative error. It is not always possible to satisfy both of these opposing
constraints, although there has been some promising recent work in this area [19].

Finally, the use of forward differencing always requires the host to perform a time
consuming change of basis step.

7.2. The Subdivision Method

By applying de Casteljau’s algorithm with ¢ = 1/2 to the control polygon of a Bézier
curve we can generate two new control polygons L and R that subdivide the curve. More
precisely, the polygon L generates the first half of the original curve, and the polygon R
generates the second half. Recursive application of the subdivision step leads to a divide
and conquer approach to Bézier curve generation since the control points of the subdivided
polygons are guaranteed to converge to the original curve.

A parallel implementation of the algorithm for Bézier curves is described in [16]. The
hasic architecture consists of a “subdivision processor”, a stack, and some control. The
subdivision processor is a triangular arrangement of adders that performs the operations of
de Casteljau’s algorithm, for ¢ = 1/2, on the control point values entered at the base. Two
new sets of control points forming the sub-polygons L and R are produced at the other two
edges of the triangle. One of these polygons is pushed on the stack for later evaluation,
and the other is routed back through the “subdivision” processor. This continues for a user
specified number of iterations, at which point the resulting polygons are output for display.
Computation then continues with the polygon on the top of the stack, terminating when the
stack is empty.

For the generation of Bézier curves, no change of basis is required so initialization can be
accomplished in O(d) time. However, to generate curves defined by other blending functions
we must first convert them to Bézier form, requiring O(d”) time in general.

Once initialized, each step in the above iteration takes time O(d), and produces O(d)
points. If k is the iteration depth, then d 25+1 hoints are generated in a total of 2k+1 steps.
On average, then, each point is produced in constant time. The hardware required for this
architecture is O(d?) for the “subdivision processor” and also for the stack. The subdivision
method is as nurmerically stable as the Triangle, so on the order of 16 bits of accuracy are
required for a 1024x1024 display.

8. Implementation

The detailed architecture of the basic processing element shown in Figure 8 will depend
on the exact formulation of the triangular computation of Algorithm 3, on the range of
values we allow for labels, and on speed, area, and cost constraints imposed by the overall

THE TRIANGLE 19

system. In this section we will explore this space of architectural possibilities and examine
the performance, area, and cost trade-offs involved in their implementation.

If the control point values input at the base of the Triangle represent points in a user
coordinate system, then they will most likely be floating point quantities. In this case the
processing element will need floating point hardware to achieve real-time performance. For
example, we may use the T800 Transputer as a processing element. We estimate that a
system constructed with this device would generate a point every 7.5 usec.

However, it will generally be the case that control point values will represent points in
the device coordinate system, and so will be integer quantities. It 1s then desirable to find a
suitable “integerized” version of Algorithm 3. We will present two methods of accomplishing
this integerization. Throughout this presentation we assume that the display is a frame-
buffer type device with 2" addressable pixels in each of the horizontal and vertical directions.
Further, we assume that the curve segments to be computed using the Triangle have control
points that are on or “near” the screen, and that each control point is represented as a pair
(z,y) where z and y are r + e bit integers. The extra e bits are used as guard bits and to
represent points that are not on the screen but are near it, effectively surrounding the screen
by a larger space of representable points. Without guard bits, each level of the Triangle could
introduce up to one pixel error. The generation of a pomnt on a d degree polynomial could
therefore accumulate up to d pixels of error. This error can be eliminated by introducing a
small number (log d) additional guard bits.

The first method of integerizing Algorithm 3 is to simply take each guantity to be an
integer fraction scaled up by 27. Thus, if £ was in the range (—n,n] it will now be in the
range [—n27,n2"]. With this integerization, we can perform the computation of Algorithm 3
with integer addition, subtraction, and multiplication. To be exact, two additions, two
subtractions, and four multiplications are required. Alternatively, we can rearrange the
computation as follows

R =Ry +tF; - Rg)
Vout = Vi + B(Vr— V)

thus reducing the number of multiplications to two. Also, f; — Ry can be precomputed by
the host, reducing the number of subtractions to one.

