Concurrent Programming with Time
A Research Proposal

Kevin Jeffay
Department of Computer Science
University of Washington
Seattle, WA 98195

Technical Report 87-10-03
October 1987

This work was supported in part by a grant from the Washington
Technology Center and a fellowship from the IBM Corporation.

Concurrent Programming with Time
A Research Proposal

Kevin Jeffay
Department of Computer Science
University of Washington
Seattle, WA 98195

1. Goals

This research is ultimately concerned with the development of verifiable real-time software.
By verifiable, we are referring to the fact that one of the distinguishing features of real-time
programs is the existence of a set of timing constraints which must be satisfied by an
implementation of a program in order for that program to be considered correct. We
propose to develop a programming system wherein real-time programs can be constructed
and automatically verified to be temporally correct relative to a set of timing constraints.
This programming system will consist of a concurrent programming language, compiler,
run-time system, and code analyzer. Each will be described in more detail below.

2. Related Work

While there has been much work in concurrent programming languages (e.g. Mesa
[Lampson & Redell 80], Ada [US DoD 83]), few, if any, have addressed the problem of
verifying adherence to timing constraints. Some notable exceptions in this area are the
languages Modula [Wirth 77], ESTEREL [Berry & Cosserat 85], and Real-Time Euclid
[Kligerman & Stoyenko 86], and the analysis techniques of Shaw [Shaw 87].

Modula has a limited framework for reasoning about and expressing timing constraints in a
program. Only processes that interface directly with physical devices are allowed to have
timing constraints. In particular, this precludes the formulation of a timing constraint based
on a data object. For example, one could take in data from a device in real-time but there is
no elegant way to guarantee that the data can also be processed in real-time. The
verification process is premised upon a static priority assignment to the device processes.
Like all real-time, uniprocessor, process scheduling schemes based on static priority
assignments, Modula suffers from an inability to fully utilize the processor for certain
priority assignments [Liu & Layland 73]. Real-Time Euclid allows one to express more
general timing constraints but must rely on an exponential time knapsack style algorithm to
determine if all timing constraints can be met.

The language and semantics aspects of our work are most similar to that of the ESTEREL
project. Like them, we intend to build our system upon a formal semantic framework that
will allow temporal reasoning on program texts. We differ in that our semantics are not
tightly coupled with a sequential model of computation such as a finite state machine. Asa

result of this, we can write familiar classes of programs such as cyclic executives, and
buffer managers that are either awkward or impossible to write in ESTEREL.
Additionally, our semantics allows a straightforward language implementation on non-
uniprocessor architectures.

3. Language Description
3.1. Programming Model

The language itself follows an object-oriented paradigm. Abstractly an object is a data
repository with a set of operations for manipulating the data. Manipulations of the object's
state are performed by the object itself based on the receipt of messages from other objects.
A message is a typed communication along a named channel. The active agent inside an
object that processes messages of a given type is called a process. An object may contain
multiple processes, one for each message type (operation) that the object receives
(implements). In addition, an object may contain processes that implement operations not
visible to other objects. These "internal” operations are also invoked by sending a message
on the appropriate channel. Objects may be nested. A simple object is shown graphically
in Figure 1. Each component in this figure will be explained in more detail below.

Messages from other processes

1 Sender 4 Senders

l Generic Object

Asynchronous
Channel

—ap Synchronous
Channel

9
Messages to (distinct)
other processes

This diagram illustrates a design for a generic object that implements two operations.
The processes that implement these operations are labeled Operationl and OperationZ.
The object alters its state by sending messages to an encapsulated state object. Note that
every channel has only one receiver.

Figure 1

In our model there is a one-to-one correspondence between channels, processes, and
operations. For example, a channel uniquely identifies a process (the channel's receiver
process) and an operation. In our world, everything from simple program variables to

complex programs, can be represented as objects. For the present, we will speak mainly of
processes and messages rather than of objects and operations.t

A channel may have many writers (senders) but only one reader (receiver). There are two
classes of channels: synchronous and asynchronous. Sending a message on a
synchronous channel is equivalent to performing a procedure call from which typed values
may be returned. Sending a message on an asynchronous channel allows the sender to
proceed in parallel with the receiver. In the asynchronous case, the sender never waits - in
any sense - for the receiver. A process may only receive messages of one type (from one
channel). A process is activated by the receipt of a message. Once activated it may
perform computations including sending messages to other processes. However, during
an instance of a process’s activation, it may send at most one message to any specific
process. When it has finished its computations it deactivates and awaits its next message.
An analogous view of a process is as a server. Inside of a process, the sending of
messages may be controlled by data dependent logic. A schema for a process's behavior is
given in Figure 2.

