On Optimal, Non-Preemptive
Scheduling of Periodic Tasks

Kevin Jeffay”
University of Washington
Department of Computer Science FR-35
Seattle, WA 98195

Technical Report 88-10-03
October 1988

* Supported in part by a Graduate Fellowship from the IBM Corporation, and in part by a grant from the
National Science Foundation (number CCR-8700435).

On Optimal, Non-Preemptive Scheduling of
Periodic Tasks

Kevin Jeffay”
University of Washington
Department of Computer Science FR-35
Seattle, WA 98195

October 1988

1. Overview

This note examines the problem of non-preemptively scheduling a set of real-time tasks on
a uniprocessor. In section two we present our real-time task model. Next we present a
non-preemptive Earliest Deadline First (EDF) scheduling algorithm and prove necessary
and sufficient conditions for the EDF algorithm to always schedule a set of real-time tasks
correctly. We also demonstrate that these conditions are aecessary for the correctness of
any non-preemptive algorithm which never unnecessarily idles the processor and therefore
establish the optimality of the non-preemptive EDF algorithm.

2. Real-Time Tasking Model

A real-time system is composed of a set of tasks r= {T=(si, cin p) IV, 1 i< n:
¢; € pi}, where

s; = Start time: the time of the first request for execution of task i.

¢; = Computational cost: the time to execute task i to completion on a
dedicated uniprocessor. We assume that this execution time is a
constant and that it is the same for all execution requests of T;.

p; = Period: the interval between requests for execution of task i. The
period is also assumed to be a constant.

We assume all tasks in our system are periodic. If a task :s periodic with period p and the
task makes its initial request for execution at time s, then the task will make its &% request
for execution exactly at time 5 + (k-1)p. Once activated, tasks make periodic requests for
execution forever. We assume all tasks are independent in the sense that their execution

* Supported in part by a Graduate Fellowship from the IBM Corporation, and in part by a grant from the
National Science Foundation (number CCR-8700435).

time requests are dependent only upon the time of their last request and not upon those of
any other task. We further assume that the starting times s of all tasks are unknown.

Throughout this paper we consider a discrete time model. In this domain we assume that
all the s;, ¢;, and p; are expressed as integer multiples of some basic indivisible time unit.
For convenience we also assume that our set of tasks is sorted in non-decreasing order by
period (p; 2 p; if i > /). The index of a task refers to its position in this sorted list.

Before presenting the non-preemptive EDF algorithm we first define what it means for an
algorithm to be correct. Given a set of tasks rand a scheduling algorithm A, we say A is
correct with respect to 7 if for all possible assignments to the s, every task T is guaranteed
to have completed its k% request for execution before the (k+1)* request is made. We
define a request interval for task T; to be an interval in real-time [si+(k-D)pi, si+kp; 1, for
some request number £.

3. The Non-Preemptive EDF Algorithm

The basic algorithm we consider is the non-preemptive Earliest Deadline First (EDF)
algorithm. Intuitively, a deadline for a task is a point in time before which the task must
complete its execution. For the periodic tasks in our model, each execution request will
have a distinct deadline Dy, = s;+kp; for the k% request for execution of task 7;. Prior to its
first request for execution at time s;, T; has no deadline (Do =), Similarly, a task has no
deadline during interval between the time a task has completed execution and the time that
task makes its next request for execution. We say task T; misses a deadline if there is some
request interval & for which 7; has not completed execution by time s;+4p; .

A high-level pseudo code version of the EDF scheduling algorithm is given below.
Although the initial starting time of each task is unknown, assume that there is some
clairvoyant process that assigns the correct initial starting times of each task in the
initialization loop below, This caveat has no bearing on the operation of the basic algorithm
and allows for a clearer presentation. Assume that the variable Time represents the true
value of real world time and that it is maintained by a separate, non-resource consuming
process.

At every scheduling point the EDF algorithm chooses the task whose deadline is closest to
the current point in time!. Once chosen for execution, a task is executed to completion
without preemption.

{

Ry = time of Task i's next reqguest

Dy = time for Task i's current deadline
Time = current value of the real-time clock

}

FOR i=1 TC n DO { Initialization }
Rit-—si
5
Di e'si pi
END FOR

1Throughout this paper the expression "task 7 is scheduled" means that task / commences execution.
Alternatively we could say task / is dispatched, initiated etc.

DO forever { Main scheduling loop }

4 € index of task fer whom Dy = MIN (Dy)
1skEn
Rkﬁrime
{ Assume 9§ = 0 if no such task exists.
Ties are broken by picking the task
with smallest index. 3

IF (j=0} THEN

delay until Time = MIN ({(Ry)
isisn
ELSE
Execute (T4)
Rj L Rj + pj
Dj “ Dj * Py { Logically, at this polnt Time has been "increased™ by ¢j }
END IF
END DO

With the exception of the delay statement in the main loop above, we assume that this
algorithm takes "no time" to execute in our discrete time system.

