
Workstations and the Virtual System Model

B. Cli�ord Neuman

Department of Computer Science and Engineering

University of Washington, FR-35

Seattle, Washington 98195

bcn@cs.washington.edu

Technical Report 89-10-10

October, 1989

1 Introduction

The role of workstations in future systems has been a hotly debated topic. Some believe that the

workstation is useful primarily as a terminal and that the computing of the future will be done

on large multiprocessor systems. Others believe that workstations will be the processors of those

multiprocessor systems. Still others believe that the role of the workstation will be between the

two extremes, providing simple processing capabilities such as editing for the local user.

One thing that is clear is that users of the future will require access to objects and services that

are scattered across large networks. A clear role for the workstation is to forge these objects and

services into complete systems. In order to talk about the role of the workstation in such systems

we must have an idea of how these systems will be organized. This report briey describes one

approach.

2 The Virtual System Model

As the size of distributed systems has grown it has become increasingly di�cult for the user to

organize and �nd objects and services. Today's users are able to cope because only a tiny portion

of the objects and services in the world are available to them. Users needn't be concerned with

objects in which they have little interest. One way to help users cope with very large systems is to

let each user see a smaller system containing only those parts that are of interest.

This section briey describes the virtual system model[6], a new model for organizing large dis-

tributed systems. The virtual system model supports the maintenance of customized views of the

system. Each view is called a virtual system.

The virtual system model addresses several of the problems that arise in large systems. By allowing

customized views, the user only sees the parts of the system that are of interest. Objects can be

organized in multiple ways with objects appearing at multiple points in multiple virtual systems.

This research was supported in part by the National Science Foundation under Grants No. DCR-8420945 and

CCR-8611390.



This makes it easier to �nd objects since one can look for an object using whichever organization

is most appropriate based on the information available. The virtual system model supports the

choice of attributes and the selection of servers when a particular service is needed. It also plays a

role in the selection of processors on which programs are to be run, and on the authentication and

security mechanisms to be used when a user's objects are accessed. Finally, a virtual system can

be bound to a program and can be used to specify the environment in which the program runs.

2.1 The Prospero File System

Prospero is a distributed operating system that is based on the virtual system model and that is

presently under construction at the University of Washington. Because of the large number of �les

on even small collections of systems, the �le system provided a natural example and the focus for

a prototype implementation to test the ideas of the model. The prototype is presently running at

the University of Washington and on several sites in another part of the Internet.

The global �le system is a collection of virtual �le systems, each associated with one or more

virtual systems. Although each virtual �le system has a root, its directories are not required to

be organized as a tree. Cycles are allowed and objects and directories can appear in multiple �le

systems, or even with di�erent names in the same �le system. Directories in Prospero may be

connected by links which change the way the target directory is viewed. The directories, �les, and

the links connecting them form a generalized directed graph. Virtual �le systems grow as users

learn of objects or directories outside their current environment and add them to their own virtual

�le systems.

The principal component of the Prospero �le system is the directory service. Directories map from

names to object pointers. In the �le system the objects are �les and directories. There is no

requirement that the objects included in a directory be located at the same storage site. Together

with the ability to reference an object in multiple directories, this allows one to easily organize

objects in multiple ways. For example, papers can be organized by author, or subject, yet only one

copy of each paper must be maintained.

A virtual system starts out as a copy of a prototype. Initially, the virtual system might include

references to indices by topic, and author. References to other well known virtual systems might

also be included. As the user �nds objects or hierarchies of interest through communication with

others, by exploring parts of the prototype virtual system, or through other means, these can be

added to the virtual system. It is expected that most virtual systems will include objects which

the user does not know about, but these objects may appear deep in the hierarchy. If some of these

pieces are found to be of interest, it is expected that the user would explicitly include them closer

to the root.

Users are able to tailor their virtual systems at several levels. They can decide for themselves which

hierarchies, indices, or other organizational mechanisms are to be included in the root, or lower

levels of their virtual systems. When a hierarchy is included, it can be included as a subdirectory,

or its contents can be merged with other objects at the present level. Finally, it is possible to

include programs or �lters on links so that only those objects in the included hierarchy that match

2



a set of criteria are included in the �ltered view of the hierarchy. These programs can also add

objects to that view and alter the names or attributes of included objects.

A customizable name space has the potential to cause confusion and to limit sharing. To address

this problem, Prospero supports closure[5]. A namespace is associated with every object. In this

way, the context within which a name is to be resolved is automatically passed along with the

object specifying the name. Although the same name may refer to di�erent objects within di�erent

contexts, the correct context is always known.

2.2 Comparison to Other Systems

Unlike symbolic links in systems such as NFS[7], Andrew[3], and Locus[8], all names for an object

in Prospero are equivalent. In NFS, Andrew, and Locus, each object has a primary name, and

all other names are translated to the primary name before the object is accessed. In Prospero,

all names for the object are primary. Further, an object with any name can physically reside at

any location. In NFS, Andrew and Locus �les are distributed at the �le system or volume level.

