
The Virtual System Model for Large Distributed

Operating Systems

B. Cli�ord Neuman

Department of Computer Science, FR-35

University of Washington

Seattle, Washington 98195

bcn@cs.washington.edu

Technical Report 89-01-07

April, 1989

Abstract

Scale is a critical element in distributed systems. The e�ect of scale on the user has received

little attention. As the number of distinct computers that compose a distributed system grows,

it becomes increasingly di�cult for users to organize and �nd objects and services. Today's users

are able to cope because they tend to use only a small number of computers, and because only

a tiny portion of the objects and services in the world are easily accessible. This observation

suggests one way of organizing large systems: let each user see a smaller system containing only

those parts that are of interest. The virtual system model provides a framework within which

users can build a view of a system in which the parts of interest are logically nearby. This

report discusses the virtual system model and describes a global �le system being built using

the model.

1 Introduction

As the the size of a distributed system grows it becomes increasingly di�cult for users to organize

and �nd objects and services. Today's users are able to cope because only a tiny portion of the

objects and services in the world are available to them. Users needn't be concerned with objects in

which they have little interest. One way to help users cope with very large systems is to let each

user see a smaller system containing only those parts that are of interest.

This report describes the virtual system model, a new model for organizing large distributed systems.

The virtual systemmodel supports the maintenance of customized views of the system. Each view is

called a virtual system. The virtual system model has several advantages over existing organizations

because: (1) as systems become larger and larger, a single view containing all objects in the system

becomes di�cult to work with and multiple views are needed; (2) the maintenance of multiple

views and the ability to include parts from others allows objects to be organized in a manner that
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allows them to be more easily found; (3) the virtual system model allows users to easily control

the selection of servers when a particular service is desired; (4) by associating virtual systems with

objects to be protected, the mechanisms by which protection is provided can be better tailored to

the owner's security requirements; (5) by associating virtual systems with processes and applications

to be run, the environment in which they are run can be controlled and access to objects outside

that environment can be restricted (if desired); and (6) since virtual systems include the list of the

processors which may be used, they provide a mechanism to bind programs to particular processors.

In looking at very large systems, three aspects must be considered. The �rst is the access mech-

anism: how an object is accessed once it has been found. The second aspect is object location:

given an object's name, how the object is found. The third aspect is organization: how users see

the object hierarchy.

In addressing these issues, it was decided that the following characteristics should be supported: (1)

users should gain access to local and remote objects in the same way, though the underlying access

mechanism might be di�erent; (2) the name of an object should not depend on the location from

which is it accessed, and an object's name should not constrain its location; (3) each user should

be presented with a view of the system in which those parts that are not of interest are hidden; at

the same time, (4) users must be able to access objects outside of their view once learned about

through other means; (5) users should be able to customize their views of the system, not just

by naming hierarchies that they import into their namespaces, but by customizing the imported

hierarchies as well; and �nally, (6) any solution must extend beyond the �le system to allow the

tailoring of users' views of other system components as well.

The virtual system model provides support for the construction of customized views by users

and groups of users. The naming and access mechanisms that support these views satisfy the

characteristics just mentioned. The virtual system is the collection of system components included

in a customized view. Each user might have his or her own virtual system, though it might start

out as a copy of some prototype. Individuals with multiple roles can construct overlapping virtual

systems, each corresponding to a di�erent role. Projects or other entities that might bene�t from

a separate view of the world can have associated virtual systems. Thus, a project might have a

virtual system to which users interested in the project might connect. The programmers on that

project, however, will probably each have their own virtual system, each a superset of that for the

project.

The virtual system model applies to many services. Among them are the �le system, naming,

authentication, authorization, and the use of processors, services and applications. Because of the

large number of �les on even small collections of systems, the �le system provides a natural example

and a focus for a prototype implementation to test the ideas of the model. It is described in Section

3. Sections 4 through 7 discuss the other services a�ected by the model. In Sections 8 and 9 other

aspects of the model are discussed and conclusions are drawn.
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2 Shortcomings of existing approaches

Many existing systems provide access to �les scattered across large collections of computers. These

systems will be described in the context of the three issues discussed earlier: the access mechanism,

object location, and organization.

