Software Engineering of Real-Time
Operating Systems*

Alan Shaw
Kevin Jeffay
Department of Computer Science, FR-35
University of Washington
Seattle, WA 98195

Technical Report 88-01-01
January 1988

Abstract

This paper is a slightly revised and updated version of a research proposal submitted to the
National Science Foundation in fall of 1986 and funded in fall 1987. The research covers
general topics in software engineering, such as programming-in-the-large, and specific
areas in real-time processing. We are developing:

1. a module structuring and interface methodology. This is based on an
acyclic graph model where the nodes represent modules (restricted to
processes and abstract data types) and the edges denote procedure import
and export relations. The scheme is simple, is applicable to "low-level"”
hardware/software interfaces as well as higher-level software abstractions,
and is intended to permit the analysis of timing behavior.

* This research was supported in part by the National Science Foundation under grant CCR-8700435 and by
the Washington Technology Center.



2. a prototype for real-time operating systems design, involving libraries of
reusable components. We are identifying, designing, and building a
variety of useful components and structures, such as interrupt-handlers,
critical section locking mechanisms, message passing objects, timers,
schedulers, input-output systems, cyclic executives, and producer-
consumer applications.

3. a graphics front end for interacting with designs. This is essentially a
graph editor that permits the construction, modification, and annotation of
our module structures, including the association of modules with their
code files. The design will be based on earlier experience with a first
prototype.

Initially, we expect to study and construct modules for a uniform shared-memory
multiprocessor environment. Some emphasis is being given to timing predictability and the
exploitation of concurrency.



Software Engineering of Real-Time Operating Systems

1. The Problem and Our Approach

The research is concerned with methods and tools for generating real-time operating
systems. This area of software systems has received relatively little research attention in
the past in comparison with general purpose operating systems. The situation has changed
in recent years, however, primarily because of the widespread applications of real-time
systems, the international interest and activity in the Ada programming language, and the
resulting recognition that the subject contained interesting, challenging, and important
research problems.

Typical applications include guidance and control in transportation systems (for example,
air traffic, avionics, train, and marine), robotics control software (for robots that perform
manufacturing and testing operations), and communications systems (for example,
telephone switching systems). Despite the existence of commercial real-time operating
systems and tool-kits, most of these applications require that the user "hand-craft" or even
write their own operating system to fit their needs. A major goal of this research is to
simplify this task by providing the technology to easily produce reusable, robust, efficient,
and timing predictable software.

Real-time systems have a number of features and requirements that distinguish them from
more conventional software and applications. The most important is the existence of strict
timing constraints; correct systems performance involves not only standard correctness
notions for software and hardware (e.g. computing the right answers) but also timing
correctness such as responding to external events within a specific time interval or meeting
given start and completion times for various applications processes. Another major feature
is parallelism; physical and logical concurrency is inherent in the applications and computer
environments, and concurrent processing is viewed as one of the principal methods for
improving timing performance. Other characteristics are the need for reliability and fault
tolerance, stand-alone and applications-specific hardware/software configurations, and
difficult but critical pre-testing and certification prior to delivery.

Several approaches to real-time operating system design have been identified. One set of
methods, based on the notion of interacting processes, implements the generic operating
system tasking model and uses high-level concurrency and synchronization constructs,
such as processes, monitors, rendezvous, and condition variables. This model may be
implemented within concurrent programming languages such as Ada [Ada 83] or Modula-1
[Wirth 77], where the run-time support for the language is essentially the operating system.
An alternative method has been to provide a library of concurrency primitives that can be

1



invoked from a conventional sequential programming language; this "tool-kit" idea is found
in many commercial real-time development systems, such as iRMX 86 [Intel 82] and
VAXElan [DEC 83]. A second set of methods, which we call slice-based, deals explicitly
with processor scheduling and time, by decomposing tasks into atomic schedulable units
termed slices, chunks, or strips [e.g. Orn et. al 75, Donner 84, Baker and Scallon 86].
Here, the operating system is typically a cyclic executive that employs static table-driven
schedules to dispatch slices so that periodic and sporadic (i.e. aperiodic) timing constraints
are met [Mok 83]. One goal of our real-time systems research is to combine the flexibility,
elegance, and generality of the concurrent programming approach with the explicit
scheduling, timing predictability, and efficiency of the lower-level slice methodology
[Shaw 86].

