
University of Washington

Department of Computer Science and Engineering

"Technical Report TR 91-01-01"

Parallel Quicksand: Fast Sorting on the Sequent

Simon Kahan & Walter L. Ruzzo

Note: This document is ex post facto. The referenced TR number was assigned in 1991, but either
never completed or subsequently lost (our collective memories fail completely as to which). Its
closest living relative appears to be the attached abstract, derived from a LaTeX source file dated
May 21, 1992, which outlines the gist of the results presumably available then. We make it
available in hopes that it will appeal to CSE history buffs. – WLR 7/2013

Parallel Quicksort:

Fast Sorting on the Sequent

Simon Kahan ⇤

Walter L. Ruzzo †

Abstract

We develop a series of quicksort algorithms for the Sequent Symmetry shared memory
parallel computer. By employing a novel yet simple parallel splitting algorithm and
dynamic scheduling we are able to achieve a speedup of 13 with 16 processors over the
performance of sequential quicksort on one processor. This work provides experimental
evidence that asynchronous algorithms’ more uniform usage of shared resources may
make them less susceptible to bottlenecks on real machines.

Introduction: On sequential processors, Quicksort is one of the most e�cient algorithms
for sorting large arrays of data [Hoa62]. Three factors are eminently responsible for its speed:
locality of memory references, a tight inner loop, and, on average, a small number of com-
parisons. Locality ensures both that cache prefetching can be exploited and that paging is
minimal. Because a high proportion of the inner loop operations are comparisons, the com-
putational overhead per comparison is small. Even though some other sequential sorting
algorithms perform hardly any more, and possibly fewer, comparisons in the worst case than
Quicksort performs on the average [Weg90], Quicksort remains the algorithm of choice over a
wide range of input sizes due to its e�ciency on real machines.

Attempts to parallelize Quicksort are evident in the literature of both theory and practice.
Some of the relevant theoretical work on parallel Quicksort is based on PRAM [FW78] mod-
els of computation in which the number of processors available is unlimited, and access to
memory locations are of constant cost independent of address and of the number of processors
active. Martel and Gusfield [MG89] and Chlebus and Vrťo [CV91], for example, describe
formulations of Quicksort on the PRAM model sorting N distinct keys in O(logN) expected
time with N processors. Other PRAM variants of Quicksort are described in Akl [Akl85] and
JáJá [JáJ92]. There is nothing intrinsically wrong with such PRAM algorithms, but certain

⇤Max-Planck Institute for Computer Science, Saarbruecken, Germany. skahan@ag1.mpi-sb.mpg.de
†Department of Computer Science & Engineering, University of Washington, Seattle, WA.

ruzzo@cs.washington.edu

1

pragmatic di�culties prevent their application in practice. The first di�culty is that there
are no PRAMs on which to run them. One humble approximation to a PRAM is the Se-
quent shared memory multiprocessor: roughly 20 processors, each having a 64K cache, share
a single bus accessing main memory. In principle any N processor, time T PRAM algorithm
can be simulated in time O(TN/P) by a P < N processor machine. In practice, however,
this approach seems not to lead to optimal speedup on a modestly parallel machine such as
the Sequent when compared to an e�cient sequential Quicksort implementation, even though
the PRAM version may be asymptotically optimal. Overhead of the simulation is one rea-
son. More seriously, considerable e↵ort is expended by the PRAM algorithm to orchestrate
the operation of the large number of available processors. This seems to have greatly com-
plicated the algorithms, seriously undermining two of the three factors identified above as
critical to Quicksort’s practical e�ciency on real machines. Furthermore, this e↵ort is largely
unnecessary, since as we will show, simple stratagems su�ce when the number of processors
is modest. Note, however, that parallelizing Quicksort is not trivial even for modest numbers
of processors. In particular, the “obvious” approach of allowing one processor to sequentially
perform the initial partition of the file into two halves is a poor choice, since it leaves P � 1
of the processors idle for O(n) steps, a significant waste in practice.