Early systems, such as the ARPAnet, addressed few of these issues. Access to local objects was

simple, but access to remote objects required one to �rst locate the object, and then to access it

using a mechanism di�erent from that used in the local case.

Systems such as NFS[13] address the access mechanism, but little else. In NFS, remote �le systems

can be mounted locally and the same mechanism can be used for both local and remote �le access.

It is still necessary, however, to locate the desired �les from the universe of accessible �les, and to

mount the appropriate �le systems. This two-step process makes it cumbersome to maintain links

between individual �les on di�erent �le systems, and imposes constraints on the placement of �les

and the organization of the �le system.

Systems such as Andrew[4, 6], Locus[12, 16] and Sprite[11, 17] address the organization problem by

attempting to present a single view of a system that extends across the users and sites that compose

it. Such an approach follows from the goal of name transparency and source-location-independence,

i.e., the name of an object should be independent of the location from which the reference is made.

The object location mechanism in these three systems is based on looking in a table for a pre�x

of the pathname. Although the object location is not speci�ed by the pathname, objects with

pathnames sharing a common pre�x (as found in the pre�x table) must reside on the same �le

system. This makes it di�cult to truly distribute similar information over a number of hosts,

especially when a particular �le should logically appear at multiple points in the �le hierarchy.

The organizational mechanism becomes more important as the number of objects that compose the

system grows. Users have a harder time trying to �nd things. If a system included every processor,

�le, service and user in the world, users of that system would be overwhelmed by the information

that was available. Finding useful information could become impossible. One way to address this

problem is to let each user see a smaller system containing only those parts that are of interest.

QuickSilver[3] applies this approach to the �le system by supporting user-centered namespaces. For

every user, a nameserver stores a list of directory pre�xes along with the information needed to

locate a user's �les. Users can only access �les that have been included in their namespaces. Several

types of links allow �les and directories from one user's namespace to be included in another's. By

updating their pre�x table and links, users are able to tailor their namespace, making it easier to

�nd and name the objects they frequently use.

QuickSilver does not completely solve the location and organizational problems of large systems. A

�le's location is still not completely independent of its primary pathname. In fact, the existence of

a primary pathname leads to a shortcoming with links: the source and the target of the link are not

equivalent

1

; if the target is later deleted, the �le is gone. Another shortcoming is that none of the

1

Except for hard links, the e�ect of which (in QuickSilver) is more like making a copy of a �le.
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systems described so far allow the user to tailor the namespace below the level at which a directory

has been included by a link or pre�x table entry. Finally, QuickSilver provides little support for

�nding and organizing �les that might be of interest, but which have not yet been included in the

user's namespace.

Directory mechanisms in capability-based distributed systems such as Eden[1] and Amoeba[7] sup-

port the naming of all objects, not just �les. Directories are objects that map from names of objects

to the capabilities for the named objects. Capabilities correspond to links in other directory sys-

tems. Capability-based systems address many of the problems that arise in the other systems

discussed in this section. They support user-centered naming in the sense that each user can start

with a di�erent set of capabilities, and can organize them as desired. Ignoring access rights, all

capabilities for an object are equivalent. Removing a capability from one directory does not leave

the others dangling. Finally, a capability-based system does not place constraints on an object's

location. Objects whose capabilities appear in a single directory can be scattered across many sites.

Like the other systems described in this section, neither Eden nor Amoeba extend the user's ability

to tailor the namespace to lower levels of the hierarchy. Capability-based systems also have problems

of their own. Capabilities have two purposes: they allow one to �nd the object, and they provide

access rights. While this is not a problem in itself, it does mean that giving away access to a

directory also grants access to the objects in that directory. This can discourage users from making

their directories available to others.

2

What is needed is a mechanism that allows one to share one's

organization of a collection of objects without also sharing one's access rights.