Our proposed research involves the design and development of libraries of reusable
software components and software structures, that can be configured to produce real-time
operating systems for particular applications. The work covers topics in software
engineering, programming-in-the-large, and real-time processing. Specifically, we are
developing:

1. a module structuring, interconnection, and interface methodology. This is
based on an acyclic graph model where the nodes represent modules
(restricted to processes and abstract data types) and the edges denote
procedure import and export relations.

2. a prototype for real-time operating systems design, involving libraries of
reusable components. Here, we wish to identify, design, and build a
variety of useful components and structures, such as interrupt handlers,
critical section locking mechanisms, message passing, timers, schedulers,
input-output systems, cyclic executives, and producer-consumer
applications.

3. a graphics front end for interacting with designs. This is essentially a
graph editor that permits the construction, modification, and annotation of
our module structures, including the association of modules with their code
files.

Initially, we expect to study and construct modules for a uniform shared-memory
multiprocessor environment. We will be emphasizing timing predictability and the
exploitation of concurrency. The research should be applicable not only to the real-time
operating systems area but also to more general software engineering issues related to, for
example, reusability, module definition methods, interconnection schemes, and naming
problems.

The next section describes some related work. Section 3 then presents our research in
more detail. Section 4 outlines our plan to accomplish this work.

2. Related Work

We briefly describe past work that is related to the proposed research or that has influenced
it in the three areas listed in the last section.



Techniques for defining and interconnecting modules for real-time systems have been
reported from several development and research projects, including the A-7 project by
Parnas and his colleagues [e.g. Parnas et. al 85], the DARTS methodology [Gomaa 84],
the Mascot method used in the U.K. [Simpson and Jackson 79, Mascot 80], and the GEM
system [Schwan et. al 85]. Parnas distinguishes three types of software components and
structures: modules (sets of related programs acting as a unit of work for a programmer or
team), processes (a run-time unit which may involve parts of one or more modules), and
programs that are related by a "uses" structure. Modules are organized in a tree hierarchy,
and are based on Parnas' information hiding principle [Parnas 72]. It is argued that this
modular approach to program design is a significant and effective design tool (when
accompanied by documentation in the form of a module guide) and that it yields reusable
software.

In DARTS, which is a complete software development methodology for real-time systems
[Gomaa 84, 86], modules are used as the components of processes ("tasks") and as the
means for implementing process communication and synchronization ("task interfaces", in
Gomaa's terminology). A process is composed of an acyclic structure of modules;
modules may also be shared across processes. The scheme was used successfully in two
projects, a robot controller and a vision system, and has been particularly useful for
incremental development and prototyping. The Mascot approach decomposes a system into
processes, channels, and data repositories called "pools”, where processes employ
message-passing channels to communicate with each other and with input-output activities.
This model, which appears attractive because of its cleanliness and simplicity, has
apparently been the basis for a number of military systems in the U.K.

Historically, Parnas' research on modularization, information hiding, and hierarchies has
influenced much recent software engineering work. It lead to the idea of "programming-in-
the-large", defined in a widely referenced paper by [DeRemer and Kron 76]. For our
research, the notions of module interfaces and interconnection languages [e.g. Tic 80] are
most significant, where the interfaces of components are defined by the "resources" that the
module imports (i.e. requires from other modules) and exports (i.e. makes available to
other components). These ideas have also been implemented in contemporary
programming languages, notably as part of the module in Mesa [e.g. Lampson and Redell
801, package in Ada [Ada 83], and module in Modula-2 [Wirth 82].