Access to shared memory through a single bus is an obvious bottleneck to scaling Sequent-
like machines to very large numbers of processors. Increasing the bandwidth to shared memory
may be achieved by replacing the bus with a communication network and main memory by
a distribution of memory banks, but the result is a machine that must contend with greater
latencies and more expensive coherency protocols. The hypercube is a living example of an
architecture that employs such a network. Hyperquicksort [Wag91] is a version of quicksort
implemented on the NCUBE, a 64 processor hypercube network. Despite its access to a vastly
superior communication network, Hyperquicksort achieves in practice speedup somewhat less
than what we are able to achieve on our humble Sequent. Even if the communication network
is infinitely fast, expected performance of Hyperquicksort degrades significantly as the number
of processors is increased, due simply to load imbalances.

Contribution: In implementing Quicksort on the Sequent, we faced the obstacles both
of processor orchestration that make the PRAM quicksort algorithms inapplicable, and the
potential for load imbalance as encountered by Hyperquicksort. We have confronted both
obstacles with simple but apparently successful techniques. Whereas the PRAM algorithms
use extra storage and/or are significantly more complex than sequential Quicksort in order
to e↵ectively apply N processors to partitioning, our algorithm retains essentially the same
simple in-place inner loop, but using P processors in parallel (for modest P). Whereas Hy-
perquicksort su↵ers from poor processor utilization when splitting is uneven, our algorithm
uses parallel partitioning and dynamic scheduling to obtain a roughly even load throughout
the computation.

Our overall approach, of creating a large number of dynamically sized tasks during exe-
cution in order to balance load, is fundamentally di↵erent from other sophisticated imple-

2

mentations of parallel quicksort. Recently, Shi and Schae↵er [SS92] developed a parallel
quicksort-mergesort hybrid sorting method using regular sampling to produce a partitioning
of the input data into P very nearly equally sized independent subproblems. Their speedups
are comparable to ours, and their algorithm is probably more scalable because it makes more
e↵ective use of caching. A drawback of their method is that the subproblems, though equally
sized, may take di↵erent amounts of time to sort on an asynchronous multiprocessor, thus
upsetting the even loading. Even if each sub-problem requires a similar amount of total work,
the processors may run at di↵erent e↵ective speeds due to the operating system or competing
processes.

The sequel is organized as follows: We briefly present as a benchmark the sequential quick-
sort implementation and its performance. Then we examine the behaviour of a straightforward
staticly scheduled parallel version. To reduce idle time due to processors finishing their tasks
at di↵ering rates, we implement a shared stack, or workqueue. Still, far too much time is
wasted due to the sequential splitting procedure, so we implement a parallel splitting algo-
rithm. In order to minimize synchronization and locking while preserving the fast inner loop
of parallel quicksort, we employ an interlaced approximate splitting algorithm followed by a
cleanup phase. The expected time complexity of the cleanup phase is small enough in com-
parison to the splitting time to result in a theoretically e�cient sorting algorithm. While it
does not achieve optimal speedup, our algorithm retains enough of the qualities of sequential
quicksort to outperform a careful mergesort implementation on the same machine. We im-
prove the speedup of our implementation still further with the addition of a simple dynamic
scheduling heuristic.

Quicksorts with Sequential Splitting: As a basis for comparison, we have implemented
and tested the sequential quicksort algorithm as in Sedgewick [Sed78]. When implemented
on one Sequent processor, the run times in milliseconds as a function of problem size for this
algorithm are listed in Table 1. Except where indicated otherwise, input to our experiments
are arrays of pseudo-random integers chosen uniformly over [0, 231).

