
Dynamic Node Recon�guration

in a Parallel-Distributed Environment

Michael J. Feeley, Brian N. Bershad, Je�rey S. Chase, and Henry M. Levy

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Technical Report 90-09-04

Appears in the Proceedings of the Third ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPOPP)

SIGPLAN NOTICES, Volume 26, Number 7, July 1991

Abstract

Idle workstations in a network represent a signi�cant

computing potential. In particular, their processing

power can be used by parallel-distributed programs that

treat the network as a loosely-coupled multiprocessor.

But the set of machines free to participate in load shar-

ing changes over time as users come and go from their

workstations. To make full use of the available re-

sources, parallel-distributed applications in the network

must recon�gure to adapt to these changes as they run.

This paper describes a node recon�guration facility

for Amber, an object-based parallel programming sys-

tem for networks of multiprocessors. We describe sys-

tem support that allows a parallel Amber application

to adapt to changing network conditions by expanding

to make use of new nodes as they become idle, and by

contracting as nodes become busy. A key characteris-

tic of Amber's node recon�guration is that it is handled

at the user level in the Amber runtime system; it does

not depend on a kernel-level process migration facility.

Our experiments with Amber show that node recon�g-

uration can be implemented easily and e�ciently in a

runtime library.

1 Introduction

For nearly two decades, networks of workstations have

been used as inexpensive multiprocessors with only

This work was supported in part by the National Sci-

ence Foundation (under Grants No. CCR-8619663 and CCR-

8907666), the Washington Technology Center, an AT&T Fel-

lowship, and Digital Equipment Corporation (Systems Research

Center, External Research Program, and DECwest Engineering).

moderate degrees of success. However, several tech-

nological trends promise greater success in the future.

� An order-of-magnitude increase in local area net-

work speed will substantially reduce the cost

of inter-node communication, making distributed

data sharing more practical.

� With the dramatic increase in processor speeds,

the aggregate computational power of workstation

networks will exceed that available in supercom-

puters, and at much lower cost.

� Shared-memory multiprocessors will continue to

gain popularity, providing a strong single-node ba-

sis for parallel programming.

� Research in parallel-distributed programming

has produced systems that provide comfort-

able programming models and good perfor-

mance [Li & Hudak 89, Chase et al. 89,

Bennett et al. 90a, Arnould et al. 89].

Modern parallel-distributed programming systems

restrict applications to run on a �xed set of hosts. Typ-

ically, a parallel-distributed program allocates some

number of idle workstations at startup and leaves com-

ponent tasks active on those machines until completion.

The program is unable to take advantage of additional

power as new processing nodes become idle during its

execution. Worse, if the owner of one of the worksta-

tions returns, he must compete for resources with the

program component running on his machine. The prob-

able results include degraded program performance and

an unhappy workstation owner, who may be inclined to

abort the program. Such con
icts are likely during a

long-running computation, unless the program limits

its initial allocation to a small number of nodes with

predictable usage patterns: i.e., nodes likely to remain

idle. This severely restricts the potential parallelism

available to the applications, which tend to be highly

decomposable and capable of using a large number of

nodes.

The goal of our research is to allow and encourage the

execution of parallel-distributed programs that adapt

to changes in the set of available processing nodes on

the network. We call such changes and the actions

that must be taken to accommodate them dynamic

node recon�guration. Supporting dynamic node recon-

�guration allows programmers to use idle workstations

according to the needs of their programs, rather than

the working hours of their colleagues.