The second method of integerizing Algorithm 3 is to represent ¢ and [2 as binary fractions.
and to perform an integer computation using a binary search technique. To simplify the
presentation of this method, let us for the moment consider a Triangle configured for
generating a Bézier curve. In this case, each PI must perform the computation

Vout — (1 =)V +tVE (8.1)
where ¢ € [0,1}.
We use Equation (8.1) to provide a coordinate labeling of the line through Vi and Vg. In

particular, V is assigned the coordinate 0, Vp is assigned the coordinate 1, and in general,
Vout 18 assigned coordinate . In this context Equation (8.1) can be recast as a search

THE TRIANGLE 20

problem: each processor must find the point Vot with coordinate ¢ on the coordinatized
line from V, to Vp.

With this interpretation of the problem, binary search enters as a natural solution. Let
t be represented by an f-bit binary fraction

t=.Dbiby--- by, b; € 40,1}, (8.2)

and let M denote the midpoint of the line segment VyVp

Vi+ Ve
—

M = (8.3)

If by = 0, then V¢ must be between Vi and M. More precisely, Vout will be the point
with coordinate .bybz---by0 on the coordinatized line from Vi to M. Symmetrically, if
by = 1, then Vopr will have coordinate .babz -+ -bs0 on the coordinatized line from M to
V. Recursive application of this process will have M converging to V¢ Moreover, if
all points are represented as pairs of r + ¢ bit integers, the process will converge after r + e
recursive invocations. An iterative version of this algorithm, one that is more efficiently
implemented on standard hardware, can be stated as:

PE-Bezier(Vi, Vg, 1)

/* Processing element for a Bézier curve. */
/* Returned is the point on V[Vg with coordinate t, where t € [0,1] */
for i «- 1 tor+edo

/* Compute Midpoint (> 1 means right shift 1 bit) */

M (Vp+Vg)>1

if high-order bit of ¢ is 0 then
JEV gy is between Vi and M %/
VR — M

else
/*V gy is between M and Vg */
VM

endif

/* Left shift the representation of t left 1 bit */
teet 1

endfor

return M

Algorithm 5

Coordinatized lines and binary search can also be used to refine the pseudo-code of
Algorithm 3 for urn models other than Bézier curves. Note that as £ varies from 0 to 1, the

THE TRIANGLE 21

point Vgt produced by Algorithm 3 varies from the point
Vo= (1—R(0))Vr+ R(0)Vp (8.4)

to the point

Vi=(1—-R(1)V+ R1)Vg. (8.5)

We can therefore rewrite the expression for V¢ as

Vout — (1=)V + V7. (8.6)

For B-splines, the values R(0) and R(1) are guaranteed to be in the interval [0,1]. Thus,
Equations {8.4), {8.5), and (8.6) are of the form implemented by PE-Bezier, giving us the
following code for the generation of B-splines:

PE-Bsplineg{Vp, Vg, t)
Local register R, Vg, V3

Vg A PE-Bezier(VL, VR, R(O})
V, — PE-Bezier(Vy, Vg, R{(1)}
Vout — PE-Bezier{ Vg, Vi, 1)
return (V)

Algorithm 6

TIn general, however, R(0) and R(1) may not be between 0 and 1 as required by PE-
Bezier. For instance, if the processor is configured for Lagrange interpolation, then for all
processors except the one at the apex of the Triangle B(0) < 0 and R(1) > 1. Fortunately,
for most curve techniques, including Lagrange interpolation. the values of £(0) and R(1) are
bounded by small signed integers. We therefore represent R(0) and (1) as signed fixed-point
numbers, i€,

R(0) = ROI.ROF
R(1) = RILRLF

where ROI and R1I are signed integers, and ROF and R1F are binary fractions. The
code for PE-Bézier can now be generalized to find points whose coordinates are outside the
interval [0,1]:

THE TRIANGLE 22

BinSearch(A, B, I, F')
/* Find the point on AB with coordinate [.LF */
if [> 0 then
A—B-~A
while [# 0 do
A~—B
B—A+A
Ie-T—-1
endwhile
else if 7 < 0 then
A—A-B
while [# 0 do
B« A
A—B4+A
T — 141
endwhile
return (PE-Bezier(A, B, F))

Algorithm 7

An interized version of the pseudo-code for a processing element in the most general case
can now be stated as:

PE-General(Vg, Vg, t)

Local register
ROI, /* Integer part of R(0) */
ROF, /* Fractional part of R(0) */
R11, /* Integer part of R(1) */
RLF, J* Fractional part of R(1) ™/
Vo, Vi

