
Proxy-Based Authorization and Accounting

for Distributed Systems

B. Cli�ord Neuman

Department of Computer Science and Engineering

University of Washington, FR-35

Seattle, Washington 98195

bcn@cs.washington.edu

Technical Report 91-02-01

March 1991

Abstract

In recent years there has been much interest in the secure authentication of principals across

computer networks. There has been less discussion of distributed mechanisms to support au-

thorization and accounting. Authorization and accounting are more closely related to authenti-

cation than most people realize. By generalizing the authentication model to support restricted

proxies, both authorization and accounting can be easily supported. This paper shows how

to support restricted proxies in an authentication system, presents an appropriate model for

authorization and accounting, and describes how they may be easily implemented on top of

restricted proxies.

1 Introduction

The problem of authentication across computer networks has received much attention in recent

years. Authentication is often only a step in the process of authorization or accounting. The end

goal is to verify that the individual making a request is authorized to do so, or to guarantee that

the correct individual is charged for an operation.

Despite the close ties among these problems, little progress has been made in providing secure,

distributed mechanisms for authorization and accounting. To date, authorization and accounting

have most often been supported locally by the service, instead of by using distributed authoriza-

tion or accounting services. Such services are needed if authorization and accounting are to be

accomplished between clients and services that are not previously known to one another.

The problems of authentication, authorization, and accounting are more closely related than most

people realize. By generalizing the authentication model to support restricted proxies, distributed

authorization and accounting can be easily supported.

This research was supported in part by the National Science Foundation (Grant No. CCR-8619663), the Washington

Technology Centers, and Digital Equipment Corporation.

1



This paper presents a uni�ed model for authentication, authorization, and accounting that is based

on proxies. Section 2 de�nes the term proxy, describes how proxies can be supported by an authen-

tication mechanism, and shows how they can be used for authorization. Section 3 discusses the

necessary features of a distributed accounting service, and shows how accounting can be thought of

as an authorization problem. Section 4 discusses related work in the area of distributed authoriza-

tion and accounting. Integration of the described mechanisms with existing authentication systems

is discussed in Section 5 and Section 6 describes some of the restrictions to be supported. Section 7

draws conclusions.

2 The Proxy Model for Authorization

A proxy is a token that allows one to operate with the rights and privileges of the principal that

granted the proxy. Naturally, it must be possible to verify that a proxy was granted by the principal

that it names. This is an authentication problem. In fact a principal with the credentials needed

for authentication

1

can grant a proxy to another principal simply by passing on those credentials

2

.

Implementing proxies as just described leaves a lot to be desired. First, the proxy can be used by

anyone who gets his hands on it. This won't always be a problem, but it would be nice if one could

specify the principal that is to act on one's behalf. Second, a proxy is all or nothing. The individual

who has been granted the proxy can do anything that the grantor could do on the service to which

the original credentials applied.

A restricted proxy is a proxy that has had conditions placed on its use. Among the conditions that

will often be speci�ed are that the proxy may only be used by a designated principal, and that the

operations that may be performed by that principal are to be restricted.

To support restricted proxies, an authentication mechanism must allow credentials to be created

which allow a second principal to act on a principal's behalf, and it must be possible to include

information within these credentials that places restrictions on their use. The server to which the

credentials will be presented (the end-server) must be able to verify that the �eld has not been

tampered with.

It must also be possible for any principal possessing credentials to obtain a new set of creden-

tials which are more restricted than the original credentials; it should not be possible to remove

restrictions.

Restricted proxies may be supported by authentication mechanisms based on both symmetric

(conventional) and asymmetric (public-key) cryptography. The integration of restricted proxies

with these mechanisms is described in Section 5.

1

Credentials consist of an encrypted certi�cate together with information needed to use the certi�cate.

2

This is not the case in Kerberos where credentials typically contain the address of the host from which they

may be used. To grant a proxy a principal must request (from the Kerberos server) a new set of credentials with a

di�erent network address.

2



Restricted proxies provide the vehicle for implementing a large number of authorization mechanisms

in distributed systems. In the rest of this section I will describe several such mechanisms and show

how they can be supported. In the following discussion, the grantor is the principal on whose behalf

a proxy allows access. The grantee is the principal designated to act on behalf of the grantor. The

end-server is the server to which the proxy must be presented to perform an operation.

2.1 Capabilities

A capability can be implemented as a restricted proxy usable by the bearer. The proxy would be

restricted to limit the operations that can be performed and the objects that can be accessed. No

restrictions would be placed on the identity of the grantee. When presented to the end-server, the

grantor's rights (as limited by the restrictions) would be available to the bearer. The bearer would

be able to pass the capability to others.