4. Analysis

We first note that our version of the non-preemptive EDF algorithm always schedules a
task if there is a task ready to execute at a scheduling point. A scheduling discipline which
intentionally idles the processor when there are are outstanding requests for the processor is
said to use inserted idle time [Conway et al. 67]. In this section we derive conditions
which ensure the correctness of the non-preemptive EDF algorithm on a uniprocessor, and
show the optimality of the non-preemptive EDF algorithm with respect to the class of non-
preemptive scheduling algorithms which do not use inserted idle time.

While we restrict ourselves to comparison against algorithms without inserted idle time
mainly for technical reasons in the proofs that follows, we are confident that this result is
useful and important. For example, in the important case where a task set fully utilizes the
processor, once all tasks become activated, it is obvious that if an algorithm ever idles the
processor it can never be cotrect.

The following theorem establishes necessary conditions for ensuring the correctness of any
non-preemptive discipline which does not use inserted idle time.

Theorem 1: Let ¢ be a set of real-time processes {1y, Tz, .., T»}, sorted in non-
decreasing order by period with unknown starting times. Let A be any non-preemptive,
scheduling discipline that correctly schedules ¢ without inserted idle time. Algorithm A
can be correct with respect to ¢ only if:

H
i=1

i1
2) Yk, 1gk<n: pp 2 MAX | ¢; + MAX -I o+ LM ci |l
ik 0<i<p;-pi Pj

j=1
Informally, condition (1) can be thought of as a requirement that the system not be
overloaded. If a real-time task T has a cost ¢ and period p, then % is the fraction of

processor time consumed by T over the lifetime of the system (i.e., the utilization of the
processor by T). The first condition simply stipulates that the total processor utilization
cannot exceed 1.0. The right hand side of the inequality in the second condition is an
accounting of the worst case blockage that can occur between the time a task makes a
request for execution and the time it is scheduled. If we think of a task's period as its
maximum tolerable latency for each request it makes, then condition (2) simply requires
that each task have a latency greater than or equal to the worst case blockage that it can
experience. The derivation of the worst case blockage is in the proofs below.

Proof: (By contradiction.)

We first show that condition (1) is necessary. Assume there exists a set of processes 7
with

which is scheduled correctly by algorithm A for any assignment of values to the s;.

For all i, et s; = 0 and let £ = LCM(p))!. Let u,,, be the total processor time consumed by =
in the interval [a,b] when scheduled by A. Consider the interval in time [0,7]. If algorithm
A schedules these tasks correctly then it must be the case that

Ug .t 2t

. I, . ..
Therefore since 7 ¢; is the total processor time spent on task in [0,7], we must have
i

n
Uy = E 'LC;' St
? pi
=1

However, this implies that

1 1 east Common Multiple.

which is a contradiction of our original assumption.

For condition (2), again assume is scheduled correctly by algorithm A for all possible
values of s;, but yet there exists a task Ty (k < n) such that

i1

pr < MAX|c¢; + MAX | -/ + Mcj .
ik 0<i<p,-—pk pj

j=1

Let i’ and I’ be values of i and ! respectfully that maximize the right hand side of the above
inequality. Letsy =0,and s;=1 for 1 <j<nj= ik Letsg=1-rp where ris the
largest possible integer such iﬂat I" - rpy > 0. This gives rise the pattern of task execution
requests shown below. (The shaded areas indicate the intervals in which each execution
request would be scheduled by the non-preemptive EDF algorithm.)

Task k misses
a deadline

* ; : e
0 h] f'-pk l' i'i"pk pi.

If A correctly schedules z, then it must be the case that in the interval [0,/"+pi], the total
processor time consumed is

i1

j : gl -1
Uo,l'spy z cp+ B—-}")'}"“““‘ Cj.

j=1

Now by our initial assumption,

i1
cp+ E Qf%i ¢ > pi+1,

J=1
and hence
Uolsp, > Pr+i.

However, this is impossible since the amount of processor time consumed in any given
interval cannot be larger than the length of the interval. Hence algorithm A could not have
possibly have correctly scheduled 7 with our chosen starting times. Therefore we again
have a contradiction of our original assumption.

We now demonstrate the optimality of the non-preemptive EDF discipline over all non-
preemptive disciplines that do not use inserted idle time. By optimal we mean that if any
non-preemptive algorithm that does not use inserted idle time can correctly schedule a set of
real-time tasks, then the non-preemptive EDF algorithm will also correctly schedule the
tasks. To prove optimality, we show that conditions (1) and (2) are sufficient for ensuring
the correctness of the non-preemptive EDF algorithm.