In this paper we describe the design, implementa-

tion, performance, and impact of dynamic node re-

con�guration in Amber [Chase et al. 89]. Amber dif-

fers from earlier load sharing work [Eager et al. 86,

Litzkow et al. 88, Theimer & Lantz 88], which makes

use of idle network workstations by redistributing in-

dependent sequential processes using kernel-level pro-

cess migration [Powell & Miller 83, Theimer et al. 85,

Zayas 87, Douglis & Ousterhout 87]. Our work ex-

tends these ideas to the parallel-distributed case, which

involves distributed programs composed of multiple

processes cooperating to obtain speedup on a single

parallel algorithm. Because control over locality, de-

composition, and communication patterns are critical

to the performance of a parallel-distributed program,

we believe that a user-level approach to recon�gura-

tion is more appropriate than one based exclusively

on kernel-level mechanisms. In Amber, programs con-

trol the load redistribution policy through recon�gura-

tion mechanisms implemented entirely at the user level

within the Amber runtime library.

This paper is organized as follows. In the next section

we give an overview of the Amber system. We moti-

vate and explain Amber's user-level approach to recon-

�guration in Section 3, and in Section 4 we contrast

it with an alternative approach based on kernel-level

process migration. In Section 5 we discuss some imple-

mentation issues for Amber's recon�guration facility.

In Section 6 we describe the system's performance. We

present our conclusions in Section 7.

2 Amber Overview

Amber is an object-oriented parallel-distributed pro-

gramming system that supports threads, a distributed

shared object space, object migration, and object repli-

cation [Faust 90], for programs written in a variant

of C++. Amber was designed to explore the use of

a distributed object model as a tool for structuring

parallel programs to run e�ciently on a network of

DEC Fire
y shared-memory multiprocessor worksta-

tions [Thacker et al. 88]. Programs are explicitly de-

composed into objects and threads distributed among

the nodes participating in the application. Threads

interact with objects through a uniform object invoca-

tion mechanism; remote invocations are handled trans-

parently by migrating the thread, migrating the ob-

ject, or replicating the object, as determined by the

object's type. Amber has been used to experiment

with a number of parallel-distributed applications, in-

cluding iterative point-update (e.g., the Game of Life),

jigsaw puzzle [Green & Juels 86], graph search, mesh-

based dynamic programming [Anderson et al. 90], sim-

ulation, and an n-body gravitational interaction. This

section describes those aspects of Amber that are rele-

vant to our approach to node recon�guration.

Amber can be viewed as a distributed shared mem-

ory system that uses language objects rather than pages

as the granularity of distribution and coherence. This

eliminates the false sharing inherent in page-based dis-

tributed memory systems, and it allows coherence and

distribution policies to be selected on an object basis

according to how objects are used [Bennett et al. 90b].

The maximum parallelism available to an Amber pro-

gram is determined by its decomposition into objects

and threads, and the assignment of objects to nodes

determines the distribution of load. The program-

mer can control object location using explicit object

mobility primitives, or by selecting an adaptive \o�

the shelf" object placement policy implemented with

additional runtime support layered on the base sys-

tem [Koeman 90]. These features are particularly use-

ful for preventing load imbalances over a changing node

set; objects can be migrated to balance the load.

An Amber program runs as a collection of processes

distributed across a set of network nodes, some of which

may be shared-memory multiprocessors. We will refer

to these processes as logical nodes. A logical node is

an address space that encapsulates all of the program

code, data objects, and threads for one part of an Am-

ber application. Normally, there is one logical node

on each physical node participating in the execution

of an Amber application. The Amber runtime system

schedules lightweight Amber threads within the address

space of each logical node. On multiprocessor nodes,

these threads can execute in parallel. Object invoca-

tion uses shared memory and procedure calls when an

object and thread are on the same machine. Runtime

support code maps object moves and remote invoca-

tions into RPC calls between the logical nodes. In this

way, local communication is e�cient and remote com-

munication is transparent.

An important aspect of Amber is its sparse use of

virtual memory to simplify and speed up naming of dis-

tributed objects. Amber uses direct virtual addresses

as the basis for object naming in the network. The ad-

dress spaces of the logical nodes are arranged in such

a way that any object address denotes the same ob-

ject in any logical node. References to remote ob-

jects are detected at the language level and trapped

to the runtime system. Amber can globally bind ob-

jects to virtual addresses in this fashion because each

program executes in a private (but distributed) object

space; one Amber program cannot name or use objects

created by another program. This sets Amber apart

from other location-independent object systems, such

as Emerald [Jul et al. 88], which provide a single global

object space shared by multiple programs.