Vy « BinSearch(V, Vg, ROI, ROF)
V| « BinSearch(Vy, Vg, R11, RLF)
Vous « PE-Bezier(Vy, V1, 1)
return (Vi)

Algorithm 8

These two integerized forms of the computation suggest quite different processor element
architectures. An architecture for a scaled computation will require one or more multipliers
and adders, while the binary search method requires only addition. A binary search
architecture needs to either loop through the computation in a serial fashion using one

THE TRIANGLE : 23

adder, or use a string of adders to pipeline the computation. The number of bits in ¢ and £
determines the number of times through the loop, or the length of the pipeline, respectively.
By using a parallel multiplier for the scaled computation, the operations will be carried out
in parallel with respect to the bits of ¢ and R. The scaled computation then has the potential
of being faster, but the resulting architecture may require more area and be more costly than
a binary search architecture . To further illustrate the design trade-offs, we will present two
example architectures, one for each type of integerization. Note that in these examples our
intention is to give a clear idea of the basic requirements for a Triangle implementation;
consequently, we do not discuss the many possible optimizations.

8.1. A Binary Search Architecture

The first example we will consider is an architecture for the binary search integerization
of the basic triangular computation restricted to the generation of cubic Bézier curves. This
means that R(f) = t, so we need only perform the computation:

Vout — BinSearch01(Vy, Vg, 1)

The architecture of a processing element is shown in Figure 16. Registers I-reg and r-reg
hold the initial and intermediate values of Vi and V. The adder uses the two values in
these registers to produce M on output bits by — bp1, thus in effect performing the required
shift. The sel control signal on the registers selects which of the two inputs will be loaded
into the register. At the beginning of a search, new values are loaded from the level below.
In this case both l-Id and r-Id are clocked. During the computation the feedback source is
selected, and either I-Id or r-Id is clocked, depending on whether the high-order bit of tis 0
or 1 respectively.

Vaue

-

//r%»e
by — bn
Adder

//%""'?"6 //r+e

114 r=]dd
Ll Lol
sel l-reg sel

r-reg

VL VR
Figure 16. Processing Llement for Binary Search

By combining twelve of these PE’s to form two Triangles, we can compute the x and ¥
coordinates of the points of a specified cubic Bézier curve. In such a systern, the Id control

THE TRIANGLE : 24

signals to the registers will be the same across a level in both Triangles, hence we need three
copies of the logic required to generate these signals. The sel control signaﬁ will be the same
throughout both Triangles, and so can be generated in the main control of the system. These
building blocks along with a t-generator combine to produce a complete system as shown n
Figure 17.

"‘""‘"‘““"“""Sc;an i Main addr latch }
2288 dControl
clock * 4 el
¥ | ¥ I
start oF L] Level 1.5 <
I Controlilid > PE T PE
t-gem ﬂ PE [H PE o S . Y
»{Controll s — > -
i Level {0 - - = -
»iControlltid,, PE - PE - PE : PE - PE E

FETET] TE T T

Figure 17. Complete Binary Search System

The logic to generate the Id signals, called the level control, requires three inputs, a signal
to mark the beginning of a search, a clock to step the hardware through the search, and the
high-order bit of the t-value for that level. The two Id signals are produced. Figure 18 shows
the required logic and the timing relationships of the input and output signals.

sl REENERENERN N NN NENEN
t-msh D—-————a 1-d clock
clock cel [!

V t-msb -] | E

.
D cg e ST ST f
r-1d 51 1 FLE

F1

Figure 18. Level Control Logic

The details of the t-generator are shown in Figure 19. It consists of a counter and three
shift registers, one for each level. The counter is initialized to zero via the start signal, and

THE TRIANGLE 25

is incremented at the beginning of each search by the sel signal. This continues until the
counter overflows. The base shift register is also loaded at the beginning of each search, and
all shift registers are shifted once for each step of the search. The t-values for each level are
generated directly as the high-order bit of each shift register.

shift, 0 R
e

.
F
clock
shift t—mab_...
b
[
—SF clock
. {-mgg ’
U—I- counter > sgxét
sel & A sel T
start clack

Figure 19. Binary Search T-Generator

The main control shown in Figure 20 is responsible for generating the sel and clock
signals for the circuits described above. It also generates an address latch signal to the
frame buffer to indicate a valid address, and a done signal back to the host. The inputs
to the main control are the master clock and a start signal from the host. The 4-bit shift
register is used to delay addr-latch generation until the first valid address emerges from the
apex of the Triangle, and to delay at the end of the computation until the last address is

generated.
4-bit
hift- addr
Smiree latch
r-bit CAITY ——
counter sel
»——__/

?lgz;fr N clock
done enable B
start F/F
QF

Figure 20. Main Control

As an inexpensive, yet high performance implementation of this binary search architec-
ture, consider using off-the-shell MSI components. In particular. we will use Fairchild FAST
components [14]. The following table lists the required parts for a single processing element.