Many of the works cited above and in the Introduction also have proposed a variety of
different components and structures for real-time operating systems. In addition to these,
there are software mechanisms based on some relatively unknown but very useful
synchronization primitives [Faulk and Parnas 83], abstractions implemented in interesting
research systems such as Thoth [Cheriton et. al 79], and current developments for Ada run-
time environments [e.g. Baker and Jeffay 87]. The design philosophy and some of the
ideas in the FAMOS project from the mid 1970's are also related to our work, in particular,
their structuring of a family of operating systems using common components [Habermann
et. al 76]. Our goals are also similar to those of the Choices project which aims to build an
extensible family of real-time operating systems using the ideas of class hierarchy and
inheritance [Campbell et. al. 87]. While concurrency seems to be handled well, at least
logically, few systems provide higher-level modules for explicitly dealing with time and
assuring timing predictability.

The third area of our proposed research, i.e. the construction of interactive systems that
permit a designer to edit and manipulate graphical representations of systems at various
levels, has long been attractive but is still in its infancy [e.g. IEEE 85]. For defining and
manipulating networks of program modules, many of the ideas in the Pegasus system seem
particularly useful, especially their methods for refining and abstracting nodes and edges of



the interconnection graph, for displaying the graph, and for associating the represented
program code with the displayed elements [Moriconi and Hare 85]. The analog model
implemented in the STILE system for programming real-time applications provides a
particularly simple, but perhaps restricted, set of primitive entities (processes with "ports”
for communications via "links") [Brown and Weide 84]; this graphical programming
system, still under development, takes a data flow approach, and appears applicable to
relatively small control problems. Another project involving a graphical system for
interconnecting modules is reported in [DeMarco and Soceneantu 84]: the interest here lies
mainly in their two-dimensional generalization of UNIX pipes.

3. Proposed Research

In order to handle the complexities of engineering real-time software, our philosophy is to
take the simplest possible approach and model that is compatible with producing efficient,
predictable, robust, maintainable, and reusable code. Thus, for example, we would like
our software objects to be static, so that compile-time modules map directly to the run-time
objects. Hierarchical structures of components are preferred so that top-down "divide and
rule” strategies can be employed and to reflect module refinements and abstractions. For
the most part, it will be assumed that code is permanently stored in main memory (e. g. no
swapping); operating system issues related to storage management for dynamic, virtual
memory systems will not be addressed because these systems do not normally lend
themselves to timing predictability. Some emphasis will be placed on lower level kernel
mechanisms in the operating system related to time control, scheduling, locking, and
synchronization, since these facilities often determine real-time behavior. We have had
some success in using our flow expression notation as a formal scheme for describing and
understanding software architectures for concurrent systems [e.g. Shaw 78, Chi and Shaw
86] and would continue to use this method where appropriate.

3.1 Module Definitions, Interfaces, and Hierarchies

We assume only two kinds of components: process modules and abstract data type (ADT)
modules. Processes are the active entities in the system and have their conventional
meaning; each process corresponds to a sequential program with an associated real or
virtual processor. An ADT is an encapsulated data object with an associated set of "public"
access procedures; the object can only be accessed through these procedures. Initially,
these objects will be static, with modules defining instances rather than classes; i.e. each
instance of a process or ADT is in one-to-one correspondence with its code.

An ADT module exports its access procedures for possible use by other modules and may
import ADT modules or particular procedures from ADT modules; if an entire module is
imported, then all public procedures of that module are available for use by the importer. A
process exports nothing and may import one or more procedures from ADTs. Process
communication thus occurs through ADT modules. Procedure and module import/export is
the module interface scheme that we propose to use in our work.

We hope that the module structure can be restricted to an acyclic directed graph, where the

nodes are modules and the edges represent the "import" relation; i.e. an edge directed from
module M to M3 indicates that M; imports Mj. Conceptually the lowest levels of the



hierarchy will define the real or abstract machine architecture of the system. At the highest
level, the "roots" of the hierarchy, will be the process modules. The structure is a
hierarchy rather than a strict tree since we wish to permit sharing of modules.

