
The Virtual System Model:

A Scalable Approach to Organizing Large Systems

A Thesis Proposal

B. Cli�ord Neuman

Department of Computer Science and Engineering

University of Washington, FR-35

Seattle, Washington 98195

bcn@cs.washington.edu

Technical Report 90-05-01

May, 1990

1 Motivation

In recent years, many researchers have explored mechanisms that allow systems to span large

networks. Few, however, have looked at the problems that will confront the users of these highly

distributed systems. There will be a huge amount of information available within such a system,

and that information will be scattered about. Even if users can access it all, there will be so much

that is irrelevant that it will be di�cult to identify the pieces that are of interest.

This problem has two aspects. First, users must be able to keep track of objects about which

they already know and in which they have indicated an interest. Second, users must be able to

identify objects of potential interest about which they do not already know. The mechanisms that

solve the two sub-problems should work together; users are often willing to spend time organizing

information for their own use, and it should be possible for the meta-information, so speci�ed, to

be shared with others.

In recent years, several approaches have been devised to address these problems, but these ap-

proaches break down in environments that scale both geographically and administratively. Among

the approaches that have been proposed are user-centered namespaces, databases, attribute-based

naming, resource discovery agents, and a uniform global namespace. I will describe these ap-

proaches and the problems with each. I will then describe my own approach, and a preliminary

implementation testing the concepts of that approach. I will end by succinctly stating my \thesis"

and describing what I propose to cover in the dissertation.

This research was supported in part by the National Science Foundation (Grants No. DCR-8420945 and CCR-

8611390), US WEST Advanced Technologies, and Digital Equipment Corporation.

1



2 Existing Approaches

A variety of approaches have been devised in an attempt to help users navigate through large

systems. As noted earlier, there are two major goals: to allow each user to organize objects that

are known, and to identify objects of potential interest.

The user-centered namespace[1, 2] is the predominant approach used to address the �rst problem.

A user-centered namespace allows each user's view of the system-wide namespace to be organized

according to the user's preferences. Objects in which the user has expressed an interest will have

short names, while those in which there is little interest will have longer ones (if they can be

named at all). One problem with the user-centered namespace is that the same name may refer

to di�erent objects when used by di�erent users. This has the potential to cause confusion, and it

makes sharing di�cult. Another problem is that, while this approach allows users to organize the

objects that are already known, it doesn't help them identify objects of potential and unrealized

interest.

The approaches described in the remainder of this section are of little help in solving the �rst

problem: organizing objects once they have been discovered. Instead, they are of more use in

solving the second problem: how to identify objects of unrealized interest.

One approach is to build a database containing information on all objects. Users search this

database using the information that they already know. This is the approach used by commercial

database services such as Lexis, or those used in libraries. A key point to observe about these

databases is that they are relatively static, and that the indexing information is usually precom-

puted. The task of indexing is further simpli�ed because all the data is under the control of a single

organization (the database service), is distributed over relatively few sites, and can be redistributed

as necessary.

Such databases are inappropriate for the problem at hand because of the dynamic nature of large

systems. Information is constantly changing, and there isn't a single entity that controls it. As for

using a general database system, there are presently none that scale to the number of hosts that are

needed, or that allow use by large numbers of users that are not necessarily cooperative. It should

be pointed out that the other approaches that I will describe are all, in some sense, databases, but

that they are specialized to the task at hand.

An approach related to the database approach is attribute-based[8] naming. In attribute-based

naming, objects are named by a collection of attributes. In specifying an object, attributes may be

omitted, and only enough attributes to uniquely identify the object must be provided. One problem

with attribute-based naming is that the attributes must be registered ahead of time. Further, the

information needed to identify an object might not be readily apparent to the user (though it would

be recognized if it were seen).

Like databases, attribute-based naming, in its pure form, does not scale well. It is di�cult to

distribute the database of attributes across a large number of machines. Attribute-based systems

require little a priori knowledge of what the queries will be, and without this knowledge, it becomes

di�cult to build the cross references that are required to direct queries to just the right system.