3 Recon�guration in Amber

A running parallel-distributed program can respond to

three types of node recon�guration: the node set can

shrink in size, stay the same size but change member-

ship, or grow. Dealing with these changes requires care

at two levels. At the system level, all of the cases re-

quire system support to transfer program state from

one node to another, and to forward subsequent com-

munication as needed. At the application level, the pro-

gram must resolve load imbalances caused by growth

and shrinkage of the node set; additional support is

needed to react to changes in the available parallelism

and communication patterns.

In Amber, recon�guration is controlled by the run-

time system, but may involve application code. The

runtime system provides the mechanism for migrating

state and adjusting the communication bindings, but

the load balancing policy is left to object placement

code at the application level. This section discusses

these two levels and their interplay during node recon-

�guration.

3.1 The Role of the Runtime System

Node set recon�guration is handled at the user level

without direct involvement from the operating system

kernel. The program expands by migrating objects and

threads to a newly created logical node running on the

new physical node. It contracts by forcing a logical

node to terminate after redistributing its objects and

threads to the remaining logical nodes. In either case,

the transfer of program state is initiated and controlled

by the runtime sytem, possibly in cooperation with user

code. The operating system kernel is not aware of

the recon�guration; it sees only a
urry of network ac-

tivity, together with a process creation or death. For

simple membership changes (replacing one node with

another), this amounts to a user-level process migra-

tion facility for Amber logical nodes.

The runtime system is a natural place to support mi-

gration of program state. It has responsibility for man-

aging distributed threads and maintaining coherency

of the distributed shared memory, so it knows about

threads and objects and can relocate them directly. It

also knows details about address space usage that allow

it to be frugal with network and memory bandwidth.

For example, Amber does not copy data that is accessi-

ble on demand elsewhere in the network (e.g. replicated

objects). It also ignores regions of sparse virtual mem-

ory that are unused or reserved for objects residing on

other nodes.

3.2 The Role of the Application

The runtime system can independently handle any re-

con�guration in a functionally correct way, but it relies

on the application (or a higher level object placement

package) to redistribute work so as to make the best

possible use of the new node set. This must be done by

migrating objects using standard object mobility prim-

itives, placing them in a way that best meets the com-

peting goals of balancing load and minimizing network

communication. Achieving and maintaining a balanced

assignment of work to processing nodes is the primary

concern of parallel-distributed programming. The as-

signment must be adjusted to compensate for load im-

balances that develop as the program executes, as well

as for changes in the number of nodes. It depends

on application-speci�c knowledge about the amount of

computation associated with each object, and the pat-

terns of communication between objects. The extent to

which this knowledge is applied will always determine

the e�ectiveness of the decomposition.

Our goal was to create an interface that allows load

balancing policies to be tailored to meet the needs of

the application. The information to drive the policy

is provided by a prede�ned NodeSet object that serves

as a channel of communication between the runtime

system and the application. Table 1 lists the Node-

Set operations that are visible to the application. The

downcall interface is used by the application to request

the current size of the node set, or to traverse the node

set when distributing work. The upcall interface con-

sists of procedures Grow and Shrink that are exported

by the application and are called asynchronously by the

runtime system when the size of the node set changes.

Shrink is called before a node leaves the node set, to

redistribute its work to the remaining nodes. Grow is

called after a node is added, to migrate work to the

new node.