Incoming
message(s)

Process p

ACCEPT(message)

E:MIT channel_name1(data) Outgoing

messages

E:MIT channel_name2(data)

end

Figure 2

We say an object is "real-time" (or it behaves in real-time) if it is always ready to receive all
messages that are sent to it. More specifically, all processes within a real-time object must
always be ready to receive all messages that are sent to them as they are sent (i.e., without
buffering). This property of objects is captured in the formal semantics of our language.
For a program to be considered correct, all objects must behave in real-time. As it should
be clear that it is always possible to write a program that could not adhere to its semantics
for a particular implementation; it is the goal of the temporal verification procedure that
follows to determine if in fact all processes in a program will behave in real-time for a given
execution environment.

Our process model is based on a general characterization of the real-time environment as a
set of processes external to the computer that forbid any type of computer initiated flow-

T While we have chosen to present our model from within the context of an object oriented domain, the
object orientation in our model is not central to our main contributions: the analysis techniques that follow.
What is important are our message passing paradigms. Hence for the remainder of the paper, we will
concentrate mainly on the properties of processes and messages rather than of the related concepts of objects
and operations.

control of their inputs or outputs. The implication of this is that internal computer
processes that interface with the external world must always be ready to process an input
from an external process. Stated another way, they must process their inputs in a time
frame determined by the external world. Processes in the outside world are abstracted as
objects that sporadically emit "messages" to objects internal to the system. It is a
fundamental assumption that the worst case frequency with which external objects can send
messages is known. We will require this information to be in the form of a minimum
separation time between the emission of any two messages of a given type by a given
external process.

Aside from the ACCEPT and EMIT constructs, the processing that takes place inside a
process can be described by almost any high-level sequential programming language. We
only require that all statements in this language take a deterministic amount of time to
execute and that their worst case execution time should be statically determinable. As there
are no constructs or schemas in our model which can cause logical blocking (in the sense of
the language's semantics given below), we can determine a priori a worst case processing
time for any message type

3.2. Logical Semantics

We further propose to develop a suitable semantic model that incorporates the passage of
time. Our notion of time here is discrete time as measured by the arrival of messages.
Each process has its own meta-clock. The arrival of a message at a process is a "tick" of
the process's clock. Relative to this clock, the process's computations take "no time". For
example, an implementation of each process on a dedicated, infinitely fast processor would
always give the correct temporal semantics (assuming the computation terminates). Thus in
spite of our terminology, from the user's standpoint, our language is logically a
synchronous one. When messages are sent, they are instantly received at their destination
and processed. Hence changing all asynchronous channels in a program to synchronous
ones yields a semantically equivalent program. The difference between these programs lies
in the fact that for a given implementation environment, we may be able to verify the
temporal correctness of the former program but not the latter. The reasoning for this will
become apparent in Section 4.2.

Our model is new in that not all process's concept of time need be related. Processes that
do not interact directly or indirectly may have independent clocks. These clocks will be
unsynchronized and need not even be "running"” at the same rate. At the semantic level,
there is no need for a global clock.

3.3. AnExample

Consider the following simple stopwatch example. A hardware timer produces periodic
interrupts with known frequency which are used to keep time in the expected manner. A
button is also connected to the system to start and stop the stopwatch. An odd numbered
push of the button starts the stopwatch while an even numbered push of the button stops
the stopwatch and displays the elapsed time. A possible design for a program that
performs these functions might have the structure as shown in Figure 3 below.