2



As a result, queries must be sent to all systems. One attribute-based naming system, Pro�le[8],

restricts the set of name servers that are queried, and relies on cross-references to direct queries

to servers that were not included in the original set. This approach requires that the right cross-

references be in place before the query is made, negating one of the advantages of attribute-based

systems, i.e., that the links corresponding to a particular query need not be in place ahead of time.

Several recent systems support a uniform global namespace[3, 7, 11]. A uniform namespace facil-

itates sharing since each user uses the same name to refer to an object. While this helps users

identify and �nd the objects about which they have learned (e.g., from other users), it does not

directly help them discover objects of potential interest. Instead, it is the way that objects are

organized in these systems that helps users discover objects.

Objects are usually organized hierarchically. Links are named, and typically specify additional

information about the objects in the sub-hierarchy reached through the link. As one moves deeper

in the hierarchy, progressively more information has been speci�ed about the objects that are to

be found.

A problem with the typical organization of such hierarchies is that the information at the top level

of the hierarchy pertains to the administrative structure of the system. The information in which

one is interested is often scattered across the hierarchy, and because the information about the

administrative structure of the system is not inherent in the data one is looking for, it is often

necessary to search for information across the entire namespace.

In an alternative organization, everything is arranged by topic. With this approach one is able

to quickly �nd information that is relevant, but this approach su�ers from the problems that the

administratively structured hierarchy solved: it is di�cult to control access to the shared directories;

there is bound to be disagreement on what should appear in various directories; each directory is

stored in a central location instead of being close to the principals that typically use it, thus

preventing one from exploiting locality; and many directories will be too big.

Another problem with uniform hierarchical namespaces as presently supported is that information

can often be classi�ed in more than one way. When this happens, it is desirable that an object

appear with more than one name. This can be accomplished by making more than one link to an

object, but existing systems support only symbolic links.

Symbolic links su�er from several problems. When using symbolic links, one name for an object is

primary, and all others are secondary. This means that if the primary name for an object changes

(or is removed), the other links cease to be valid. Supporting multiple primary links in a distributed

environment makes problems such as garbage collection and object mobility more di�cult, but the

di�erence in semantics is well worth it. A second problem with symbolic links, when used to attach

a hierarchy of objects, is that an additional name for the hierarchy can only be added at the point

of attachment. Below that level, all names remain the same as in the primary hierarchy.

There are other approaches that have been proposed for identifying objects of potential interest.

Schwartz proposes the use of resource discovery agents[10] which accept queries from users and use

the information provided by the user to �nd objects in which the user is interested. In Schwartz's

3



design, the information needed to direct a query to the appropriate agent evolves over time. A

query is directed to the nearest agent, and agents learn how to direct queries based on the results

of previous queries. The problem with this approach is that it gives the agents too much of the

responsibility for building the resource discovery graph. Techniques have been suggested for making

the agents capable in this regard, but the scalability of these techniques is in doubt.

The approaches that have been described so far fall short because they fail to provide a scalable

mechanism to adequately direct a search to the correct repository. The next section describes a

model for organizing large systems that supplies the needed direction.

3 The Virtual System Model

My approach to the problems of object organization and discovery is embodied in the Virtual

System Model[5, 6]. In the Virtual System Model, each user creates a set of virtual systems. Each

virtual system de�nes a di�erent, customized view of the underlying system. This allows users

to organize the objects and information about which they already know in multiple ways. The

process of object discovery is facilitated by these multiple organizations, and by the fact that the

information speci�ed by users, when customizing their own namespaces, can be combined with

other information and made available for use by others.

3.1 The Namespace

Within the Virtual System Model, the global namespace forms a generalized directed graph. Each

directory within the graph presents a way of viewing the objects that it contains. Users (or agents

for users) choose the appropriate view based on the information they are using to locate an object.

The Virtual System Model presents a user-centered

1

namespace. Individual users can customize

their namespace by selecting the node that is to be their root. In fact, the user's namespace is

usually created by establishing a new directory and making links to the parts of the graph in which

a user has an interest.