Upcall Interface

void Shrink(Node departingNode)

void Grow(Node newNode)

Downcall Interface

int NodeCount()

Node NextNode(Node referenceNode)

Table 1: NodeSet Operations

4 The Process Migration Alter-

native

Our approach to node recon�guration is based on mi-

grating �ne-grained program state between Amber log-

ical nodes. Consider now an alternative approach based

on a general-purpose process migration facility that

migrates and schedules logical node processes without

knowledge of their internal state. Simple membership

changes are straightforward using kernel-level process

migration (i.e., move an address space and its com-

ponent threads). Expansion of the node set is made

possible by decomposing the application into a larger

number of operating system processes (logical nodes),

allowing the use of as many physical nodes as there

are logical nodes in the decomposition. A host could

leave an application's node set simply by using process

migration to send the local logical node processes to

some other machine. Recon�guration would be fully

transparent to the application, assuming that it is suf-

�ciently decomposed.

\Over-decomposing" at the process level is expen-

sive because it involves heavyweight kernel abstractions

(e.g. address spaces). Over-decomposing at the object

level is cheaper and yields �ner-grained control over

the distribution of work. It also serves as a basis for

using application knowledge to balance the load at run-

time, rather than simply to e�ect a static decomposi-

tion into component processes.

In addition, the process-level approach will tend to

perform poorly when several logical nodes are placed

on the same physical node. The system can maintain

coherency between colocated address spaces using the

same mechanisms that are used in the distributed case

(transferring data with RPC), but this is much more ex-

pensive than using the physically shared memory pro-

vided by the hardware.

Overloading a physical node with multiple logical

nodes can also cause scheduling problems. For exam-

ple, computations in one logical node may block await-

ing an event in another, and overloading may violate

assumptions made by the user-level scheduling system

about the number of physical processors available to it.

In contrast, Amber's user-level approach preserves the

one-to-one mapping of logical to physical nodes, plac-

ing all program state on a given physical node within a

single address space. This avoids unnecessary interpro-

cess communication, and it allows all Amber thread

scheduling and synchronization to be handled using

lightweight user-level mechanisms.

A �nal problem with the kernel-level approach is

that it transfers the complete contents of a migrat-

ing address space, thereby needlessly moving data

that is replicated and can be found elsewhere. Al-

though system-level optimizations such as aggressive

pre-copying [Theimer et al. 85], or lazy on-demand

copying [Zayas 87], can reduce the latency of migra-

tion, the most e�ective optimization { no copying {

can only be implemented with information kept at the

user-level.

5 Implementation

This section describes the implementation of node re-

con�guration support in the Amber runtime system.

Sections 5.2 and 5.3 focus on managing the changing

node set and the locations of objects. Section 5.4 de-

scribes mechanisms for dealing with internal runtime

system state that must be preserved when a node leaves

the node set.

5.1 Node Set Changes

Changes to the node set are controlled by the Node-

Set object, initiated by its functions RemoveNode, Re-

placeNode, and AddNode. Changes can be requested

by the application itself, by calling one of these func-

tions, or from outside the program, by invoking RPC

operations exported by the Amber runtime system in

each logical node. In the current implementation this

is done manually by means of a command interface,

but we plan to implement a server that monitors work-

station availability and responds to changes by issuing

recon�guration commands to Amber applications.

Removing a node from the node set involves migrat-

ing application state from the departing node to a des-

ignated replacement node. The replacement node is

speci�ed as an argument to ReplaceNode, but it is cho-

sen arbitrarily by the runtime system for RemoveNode.

To remove a node, the runtime system freezes execut-

ing threads on both the departing node and the re-

placement node, and suspends attempts by other nodes

to communicate with the departing node. Once both

nodes are idle, the runtime system on the departing

node uses RPC calls to load its application state into

the logical node on the replacement host. When the

transfer is complete, the departing logical node termi-

nates and the replacement node resumes execution of

user threads. Blocked messages to the departing node

are then forwarded to the replacement node. The per-

formance of the running program is degraded during

this procedure, but the recon�guration activity is oth-

erwise transparent to the application.

The node removal procedure is more complicated if

the change is a RemoveNode rather than a Replace-

Node. In this case, the runtime system �rst noti�es

the application by upcalling Shrink asynchronously and

waiting for a selectable time limit. This allows Shrink

to begin redistributing the departing node's objects to

the remaining nodes. If the time limit expires, the

thread executing Shrink is paused along with the other

executing threads, and migrated directly by the run-

time system along with the remaining program state.