These ideas are illustrated in the hypothetical designs of Figures 1 and 2. Figure 1 shows a
simple cyclic executive process responsible for scheduling n User processes by giving each
1/n th of a time interval in a round-robin fashion. (In this case, our executive is identical to
a simple time-sharing system scheduler.) We represent conceptually the unprotected
machine by an ADT, and the protected clock and interrupt registers by separate process and
ADT modules respectively. The interrupt from the hardware Clock process, labeled
"Tick", is modeled as a procedure call to the Interrupt Handler ADT. Figure 2 contains a
producer-consumer design with preemptive scheduling; at the highest level, the Buffer
Manager ADT exports the abstractions of two procedures Get and Put as shown. Input-
output handling is based roughly on the approach used in Modula-1.

Based on some paper experiments and the analysis of some local software, we believe that
this model for components is suitable for real-time operating systems and has the
advantages of simplicity and flexibility. It is simpler than, for example, Parnas' more
general scheme in that it combines processes, ADTs, modules, and the import/export
relation. It appears more flexible than either the DARTS or Mascot methods in that the
synchronization, locking, communications, and scheduling mechanisms can be arbitrarily
defined through ADTs to suit the needs of the particular system. A particularly pleasing
aspect is that the process/ADT components appear convenient and suitable for treating
interfaces at the hardware architectural level - for defining "low-level" kernel software and
for describing hardware interfaces connected to a kernel.

For our research, we propose to develop the above model in conjunction with the module
designs and implementations described in the next subsection. Timing behavior will be
incorporated by associating timing properties with the procedures of the ADTs and by
synchronizing modules with various predictable software clocks. Methods for computing
worst and best case execution times will be further studied, using the assertional techniques
recently developed [Shaw 87]. We also hope to verify global system timing constraints
[Jeffay 871].

Much research is also necessary on the appropriate abstractions for hardware features that
directly impact software, such as input-output devices and processor-memory interfaces.
The intent is to describe these features as processes or ADTs also, as in Figures 1 and 2.
While we will not be concerned with the problems of dealing with several programming
languages at the same time, it is important that the modules and structures be translatable
into a contemporary language, such as Ada or Modula-2 or C, and that efficient code
results. For example, many of the lower level procedures may be most efficiently
implemented as macros and common procedure code may be shared such as in the two
semaphore modules of Figure 2. As part of this translation, we also need to study naming
problems, i.e. how to name modules, procedures, and parameters, and store and retrieve
different versions of them. In the longer term, it may be useful to include dynamic objects
(i.e. having process or ADT classes). (An even longer term research problem which we do
not propose here is to develop some practical methods for expressing the semantics of
modules.)



Process

Abstract Data Type (ADT)

O——-—-’
O

-

-fa oo
Y

PR R
- . - - -

.
»

/7

Means "A imports B"

Make_Ready
Make_Blocked

Software Hardware
Components Components

a) Graph Notation

Interrupt
Handler

Process
Scheduler/
Dispatcher

™ ow m W owf o w m w W W e mm

Interrupt Unprotected

Register

- w ow o W e -

i
L]
)
¥
3
§
i
Computer :
1
L]
%
¥
¥

b) Simple Cyclic Executive

Figure 1



Producer

Y

Put

P

Buffer Manager

d

Get

Empty Buffer
Semaphore

Full Buffer
Semaphore

Request_Input

Device Module

Make_Ready

Make Blocked
Enable_|Interrupts
Disable_interrupts

Lock
Unlock

Consumer

Lock Manager

Make_Ready
Make_ Blocked

J \

Device
Process

Deposit_Input

Preemptive Priority
Scheduler

>

<
Make_Ready

Make_Blocked

Interrupt
Handler

End_of Input_Interrupt

Hardware Device

DolO

PR W

interface

Figure 2

Producer/Consumer with Input

’External
Hardware

Device



3.2 Components and Structures for Real-Time Operating Systems

Our goal in this phase of the research is to design and construct a library of reusable
software components and structures for shared memory multiprocessor configurations,
based on the module definition and interconnection scheme described in the last section.
The modules should permit fast prototyping and testing of different software architectures
and parts for real-time operating systems. Within our current computing environment, we
would use Sun or microVAX workstations with the C programming language and UNIX
as the development system. The target system could be several Motorola 63000's and a
large common main store connected via a common bus; flexible programmable signal
generators, which produce periodic and sporadic real-time interrupts and data, would also
be connected to the bus to permit realistic simulation of an arbitrary external world. (The
signal generators could be identical to the processor boards used for the multiprocessor
function.)