Theorem 2: Let r be a set of real-time processes {I'7, T2, .., Tn}, sorted in non-
decreasing order by period with unknown starting times. The non-preemptive EDF
discipline is correct with respect to 7 if conditions (1) and (2) from the previous theorem
hold.

Proof: (By contradiction.)

Assume the contrary, i.e., that conditions (1) and (2} from theorem 1 hold and yet there
exists a set of values for the s; such that a task T} that misses a deadline at some point in
time when 7 is scheduled by the non-preemptive EDF algorithm, Without loss of
generality, assume that T} is the first task to miss a deadline. (In the case of simultaneous
missed deadlines, let T be the task with smallest index.) Consider the first execution
request of T that misses a deadline. Let #; be the deadline of this request. For the
remaining tasks whose start times are less than g, either they have a deadline at ¢4 or they
have a execution request interval that contains #5.

Task k misses
a deadline

Time

For the tasks with request intervals that contain ¢4, we consider the following two cases:
either none of the request intervals that contain the point #4 are scheduled prior to g, or,
some of the request intervals are scheduled prior to ;.

Case 1: None of the request intervals that contain the point #, are scheduled prior to 7.

Let 7o be the end of the last period in which the processor was idle. If the processor has
never been idle let 5p = Q.

We begin by deriving a bound on the total processor demand in the interval [#g,t4]. Letdgp
be the processor demand required by 7 in the interval [a,b]. In the interval {#p.74], the total

processor time demand is
n
z : gz ~to
d;o,gd < L pj ‘J C}‘.
j=1

This bound is obtained as follows. Since each task scheduled in [#,24] either does or does
not have request intervals that contain one of the endpoints of the interval, we need only
consider the four patterns of execution requests shown below.

Completed exgcution Scheduled
priortot 0 after t ”

Time

A o, T T N

d

Since to was the end of the last idle period, any request interval that contains the point #
must have been scheduled and completed execution prior to fo. (If fp = O then there are no
such overlapping request intervals.) Also, by the premise of this case, all request intervals
that contain the point z are scheduled after 5. Therefore, each task T scheduled in {#p,74]
requires the processor for an amount of time less than or equal to

tq~tp
L————p J c.

Hence, in the interval [),4], the total processor time required by 7 is

n

E : t4 -1 ,
d,g,,d < L 7 _cho

j=1

Now since there is no idle period in [#y.1,] and since a task misses a deadline at #z, it must
be the case that

td 'fg < d;a,gd +

Hence we have

A
.
[
:E‘l,;
i
Nﬁ

f
14 -tp
iz ~fp < C; =
‘ 2[_ i 2
=1
=1 !

or simply
n
E tg -1
ta ~tp < - ;
- P!
J=1
n
C.
< (tg -1g) E =+
it Dj
J=1
However this implies that

fl
i< E.:...L.. R

z bj

Jj=1
which is a contradiction of condition (1).
Case 2: Some of the request intervals that contain the point #; are scheduled prior to Zg.
Let T; be a task who does not have a deadline at £4, and whose request interval that contains
t4is scheduled prior to 1. Letts=14-px (the point in time at which Ty makes its request
for execution that has deadline at z;). Let #s be the point in time at which T; makes its
request for execution that contains 7g.
Claim 1: 7; has a greater index than Ty (>).

Proof of claim: Assume that this is not the case, that is, { < k and T is a task with a
request interval containing #; that is scheduled prior to 7. If i <k, then p; < pi and hence
ts <ty < tz as shown below.

Ti
Tk somsms | [ASK K misses
a deadiine
Time } J } >

t to. ty

From the definition of T}, we know T; is scheduled during the interval [s,24). However,
note that T has a nearer deadline than T; throughout the interval [zs,4]. Therefore, by our
construction of the non-preemptive EDF discipline, Tx must have been scheduled, and
hence completed execution, before T; had been scheduled. Since T; is scheduled prior to
t4, Ty, must have completed execution before its deadline 7z Thisa contradiction since Ty
missed its deadline at ¢ A

Of all the tasks with request intervals that contain 74 which were scheduled prior to 4, let T;
be the task whose request interval that contains z; was scheduled last. Let 7; be the point in
time in which the request interval of T; that contains t4 is scheduled.

Claim 2: 1; < t,. (The request interval of T; that contains #; is scheduled before #,.)

Proof of claim: Again assume that this is not the case and that the request interval of T;
that contains #4 is scheduled after .