When the replacement node resumes, the Shrink thread

executes to completion.

5.2 Propagating Node Set Knowledge

The Amber runtime system maintains information

about the set of nodes participating in the program,

including the size of the node set, the identities of the

nodes, and the RPC bindings needed to communicate

with them. Each logical node keeps a local copy of

the tables with the latest information about the cur-

rent state of the node set. Keeping perfect knowledge

in a dynamic world would require the system to syn-

chronously inform every node of changes to the node

set, updating all of their local tables atomically. In-

stead, the NodeSet object maintains a centralized reli-

able copy of the tables, updating them synchronously

with each change and allowing the updates to prop-

agate lazily to the rest of the network. The Amber

runtime system manages local tables as a cache over

the master tables; it detects and refreshes stale infor-

mation.

Each logical node is uniquely identi�ed by a node

number assigned to it when it �rst joins the applica-

tion's node set. These are used to name the node in

system data structures that store information about

the node set and the locations of remote objects. Node

numbers are frequently transmitted between logical

nodes as a side e�ect of the algorithm for locating

objects. A node learns of an addition to the node

set when it receives a node number for which it has

no cached RPC binding. It responds by obtaining the

RPC binding for the unknown node from the NodeSet

object, and caching it locally.

Similarly, nodes discover deletions from the node set

when their attempts to communicate with the departed

node fail. When a logical node leaves the node set,

its node number is inherited by its replacement node.

Thus the mapping from node numbers to logical nodes

is many-to-one. Reassigning a node number in this

fashion may invalidate RPC bindings for that node

number cached elsewhere in the network. An attempt

to use a stale RPC binding is caught by the Amber run-

time system. The runtime system handles the failure

by querying the NodeSet object for the new binding,

updating its local cache of bindings, and retrying the

call.

5.3 Locating Remote Objects

Amber's scheme for �nding remote objects is based on

forwarding addresses [Fowler 85]. Each time an object

moves o� of a node it leaves behind the node number

of its destination as a forwarding address. The for-

warding address may be out of date if the object moves

frequently. In this case the object's location can be de-

termined by following a chain of forwarding addresses,

since the object leaves a new address on each node that

it visits. If an object is referenced from a node where

it is not resident, and where no forwarding address is

stored, the search for the object is made by following

the forwarding chain beginning at the node where the

object was created. Each node caches tables associat-

ing regions of memory with node numbers; these can

be used to determine the node on which an object was

created, given the virtual address of the object.

Node recon�guration complicates management of

forwarding addresses. When a node is removed from

the node set, the forwarding addresses stored on the de-

parting node must be preserved by migrating them to

the replacement node. But a migrating forwarding ad-

dress will overwrite forwarding addresses already stored

on the replacement node. If the replacement node is a

link in the chain from the departing node to the ob-

ject, then destroying the address stored there creates

a cycle in the forwarding graph, causing the object to

become unreachable from some nodes. To prevent this,

the forwarding addresses associated with each object

are timestamped with a counter that is stored with the

object and incremented each time the object moves. A

forwarding address is never overwritten with an older

one; each forwarding address on the departing node

is compared with its counterpart on the replacement

node, and the older of the pair is discarded.

5.4 Activation Records

The problem for node removal is to transparently pre-

serve application state on the departing node by mi-

grating it to a safe place where it can be found when

it is needed by the remaining nodes. The bulk of this

state is in the form of application objects and threads,

but there are other data structures maintained by the

runtime system that also must be dealt with. Other

nodes assume that this state exists, and expect to �nd

it by resolving a node number embedded in their local

data structures. Amber preserves this state by migrat-

ing it to the replacement node, which inherits the node

number of the departing node.