As indicated earlier, the fact that the same name may refer to di�erent objects at di�erent times

can make a user-centered namespace confusing, and can hinder sharing. To address this problem,

the Virtual System Model includes the concept of closure[4, 9]. Each object has an associated

namespace. In this way, the context within which a name is to be resolved is automatically passed

along with the object specifying the name. Although the same name may refer to di�erent objects

within di�erent contexts, the correct context is always known.

The user-centered namespace identi�es more than just �les. It speci�es the services, the users,

the processors, and the other objects that are treated as part of a user's virtual system. A virtual

system de�nes a view of the world. It speci�es which �les, services, users, processors, and other

1

Technically, it is better described as object-centered since a namespace is associated with each object in the

system.

4



system components are to be visible. A virtual system can be thought of as a computer system

constructed from the selected pieces. The pieces can physically reside anywhere in the global system

as long as they are accessible. In practice, the most frequently accessed pieces are likely to exist

on the local system or at the local site.

Discovering objects of potential interest in such a system requires a mechanism that can narrow the

search space. It must direct the user appropriately, bringing the user closer to objects that may be

of interest. There are a number of features that a directory mechanism should have if it is to scale

while still allowing objects to be organized in ways bene�cial to the user: a directory mechanism

should allow a single directory to be distributed across multiple systems; it should support multiple

primary names for objects; and it should support multiple views of directories. By supporting

multiple views, di�erent users can impose their own policy on what they see. Di�erent views also

provide greater support for locality since one can choose to see only those parts of a directory that

are nearby.

3.2 Filters and Union Links

One way that a directory mechanism can support distribution and multiple views is by allowing

directories to include the contents of other directories. In the Virtual System Model, this function-

ality is provided by the union link. A directory, as seen by a user, may include the contents of many

smaller directories that are scattered across multiple systems. Other directories might include the

contents of di�erent sets of directories, possibly overlapping with those in the �rst set. By changing

the set of underlying directories that are included, di�erent views of a directory can be supported.

The Virtual System Model further supports alternative views of a directory by allowing programs

called �lters to be associated with links. A �lter is a program, attached to a link, that allows the

view of the target directory to be altered. In this way, a view can be speci�ed as a function of

another view.

Filters and union links provide a powerful mechanism for supporting customization and the manip-

ulation of namespaces. Filters are written in standard programming languages and can take any

action that can be speci�ed in such languages. The union link allows the manipulation performed

by a �lter to a�ect the directory containing the �lter (Normally, only the directories referenced

through the �lter are a�ected.)

It is important that the functions that specify the manipulation of namespaces be associated with

links instead of directories. This is because the result of resolving a name is itself a link (a reference

to an object). By associating �lters with links, a �lter can return another �lter that is to be applied

when the links it returns are further resolved. This allows �lters to modify more than one level of

the hierarchy to which it is attached. It also allows the creation of ghost hierarchies, parts of the

namespace which are speci�ed entirely within the �lter.

2

2

If the functions describing a directory were associated with each directory, then to a�ect more than the �rst level

of a hierarchy would require these functions to create new directories on the 
y. These directories would either have

to be destroyed as soon as the query was done, or their consistency with the data on which they were based would

need to be maintained.

5



4 Prospero

Prospero

3

is a distributed operating system presently under construction, the design of which is

based on the Virtual System Model. Because of the large number of �les on even a small collection

of systems, the initial focus for Prospero has been the �le system. A prototype is running on several

systems at the University of Washington and elsewhere on the Internet.

The goal of Prospero is to provide a testbed for the features of the Virtual System Model. I

hope to have several servers running on sites scattered across the Internet, providing access to the

publicly available information stored at these sites. Many sites presently make information available

by anonymous FTP and other means. While my ultimate goal is to make all of this information

available within the Prospero �le system, my short-term goal is to provide a directory service within

which this information may be found, and to allow the information to be accessed externally. This

approach allows users to experiment with Prospero as an enhancement to the systems that they

are currently using.