Timer Clock Object Display
Device Device
Object Object

Input timer Int Time Display _Pisplay| { Display
Process Handler Server I Driver Process
Button Current

Object

Input
Process

External World

Figure 3

The external timer object produces messages of type timer int which are consumed by an
internal clock object. The clock object is composed of three processes. Process
InterruptHandler receives the timer messages and performs whatever timer setting or
resetting is required. It then synchronously sends a message along channel read/write to
the process CurrentTime. Process CurrentTime controls access to the storage object(s) that
actually represents the value of the clock. In this case, process CurrentTime decodes this
message, determines that it should update the time, increments its internal counters, and
returns a status value. Upon receipt of a reply, process InterruptHandler terminates. The
time-display object manages the display device and implements the stopwatch function. It
receives messages from the external button object along channel start/stop. For each
message received it gets the current time by synchronously sending a message to the
process TimeServer. TimeServer gets the current time from process CurrentTime in a reply
to its message sent on channel read/write. Next, depending on its current state, the time-
display object either records the current time or computes the difference in time since its last
activation and sends this value to an external display device on channel display channel.

This simple example motivates several important questions related to real-time. First, we
may wish to know if the clock object will faithfully keep time. Our semantics tell us that all
messages sent are instantly received and processed. Hence in the above example, it is not
possible for the clock object to "miss" a timer int message sent from the Timer device.
Thus the issue of whether or not the clock object correctly keeps time is reduced to an
examination of whether or not the clock object implements a correct algorithm for
computing the value of time given a timer int message. The same logic allows us to
conclude that every button press will be recognized by the system.

The questions concerning the processing of messages from external objects deal with what
has been called the temporal correctness of the system [Shaw et. al. 85]. For systems
constructed using our paradigms, many of the temporal correctness issues have been
abstracted out of the discussion by our semantic model. However, note that there are other
issues of logical correctness that also involve "real-time" but cannot be answered by the
language semantics directly. For example it is not clear at this point what the precision of

the stopwatch is. Although we will not discuss it, this can be determined by techniques
employed during the temporal verification process that follows.

4. Temporal Verification and Run-Time System Design

The goal of the temporal verification process is to determine if under all circumstances, an
implementation of a system constructed by following our model will be faithful to its
semantics. By all circumstances we mean under all conditions wherein messages from the
external world do not violate their stated worst case separation times. The result of this
portion of the development process is a boolean answer. The system under examination
will either always be semantically correct or it may not be. It is believed that this
verification process can be shown to be optimal in the sense if there exists a method for
correctly implementing an instance of our model, then the temporal verification process will
succeed on that instance.

Temporal verification takes place during the semantic analysis of the program. There are
essentially two classes of problems it is trying to solve. The first deals with "temporal
programming errors” that are independent of a program's implementation (static analysis).
The second addresses the run-time system's ability to schedule an implementation of the
program on a set of processors so that the semantics of the program can be realized
(dynamic analysis).

4.1. Process Graph Construction and Static Analysis

For both analysis problems, the program is represented by its process communication
graph. The process communication graph is derived from the the structural diagram of the
system (e.g., the figures constructed using our graphical design notation) by striping away
the object boundaries and replicating channels with multiple senders across each sender.
For example, the process graph for our simple stopwatch is shown below in Figure 4.
Nodes in the graph represent processes and edges represents message paths (channels).
Edges are labeled with values that represent the worst case (fastest) message transmission
rate possible on the corresponding channel. Initially, the graph contains only message
transmission rate information for channels whose senders are external processes. These
initial values r;, are computed from the minimum message separation times, p;, that were
required to be provided for each external object (device).

The first step in the static analysis is to label all edges in the graph. This is done in two
phases. First, for each process the code is analyzed to determine its worst case
transmission rate on all channels that it sends messages. This rate will be expressed as a
function of the process's activation rate. Note that since processes are restricted to emitting
at most one message per channel per activation, these functions f{x)=y are bounded above
by the identity function /(x)=x, and below by the zero function Z(x)=0. In the second
phase, activation rates are determined by starting at the sources of the graph - external
processes whose transmission rates are known - and evaluating the transmission rate
function(s) for each node we encounter as we traverse the graph.