Table 1: Quicksort Results: Sequential code with one processor.
Size/
#Proc 1000 10000 40000 100000 1000000 2000000

1 33ms 425 1913 5233 61929 131863

One approach to introducing parallelism is modeled by the binary execution tree of quicksort.
The basic idea is to utilize just one processor to perform the first partitioning, or splitting,
phase of sequential quicksort. The processor continues to work on one of the resulting sub-
arrays, and the other is passed on to a second processor. The two processors repeat this process
– partitioning their sub-array and waking up a not yet utilized processor – until all processors

3

have been utilized. For the remainder of the computation, each processor continues working
on its subproblem just as in the sequential algorithm. We present the measured performance
of this static schedule on randomly sorted lists of integers in the full paper.

While a desirably simple algorithm, the expected performance for even a moderate number
of processors, P , is far worse than the desired O(N logN/P); e.g., doubling P falls far short
of halving the time. The main reason that the performance su↵ers is that processors are idle
too much of the time. Some of the idle time is at the beginning of the computation while
processors are waiting for their subarray. We call this leading load imbalance. In addition,
there is idle time at the end of the computation, because the processors do not finish all at
the same time. We call this trailing load imbalance.

Almost all of the trailing load imbalance in the static scheduling method is due to uneven
splits; only a little is due to the disparity in numbers of elements compared that end up being
swapped. Methods to reduce trailing load imbalance are discussed in the full paper.

Leading load imbalance is unavoidable if we insist on a one-to-one correspondence between
calls to Quicksort and processes: So long as only one processor performs the initial split, all
other processors must wait for work. By allowing more than one processor to participate in
splitting a subproblem in two, all processors can be utilized from the outset. In addition, by
eliminating the correspondence between processors and subproblems, the task granularity can
be controlled so that trailing load imbalance is further decreased.

A Quicksort with Parallel Splitting: Splitting an array consists of moving all the
values in the array less than a chosen key to the lower part of the array and all values greater
than the key to the upper part. Performing splitting in parallel is not as simple as doing so
sequentially: the di�culty is that the final location of a general element could be anyplace in
the array, and is not known a priori. Hence, the array cannot be apportioned into consecutive
pieces in such a way that processors never find themselves with an element in hand that
belongs in the partition assigned to some other processor. To preserve the properties that
make sequential quicksort fast, an e�cient parallel splitting algorithm must have a fast inner
loop, perform little redundant work, and avoid synchronization and locking. The algorithm
we present has all of these properties.

The basic idea behind our algorithm is to involve a number of processors in the splitting
process by partitioning subproblems into a number of tasks. Each task looks very much like a
subproblem in the sequential splitting approach and uses the same value as its splitting key,
but the elements accessed within any task are not contiguous: instead, they are o↵set by as
many elements as there are tasks. I.e., we divide the subarray into ⌧ slices, where the i-th slice
consists of those subarray elements whose indices are congruent to i mod ⌧ . Task i partitions
the i-th slice using the usual Quicksort partitioning code.

4

.

.

.

.
..........
............................

. .

..........

.............
.............

.............
.........
....................

...
..............................
........

.

.

.

.
..........
............................

.

.

.

.
.............................
.........

.

.

.

.
.............................
.........

.

.

.

.
.............................
.........

.

.

.

.
.............................
.........

.

.

.

.
.............................
.........

.

.

.

.
.............................
.........

.

.

.

.
.............................
.........

. .

..........
..........
..........
..........
....................
............................

..........

..........

..........

..........

....................
............................

..........

..........

..........

..........

....................
............................

..........

..........

..........

..........

....................
............................

..........

..........

..........

..........

....................
............................

..........

..........

..........

..........

....................
............................

.

.

.

.
..........
............................

.

.

.

.
..........
............................

.

.

.

.
..........
............................

.

.

.

.
..........
............................

.

.

.

.
..........
............................

Task 3

⌧ = 3

Task 2

Task 1

Subproblem (left, right)

A[right]

A[left]

Once all slices have been split, all elements to the left of the leftmost splitting element are
smaller than the splitting element; all to the right of the rightmost are greater.

.............
.............

.............
.........
....................

...
..............................
........

..........

..........

..........

..........

....................
............................

.

.

.