First, it is necessary to identify useful objects and encapsulate them as processes or ADTs.
There is much experience in identifying similar kinds of objects at some of the higher levels
of abstraction of systems; for example, most texts on general purpose operating systems
contain descriptions of many components that are also applicable to the real-time area [e.g.
Bic and Shaw 88]. Producer-consumer subsystems and a rudimentary file system are
examples.

Detailed definitions of lower-level objects are not as common. One interestin g and practical
set of objects are those necessary to solve the critical section problem when strict timing
constraints are also included. The Lock Manager ADT in Figure 2, which provides lock
and unlock primitives to surround a critical section of code, could encapsulate one such set.
We have designed seven different ADTs for this problem and convinced ourselves that any
or all the seven may be used in a single shared-memory, multiprocessor system.

There are "spinning" (busy-wait) locks and "block" (suspend) locks that block their caller if
the lock is in use; within these, there are locks which permit preemption in the critical
section and those that do not. On a single machine in a multiprocessor configuration, there
is also a need for both busy-wait and suspend locks, which provide for preemption; there is
also a requirement for a single processor guaranteed immediate-entry lock (e.g., by
disabling interrupts).

The interest and challenge is to define ADTs for these that have predictable and fast
performance when concurrent access is made to the lock procedures. Aids in the form of
hardware instructions are significant at this level. The possibility of starvation on a "test-

and-set” loop is normally not acceptable in a hard real-time application and O(n2) time
guarantees, where n is the number of processors, are often too slow. The tinc/dect
instructions on the ICL2900 series computer [Keedy and Freisleben 85] appear to be a
good hardware basis for solving this problem, but more study and testing is necessary.
(tinc is an indivisible test and increment operation, and dect is a decrement followed by a
test).

Another fundamental set of lower level objects are clocks and timers that are connected to,
and abstractions of, hardware timers. In recent work, we have shown that a surprising (to
us) number of different software clocks may be useful for organizing and programming
real-time tasks [Shaw 86]. These include local (decentralized) and global clocks, clocks
with fixed interval ticks and those with variable interval ticks, and timers implementing a



broad range of tick granularities. We wish to develop these "logical" clock ideas further by
incorporating them into subsystem structures where convenient (for constraining timing
behavior), by comparing both ADT and process implementations, by linking them to
hardware timers to assure real-time correctness, and by searching for other useful logical
timing mechanisms. The use of these clocks is one way in which we hope to incorporate
time as a first class object in programs and help achieve timing predictability.

Other components and structures that require careful definition, analysis, and construction
are input-output subsystems, ADTs for process synchronization, preemptive and non-
preemptive schedulers (dispatchers), complete run-time systems, cyclic executives, and
interrupt-handler ADTs. Input-output is especially important since these modules connect
directly to the external environment where the real-time constraints of a problem are
ultimately determined. At least two common organizations need to be constructed and
evaluated. Both have been used in general purpose operating systems. One, implemented
in the Modula-1 language, associates a driver process with an input-output device, and user
requests pass through a special device monitor (Figure 2 illustrates this approach). The
second method just employs an encapsulated data object that offers input-output commands
to user processes and implements them directly; this is used, for example, in Concurrent
Pascal and Mesa. Also, interrupt handlers can be treated as either processes or ADTs.

Some general implementation issues were mentioned in Section 3.1. Others include how to
interchange functionally-similar components easily, so that many variations of a system
may be prototyped. For example, it should be easy to substitute a spinning lock ADT for a
suspend lock version, without changing the code of the user of the ADT; a preprocessor
may be written to handle this problem. We would also like to configure systems containing
different scheduling strategies for their subsystems; parts may be preemptive while others
are non-preemptive, parts may be scheduled according to static numerical priorities while
others are scheduled based on time (e.g. deadline scheduling), and we wish to have a cyclic
executive operating at the same time as a more conventional process scheduler.