Int
Handler

Timer
Process

Current
Time

Display

Diepay Process

Driver

Process

Figure 4

For example, with the exception of the display driver process, each process in the
stopwatch example emits one message during each activation; the transmission rate function
for each process is therefore the identity function. Recall that we (arbitrarily) designed the
stopwatch to display the elapsed time every other button press (one press starts the watch,
the next stops it and displays the time). Therefore the display driver process emits one
message to the time server process on every activation but only one message every other
activation to the display process. The complete process graph for the program is as shown

in Figure 5%.
(fix) = x)

Int
Handler

Timer
Process

Current
Time

Time
Server

1
2’

Display
Process

Button
Process

Display
Driver

(fx) = $%)

Figure S

T Given this graph, one can determine bounds for the precision of the stopwatch. However, this analysis is
beyond the scope of this paper.

Now consider the more complex example shown below in Figure 6. This is a design for a
simplistic air traffic monitoring system. Radio messages announce the arrival of new
aircraft into the airspace. The Dispatcher object receives these messages and activates one
of two Tracker objects. Once activated, a tracker queries a Radar object to get positional
information on its aircraft. This information is deposited in the Track File data base object.
It is possible that a response from the Radar object may indicate that more than one aircraft
has been found in a tracker's airspace. In this case the tracker informs the Dispatcher that a
UFO has been found. The Dispatcher will then assign another tracker to the UFO.
Periodically, a Display Driver object is awoken and will display information from the Track
File on a display. This system has been designed to track no more than two aircraft
simultaneously.

Radar
Device

Input
Process

Tracker 1 Tracker 2

Tracker
Process

Track File

Update
Process

Radio
Receiver

Input
Process

Starter

Process Display Display
Driver Device

Timer

Input ake: Driver : D Output
Process i g Process

T The fact that the internal channels NewTrack in the Dispatcher object, and ReadWrite in the TrackFile
object, have been drawn as leaving and then re-entering the enclosing object is nor significant.

The process graph for this example is shown in Figure 7. The temporal analysis is now
more complex since there is a cycle in the graph that includes nodes Starter process,
Tracker process, and UFO process. It is possible that given the code of these processes,
there may be no unique solution to the transmission rate function along the channel from
UFO process to Starter process. If this is the case then we say the cycle is unstable and the
program will be rejected due to a temporal programming error.” The programmer has
implemented the temporal equivalent of an infinite loop: a feedback loop.

Tracker1
Process

fU(x)

Arrival
Process

Radar
Driver

UFO
Process

Tracker?
Process

Get Info

Radar
Process

Process

Process

Display

Display
Driver

Process

Figure 7
To determine if the cycle is stable, we compute the transmission rate functions as before.
Note that for processes such as Starter and UFO that have multiple senders, their activation

rate is the sum of their senders' message transmission rates. In this example we need to
determine if the equation

y =fulx; +x2)
= ful ful fsi(re+y) + fool fsa(rety)))
has a unique solution. In this example we may reasonably assume that f;;(x) = fi(x) = ;—Zl-x,

and that fy(x) = x. This leaves us with y expressed in terms of the worst case expected rate
with which UFOs are found. Further assuming that f;;(x) = fi3(x) (call this fi(x)) we have

Y =ful 264 Hrty))

=2f(§(rr+y))

10

This equation in fact can be estimated by

y S2I(Hrery))=2(Hr+y))
<re+y

Thus if fi(x) is the identity function, we have y = r,+y which has no solution since we
assume r,is non-zero. Hence for the given transmission rate functions, it can be shown
that the cycle will be stable if f{x) has constant slope and is less than the identity function.

For example if we have fi(x) = -1-10—5x, then y = 2(fi{ é—(r,+y)))= 1—3-5(7‘,+y) which is just y

= 5—;—;. We can see that in addition to identifying temporal programming errors, this rate

analysis can also be used to determine theoretical bounds for rate functions that correspond
to processes whose expected behavior may be unknown.

Note that had we treated f;;(x) and fi»(x) separately, the analysis would have been slightly
more complex since we would have had to now solve the system of linear equations
(assuming fy(x), fs1(x), and f;o(x) as before):

x; = ful flg(rr + fulx1+x2)))
= ful é(reXp+x2)),
x2 = fol é‘(rr+ fulx1+x2)))

= fu é(rrtxp+xz)).