T 5 1ask K misses
K a deadline
T.
i
Time } } f i >

te. t, ot ty

In this case, we know 7 is scheduled during the interval [£,,t4). Again we note that Ty has
a nearer deadline than T; throughout the interval [#:,%4]. Therefore, by our construction of
the non-preemptive EDF discipline, 7% must have been scheduled, and hence completed
execution, before T; had been scheduled. Since T; is scheduled prior to 14, Ty must have
completed execution before its deadline 74 This a contradiction since T missed its deadline
at z4. A

Claim 3: Other than T;, no task which is scheduled in [#;,72] could have made a request
for execution at #;.

10

¥ E
Task k misses
adeadiine
T, |
Ti
Time } } } } >
te 1 tg ty

Proof of claim: Since T; is the last task with a request interval containing #; scheduled
prior to 1y, other than T}, every task scheduled in [#;,24] has a deadline at or before 1,
Therefore, if a task T}, that is scheduled in [#;,2;] had made a request for execution at #;, the
non-preemptive EDF discipline would have scheduled T; instead of T; at time #;. Since 7T;
was scheduled at 7;, we can conclude that no task with an cutstanding request for execution
whose deadline is less than or equal to #; could have made a request for execution atz;. A

Claim 4: No task with index greater than i is scheduled in the interval between the time
the request interval of T; that contains 2z is scheduled and #; (the interval [#;.241).

Proof of claim: Again, since T; is the last task with a request interval containing #4
scheduled prior to g, other than T, every task scheduled in [1;,t7] has a deadline at or
before t4. Let T;, where j > 1, be a task with a request interval that has a deadline
somewhere in the interval [#;,¢;]. Since t4- ; < p; S p;, the request interval of 7} that has a
deadline in the interval [z;,r;], must have started before zy. Therefore, since T; has a
deadline after 1,4, the EDF algorithm will not choose T; before 7; in the interval [#s,24].
Hence, it is not possible for a task with index greater than i to be scheduled in the interval
[1.t4]. A

Claim 5: There cannot have been any idle time in the interval [#5,24].
Proof of claim: Assume the contrary, that is, there exists at least one idle period in the
interval [#¢,t4]. In order for this to be the case, the idle period clearly must have occurred
after the execution request of T; that contains £, has completed execution. Let 7p be the end
of the last idle period that occurs in the interval [¢,75]. We know that

y<t+piSip=ig

From Claim 4 and the definition of T}, we must have

and

This gives us

which again implies that

i
1.
!_
Ry
S“l‘"’*
LY
‘_55

1A
-
R
Il
)
N

ta‘ “!0 < d’tt}-td .

This is a contradiction of condition (1).

A

Returning to the proof of Case 2, we will show that if T; is scheduled prior to 4, then there
must have existed enough processor time in [#5.74] to execute Ty. The first three claims

above tell us that we have a pattern of execution requests in [#,74] as shown below.

12

Task kK misses
a deadline

Time } } i i >
g U ts ty

Since the request interval of 7; scheduled at #; has a deadline after 74, all outstanding
requests for execution at 7; with deadlines before 7y must have been satisfied by 7. In the
above scenario, the execution requests eligible to be scheduled in [#;,24] are shaded in the
figure below.

.
I
s
'l
*
: I
1 :
2
14
T. ’
2 ‘
%
¢
,
»
£
: -
z Task k misses
Ty ‘ a deadline
v :
14 &
. #
F <
* -
”, #
¥ 2
: :
Ty : ¥
P H
T, ey : |
i e 2
: :
”» <
. 4 E‘
Time i t } f »

i fs

——
oL

Hence using Claims 3 and 4, we can bound the total processor demand in [7;,74] by noting

-1
z : (tg -1;) - 1

drg, < ¢ + L-MMME;W*‘J Cj .
=1

Let I = (t4- 1;) - pr. Substituting / into the above inequality we get

13

i-1
+7-1
dyey, S €+ E LE&—I;;""“J ¢j-
j=1

Now from Claim 5 we know that there cannot be any idle time in [f;,24]. Therefore,
because a task missed a deadline at 7; we must have

ta-t < dygy,
or from the definition of /,
l+pk < df‘.,:d .
Combining this with the previous inequality we have
i-1
I+pr < ci + E LW_J Ci»
J
—
or simply
i-1
P < ¢ -1 + LM—J—-—-I-—ICJ
2 , Pj
j=1

Now since 0 </ < p; - pz, we have a contradiction of condition (2). Therefore the theorem
is proved. A

5. References

{Conway et al. 67]
Conway, R.W., Maxwell, W.L., Miller, L.W., Theory of
Scheduling, Addison-Wesley, Reading, MA, 1967.