4.1 Description

The primary component of the Prospero �le system is the directory service. The directory service

maps a name within a virtual system to the name of the host on which the corresponding �le

physically resides and the name of the �le on that host. Once the physical location of the �le has

been determined, existing �le access techniques (presently NFS) are used to access the �le.

The directory service is implemented in a distributed fashion. Each system that stores �les runs a

directory server. The directory server takes a pointer to a directory, and the name of a component

in that directory. It returns the contents of the directory matching the speci�ed component. Each

directory entry consists of the name of the object, the host on which the referenced object resides,

and the identi�er of the object on that host. A directory can contain references to objects that are

stored remotely.

Prospero includes tools for constructing and modifying virtual systems. These tools create and

destroy virtual systems, create new directories, and add, delete and modify links in existing direc-

tories. Directories in Prospero can contain �ltered links and union links. When querying directories,

these active components are usually returned to the client and processed there. It is possible to

request that the processing of these components occur on the remote directory server, but the

server is not required to comply with such requests.

3

From the Tempest by William Shakespeare. Prospero was the rightful Duke of Milan who escaped to a desert

island. When his enemies were shipwrecked on the island, Prospero used his power of illusion (magic) to separate the

party into groups, each of which thought they were the only survivors. Thus, he caused each group to see a di�erent

view of the world. As time went on, the shipwrecked parties slowly learned about the others, and thus, the pieces of

the other views were added to their own.

6



4.2 Status

As noted, the Prospero directory service maps names within a virtual system to the physical location

of objects, and NFS is used to access these object. An application library that allows applications

to transparently use the Prospero �le system is available, and several applications have been linked

with it, including cat, cc, cp, dd, ed, �nger, grep, ld, ls, more, strings, tail and wc. Union links are

supported, closure is not. Filters have been implemented and are in the process of being integrated

with the �le system.

4.3 Achieving the goals of Prospero

Among the work to be accomplished: �lters must be integrated with Prospero, and support for

closure must be added. A mechanism is needed to allow an application to use closure; in particular,

the mechanism must allow the application to specify which context is to be used when resolving

names (i.e., the user's, the application's, or that of an open �le).

The application library is large, and is duplicated in each executable with which it is linked. I

would like to implement Prospero in (through) the kernel. This would solve several problems, and

would result in automatic support for Prospero by all applications. A kernel implementation would

be best handled by incorporating the upcall mechanism from AFS[3], and placing the Prospero

resolver in an application process. The hard part has already been done by others.

Finally, Prospero must be made robust enough so that it can be used by others. Most of the

advantages of the Virtual System Model come from the way it allows information to be organized.

To evaluate its e�ectiveness, at least a limited amount of real-world use is required.

To aid in this evaluation, Prospero must be distributed to a number of sites. It is unlikely that

others will immediately buy into a kernel implementation, or even add Prospero support to key

applications. For this reason, the implementation to be distributed will take the form of a shell

that can be used to navigate the generalized directed graph that forms the Prospero namespace.

In this way, users will be able to use Prospero to �nd resources available on the Internet without

having to completely buy into the model. Once a resource has been found, the user will be able to

execute a command that will transfer the resource to the local system using FTP or another �le

access mechanism.

Prospero servers will need to run on key sites that make information available to the rest of the

Internet. There are several collections of information that presently exist. Among them are archive

sites for Usenet, and a set of storage sites organized under the Online Book Initiative. Both

collections keep track of the what is stored at each site through a centrally maintained list. It

should be fairly straightforward to allow a distributed directory to be maintained in real time using

Prospero. Once set up, Prospero would be the �rst system tying together these resources, and as

such it should be relatively easy to get people to use it. Once receiving regular use, the success of

the Prospero prototype may be evaluated by looking at the views of data that are developed by

users.

7



5 The Thesis

My thesis is that scalable mechanisms are needed to �nd objects of potential, but unrealized,

interest, and to organize objects once they have been found. Customization plays an important

role in the solution to this problem. It eases the task of users in keeping track of the objects that

they use on a regular basis. Further, it is possible to make use of the information speci�ed by users

in customizing their own namespaces when constructing views of information to be shared with

others. A problem with customized namespaces is the lack of name transparency: the same name

may refer to di�erent objects when used in di�erent namespaces. This problem can be addressed

by supporting closure.