A final class of cycles that are disallowed are those involving only synchronous messages.
This corresponds to indirect recursion and is disallowed to simplify the following execution
cost analysis discussed below. If recursion is desired then it is suggested that the
programmer implement it as an iteration. It is conceivable that this restriction could be
relaxed in the future with the addition of syntax to avoid unbounded recursion.

4.2. Run-Time Analysis

This portion of the temporal verification process is a decision procedure that determines if it
is possible to schedule the program represented by the process graph so that all processes
will receive all messages that are sent to them. This decision procedure will necessarily
require detailed information about the run-time system, the target architecture, and the
timing properties of processes external to the system. Throughout this section we assume a
shared memory architecture.

The run-time analysis has its foundations in deterministic scheduling theory. At this stage a
program is represented as a network of processes that activated periodically with (assumed)
known worst case cost. Our language's paradigm of processes and channels leads to a
- complete specification of the entire scheduling problem by four classes of problems. These
are: the single producerisingle consumer (SP/SC) process problem; the multiple
producer/single consumer (MP/SC) process problem; the synchronous single

11

producer/single consumer (sync-SP/SC) process problem; and the synchronous multiple
producer/single consumer (sync-MP/SC) problem. The first two problems deal with
determining if a group of processes meet stated conditions for schedulability. The last two
problem deals with an aspect of determining an upper bound for a process's execution
time.

An SP/SC process is one which is activated by only one asynchronous sender. An MP/SC
process is one which is activated by multiple asynchronous senders. For example, in
Figure 6, the Starter, and UFO processes in the Dispatcher object are MP/SC processes,
while the Tracker processes are SP/SC. Similarly, a sync-SP/SC process is one which is
activated synchronously by only one sender and a sync-MP/SC process is one which is
activated synchronously by multiple senders. In figure 6, the Data Store process in the
Track File object and the Driver process in the Radar Driver object are sync-MP/SC
processes while the Get Info process in the Track File object is a sync-SP/SC process.

4.2.1. Schedulability Analysis

The entire SP/SC process group can be more formally characterized as a set Tspsc, of n
independent processes, each with known worst case execution time ¢;, and activation rate 7;
as shown in Figure 8. The determination of the worst case execution time for a process is
addressed below. The tasks in Tgp;sc can be mapped onto an equivalent set of periodic
tasks with uniform periods. The simplest optimal solution to this problem is to employ n
processors and dedicate a processor to each process. In this case the processes are

schedulable if and only if p; > ¢; for all i in Tsp;sc (where p; = ;1-;). Given fewer than n

processors, we note that this task set can also be scheduled optimally (in the sense of [Mok
83]) on a set of shared processors using the unit-time preemption, least laxity algorithm. In
this case the processes are schedulable if and only if

n

§ﬁ<k
i"‘ b4

i=0

where k is the number of processors. We have been working on a refinement of this
algorithm which should lower its overhead.

I 1
Tspisc = {(;;61), (,12-,62), (;:::Cn)}

Figure 8

For the MP/SC process group we will deal with each process separately. Each process, f;,
in the MP/SC process group may be formally characterized as a set Typssc; of n identical,
dependent processes with known worst case activation rate and identical worst case

12

execution time as shown in Figure 9. Note that these n processes are all conceptually
executing the same code. Hence to ensure the consistency of the message consuming
object, processing of a message at a MP/SC process will constitute a critical section. An
implication of this is that this scheduling problem is an inherent uniprocessor problem.
Adding additional processes to this problem will not improve its performance. For this
reason we have limited our attention to uniprocessor algorithms. Presently we have
developed an algorithm to schedule these processes and are actively working on a proof of
its optimality.

)]]
Typisci = {(;‘1'»(3:'): (;2-,65), (;;,Cz)}

Figure 9
4.2.2. Cost Analysis

In both the single and multiple producer process groups above we have stated that their
worst case execution time was known. Part of the execution time, C¢ode, 1s determined by
the sequential code contained within the individual process. We intend to derive the worst
case execution time for this code from bounds on program statements. Recall that we
required all statements in the sequential language employed to have statically determinable
execution times. The remainder of an SP/SC or MP/SC process's execution time, Cgelay, is
the time spent waiting for the reply to messages sent synchronously to other processes. If
a process sends a message to a sync-SP/SC process, then one may compute the waiting
time of the sender by "in-lining" (inserting) the sync-SP/SC process's code into that of the
sender. The sync-MP/SC process problem is accounting for the delay incurred when
sending synchronous messages to processes which have multiple senders. This problem is
also currently under investigation.