For example, to create a read capability for a particular �le, a user authorized to read that �le

would request a restricted proxy to be used at the �le server containing that �le (the end-server),

but with the restriction that it can only be used to read the named �le. The capability could then

be passed to others who could themselves pass it on. To use a capability, the bearer would present

3

it to the �le server in place of (or in addition to) the bearer's own credentials. If the request was

to read the �le named in the capability, that operation would be performed with the rights of the

grantor of the proxy.

A capability as described above di�ers from traditional capabilities in two important ways. First,

as described above, a capability allows a restricted impersonation of the grantor, not direct access

to the named object. This means that one can revoke a capability by changing the access rights

available to the grantor of the capability. Such a change would a�ect all capabilities that had been

issued by that grantor (as well as any copies), but not those that had been issued by others. The

second di�erence is that, for some authentication systems, the resulting capability would have an

expiration date. This is a feature. If one really wanted a capability that wouldn't expire, one could

set the expiration date su�ciently far in the future.

2.2 An Authorization Service

To implement an authorization service on top of restricted proxies, one must make a subtle change

in the way one thinks about such a service. An authorization service need not specify that a

particular principal is authorized to use a particular service, or access a particular object. Instead,

it can issue a proxy allowing the grantee to access an object using the rights of the authorization

server itself. The proxy would be restricted to allow access to only those objects, and with only

those rights, to which the principal which requested the proxy is authorized access.

An end-server wishing to use the services of an authorization server would grant full (or the maxi-

mum desired) access to that authorization server (or servers). A client wishing to use the end-server

3

By present I mean take part in an authentication exchange using the credentials.

3



would contact the appropriate authorization server, request the necessary proxy, and forward it to

the end-server along with credentials proving its own identity.

2.3 A Group Service

As with the authorization server, a slight change in the way one thinks of the problem allows a

group server to be implemented on top of restricted proxies. One would normally think of the

function of a group server as identifying the groups to which a principal belongs, or the principals

that belong to a particular group. Instead, one should think of a group as any other principal. The

group would have certain rights de�ned by its inclusion in access control lists scattered throughout

the system. The function of a group server would be to issue proxies delegating those rights to

members of the group.

A group server may maintain multiple groups. Further, the names of groups are unique only within

a particular group server. As such, the global name of a group is really composed of the name of

the group server, and the name of the group on that server.

It should be possible for the name of a group to appear in authorization databases anywhere that

the name of any other principal might appear. This might be on the end-server, it could be in an

authorization server, or even in another group server.

The end-server would use a group server simply by including the name of a group in its autho-

rization database. If the database was locally maintained, a client would obtain a group proxy

from the group server and send it to the end-server when requesting an operation. The end-server

would verify the authenticity of the proxy and the identity of the client, and if valid perform the

operation. If the end-server's authorization database is maintained by an authorization server, then

the client must request the group proxy to be used on the authorization server. The proxy would

be passed to the authorization server, and if all checks out, the authorization server would return

an authorization proxy which could be used by the client as described in the previous subsection.

2.4 Cascaded Authorization

In a paper on cascaded authentication[8], Sollins proposed a method to pass authorization from

party to party when a task involves cascaded operations by parties that do not completely trust one

another. A similar mechanism can be supported by restricted proxies, though some of the tradeo�s

are di�erent.

By its de�nition, a proxy allows one principal to perform an operation on behalf of another. An

intermediate server that has been granted a proxy to perform a particular operation can pass that

proxy on to a subordinate server (the next server in the pipeline). Since the proxy that is to be

passed on might specify the name of the intermediate server, the intermediate server must also

generate its own proxy granting the subordinate server the rights to act on its behalf. The new

proxy would include a restriction that it can only be used in conjunction with the original proxy

4



as well as any other restrictions the intermediate server chooses to apply. At the next stage the

process would repeat. The chain of proxies would get longer along with the list of restrictions.

A distinct di�erence between cascaded authorization based on restricted proxies, and that described

by Sollins, is that when using restricted proxies, the end-server does not have to contact the

authentication server to verify the authenticity of the chain of proxies. On the other hand, as

implemented for Kerberos, the authentication server is involved each time a new proxy is generated

(possibly at each stage in the pipeline). In any case, the end-server requires certi�cates for each

principal involved. Depending on the authentication mechanism, they might be obtained from a

name server, or the certi�cates may be forwarded along with the proxies.

Requiring that the authentication server is involved each time a new proxy is generated is not as

bad as it seems. In many cases an intermediate server will use the same subordinate server over

and over. If this is the case, the intermediate server might consider granting a single restricted

proxy to the subordinate server instead of one for each request. Such a standing proxy would still

require that the intermediate server pass subsequent credentials to the subordinate server

4

, but it

would eliminate the need to contact the authentication server.

3 The Authorization Model for Accounting

I have shown how authorization can be supported by restricted proxies, but what about accounting?