All �les whose names begin with a particular pre�x must physically reside on the same disk. The

fact that this is not required in Prospero makes it much easier to place �les where they are most

frequently accessed with no need to move an entire hierarchy.

The Prospero �le system is similar to QuickSilver[1] and Tilde[2] in that it supports user centered

naming. Each user chooses the parts of the system that will be visible, and this choice follows the

user around regardless of the physical processor used. A key di�erence is that the Prospero �le

system is only one example of a service based on the virtual system model. The virtual system

model extends this customizability beyond the �le system. Authentication, authorization, and the

selection of services and processors are all a�ected by the active virtual system.

The Prospero �le system di�ers from QuickSilver and Tilde in several additional ways. When using

Prospero, it is possible to access objects in other virtual systems directly. QuickSilver requires

that the object �rst be be added to the user's system. Tilde requires that the entire hierarchy

containing the desired object be added to the user's Tilde forest. Both QuickSilver and Prospero

allow links to individual objects or subdirectories. Tilde does not. In Prospero all names for an

object are equivalent. Although QuickSilver supports several varieties of links, it is not possible to

have a hard link to an object stored at a storage site di�erent than that of the enclosing directory.

Finally, through union links and �lters, Prospero allows customization of included hierarchies at a

�ner level of detail than either QuickSilver or Tilde.

Because the directory service can be used to name objects other than �les and directories, and

because the objects included in a directory do not need to be located on the same system as the

directory itself, the directory service is actually much closer to directory services in object-based

systems such as Amoeba[4] than to directories in traditional �le systems. The Prospero directory

service di�ers from that found in capability based systems in that no permission is implied by one's

ability to name an object.

3



3 Role of the Workstation

A workstation is its user's window to the world. Because it is situated between the user and the

network, it is in the ideal position to maintain the user's view. The workstation can make the

necessary queries to translate names in the user's virtual system to the information actually needed

to access the object. If programs are to be run, they can either be run locally, or started on a remote

processor. This decision will be based on information that is part of the user's virtual system, or

perhaps in the virtual system attached to the program to be run.

In this role, the workstation acts as an agent for the user. The user's environment and shell would

be maintained on the workstation and the workstation would decide where each command is to be

executed. Once the decision has been made, the workstation would then contact the appropriate

server and cause the command or program to be run. It is only when a remotely executed program

does terminal I/O that the user directly interacts with a remote system.

The virtual system model does not prevent the workstation from playing a more active role in a

large distributed system. Files can be stored and services provided by workstations, but this is

not required. The virtual system model sees the workstation as equivalent to all other nodes in

the system and will let the workstation provide such services if desired. For availability reasons,

however, one might only want to do this in certain cases.

4 Conclusions

As the size of distributed systems grow it becomes increasingly di�cult to keep track of all the

information and services that are available. One way to deal with this problem is to allow the user

to tailor the view of the system so that only those parts that are of interest are immediately visible.

The workstation is the user's interface to the system. Because of its location relative to the user,

it is the right place to maintain the user's view. The workstation should act as the user's agent in

communicating with and requesting services from the external world.

Acknowledgements

Ed Lazowska, Hank Levy, David Notkin, John Zahorjan, and Brian Bershad helped me to re�ne the

ideas presented in this report. Ed Lazowska deserves special thanks for the numerous discussions

out of which many of the ideas emerged. Some of the ideas emerged from discussions with Alfred

Spector and other instructors at the Arctic '88 Course on Distributed Systems.

4



References

[1] Luis-Felipe Cabrera and Jim Wyllie. QuickSilver distributed �le services: An architecture for

horizontal growth. In Proceedings of the 2nd IEEE Conference on Computer Workstations,

pages 23{27, March 1988. Also IBM Research Report RJ 5578, April 1987.

[2] Douglas Comer and Thomas P. Murtagh. The Tilde �le naming scheme. In Proceedings of the

6th International Conference on Distributed Computing Systems, pages 509{514, May 1986.

[3] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan,

Robert N. Sidebotham, and Michael J. West. Scale and performance in a distributed �le system.

Transactions on Computer Systems, 6(1):51{81, February 1988.

[4] S. J. Mullender and A. S. Tanenbaum. The design of a capability-based distributed operating

system. The Computer Journal, 29(4):289{299, 1986.

[5] B. Cli�ord Neuman. The need for closure in large distributed systems. Operating Systems

Review, 23(4):28{30, October 1989.

[6] B. Cli�ord Neuman. The Virtual System Model for large distributed operating systems. Tech-

nical Report 89-01-07, Department of Computer Science, University of Washington, April 1989.

[7] R. Sandberg et al. Design and implementation of the Sun network �le system. In Proceedings

of the Summer 1985 Usenix Conference, pages 119{130, June 1985.

[8] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The Locus distributed operating

system. In Proceedings of the 9th Symposium on Operating Systems Principles, pages 49{70,

October 1983.

5