Before proceeding to a more detailed discussion of a �le system based on the virtual system model,

the relative merits of a customized view must be discussed. Does it make life easier or harder for

the user? An objection to systems like QuickSilver is that names are not unique. The same name

might refer to di�erent objects when speci�ed by di�erent users. Relative names might be easier to

remember, but they are harder to share. The virtual system model avoids this problem by allowing

one to specify names of the form virtual system:�lename. Such names refer to the same object from

all virtual systems and make sharing easier. The virtual system model makes life easier for the

user by reducing the amount of clutter that must be searched when looking for objects of interest.

The ability for an object to appear at multiple points in multiple virtual systems also makes it less

likely that an object of interest will be missed. The next section describes a �le system based on

the virtual system model and discusses ways that it can be used to organize information.

2

One way around this problem requires maintaining two separate hierarchies. One contains one's own rights, and

the other, the rights to be granted to others. Unfortunately, this approach requires additional maintenance. New

objects must be added in both places. A second approach involves giving out a restricted directory capability that

causes the directory service to restrict the rights before returning capabilities for additional objects. Since rights are

type speci�c, this doesn't work when a directory contains objects of di�erent types. It also restricts one's ability to

grant greater rights for some objects than for others.
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3 The Virtual File System

A �le system is currently under construction to test the basic ideas of the virtual system model. A

prototype is presently running at the University of Washington and on several sites in another part

of the Internet. The �le system has two parts: a directory mechanism and an access mechanism.

The virtual system model primarily a�ects the directory mechanism. Multiple access mechanisms

will ultimately be supported because di�ering parameters such as latency, bandwidth, and access

patterns will place di�erent constraints on the access mechanism at di�erent times. Once a �le has

been found, an appropriate access mechanism will be chosen.

The global �le system is a collection of virtual �le systems, each associated with one or more virtual

systems. Each virtual �le system has a root and appears hierarchical, but it does not fully satisfy

the constraints for a hierarchy (loops are allowed). Items can appear multiple times within a �le

system, as well as in multiple �le systems. Objects will be found, and virtual �le systems built up

by users as they learn of objects outside their current environment.

The remainder of this section brie
y describes the global �le system that is being built and discusses

ways to organize objects within it. Additional information about this �le system can be found in [8].

3.1 Directory Service

A signi�cant component of the global �le system is the directory service. Directories map from

names to object pointers. In the �le system the objects are �les and directories. Because the

directory service can be used to name objects other than �les and directories, and because the

objects included in a directory do not need to be located on the same system as the directory,

the directory service is actually much closer to directory services in object-based systems such as

Amoeba[7] than to directories in traditional �le systems.

Figure 1 shows parts of two virtual systems. Directories 1 and 2 are the roots for bcn's and

lazowska's systems respectively. Only those �les and directories that are useful in the discussion

that follows are included in the diagram. The actual virtual systems are really much larger.

Each virtual �le system has a root directory, and the �les and directories that are descendants

of the root directory appear to form a hierarchy. In the global �le system, however, �les are not

organized completely hierarchically. Files may exist multiple times in the hierarchy

3

, and it is

quite acceptable to have directory links that form loops. It is expected that di�erent virtual �le

systems will overlap and that �les and directories will appear in multiple virtual �le systems. It

is likely that some �les will appear in almost all systems, though they may be very deep in the

hierarchy, if they are not of particular interest to the user. Those �les in which the user is interested

will be much closer to the root. It is in this way that the user's virtual �le system appears to be

3

In Figure 1 \this paper" is found in bcn's virtual system with the names /bcn/papers/virt-system-model,

/bcn/vsm/paper, and in /authors/Neuman/virt-system-model. In lazowska's virtual system, it can be found with

the names /authors/Neuman/virt-system-model, /users/bcn/papers/virtual-system-model, /users/bcn/vsm/paper,

and /subjects/dist-systems/virtual-system.
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Figure 1: Parts of Two Virtual Systems

customized.

Information about individual �les will be stored along with the �les. Among this information is a

(possibly incomplete) list of back links. These links are pointers to the directories which contain

links to the �le. This information can be used to �nd other information which is similar or related

to that in a particular �le.

Other information that helps users �nd what they are interested in may be stored along with the

directory link. One such piece of information is a �lter. A �lter is a program and associated data

that can be used to decide whether a �le should be included when a directory is listed. If a link

to a directory has an associated �lter, then only those �les accepted by the �lter will be displayed.