THE TRIANGLE 26

Part | Quantity

Registers | 74F399 8
Adder 741381 4
74F182 1

Processing Element Parts List

With these components the PE can perform one step of the search in 30 nsec., so overall
performance for a system with a 16-bit ¢ value is one point every 480 nsec. For a 16-bit data
path, and with standard DIP packages a PE takes 5.5 square inches. Thus, the twelve PE's
to generate cubic Bézier curves will fit in an area of 65 square inches.

While this MSI implementation has very good performance, it does not have a very high
level of integration. A good way to remedy this is to use a gate array. Consider the LSI
Logics LCA10129 gate array (8], with 129,042 gates. A fair estimate of the number of PE’s
that will fit in this device can be obtained by counting the number of gates in the MSI
implementation and comparing this to the number of gates in the array. We will assume
a 40% utilization of gates in the device. In the MSI implementation described above there
are approximately 730 gates per PE, while in the gate array there are approximately 50,000
gates. We can, then, fit at least 68 PE’s in the gate array. For example, the 60 PE’s required
to generate a component of a degree 4 tensor product surface would easily fit in this device.
In addition, the reduced gate delays of the LCA10129 will enable the PE’s to operate two
to three times faster, vielding a point generation time in the 160 to 240 nsec range.

8.2. A Scaled Computation Architecture

For our second example, we will present an architecture to compute Algorithm 3 in the
form:

R« RQ -+ t(Rl - RO)
Vout — Vi + B(Vg— V)

where all values are integers as discussed above. All quantities will be represented as 16-bit
signed integers. This is sufficiently accuracy to allow values of R in the interval [—4, 4],
meaning that we can generate cubic Bézier, B-spline, Catmull-Rom, and Lagrange curves.
The design of a complete system capable of generating these types of curves will be presented.

We begin by choosing a commercial component that can perform the required operations,
and develop the processor element design around this device. We want this design to
have very high perfermance, so we will choose the Bipolar Integrated Technology B3011
multiplier/accumulator (MAC) with a 15 nsec multiply-add time [20]. This device contains
a 16x16 bit multiplier, a 32-bit adder, and two accurnulators. By starting with this off-the-
shelf component we simplify the task of implementation while achieving high performance
and a high level of integration.

THE TRIANGLE 27

Figure 21 shows the internal architecture of the B3011 MAC, and Figure 22 shows how
this device is used to form a processing element. The operations performed by this PE
to carry out the required computation are given below. The operations on each line are
performed in parallel, and in one clock cycle.

Initialize:
XB — RI(0); YB « RI(1) - RI(0)
Loop:
XAV, YA Vp
Ae— XA
YA«—~YA-XA
B—XB
XA e B+HYB)
output A+ XA(Y A)
X REGISTERS
ACOUMULATORS
C};‘;’m XBf— ,
r 16 |
X DATA A » — % A
',16 1 MPX I
L&
32 ADDER > 0 QU
MUTIPLIER fod) T wex Les é;’éféﬁf
X s, - 40
[»YA VB 4 i ! 33 T
' | MPX i
Y DATA ‘ — =
L
Y REGISTERS

Figure 21. The B3011 Internal Architecture [12]

The initialization step is used to load the labels for a curve segment. Note that the
quantity (RB(1) — £(0)) may be precomputed by the host or may be computed in the PE as
an additional initialization step. Figure 23 shows how these label values are loaded into the

THE TRIANGLE 28

Vout

I

PE control

) 4

MAC

3 3

mux mux

¥

vy V
Figure 22. Processing Architecture for Scaled Computation

system, assuming that the subtraction is performed in the PE. The twelve labels are loaded

in three time steps, then all of the PE’s perform the subtraction in parallel overwriting R(1)
with the result.

oW

L
0

1 i i
0 1 2
T F1
T
t=0: R}0) AF Al A3

t=1: R}(0) RI(0) RI(0) A
t=2: RyO) A} RL(0) A}

Figure 23. Label Initialization (A7 = RI(1) ~ R!(0))

In the first step of the loop we store the values output from the level below. Next, V
is moved to accumulator A, and then Vg — V[is computed and stored back in register YA,
overwritting the value of V. Now we initialize accumulator B with the value of R(0) and
compute R by loading ¢ in the left port. The value of R is then loaded into register XA in
preparation for the final multiplication. The final output value s loaded into the next level
by the first step of the next loop, so the loop takes five steps.