The ability to identify objects of potential interest is greatly enhanced when objects are organized

in more than one way. Large systems should allow information to be organized by multiple entities.

Among them are individuals, organizations (e.g., libraries, professional societies), and commercial

services (e.g., clipping services). Users should be able to choose among the alternatives, and it

should be possible to de�ne one's own view of the information as a function of one or more other

views.

The Virtual System Model brings this all together. It supports a user-centered namespace and

closure. Objects may be organized in multiple ways, and each name for an object is primary.

Finally, tools are provided to allow new views of objects to be constructed as a function of existing

views.

Prospero is an operating system based on the Virtual System Model. It provides a testbed upon

which the usefulness of the Virtual System Model can be evaluated.

5.1 Structure of the Dissertation

The dissertation will start by describing the problems that arise for the user as systems grow. Next,

it will brie
y describe the features that are needed to address these problems, and why they are

important. It will describe existing systems, and show that they do not adequately address the

problem.

A new model for organizing large systems, the Virtual System Model, will be presented, and I will

show how it supports the features that I described earlier. I will show how these features apply to

the �le system, to security, and to the selection of servers, services, and processors. By presenting

examples of its use, I will show that the Virtual System Model provides a powerful and 
exible

model for organizing large systems. In particular, I will show that many of the research tools used

in the real world can be implemented within the model, and I will show how it is easier to keep

information up-to-date when these tools are implemented in such a manner.

I will make things more concrete by describing Prospero, and I will discuss the ways that it will

have been used to organize information that is available over the Internet. Finally, I will assess

the success of the Prospero prototype in addressing the problems that arise for the user of large

8



systems. I will show what has been accomplished, where more work is needed, and where additional

evaluation is required. I will end by discussing the usefulness of the Virtual System Model.

References

[1] Luis-Felipe Cabrera and Jim Wyllie. QuickSilver distributed �le services: An architecture for

horizontal growth. In Proceedings of the 2nd IEEE Conference on Computer Workstations,

pages 23{27, March 1988.

[2] Douglas Comer and Thomas P. Murtagh. The Tilde �le naming scheme. In Proceedings of the

6th International Conference on Distributed Computing Systems, pages 509{514, May 1986.

[3] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan,

Robert N. Sidebotham, and Michael J. West. Scale and performance in a distributed �le

system. ACM Transactions on Computer Systems, 6(1):51{81, February 1988.

[4] B. Cli�ord Neuman. The need for closure in large distributed systems. Operating Systems

Review, 23(4):28{30, October 1989.

[5] B. Cli�ord Neuman. The Virtual System Model for large distributed operating systems. Tech-

nical Report 89-01-07, Department of Computer Science, University of Washington, April

1989.

[6] B. Cli�ord Neuman. Workstations and the Virtual System Model. In Proceeding of the 2nd

IEEE Workshop on Workstation Operating Systems, pages 91{95, September 1989. Also ap-

pears in the Newsletter of the IEEE Technical Committee on Operating Systems, Volume 3,

Number 3, Fall 1989.

[7] John K. Ousterhout, Andrew R. Cherenson, Frederick Douglis, Michael N. Nelson, and

Brent B. Welch. The Sprite network operating system. Computer, 21(2):23{35, February

1988.

[8] Larry L. Peterson. The Pro�le naming service. ACM Transactions on Computer Systems,

6(4):341{364, November 1988.

[9] Jerome H. Saltzer. Operating Systems: an advanced course, volume 60 of Lecture Notes in

Computer Science. Springer-Verlag, 1978. Chapter on naming.

[10] M. F. Schwartz. The networked resource discovery project. In Proceedings of the IFIP XI

World Congress, pages 827{832, August 1989. San Francisco.

[11] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The Locus distributed operating

system. In Proceedings of the 9th ACM Symposium on Operating Systems Principles, pages

49{70, October 1983.

9