A �lter can do more than just approve or disapprove directory entries. It can transform names,

or perhaps even insert additional entries obtained through some other mechanisms besides simply

reading the linked directory hierarchy.
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In addition to traditional links, the global �le system supports union links

4

. The �les in a directory

that is linked by a union link appear as if they are part of the directory making the link instead of as

a subdirectory. The order in which union links are made is signi�cant. In the case of name con
icts,

it is the �rst link with a given name that is taken. The union link can be used in conjunction with

�lters to provide a very powerful mechanism for reorganizing �le systems for a particular user or

purpose.

Links to �les are equivalent. There is not a primary or \real" name for a �le. If a �le is created,

and someone else makes a link to it, then the �le is deleted, the �le still exists with the name of the

link. The equivalence of links presents a number of problems in the area of �le owership, garbage

collection, and what happens when a �le with multiple links is modi�ed. These issues are addressed

in [8].

Information about �les and directories is accessible through directory servers that run on each host

that is part of the global �le system. All directory queries are directed to these servers. The local

format of directories and other information is hidden from the user by the servers. Servers can

store directories and other information in the native format for the system on which they reside,

or they can use their own format. Information required for the global �le system which is not part

of the native format can be stored in supplemental (shadow) �les.

Files which were not created as part of the global �le system are easy to incorporate. Directory

links may be made to �les created through a system's native �le system as long as a directory server

runs on the host containing the �les. Answers to requests for information about such �les will be

the value from the native �le system where appropriate, a derivative value, where a mapping exists,

a default value, or an indication that the information is not available.

3.2 File Storage and Access

Files are stored in the native format for the system on which they physically reside. Because native

�le systems do not maintain all the information needed by the global �le system, the directory server

on the custodial host must maintain the additional information itself. Some of this information

is used for replication and access control. Other information includes a reference to the owning

virtual system and a partial list of back links to the directories that have links to the �le.

Files are accessed using existing remote �le access protocols. In the initial implementation, Sun's

Network File System is used. The directory mechanism maps from names in the global �le system

to the custodial host and name of the �le on that host. That information can be used by existing

�le access mechanisms to access the desired �le.

4

Union links are based on the idea of a union mount proposed by Rob Pike at the �rst Workshop on Workstation

Operating Systems in Cambridge, Massachusetts, November, 1987. A Union mount allows one to mount multiple �le

systems on a single mountpoint, the result being the union of the �les in the multiple �le systems.
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3.3 Access Control

Control of access to the actual �les stored in the �le system is handled by the underlying �le access

mechanism. Many remote �le access mechanisms available today do not provide adequate security.

In such cases, added security is desirable, but beyond the scope of this discussion. Such security

mechanisms may make use of the supplemental information (such as an access control list) stored

along with the �le.

Access control must also be applied to information in the directory servers. Access control informa-

tion may optionally be associated with individual directory links. Queries can include an optional

authenticator that can be checked by the directory server to decide how to respond to the query.

3.4 How the Global File System Can be Used

This part presents examples of how a global �le system based on the virtual system model might

be used to organize and �nd information in a large distributed system. This is not an exclusive

list.

3.4.1 Personal Organization

Users will build their own hierarchies of �les by creating directories, subdirectories, and �les of

their own, and adding links to �les, directories and subdirectories created by others. Files that are

frequently accessed by a user will probably have short names from the root of their virtual system.

Since directories of others (and hence, whole hierarchies) can be added to a user's virtual system,

the system will probably contain �les that a user has never accessed and might not even know

about. These �les, however, will be much deeper in the hierarchy.

Directory 1 in Figure 1 is the root for bcn's view of the world. His home directory, however, is

the subdirectory \bcn". In this organization, subdirectories of \/bcn" contain �les and directories

of a personal interest, whereas the remainder of the root directory forms his view of the rest of

the world. Other users might choose to organize their system di�erently. For example, one might

include those �les and directories frequently of personal interest in the root with one's view of the

rest of the world relagated to a subdirectory.