Accounting is closely tied to authorization. In fact, the two are interdependent. Authorization

depends on accounting when a server wants to verify that a client can pay for an operation before

it is performed. On the other hand, authorization is required before funds can be transferred from

one account to another.

Before I talk about network mechanisms to support accounting, let us set down the requirements

for the accounting servers themselves. Accounts will be maintained on accounting servers. At a

minimum, each account must contain a unique name, an access control list, and a collection of

records, each record specifying a currency and a balance. It is important that accounts support

multiple currencies. Currencies may be monetary (as in dollars or pounds) or they may be logical

currencies such as disk blocks or printer pages. Quotas may be implemented by transferring funds

of the appropriate currency out of an account when the resource is allocated and transferring the

funds back when the resource is released.

Accounts will be identi�ed as the composition of the principal identi�er for the accounting server

and the name of the account on the server. It must be possible to transfer funds from an account

on one server to one on another.

The transfer of funds can be accomplished through two distinct mechanisms. The simplest mech-

anism is used when no guarantee is required that su�cient funds exist. A principal authorized to

debit an account (the payor) issues a proxy (check) allowing the payee to transfer funds from the

payor's account to that of the payee. The check would limit the amount of funds that could be

4

This is required because the proxy can't be used without the session key from the credentials.

5



transferred, and the payee could transfer up to that amount. If the payor uses a di�erent accounting

server than the payee, the payee would grant its own accounting server a cascaded proxy (endorse-

ment) for the check allowing the accounting server to collect the funds for it. The accounting server

would repeat the process until the payor's bank has been reached. Once a check has been paid, the

accounting server must keep track of the check number until the expiration date on the check. If,

within that period, another check with the same number is seen, it will be rejected.

The above method of transferring funds requires out-of-band mechanisms to deal with checks re-

turned for insu�cient funds, or because they were forged or mis-drawn, but the same is true in the

real world.

The second approach to transferring funds is used when a server requires a guarantee that su�cient

funds are available. This will often be the case when maintaining quotas. The approach is analogous

to that of a certi�ed check. In this approach, the accounting server acts as an authorization server.

The client must request an authorization proxy (certi�ed-check) to be used at the end-server. The

request would include the name of the end-server, the currency, and the maximum that the payee

is willing to pay for the operation. If su�cient funds exist, the accounting server will return the

certi�ed check to the client and place a hold on the funds in the client's account. The client will

present the authorization proxy to the end-server along with its request.

Once the operation has been performed, the end-server forwards a bill to the accounting server

together with a copy of the certi�ed check. The accounting server will then look for the check in

its list of outstanding certi�ed checks, and if found, make the transfer.

4 Related Work

In this section I briey mention other work that has been done in the area of distributed autho-

rization and accounting.

Sun's Yellow Pages allows for the distribution of �les such as /etc/group which may be used for

authorization purposes. In the yellow pages scheme, however, the authorization decision is still

made on the local system. With distributed authorization and group services as supported by

restricted proxies, the authorization decision can be delegated to a remote server.

There has been much work concerning the forwarding or delegation of authentication in distributed

systems. In [3] Karger proposes a server that keeps track of special passwords that are established

when a user logs in. These passwords may be passed to other systems which are to act on the

user's behalf when an operation involves the cascaded use of multiple servers. This scheme is not

encryption based, but relies on secure channels for passing the special passwords. These channels

might be implemented on top of an end-to-end encryption mechanism.

The proxy mechanism described in this paper is very similar to the delegation mechanism supported

by the Digital Distributed System Security Architecture [1, 2] in which principals generate and sign

delegation certi�cates to allow intermediate systems to act on their behalf. One of the primary

6



di�erences is that in the DSSA, restrictions are only supported by creating separate principals,

called roles, and by generating a delegation certi�cate for one of the roles instead of for the original

principal. The delegation would then only support access that is speci�cally authorized for that

role. Creating new roles is too cumbersome for generating restricted proxies on the y or which

are to grant access to individual objects. Roles could not be used to implement the authorization

server described in Section 2.2.

The mechanism that comes closest to restricted proxies is the cascaded authentication mechanism

described by Sollins[8] in which restrictions can be added as credentials are passed from system to

system. The di�erences between Sollins' approach and support for cascaded authorization based

on restricted proxies was described in Section 2.4.

Work is underway on the Open Software Foundation's Distributed Computing Environment that

makes use of Kerberos [5] to pass authorization information. Although based on a di�erent model,

the implementation of their authorization server is similar to that described in Section 2.2. In

fact, authorization information is passed using a �eld that was added to the Kerberos credentials

speci�cally to support the restricted proxies described in this paper.