3.3 A Graphics Editor For Software Architectures

The aim is to develop a graphical specification language for programming-in-the-large. By
this, we mean a set of two dimensional representations and methods to edit these
representations, that permit an interactive user to define and manipulate our software
modules and their structures.

At the user interface level, we expect the appearances of designs to be similar to those in
Figures 1 and 2. The system will be constructed within a multiple window environment so
as to permit a multiplicity of views. It should be possible to display (parts of) several
designs and/or parts of the same system simultaneously in different windows. Some
refinement and abstraction facilities will also be developed, permitting module structures to
be treated both as a unit and also in terms of its lower level constituents.

Not surprisingly, the editor will be based on an underlying graph model. Nodes
correspond to process and ADT modules, and edges denote import/export relations.
Because of our hierarchical organization principle, this graph is a directed acyclic graph
(dag). Several attributes will be associated with the edges and nodes, including their
graphic images and geometry, textual labels that identify the element, annotations that
describe their function and properties, and source code that refers to program files. A long
term storage system will be used to store and retrieve graphs and their attributes.



10

A prototype front end for a graph editor that is meant for this application has been
constructed as part of Binding's Ph.D. research [Binding 87]. One purpose of this
implementation is to test the features of a general purpose user interface tool kit that he has
built on a Sun workstation using Unix. The graph editor design allows a user to create,
delete, move, annotate, refine, and view our proposed images of nodes, edges, and graphs
in a system with an arbitrary number of overlapping windows for multiple views. The
Unix file system provides the long term storage. This system allowed some early
experimentation with user interface issues, such as the iconic representations for modules
and interconnected structures, menu and selection techniques for the editing operations, and
good ways to display and manipulate textual information associated with the graph.

There are many research problems connected with this part of the project. These include
some difficult front-end geometry and interface problems, such as how to remove, add, or
copy a subsystem (a subgraph) in an existing structure, how to drag or move parts of the
graph around a screen, and how to consistently reflect the results of geometric or layout
editing when several views of parts of the same structure are being changed at the same
time. At a higher level, it is important that consistency checks be made between the textual
code of each module with its definition of interfaces and the graphical representations; the
text should be consistent with the graph and vice versa. Naming, storing, and version
problems mentioned in the last section are clearly the same here. In fact, an overall
research goal is to maintain a different sort of consistency among the three phases of the
research: inevitable changes in the model, in the way components are defined, and in the
graphics front end must be accommodated and reflected in all three areas.

4. Research Plan and History

Our work on real-time systems started in summer 1984 with support from the Washington
Technology Center and Boeing Aerospace Corporation. The first tasks involved defining
the nature of real-time systems, and studying the software organizations and tools used in
various commercial and development systems. Some time was also spent investigating a
generic application that has all the features of the general problem area; here, we also built
some simple prototype software and a simulator for a variety of real-time scheduling
disciplines. The application is an air traffic monitoring system (ATM) that tracks and
communicates the position of all aircraft in a given airspace volume. In the actual ATM,
real-time inputs and outputs include radar signals and control, communications received
when new aircraft enter the volume and sent when aircraft leave the volume, operator input
for querying and controlling the system, and one or more screen displays showing aircraft
tracks and various textual data. These research efforts were summarized in [Shaw et. al
85], under the headings: timing specifications in concurrent programs, operating systems
and concurrent programming languages, programming-in-the-large, and
simulator/prototype implementations.

We plan to proceed as follows with the proposed research described in the last section. All
three parts (Section 3.1, 3.2, and 3.3) are mutually reinforcing and will be done in parallel.
We will continue to test the completeness and convenience of our module definition and
structuring scheme through paper experiments with real and hypothetical software. It is
also necessary to precisely specify the scheme with some form of machine processable
description language; a language that is simpler than but similar to a Modula-2 definition
module or an Ada package specification will be desi gned and implemented.