When users link other directories to their own hierarchy, it will be possible to add information to

the link to specify how much of the merged hierarchy is to be included. It will also be possible

to customize parts of the attached hierarchy. An example of this is seen in the subdirectory

\interesting-subjects" of directory 1 (Figure 1). This �lter uses information on who else has links

to �les to decide which of the �les in subdirectories of directory 8 should be listed.

Each directory and �le that a user maintains will be owned by that user. Parts of a user's hierarchy,

however, may be owned by other users. Access control information will be maintained along with

each �le or directory, and with each directory link, and will determine who is allowed to read the
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�le or search the directory. It is expected that users will make parts of their hierarchies accessible

to others, but how much will be decided by the individual.

3.4.2 Project Organization

Just as users will each have their own virtual system, it is expected that projects will have separate

virtual systems too. It is likely that everything that is part of a project's virtual system will also

be part of the virtual system of at least one member of the project.

Directory 9 in Figure 1 shows the project directory for the virtual system project. In addition to

being included in the virtual systems of those involved with the project, it could also be the root

of a virtual system of its own. A project virtual system serves several roles. It is a prototype

virtual system that can be given to, or merged with that of new users when they become part of

the project. It also provides a starting point from which those wanting information about a project

can look. Finally, it provides a logically central starting point from which everything related to a

project should be accessible.

3.4.3 Index by Author

It is expected that users would maintain a single directory containing papers of theirs which they

consider published, and which they want others to be able to access. A service wanting to provide

an index of published papers by author would simply set up links from its \author" directory to

these directories in each authors hierarchy. By doing this, the indexing service only needs to make

updates when a new author needs to be added. Today, library card catalogs provide indices by

author. In the future, libraries could be one of the providers of indices by author.

In Figure 1, directories 4 and 5 form an index by author. Both bcn and lazowska maintain their own

indices, but by agreement, they decided to distribute the work of maintaining it. Each directory

includes the other using a union link. Figures 2a and 2b list the contents of directories 4 and

5 without expanding union links. Anyone with a link to either of these directories will see the

contents listed in Figure 2c.

3.4.4 Indices by Topic

Just as users might maintain a directory of their own papers, they might also maintain directories

containing links to interesting �les or directories on a particular topic. Look at directory 10 in

Figure 1 for an example of such a directory. It contains links to papers on distributed systems.

Other user might maintain their own list of papers on distributed systems, but with a di�erent

emphasis. If a number of people in a �eld decide that they each trust the views of the others,

then they might collaborate to provide a directory whose contents are the union of each of their

directories. Users with an interest in a particular topic can use any of the collections that are

readable, or the union of several of them.
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Neuman,Clifford JUNE.CS.WASHING /u1/bcn/papers

Pinkerton,Brian JUNE.CS.WASHING /u1/bp/Papers

U KRAKATOA.CS.WAS /u1/lazowska/authors

Figure 2a: Listing of bcn:/authors without expanding union links

Lazowska,Edward KRAKATOA.CS.WAS /u1/lazowska/papers

Levy,Henry WHISTLER.CS.WAS /u1/levy/papers

U JUNE.CS.WASHING /u1/bcn/vfs/bcn/authors

Figure 2b: Listing of lazowska:/authors without expanding union links

Lazowska,Edward KRAKATOA.CS.WAS /u1/lazowska/papers

Levy,Henry WHISTLER.CS.WAS /u1/levy/papers

Neuman,Clifford JUNE.CS.WASHING /u1/bcn/papers

Pinkerton,Brian JUNE.CS.WASHING /u1/bp/Papers

Figure 2c: Listing of bcn:/authors, union links expanded

As with the author index, it is likely that master indices will be maintained by libraries or other

organization. These indices will allow one to �nd the directories containing information on a

particular topic. Directory 8 is an example of such a master index. There are likely to be multiple

central indices, each of which might compete for use based on their own strengths such as how

complete their index is, how accurate it is, or how much junk you get back when using the index

of a competitor.