.
..........
............................

..........

..........

..........

..........

....................
............................

.

.

.

.
.............................
.........

.

.

.

.
..........
............................

.

.

.

.
.............................
.........

rightmostleftmost

index

splitting

index

splitting

> Split< Split Requires Clean-Up

A[right]

A[left]

Those elements between the two extreme splitting elements’ positions, while correctly par-
titioned within their respective slices, are not correctly partitioned globally, and need to be
resplit. Since this region is small in comparison to the size of the whole subproblem (roughly
of size O(

p
n+ ⌧)), the extra work is negligible. In the full paper, we describe the implemen-

tation in great detail, explaining how this partitioning can be accomplished while avoiding
lock contention.

Performance of our quicksort with parallel partitioning on uniformly pseudo-random input
is presented in Table 2. These times indicate a maximum speedup of almost 9 with 16 pro-
cessors. Other researchers have obtained more nearly full speedup on the Sequent using other
sorting algorithms. Anderson [And88] reports virtually full speedup for his implementation
of mergesort on up to eight processors, but the time with a single processor to sort 40,000
elements is 7 seconds. Our quicksort sorts the same size array in under 2 seconds. So with full
speedup, we can expect 8 processors to mergesort the array in no less than 874 milliseconds.
With quicksort, though the speedup is less than ideal, the same array is sorted in only 227
milliseconds. Even were mergesort to achieve linear speedup on 16 processors, quicksort’s
time would still be faster.

In the full paper, we report even greater speedups (up to 13 with 16 processors) by employing
a Polychronopoulos-style scheduler [PK87, Pol88] to further reduce trailing load imbalance.

References

[Akl85] Selim G. Akl. Parallel Sorting Algorithms, volume 12 of Notes and Reports in Computer
Science and Applied Mathematics. Academic Press, 1985.

5

Table 2: Quicksort Results: Parallel Partitioning
Size/
#Proc 1000 10000 40000 100000 1000000 2000000

1 28 414 1918 5469 72445 154589
2 29 253 1099 3201 42892 92509
4 29 143 611 1756 23356 50454
8 29 90 332 965 12644 27327
16 29 74 227 614 8081 17554

[And88] Richard Anderson. An experimental study of parallel merge sort. Technical Report #
88-05-01, Computer Science Department, University of Washington, 1988.

[CV91] Bogdan S. Chlebus and Imrich Vrťo. Parallel quicksort. Journal of Parallel and Distributed
Computing, 11(4):332–337, April 1991.

[FW78] Fortune and Wyllie. Parallelism in random access machines. In Symposium on Theory of
Computing, 1978.

[Hoa62] C. A. R. Hoare. Quicksort. Computer Journal, 5(1):10–15, 1962.

[JáJ92] Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[MG89] Charles U. Martel and Dan Gusfield. A fast parallel quicksort algorithm. Information
Processing Letters, 30:97–102, January 1989.

[PK87] C. Polychronopoulos and D. Kuck. Guided self-scheduling: A practical scheduling scheme
for parallel supercomputers. IEEE Transactions on Computers, December 1987.

[Pol88] C. Polychronopoulos. Parallel Programming and Compilers. Kluwer Academic Publishers,
Norwell, Massachusetts, 1988.

[Sed78] Robert Sedgewick. Implementing quicksort programs. Communications of the ACM,
21(10):847–857, October 1978.

[SS92] Hanmao Shi and Jonathan Schae↵er. Parallel sorting by regular sampling. Journal of
Parallel and Distributed Computing, 14:361–372, April 1992.

[Wag91] Bruce Wagar. Hyperquicksort – a fast sorting algorithm for hypercubes. In Proceedings of
the 2nd Conference on Hypercube Multiprocessors, 1991.

[Weg90] Ingo Wegener. Bottom-up heap sort, a new variant of heap sort beating on average quick
sort. In Mathematical Foundations of Computer Science, volume 452. Springer-Verlag,
August 1990.

6