Stack activation records are the most di�cult exam-

ple of this kind of state. Activation records are not

objects; an Amber thread stack is a contiguous region

of virtual memory handled in the standard way by ma-

chine instructions for procedure call and return. Due

to the way that Amber remote object invocations are

handled, a stack may have valid regions on several dif-

ferent nodes, associated with invocations of objects re-

siding on those nodes. The Amber remote invocation

code modi�es the stack so that a procedure return into

a remote activation record causes the thread to return

to the node where the actual activation record resides.

Of course, activation records residing on a node must

be preserved if the node is removed from the node set.

Our changes to Amber for node set recon�guration in-

cluded code to update a list of valid stack fragments on

each remote invocation, and to merge valid activation

records into formerly invalid regions on the replacement

node when a node set change occurs.

6 Performance

The performance of the node recon�guration mecha-

nism can be evaluated from two di�erent perspectives.

The �rst is concerned with the amount of time that

workstation owners must wait to reclaim their worksta-

tions from parallel-distributed applications. The sec-

ond is concerned with the performance of an applica-

tion under recon�guration.

6.1 Reclaiming a Workstation

When an application receives a command to extract

itself from a node, application threads on the node

are stopped within a �xed period of time speci�ed as

an argument to the command. This quickly returns a

considerable portion of the workstation resources back

to its owner. The time for the subsequent migration

of application state from the departing node is dom-

inated by the communication latency of the transfer.

The primary factors a�ecting this time are the num-

ber and size of objects resident on the departing node.

Table 2 shows the relationship between overall migra-

tion time and the number and size of migrated objects.

Our current implementation does not include a bulk

object transfer facility capable of packing and shipping

multiple objects at once; the cost for moving a large

number of objects will be substantially improved once

this feature is implemented.

Number Object Size (bytes)

of Objects 200 400 800 1600 3200

100 0.84 0.97 1.15 1.86 2.84

200 1.53 1.72 2.09 3.46 5.85

300 2.23 2.47 3.05 5.15 6.68

400 2.90 3.23 3.95 6.77 11.51

500 3.54 3.94 4.87 8.35 13.18

Table 2: Total Migration Time (seconds)

6.2 Application Performance

The performance of an application in a dynamic node

set depends on how well the application can adapt

to recon�guration. We built an adaptable version of

Red/Black Successive Over-Relaxation (SOR), an iter-

ative point-update algorithm that computes values for

points in a grid based on the values of their North,

South, East, and West neighbors. This section dis-

cusses the steps we took to make SOR adaptable, and

presents resulting performance data.

Static node set implementations of SOR divide the

grid into clusters of adjacent points, distributing one

cluster to each node that is available to the applica-

tion. If SOR is to adapt to changes in the number of

available nodes, it must be able to redistribute its work

dynamically to balance the load among currently avail-

able nodes. The approach we took to achieve this was

to over-decompose the problem into 24 clusters. We

chose this number so that we could get balanced distri-

butions of clusters to 2, 4, 6 and 8 nodes. Having more

than one cluster per node may result in a performance

penalty (compared to one cluster per node) due to an

increase in scheduling overhead and cross-cluster com-

munication. Running SOR on a 1200*1200 grid, we

found that a 24-way partitioning of the grid was 10%

slower on two nodes than a minimally decomposed (2-

way partitioned) version. The penalty increased to 20%

when we decomposed to 64 clusters.

To e�ectively overlap computation and communica-

tion in SOR, threads synchronize at a barrier at key

points in each iteration. To achieve the same e�ect

when there is more than one cluster per node and thus

more than one barrier, we introduced a node barrier

object on which all clusters synchronize. Without this

barrier, we pay an additional 15% performance penalty

for over-decomposition.

Table 3 shows the results of our experiments with

SOR using 24 clusters with a problem size of 1200

by 1200 points. We changed the size of the node set

ten times, performing 30 iterations in each of the ten

phases; the complete 300 iterations lasted about an

hour. The second column of Table 3 shows the number

of nodes participating in each phase. Between phases,

the application either expanded or contracted as indi-

cated by the table. Column 3 shows the time needed

to recon�gure. For node set expansion, this includes a

delay of about �ve seconds to start new logical node

processes. Column 4 shows the time taken for the ap-

plication and runtime system to relocate all of its local

objects. Finally, the last two columns show, respec-

tively, the time to execute 10 iterations of the algorithm

and the total time spent in that phase of the program.