3.4.5 Browsing

One way that information can be found using a �le system organized with the virtual system

model is through browsing. If you are interested in a particular topic, you can connect to the

virtual system of someone who you know is also interested in that topic, or perhaps to the virtual

system for a related project. You could then look through those virtual systems for documents or

�les of interest. Of course, you would only see those �les that the owner of the virtual system has

authorized you to see. The inability to see some information, though, hopefully tends to weed out

information you would not be interested in anyway.

In order for browsing to work best, virtual systems owned by projects should include a directory

containing links to related work. Users would maintain directories containing pointers to �les that

they consider interesting or relevant. Files in which others would (or should) have little interest

should be kept from their view by applying appropriate protections.
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Browsing is considerably more likely to be e�ective under the virtual system model than on more

traditional �le systems. The virtual system model encourages users to make their own links to the

�les in which they have an interest. As such, interesting �les are likely to appear in the hierarchies

of multiple people, thus increasing the likelihood that they will be found by browsers.

3.4.6 Finding Things

In society today, if something is available that is of interest, it is usually found through directories

such as the phone book or yellow pages, through reading newspapers and other periodicals, or by

word of mouth. In the computer science community, these sources of information are supplemented

by technical papers, electronic mail and mailing lists. These methods of discovery are natural, and

it is likely that they will continue to �nd signi�cant use even once other mechanisms are in place.

The virtual system model allows much of this information which might be useful in �nding objects,

but which to date could only be obtained by external means (such as asking the appropriate person)

to be included as part of the �le system. This information provides a matrix through which users

can navigate to �nd the desired information. Services might even spring up to help users navigate

through this matrix. An example of such a service is described in [14] and makes use of resource

discovery agents. These agents accept queries from users and use the information provided by the

user to �nd objects in which the user is interested. The multitude of links in a system based on

the virtual system model can provide the information needed to direct such searches.

3.5 Comparison to Existing File Systems

In Section 2, certain shortcomings of existing approaches were discussed. The �le systems considered

were NFS, Andrew, Sprite, Locus, and QuickSilver. Here these approaches are explicitly contrasted

to the global �le system built using the virtual system model.

In all �ve systems, the mechanism used to �nd �les places constraints on their location. This is the

case even though the storage site is not part of the pathname. The granularity of distribution is at

the level of individual �le systems instead of individual �les. All �les in the same part of the �le

hierarchy will be located at the same storage site. In the global �le system, distribution to storage

sites is done on a �le by �le basis, and this constraint is avoided.

All �ve systems provide at least a limited level of customization. This customization is primarily the

result of using symbolic links relative to one's home directory. With the exception of QuickSilver,

links in these systems are not equivalent to the primary pathname for the �les. Moving or deleting

the �le or directory that is the target of the link leaves a link that no longer works. Several types

of links are supported by QuickSilver, though none are equivalent to the primary pathname for

the �le in all cases

5

. Links in QuickSilver do, however, solve some of the reference problems just

described. In the global �le system, there is no primary pathname, all links to �les are equivalent,

and there is no problem with dangling references.

5

Hard links result in a copy of the �le being made if the link crosses a machine boundary.
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None of the �ve systems provide the tools necessary to make links as useful as possible. Customiza-

tion by links is limited to the name of the link, and more detailed customization of the \renamed"

hierarchy is not possible. In the global �le system, �lters and union links allow one to further

customize the linked hierarchies.

NFS allows �le systems to be mounted at arbitrary points on the local system. This provides a

mechanism for customization on a system by system level, since each system might mount remote

partitions on di�erent mountpoints. Andrew, Sprite, and Locus each provide a single global names-

pace within which all �les are named. They avoid the possible confusion that arises from having

di�erent namespaces on di�erent physical processors. Both QuickSilver, and the global �le system

support customization on a user by user level. This customization is independent of the physical

processor being used.

QuickSilver addresses customization through the user-centered namespace. It enforces use of the

customized view since the only way to access the �les or directories of others is through the links

and updated pre�x table entries customizing the namespace. This di�ers from the global �le system

which allows the virtual system name to be explicitly speci�ed, thus allowing access to external

objects.