11

At the same time that we actually construct some of the higher and lower level modules and
structures mentioned in Section 3.2, we will have to establish some conventions for
interfaces for C-language versions of process and ADT modules, conventions for naming
library elements, and the translations into appropriate Unix file system implementations. A
lightweight process kernel will be built so that target machine processes can be efficiently
stored, suspended and made ready. The proposed graphics front end will initially be used
for documenting designs and will be based on a second version of the graph editor. One
part of the project will be to establish links between the code files for our modules and the
graph representations.

Many parts of this proposal are directed towards general software engineering problems.
The elements that make it specific to real-time operating systems are: process and ADT
modules are static, no virtual memory is assumed, a simple hierarchic structuring scheme (a
dag) is deemed sufficient, run-time code is mainly memory-resident, a simple but timing
predictable file system is adequate, many clock and timing tools (modules) are proposed,
some emphasis is given to low level but timing-critical components such as interrupt-
handlers, hardware architecture features are included in the process/ADT model, and
scheduling mechanisms are to be time-based, such as a cyclic executive, as well as priority-
based.



12

5. References

[Ada 83] Military Standard Ada Programming Language, ANSI/MIL-STD-1815A, U.S.
Dept. of Defense, Jan. 1983,

[Baker and Jeffay 87] T.P. Baker and K. Jeffay. Corset and Lace, Adopting Ada Runtime
Support to Real-Time Systems. Proc. of the 1987 IEEE Real-Time Systems Symp., San
Jose, CA, Dec. 1987, pp. 158-176.

[Baker and Scallon 85] T.P. Baker and G. Scallon. An architecture for real-time software
systems. TR85-06-04, Dept. of Computer Science, Univ. of Washington, Seattle, WA,
June 1985. (also published in IEEE Software, May 1986).

[Bic and Shaw 88] L. Bic and A. Shaw. The Logical Design of Operating Systems - 2nd
Edition. Prentice-Hall, 1988.

[Binding 87] C. Binding. The specification and implementation of a user interface
management system based on a uniform output model. TR87-10-02, Dept. of Computer
Science, Univ. of Washington, Seattle, WA, October 1987. (Ph.D. dissertation)

[Brown and Weide 84] M.E. Brown and B.W. Weide. Automating process-to-processor
mapping under real-time constraints. Proc. IEEE 1984 Real-Time Systems Symp., Austin,
TX, December 1984.

[Campbell et. al. 87] R. Campbell, G. Johnston, and V. Ruzzo. Choices (Class
Hierarchical Open Database for Custom Embedded Systems). Operating Systems Review,
Vol. 21, No. 3, July 1987, pp. 9-17.

[Cheriton et. al 79] D. Cheriton, M. Malcolm, L. Melen, and G. Sager. Thoth, a portable
real-time operating system. Comm. ACM 22, 2 (Feb. 1979), 105-115.

[Chi and Shaw 86] U.H. Chi and A. Shaw. Using flow expressions to specify timing
constraints in concurrent programs. TR86-05-03, Dept. of Computer Science, Univ. of
Washington, Seattle, WA, May 1986.

[DEC 831 VAXElan Technical Summary. Digital Equipment Corporation, Concord,
Mass., 1983.

[DeMarco and Soceneantu 84] SYNCRO: a dataflow command shell for the Lilith/Modula
computer. Proc. 7th Int. Conf. on Soft. Eng., IEEE Computer Society Press, 1984, pp.
207-213.

[DeRemer and Kron 76] F. DeRemer and H. Kron. Programming-in-the-large vs.
programming-in-the-small. IEEE Trans. on Soft. Eng. 2, 2 (June 1976), 80-86.

[Donner 84] M.D. Donner, Control of walking: local control and real-time systems.,
CMU-CS-84-121, Dept. of Computer Science, Carnegie-Mellon Univ., May 1984.
(Ph.D. dissertation).



13

[Faulk and Pamas 83] S.R. Faulk and D.L. Parnas. On the uses of synchronization in
hard-real-time systems. Proceedings of the IEEE Real-Time Systems Symposium,
Arlington, VA, 1983.

[Gomaa 84] H. Gomaa. A software design method for real-time systems. Comm. ACM
27, 9 (Sept. 1984), 938-949,

[Gomaa 86] H. Gomaa. Software development of real-time systems. Comm. ACM 29,7
(July 1986), 657-668.