When presenting the semantics of our message passing system (Section 3.2) we remarked
that synchronous and asynchronous channels were semantically equivalent. The effect of
using one channel type versus the other can be seen by examining the execution time cost
for the channel's sender(s). Consider the scenario shown in Figure 10. In either case,
irrespective of the channel type, process P has an execution time component Ccode. In the
asynchronous case, the total execution time cost for P is just ¢code. However, for the
synchronous case, the total execution time cost for P has the additional cgeqy cOmponent.
This additional cost in the synchronous case may cause the decision procedure from the
previous section to fail. This is the basis for our remark that one may not be able to verify
a previously verified program whose asynchronous channels have changes to synchronous
one.

13

a) Asynchronous case b) Synchronous case

Two semantically equivalent programs.

Figure 10

5. Research Plan

The main focus of our research in the near future will be on refining and formalizing our
programming model. To demonstrate the practicality of this work, we also plan to
construct a small prototype programming system. To accomplish these goals we have laid
out the steps listed below.

5.1. Programming Model

» Model Refinements - More study of the foundations of our programming model is
needed. A more in depth analysis of related notations such as timed petri nets, data
flow, and single assignment languages is in order.

» Model Expressiveness - Throughout the course of this research it will be incumbent
upon us to demonstrate that our programming notation is convenient and expressive
enough to construct programs of reasonable length and complexity. At a minimum
we believe that one should be able to construct programs, subject to the constraints
noted in Section 4, that can be expressed as general graphs. Indeed we have
experimented with paper designs for programming language solutions to a variety
of producer/consumer problems which we feel are endemic to many real-time
applications.

+ Optimality Assertions - Our model has motivated a particular decomposition into a
set of scheduling problems. We need to show both that this decomposition is
correct and that if we are unable to solve these scheduling problems for a particular
instance of the model, then no other decomposition can satisfy the semantics of the
model. An immediate first sub-problem to address is to complete the optimality
proofs for the scheduling algorithms developed for Section 4.2.

5.2. Prototype Construction

Although the proposed language system could be implemented on almost any conventional
architecture, we have chosen a shared memory multiprocessor for a prototype
implementation. There are several reasons for this. It is expected that our worst case style
of temporal analysis will lead to systems with necessarily pessimistic performance

14

requirements. A potential problem with this is that applications may find that they cannot
be verified for a uniprocessor implementation. One way to mitigate this problem is to
exploit the parallelism in the language and employ several processors in the execution of the
program. We have chosen a tightly coupled architecture because it is more amenable to
existing optimal scheduling theory. This theory requires that processors always execute the
globally optimal next job at each scheduling opportunity.

Although listed individually, each component of the research clearly interacts with other
components. Thus rather than solving one problem completely, we will work
incrementally on each in concert with the others.

* Language Design - While the fundamentals of the language have been established,
other issues such as the syntax have not received much attention. For a prototype
we will most likely adopt a rather restrictive syntax in order to simplify the
verification process.

* Run-Time System construction - A run-time system that implements the scheduling
algorithms from Section 4.2 needs to be constructed. Both the key feature and the
key drawback of our run-time system will be its reliance on a central process ready
queue. A central, ordered queue will be required in order to achieve a notion of
optimality in our implementation. A worrisome problem, however, is that since we
are scheduling processes that are as lightweight as, for example, a small procedure
call, access to this queue may likely become the bottleneck of the system. Previous
design work with a centralized multiprocessor scheduler has shown us that under
certain circumstances efficient dispatching is indeed possible [Baker & Jeffay 86].

A prototype run-time system is envisioned for the short term wherein each process
runs on a dedicated processor.

+ Compiler construction - It is envisioned that a compiler for our language could be
rapidly constructed. Most likely this compiler would translate our language into a
conventional high-level sequential language that would make procedure calls to our
run-time system. Actual machine code would be generated by an existing compiler
for our target language.