Compared to NFS, Andrew, Locus, Sprite, and QuickSilver, the global �le system provides tools

allowing a signi�cantly greater level of customization of the user's view of the �le system. The union

link in conjunction with active �lters allow lower levels of an included hierarchy to be customized.

These tools, together with a directory organization that does not tie �les or directories to particular

hosts allows users to organize �les in a manner that best suits their own needs, and the needs of

those who need to �nd the �les.

4 Naming

So far, only the �le system has been described. The virtual system model extends to other system

components as well. The system component most closely related to the �le system is naming.

The directory service described in the last section can be used to name more than just �les and

directories. It can be used to resolve user-assigned names for services, other users, hosts, �les,

and even other virtual systems. Objects may have multiple names, and across di�erent virtual

systems, the same name can refer to di�erent objects. Within a single virtual system, however,

a name can only refer to a single object

6

. Thus, there exists a many-to-one mapping from vir-

tual system:name within that system to any object that is part of the global system.

The directory service provides a mechanism to resolve user-level names within a virtual system.

User-level names resolve to globally unique system-level names which can be used to identify, and

ultimately to locate the object. Services resolve to the host on which the service is provided and

the name or number of the port to which one must connect. Filenames resolve to the custodial

host, and the name of the �le on that host. In both of these cases, the system-level hostname can

6

If objects are replicated, the set of replicas can be thought of as a single object.
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be further resolved using existing hierarchical nameservices such as the Internet Domain Naming

System[15], or DEC's global naming system[5].

5 Authentication & Authorization

Authentication is used to make sure that an entity claiming to have a particular name is in fact, the

entity to which that name refers. Authorization is used to make sure that a named entity is allowed

to perform a particular operation. For both to work, there must be an accepted mapping from a

set of names to entities requiring authentication. Although this mapping does not need to be the

same in all places, authorization is signi�cantly simpli�ed if it is. Since virtual systems overlap,

allowing the use of non-unique user-level names for authentication could create parts of the system

where two di�erent sets of names are in use. This would complicate access control for objects in

those overlapping regions. For this reason, authentication and authorization will be based on the

globally unique names of users. This does not preclude having an additional level of indirection

through which users specify names.

It is expected that authorization will be accomplished primarily through access control lists. The

concept of groups is necessary for access control lists to provide a 
exible interface for access control.

Groups can contain users or other groups. As with names, groups should be represented uniquely

within access control lists. Users, though, might use di�erent names to identify them. A problem

arises in deciding how to display the content of ACLs to the user. With groups, it is perhaps even

more important for the user to see a name with which he is familiar. Mapping back from the unique

name to a local name might be costly, however.

One solution is to give the user the option of how he wants access control lists displayed. The

average user would probably choose the local names. Since average users might only have a small

number of users and groups de�ned within their virtual system, the mapping might not take as

long as for a more advanced user. In any case, information is needed to help users �gure out what

users and groups are if the groups do not map to local names, or for which local names do not

exist. Each group can have a comment associated with it. These comments can be displayed next

to the local or unique name when the ACL is listed.

So far, the naming side of authentication has been discussed, and how these names are used for

access control. Authentication itself has not been talked about. One of the problems that arises

as a system spans multiple organizations is lack of trust. Services can't be required to trust every

authentication server that exists. It might not even be the case that there is a single authentication

server trusted by everyone. A particularly paranoid application might only trust authentication

performed solely by its local authentication server.

Another issue concerned with authentication is the distribution of authority. Unless, for every com-

municating pair of entities, there exists some trusted entity sharing a secret with both parties, then

multiple authentication servers might be involved in authenticating a principal.

7

It is important

7

Even with public key systems, the public key to party A must be known to a key repository whose public key is

known by B.
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that the end service know which authentication servers were involved when deciding whether to

trust the authentication. More on this can be found in [2].

There may be di�erent competing collections of authentication servers. Such services might di�er

in who they are run by, or perhaps even in the protocol required for initial authentication when the

user logs on. It should be possible, from within each virtual system, to decide which authentication

services one is willing to trust. By attaching an \owning" virtual system to each object to be

protected, this choice of who to trust is passed along to individual objects.

An area related to authentication and access control that has received little attention is accounting.