Now consider building a complete system with this processing element. There will be
two triangles, each with six PE’s interconnected as shown in Figure 24. Since all PE’s
perform the same operations, only one control circuit, the main control, is necessary. This is

THE TRIANGLE 29

sga.rt Moin addr latch }
~282E JControl
A &
clock 3 Vloa d
PE control
i OF .
star .. | : PE ™ PE
PE control rj_L‘ . {_t-t'"l
t-gen | PE FE _| PE | | PE
PE contre]l r}_ﬂ] __t—l - r—,m_ ML!
JPE{IPE] IPE[F PE PE

FETET] FE T

Figure 24. Complete System for Scaled Computation

in contrast to the previous example in which each level required a separate control circuit.
The t-generator is also different for this example, as shown in Figure 25. This t-generator
has three registers, one for each level, with the register at the base level capable of being

incremented.

Conservatively, this implementation can produce a point every 75 nsec, or 13.3 million
points per second. Compared to the previous example as implemented in MSL, it is about five
times faster, takes about the same area, and can generate a much wider range of curve types.
Like the MSI example, this architecture could benefit from a higher level of integration. A
complete report on a VLSI implementation of the Triangle is forthcoming.

L

ioad reg

1

S
lpad _t reg

F

IR T
prverns INDURINUREN N+) G
it

!

0

Figure 25. T-Generator

8.3. System Integration

Given a Triangle system as described above, it is a straight-forward matter to integrate
this into a graphics system. If the host system has a single bus, the Triangle would be

THE TRIANGLE . 30

connected as shown in Figure 26. The major drawback with this configuration is that the
Triangle has to contend with the host for bus cycles when accessing the frame buffer. To
alleviate this problem, we can add a separate bus for the frame buffer as shown in Figure 27.
This configuration is typical of high performance graphics systems.

Refering to Figure 27, the host interface allows the loading of label and control point
values into the Triangle via the host bus. This interface will provide the basic bus interface -
plus the logic necessary to decode addresses and load registers. Only two control signals are
required between the host and the Triangle. The start signal to the Triangle indicates that
all labels and control points have been loaded and the computation may begin, and the done
signal from the Triangle to the host indicates the computation has finished.

4 &
addr
latch address
Tria.ngle Frame to Display
Buif
Host Host Interface er

& A f

start idone jdatafctrl
Y Y h 4 Y Host Bus

Figure 26. System Integration

im0 THsplay

Frame Buffer Bus

F 3 &

addr
lateh address

Triangle

i T
Host Host Interface

A F § r 3

start jdone [datafetri
A ¥ ¥ Host Bus

Figure 27. System Integration

The interface to the frame buffer is also quite simple. If the Triangle is given control
points in device coordinates, then frame buffer addresses are formed simply by concatenating
the x and vy coordinates of the values produced at the apex of the Triangle. Viewing
transformations such as perspective projection of surfaces can be accomplished with a small
amount of additional arithmetic logic (e.g., two dividers).

The only control signal between the Triangle and the frame buffer is a signal to Indicate
to the buffer that the next address is ready. The frame buffer is assumed to be at least as
fast as the Triangle.

THE TRIANGLE 31

9. Conclusions

In this paper we have described the Triangle, a pipelined, parallel architecture that
can be used as the basic building block of a multiprocessor for fast, numerically stable
generation of a wide variety of geometric primitives including line segments, circles, spline
curves, triangular patch surfaces, and tensor product surfaces.

Previously described processors have been capable of generating curves represented by
a single, fixed polynomial basis. Consequently, host applications were forced to convert
the basis being manipulated by the designer into the one implemented by the hardware.
The Triangle, however, is unique in its ability to directly generate curves represented in
a wide range of polynomial bases. Since virtually all bases in widespread use are directly
implementable, host applications rarely need to execute costly change of basis algorithms,
thereby improving the total throughput of the application.