+ Temporal Verification Processor - Recall that temporal verification occurs in two
phases. In the structural verification phase, the verification processor must
construct the process graph, determine the transmission rate functions for each
process and look for unstable or recursive cycles. The second, machine dependent
phase, must determine the (worst case) cost of processing a message for each
process. Given the processing costs and message arrival rates, it must then apply a
decision procedure specific to the scheduling algorithm used to determine if all tasks
can be scheduled in real-time. Another dimension to the cost analysis problem is
our ability to account for whatever overhead the run-time system imposes on
programs.

+ Simulation Experiments - Since we have used the same abstractions to speak about
external processes as we have internal processes, a prototype multiprocessor
system could use a combination of dedicated internal processes and hardware timers
to simulate the behavior of arbitrary external devices.

15

6. Objectives and Contributions

We see our research as having the potential to make contributions in the following areas.

+ A programming model capable of automatic verification of adherence of timing

constraints. - Given a target machine and run-time system, programs can be
temporally verified solely by an examination of their text.

* Design paradigms for representation of real-time problems - Our paradigms of real-

time producer/consumer interactions could be used as a simple yet powerful
notation for representing and reasoning about real-time problems and constraints.

* Creation of an optimal real-time computing environment. - If our verification
procedure fails, then it is not possible to schedule a program with the same process
structure under any discipline.

* Practical results in real-time scheduling theory. - The development of optimal and
near optimal scheduling algorithms for general real-time process definitions in a
multiprocessor environment.

+ Empirical results of the practicality of employing the worst case analysis common in

real-time systems. - This has many facets in our project. Among them are the
ability to determine the worst case behavior of sequential code fragments (static
analysis). We need also determine the worst case behavior of ordinary code in a
shared memory multiprocessor environment (dynamic analysis). This would
include accounting for such factors as pipelining, memory/bus contention and
caching. A useful result would be to measure experimentally the deviation between
worst case and average (experienced) case. A further investigation might lead to the
formulation of architectural features or requirements for real-time computing based
on worst case analysis.

16

7. References

[Baker & Jeffay 86]
Baker, T.P., Jeffay, K., A Lace for Ada’s Corset, University of
Washington Department of Computer Science Technical Report TR 86-09-
06, October 1986.

[Berry & Cosserat 85]
Berry, G., Cosserat, L., The ESTEREL Synchronous Programming
Language and its Mathematical Semantics, Lecture Notes in Computer
Science, Vol 197 (1985) pp. 389-448.

[Kligerman & Stoyenko 86].
Kligerman, E., Stoyenko, A.D., Real-Time Euclid: A Language for
Reliable Real-Time Systems, IEEE TOSE Vol. SE-12, No. 9 (Sept. 1986),
941-949.

[Lampson & Redell 80]
Lampson, B.W., Redell, D.W., Experience with Processes and Monitors in
Mesa, CACM, Vol. 23, No. 2 (February 1980), pp. 105-117.

[Liu & Layland 73]
Liu, C.L., Layland, J.W., Scheduling Algorithms for Multiprogramming in
a Hard-Real-Time Environment, JACM, Vol. 20, No.1 (January 1973), pp.
46-61.

[Mok 83] Mok, A.K., Fundamental Design Problems of Distributed Systems for the
Hard Real-Time Environment, MIT Laboratory for Computer Science
Technical Report (Ph.D. Thesis) #MIT/LCS/TR-297, 1983.

[Shaw et. al. 85]
Shaw, A.C., Binding, C., Hu, W.L., Jeffay, K., Research in Real-Time
Systems, IEEE Third Workshop in Real-Time Operating Systems, Boston,
MA, February 1986 (also available as University of Washin gton
Department of Computer Science Technical Report TR-85-12-05 (December
1985)).

[Shaw 87] Shaw, A.C., Reasoning About Time in Higher-Level Language Software,
University of Washington Department of Computer Science Technical
Report TR-87-08-05 (August 1987).

[US DoD 83] Reference Manual for the Ada Programming Language, ANSI /Military
standard MIL-STD-1815A, US DoD, January 1983.

[Wirth 77] Wirth, N., Toward a discipline of real-time programming., CACM Vol. 20,
No. 8 (Aug. 1977), 577-583.