It is related in the sense that once one's quota for a service has been used up, or when one has

run out of money to pay for a service, access might be denied. One also doesn't want to get billed

for a service that was used by someone else. Accounting will become more important in a system

like the one being described because the system provides the connection between service providers

and consumers that may not be within the same organization. Services analogous to banks will be

required, and a mechanism to allow users to authorize their bank to pay a server will become part

of the access protocol for certain services. See [7, 9] for related discussion.

6 Processes and Processors

Each virtual system will be associated with zero or more processors. These will be the processors

on which applications will run. Processors within a single virtual system should be able to be of

di�erent types, and the processor chosen should be based on the requirements of the application

as well as other information available at the time (such as load, etc). Applications should be able

to choose processors from within the virtual system on which they are running, within which they

were installed, or, alternatively, on other processors that they �nd dynamically.

When a process or application is attached to a virtual system, a closure is formed. A closure is code

to be executed and the set of bindings seen by a process. Just as an attached virtual system can

be used to restrict the processors on which an application runs, it can also be used to restrict the

objects that can be accessed. This can be accomplished by setting a 
ag indicating that processes

running within a particular virtual system should only be able to access objects that are part of

that virtual system, and that the ability to switch to other virtual systems should be disabled. By

building a virtual system with limited size, and by protecting the virtual system so that it can't

be modi�ed from within, processes can be run in a protected environment. In order for this to

work, the system on which the process executes must enforce the restrictions imposed by the virtual

system. By suitably restricting what a process can read and write, the virtual system model can

provide support for multi-level secure systems.
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7 Services and Applications

In existing systems, services and applications di�er in the way they are accessed. A service typically

provides basic operations and is usually accessed across a network. An application is typically a

local program, but it may provide a front end for one or more services. In the virtual system model

applications can be associated with a set of processors on which they may run. When a user runs

an application, it might run remotely. The distinction between an application and a service will be

more a matter of whether the interface is intended for humans, or for other programs.

Given the name of a service or application, clients will use the directory service to �nd the server

(or executable). If multiple instances exist, the client will have to make a choice. The choice is

made by including the selected server or set of servers in one's virtual system. The use of �lters on

links in the directory service provides a useful tool for choosing a server. A link can be made to a

directory containing pointers to instances of a service. A �lter associated with the link can be used

to �lter out all instances that do not satisfy the client's constraints (e.g. price).

8 Autonomy

The physical systems that are tied together by the virtual system model are autonomous. Each

can operate independently from the others. Naturally, one would not be able to access objects

or services which reside on a system that is unreachable due to network or hardware problems.

Availability can be enhanced by replication, though access to replicated objects can impose its own

overhead and constraints.

The user level naming mechanism has no central database, and no critical nodes. The user level

naming mechanism maps names to addresses which are really system level names. In some cases,

resolving the system level names might require access to critical sites. Attempts will be made to

minimize such dependencies.

9 Conclusions

The virtual system model provides a framework within which users can build a customized view

of the objects and services available in a large distributed system. The approach described in this

report exhibits all of the characteristics mentioned in the introduction: to the user, local and remote

objects are accessed the same way; the name of an object depends neither on the object's location,

nor the location of the user accessing it; users are able to customize their views of the system; and

the approach extends to all components of the system, not just the �le system.

Filters and union links are two important features of the directory service on which the the virtual

system model is built. These tools allow a user's view to apply to new objects in the system as

they are created. Those and other features of the directory service allow objects to be organized
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in a manner that will allow them to be found in a very large system.

The virtual system model extends to naming, authentication, and authorization, to the use of

network services, and to the running of application programs. This ability to adopt di�erent views

in these areas is particularly important in an environment that consists of many organizations

where users need control over the services that are trusted, those with which one does business,

and the processors on which applications can run.

A �le system based on the virtual system model is presently under construction and a prototype

is running on several sites scattered across the Internet. As experience is gained, and as other

pieces of the system are put in place, changes are expected in the way people think about and

use distributed computer systems. The virtual system model can provide the basis for a global

operating system that more closely parallels the way people interact in society.
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