The table shows that the program adapted e�ectively

to changes in the number of nodes. Program phases

executing on larger numbers of nodes were able to com-

plete their 30 iterations in less time than phases exe-

cuting on smaller numbers of nodes. Program phases

that were forced to contract back to a smaller number

of nodes completed their iterations in about the same

amount of time as earlier phases on the same number

of nodes.

7 Conclusions

We have described a facility for adapting to chang-

ing numbers of nodes in the Amber parallel-distributed

programming environment. Amber's fundamental ap-

proach to dynamic node recon�guration involves three

aspects: (1) user-level support for a distributed, shared,

object memory, (2) programmer-controlled object mo-

bility, and (3) a mechanism for communicating node

set changes to the application.

We have compared this approach to the more tradi-

tional process migration alternative. In the past, pro-

cess migration has been used primarily to balance the

load given a collection of independent non-cooperating

processes. In our environment, however, the objec-

tive is to distribute interacting components of a single

parallel program. To properly balance such compo-

nents requires an understanding of both the computa-

tional and communication patterns of the various com-

ponents. We believe that while a parallel application

could be structured as a set of processes that rely on

kernel-level process migration, a user-level approach is

more appropriate because:

� It yields better local performance, due to the use

of a shared address space on a node.

� It provides better control of parallelism, because

�ne-grained scheduling is done at the user level.

The kernel does not need to schedule competing

Program Number of Reconf. Distribute 10 Iter. Total Time

Phase Nodes Time Time Time (30 Iter.)

1 2 na na 149.3 448.1

2 8 10.6 35.8 48.0 190.6

3 2 29.5 24.0 152.7 511.6

4 4 6.2 23.7 79.0 267.0

5 6 5.3 16.3 60.3 202.6

6 4 12.4 12.7 81.4 269.6

7 8 10.3 23.8 49.5 182.8

8 2 28.2 23.2 149.9 501.3

9 4 5.9 23.6 81.4 274.1

10 2 17.6 15.9 150.6 485.5

Table 3: 24 Cluster Adapting SOR (seconds)

threads from di�erent processes that are part of

the same application.

� It permits more e�ective recon�guration, because

the user level knows which data to move and which

data to ignore. Also, only the application can de-

cide how to best redistribute objects among re-

maining nodes in order to optimize processing and

communication.

Amber supports node recon�guration by providing

simple mechanisms for state migration, together with

an interface that allows the application to adapt to a

changing node set. We have shown how an application

can use this interface, by overdecomposing at the ob-

ject level. We are continuing research to determine the

performance e�ects of recon�guration on other parallel-

distributed programs.

8 Acknowledgments

We would like to thank Rik Little�eld, Cathy McCann,

Simon Koeman, Tom Anderson, Kathy Faust, and Ed

Lazowska for discussing with us the issues raised in this

paper.

References

[Anderson et al. 90] Anderson, R. J., Beame, P., and

Ruzzo, W. L. Low overhead parallel sched-

ules for task graphs. In Proceedings of the

2nd Annual ACM Symposium on Parallel

Algorithms and Architectures, pages 66{75,

July 1990.

[Arnould et al. 89] Arnould, E. A., Bitz, F. J., Cooper,

E. C., Kung, H. T., Sansom, R. D., and

Steenkiste, P. A. The design of Nectar: A

network backplane for heterogeneous mul-

ticomputers. 3rd Symposium on Architec-

tural Support for Programming Languages

and Operating Systems, Computer Architec-

ture News, 17(2):205{216, April 1989.

[Bennett et al. 90a] Bennett, J. K., Carter, J. B., and

Zwaenepoel, W. Adaptive software cache

management for distributed shared memory

architectures. In Proceedings of the 17th An-

nual International Symposium on Computer

Architecture, pages 125{134, May 1990.