A fully custorn VLSI implementation of the Triangle is currently underway by a group
of graduate students under the direction of Profs. Carl Ebeling and Lawrence Snyder at the
University of Washington. Preliminary results suggest that a cubic scalar Triangle can be
fabricated on a single chip running at approximately 2MHz, implying that a bicubic prism
could be built with 15 chips. The design is expected to be completed and fully simulated
sometime in the summer of 1987,

THE TRIANGLE 32

Appendix 1: Labels for Common Curve Schemes

Non-Uniform B-splines

~ In the most general form, a B-spline curve Q(t) of degree d is a piecewise polynomial
curve constructed from a sequence of control points Vi, k = 0,...,m, and sequence of non-
decreasing real numbers ¥ = {t,}, r = 0,...,m + d + 1, according to [6]:

Q) = SOV NEG Y, € [ty tms] (0.1)
k=0

where the functions N¢(Z;¢) are the B-spline blending functions of degree d, which can be
defined recursively by

NG 1) = e a1 (g) e — 0 oty (9.2)
thtd — Tk terd+1 — th
where)
NY(Et) = {1 lf_i € [t'katk-%l]
0 otherwise.
The sequence ? is called the knot vector, and each value ¢, is known as a knot.

As mentioned above, Q(t) is a plecewise curve, the £ such piece Qut) being swept
out when the parameter ¢ varies on the interval [tgyq,terd+1]. Since the B-spline blending
functions have local support, that is, NV }f (1;t) is non-zero only over d + 1 parametric intervals,
the Qg(t) depends only on a subset of the control points. In particular, Q;{t) depends only
on the control points Vg, ..., Ve g.

With this notation, the Cox-deBoor algorithm [6] for generating B-spline curves can now
be invoked to assign labels in the triangular computation for Qq. Specifically, the Cox-deBoor
algorithm can be used to show that the right labels are given by

: t—tpaie, : .
Ri(t) = S (9:3)
Lopdpiet — toging

for j=1,...,d and i = 0,...,d — j; each of the left labels can then be determined from
Lty =1- R(®),

where t is allowed to vary over the interval [tp1g, tgrge1]. Since this parameter range violates
restriction (iii) of labels (see Section 2), the curve must be reparametrized so that ¢ varies
over the unit interval [0, 1]. The necessary reparametrization is

te topa + Hiepder = tevd)-

Substituting this into Equation (9.3) yields

: e —t fpad — torini
Ri(t) = (teraty = tesa) + (levd — toriej)
tevdyiel = Legit;

THE TRIANGLE 33

Finally, the base of the triangular computation consists of the control points Vg, ..., Veig.

In the special case of uniform B-splines, that is when the knots are uniformly spaced
along the parameter line, the right labels for Q(¢) simplify to

1

For the most common case of a uniform cubic B-spline (ie, d = 3), the £ segment is
generated by the triangular computation shown in Figure 28.

Vo Vi Va Vs

Figure 28. Labels for a Uniform Cubic B-spline

Uniform Lagrange Curves

A uniform Lagrange curve Q(#) of degree d is defined by a set of control points Vy. ..., Vg
according to

d
Q(t) =Y ViLi(t), te[0.1], (9.4)
k=0
where ,
1t — g
L) = I =2 (9.5)
ra=f =7
rEk

are the uniform Lagrange polynomials (see Boehm et al[6]). Aitken’s algorithm can be used
to compute points on Lagrange curves using triangular computations where the right labels
are given by .
j dt —F N . .
Ri(t) = . g=1,..,d, 1=0,...d~],

and the left labels are given by

Li(ty =1~ RI(3).

The labels for a uniform cubic Lagrange triangle are shown in Figure 29.

THE TRIANGLE. 34

Vo V) Vs, Vs,

Figure 29. Labels for a Uniform Cubic Lagrange Curve

Cubic Catmull-Rom Curves

A segment Q(¢) of a cubic Catmull-Rom curve is defined by a set of control points
Vi, V1, Vy, V3 according to

3
Q(t) = > View(ty, te(0,1] — (9.6)
E==0
where , ,
J t—2t2 + ¢
b (1) o= — e
do(t) 5
, 2 — 5t% 4 3¢°
@z(t) - Ty
L+ 42 — 388
ult) = =5
f % e
@3(i) o= 5

L4

are the cubic Catmull-Rom blending functions [9, 11]. These functions can be factored so
that Q(#) as defined in Equation (9.6) can be generated using the triangular computation

shown in Figure 30.