[Habermann et. al 76] A.N. Habermann, L. Flon, and L. Cooprider. Modularization and
hierarchy in a family of operating systems. Comm ACM 19, 5 (May 1976), 266-272.

[IEEE 85] Visual Programming. Special Issue, [EEE Computer, August 1985.

[Intel 82] Introduction to the iRMX 86 Operating System. Intel Corporation, Santa Clara,
CA, 1982.

[Jeffay 87] K. Jeffay. Concurrent Programming with Time. TR87-10-03, Dept. of
Computer Science, Univ. of Washington, Seattle, WA, Oct. 1987.

[Keedy and Freisleben 85] J.L. Keedy and B. Freisleben. On the efficient use of
semaphore primitives. Information Processing Lerters 21, 1985, 199-205.

[Lampson and Redell 80] B.W. Lampson and D.W. Redell. Experience with processes
and monitors in Mesa, Comm. ACM 23, February 1980, 105-117.

[Mascot 80] Mascot Supplier Association. The Official Handbook of Mascor. Computing
Standards Section, Royal Signals and Radar Establishment, Worcestershire, UK, Dec.
1980.

[Mok 83] A.K. Mok. Fundamental design problems for distributed systems for the hard
real-time environment. MIT /LCS/TR-299, MIT, 1983. (Ph.D. dissertation).

[Moriconi and Hare 85] M. Moriconi and D. Hare. Visualizing program designs through
PegaSys. In [IEEE 85], 72-85.

[Orn et. al 75] S.M. Ornstein, W.R. Crowther, R.D. Kraley, A.M. Bressler, and F.E.
Heart. Pluribus - a reliable multiprocessor. Proc AFIPS 1975, Conf., 1975, pp. 551-559.

[Parnas 72] D. Parnas. On the criteria to be used in decomposing systems into modules.
Comm. ACM 15, 12 (Dec. 1972), 1053-1058.

[Parnas et. al 85] D.L. Parnas, P.C. Clements, and D.M. Weiss. The modular structure
of complex systems. IEEE Trans. on Soft. Eng. 11, 3 (March 1985), 259-266.

[Schwan et. al 85] K. Schwan, T. Bihari, B. Weide, and G. Taulbee. GEM: operating
system primitives for robotics and real-time control systems. OSU-CISRC-TR-85-4,
Computer and Information Science Research Center, The Ohio State Univ., Columbus,
Ohio, Feb. 1985.

[Shaw 78] A. Shaw. Software descriptions with flow expressions. IEEE Trans. on Soft.
Eng. 4, May 1978, 242-254.



14

[Shaw et. al 85] A. Shaw, C. Binding, W-L. Hu, and K. Jeffay. Research in real-time
systems. TR85-12-05, Dept. of Computer Science, Univ. of Washington, Seattle, WA,
Dec. 1985 (Presented at the IEEE Real-Time Systems Workshop, Boston, Feb. 1986).

[Shaw 86] A. Shaw. Software clocks, concurrent programming, and slice-based
scheduling. Proc. of the 1986 IEEE Real-Time Systems Symp., New Orleans, LA,
December 1986, pp. 14-18.

[Shaw 87] A. Shaw. Reasoning about time in higher-level language software. TR87-08-
05, Dept. of Computer Science, Univ of Washington, Seattle, WA, Aug. 1987. (To
appear in /EEE Trans. on Software Engineering.)

[Simpson and Jackson 791 H.R. Simpson and K.L. Jackson. Process synchronization in
Mascot. Compuz. J. 22, 4 (1979).

[Tic 80] W. Tichy. Software development control based on System structure description.
Ph.D. dissertation, Dept. of Computer Science, Carnegie-Mellon Univ., Jan. 1980.

[Wirth 77] N. Wirth. Toward a discipline of real-time programming. Comm. ACM 20, 8
(Aug. 1977), 577-583.

[Wirth 83] N. Wirth. Programming in Modula-2, 2nd edition. Springer-Verlag, N,
1983.

BRI ——