[Bennett et al. 90b] Bennett, J. K., Carter, J. B.,

and Zwaenepoel, W. Munin: Distributed

shared memory based on type-speci�c mem-

ory coherence. In Proceedings of the 2nd

ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, pages

168{176, March 1990.

[Chase et al. 89] Chase, J. S., Amador, F. G., La-

zowska, E. D., Levy, H. M., and Little�eld,

R. J. The Amber system: Parallel pro-

gramming on a network of multiprocessors.

In Proceedings of the 12th ACM Symposium

on Operating Systems Principles, pages 147{

158, December 1989.

[Douglis & Ousterhout 87] Douglis, F. and Ouster-

hout, J. Process migration in the Sprite

operating system. In Proceedings of the

7th International Conference on Distributed

Computing Systems, pages 18{25, Septem-

ber 1987.

[Eager et al. 86] Eager, D. L., Lazowska, E. D., and

Zahorjan, J. Adaptive load sharing in

homogeneous distributed systems. IEEE

Transactions on Software Engineering, SE-

12(5):662{675, May 1986.

[Faust 90] Faust, K. An empirical comparison of ob-

ject mobility mechanisms. Master's thesis,

Department of Computer Science and En-

gineering, University of Washington, April

1990.

[Fowler 85] Fowler, R. J. Decentralized Object Find-

ing Using Forwarding Addresses. PhD dis-

sertation, University of Washington, Decem-

ber 1985. Department of Computer Science

technical report 85-12-1.

[Green & Juels 86] Green, P. and Juels, R. The jig-

saw puzzle: A distributed performance test.

In Proceedings of the 6th International Con-

ference on Distributed Computing Systems,

pages 288{295, May 1986.

[Jul et al. 88] Jul, E., Levy, H., Hutchinson, N., and

Black, A. Fine-grained mobility in the Emer-

ald system. ACM Transactions on Computer

Systems, 6(1):109{133, February 1988.

[Koeman 90] Koeman, S. Dynamic load balancing in a

distributed-parallel object-oriented environ-

ment. Master's thesis, Department of Com-

puter Science and Engineering, University of

Washington, December 1990.

[Li & Hudak 89] Li, K. and Hudak, P. Memory co-

herence in shared virtual memory systems.

ACM Transactions on Computer Systems,

7(4):321{359, November 1989.

[Litzkow et al. 88] Litzkow, M. J., Livny, M., and

Mutka, M. W. Condor - a hunter of idle

workstations. In 8th International Con-

ference on Distributed Computing Systems,

pages 104{111. IEEE Computer Society,

June 1988.

[Powell & Miller 83] Powell, M. L. and Miller, B. P.

Process migration in DEMOS/MP. In Pro-

ceedings of the 9th ACM Symposium on Op-

erating Systems Principles, pages 110{119.

ACM/SIGOPS, October 1983.

[Thacker et al. 88] Thacker, C. P., Stewart, L. C., and

Satterthwaite, Jr., E. H. Fire
y: A multi-

processor workstation. IEEE Transactions

on Computers, 37(8):909{920, August 1988.

[Theimer & Lantz 88] Theimer, M. M. and Lantz,

K. A. Finding idle machines in a

workstation-based distributed system. In

8th International Conference on Distributed

Computing Systems, pages 112{122. IEEE

Computer Society, June 1988.

[Theimer et al. 85] Theimer, M. M., Lantz, K. A., and

Cheriton, D. R. Preemptable remote exe-

cution facilities for the V-system. In Pro-

ceedings of the 10th ACM Symposium on

Operating Systems Principles, pages 2{12.

ACM/SIGOPS, December 1985.

[Zayas 87] Zayas, E. R. Attacking the process mi-

gration bottleneck. In Proceedings of the

11th ACM Symposium on Operating Sys-

tems Principles, pages 13{24, November

1987.