THE TRIANGLE 35

Figure 30. Labels for a Cubic Catmull-Rom Curve

References

1.

Phillip J. Barry, Urn Models, Recursive Schemes, and Computer Aided Geometric
Design, Ph.D. Thesis, Department of Mathematics, University of Utah, Salt Lake City,
Utah (June, 1987).

Phillip Barry, Tony DeRose, and Ronald Goldman, “B-splines, Pélya Curves, and
Duality.” Submitted for publication.

Brian A. Barsky, The Beta-spline: A Local Representation Based on Shape Paramelers
and Fundamental Geomeltric Measures, Ph.D. Thesis, University of Utah, Salt Lake City,

Utah (December, 1981).

Brian A. Barsky, Computer Graphics end Geometric Modelling Using Beta-splines,
Springer-Verlag, Tokyo {to appear).

Richard H. Bartels, John C. Beatty, and Brian A. Barsky, An Introduction to Splines
for Use in Computer Graphies and Geometric Modelling, Morgan-Kaufmann Publishers,
Inc., Los Altos, California (to appear}.

Wolfgang Boehm, Gerald Farin, and Jiirgen Kahmann, “A Survey of Curve and Surface
Methods in CAGD,” Computer Aided Geometric Design, Vol. 1, No. 1, July, 1984, pp.
1-60.

Wolfzang Boehm, “Curvature Continuous Curves and Surfaces,” Computer Aided Geo-
metric Design, Vol. 2, No. 4, 1985, pp. 313-323.

. W. Carney and L. Curtin, “50K Gate Array Meets Tomorrows Design Challenges,” Digital

Design, March 1986, pp. 84-88.

10.

11,

12.
13.

21.

THE TRIANGLE ' 36

Edwin E. Catmull and Raphael J. Rom, “A Class of Local Interpolating Splines,” pp.
317-326 in Computer Aided Geometric Design, ed. Robert E. Barnhill and Richard F.
Riesenfeld, Academic Press, New York (1974).

Fuhua Cheng, Kuen-Rong Hsieh, Rei-Ron Huang, and Yeh-Hao Chin, “Bézier Curve
Generator: A Hardware Approach to Curve Generation,” Proceedings of the Second

 International Symposium of VLSI Technology, Systems, and Applications, May 1985,

Taipei, Taiwan, pp. 278-281.

Tony D. DeRose and Brian A. Barsky, “Geometric Continuity and Shape Parameters
for Catmull-Rom Splines {(Extended Abstract),” pp. 57-62 in Proceedings of Graphics
Interface ‘84, Ottawa (27 May — 1 June, 1984).

EDN, Jupe 11, 1987, pp. 115-126.

Gerald Farin, “Triangular Bernstein - Bézier Patches,” Computer Aided Geometric
Design, Vol. 3, No. 2, August 1987, pp. 83-127.

FAST, Fairchild Advanced Schottky TTL, Fairchild Corp., 1985.

. Ronald N. Goldman, “An Urnful of Blending Functions,” IEEE Computer Graphics and

Applications, Vol. 3, No. 7, July 1983, pp. 49-54.

. Ronald N. Goldman, “Pélya’s Urn Model and Computer Aided Geometric Design,”

SIAM Journal on Algebraic and Discrete Methods, Vol. 6, No. 1, January, 1985, pp.
1-28.

. Ronald N. Goldman, “Urn Models, Approximations, and Splines,” Journal of Approai-

mation Theory, to appear.

. INMOS Databook, INMOS Corp., 1986.

. Sheue-Ling Lien, Michael Shantz, and Vaughan Pratt, “Adaptive Forward Differencing

for Rendering Curves and Surfaces,” Computer Graphies, Vol. 21, No. 4, July 1987, pp.
111-118.

. Robert E. Owen, “ECL MAC slashes system processing times by 80%," FElectronic

Design, October 30, 1986.

M. A. Penna and R. R. Patterson, Projective Geometry and its Applications to Computer
Graphics, Prentice-Hall, Englewood Chifls, N.J., 1685.