Surprisingly little attention has been paid to the issue of accounting in distributed systems. A

paper on Sentry[7] lays the ground work for an accounting mechanism that would be co-located

with an authentication and authorization server. Although they share a common mechanism, it

seems apparent now that there is little to be gained by requiring all three services to be co-located.

Like the accounting mechanism described here, Sentry pointed out the need to support multiple

currencies.

Amoeba[6] supports a distributed bank server identical in purpose to the accounting server based on

restricted proxies. The protocol used by Amoeba's bank server is signi�cantly di�erent, however.

In Amoeba, a client must contact the bank and transfer funds into the server's account before

it contacts the server. The server will then provide services until the pre-paid funds have been

exhausted. Like the mechanism described here, Amoeba also supports multiple currencies.

5 Integration with Existing System

It is straightforward to support restricted proxies on top of existing authentication systems. In

this section I show how they may be implemented on top of authentication systems based on both

public key and conventional cryptography. I also show how Version 5 of the Kerberos authentication

system has been modi�ed to better support restricted proxies.

5.1 Two Ways to Use Restricted Proxies

There are two classes of proxies: bearer proxies and personal proxies. A bearer proxy may be used

by anyone, but a personal proxy may only be used by the named principal, or someone with a

proxy issued by that principal. When a personal proxy is used, the grantee must authenticate itself

7



to the end-server. When a bearer proxy is used, the bearer must prove to the end-server that the

proxy was legitimately received, and not obtained by eavesdropping on the network.

All proxies have an associated session key. The proxy may be sent across the network in the clear,

but the session key must be protected. When a proxy is passed from one principal to another the

session key is passed along with it. If the use of the proxy requires the principal to prove that the

proxy was received legitimately, it can do so by proving that it possesses the session key associated

with the proxy. This is accomplished using the �nal exchange from the authentication protocol on

which the proxy mechanism was built

5

.

5.2 Restricted Proxies Using Public Key Cryptography

A proxy implemented on top of a public key authentication system contains the name of the grantor,

a session key

6

generated by the grantor, the expiration time for the proxy, and any restrictions on

its use (see Section 6). All �elds except for the name of the grantor are encrypted in the grantor's

private key

7

.

The proxy is then passed to the grantee. When presented to the end-server, the end-server decrypts

the proxy using the public key of the grantor (obtained from the authentication/name server),

veri�es that it is authentic, accepts additional authentication from the grantee (either personal

authentication or proof that it knows the session key), checks the restrictions, and if all checks out,

performs the requested operation.

5.3 Restricted Proxies Using Conventional Cryptography

A proxy implemented on top of an authentication system based on conventional cryptography

contains the same information as one based on a public key authentication mechanism. The proxy

must be accompanied, however, by credentials authenticating the grantor to the end-server. The

proxy itself will be encrypted in the session key from the credentials

8

.

5.4 Restricted Proxies in Kerberos

The discussion so far has described restricted proxies independent of the details of any particu-

lar authentication mechanism. In this section I describe features that were included in Version

5

The part of the authentication protocol that supports key distribution is not required since the session key is

encrypted within the proxy and is already available to the end-server.

6

The session key included in the proxy would be one key from a public/private key pair. The session key that is

passed to the grantee of the proxy would be the other key from that pair.

7

Note that if a mixed authentication system is in use where the session key is a secret key from a conventional

cryptosystem, then the session key must also be encrypted in the public key of the end-server.

8

The session key from the credentials was generated by the authentication server. The session key in the proxy is

di�erent and was generated by the grantor of the proxy.

8



5 of The Kerberos Authentication System to provide better support for restricted proxies. Al-

though restricted proxies could have been supported in Version 4 of Kerberos using the method

just described, the explicit support for proxies in Version 5 makes their use more transparent to

applications which have already been modi�ed to use Kerberos.

Kerberos [5, 9] is an authentication system based on conventional cryptography, designed as part

of MIT's Project Athena. Credentials are issued by an authentication server and presented by a

client to prove its identity to a particular end-server. Credentials consist of two parts: a ticket, and

a session key. The ticket contains the name of the authenticated principal and a session key. It is

encrypted using the secret key shared by the end-server and the Kerberos server. The session key

is never sent across the network in the clear. The session key is returned to the client encrypted in

the session key shared by the client and the Kerberos server.

To prove its identity, a client sends the ticket to the end-server along with an authenticator which

has been encrypted using the session key. The authenticator proves that the client actually possesses

the session key included in the ticket. Without this step an attacker would be able to reuse a ticket

that it obtained by eavesdropping on an earlier exchange.

Kerberos has been in use at MIT since Fall of 1986, and it has been used elsewhere since then.

Version 5 of Kerberos[4] is the �rst major revision of the protocol since its original release. Version

5 contains several new features that are important for the support of restricted proxies.

A Version 5 ticket has a new �eld called authorization-data. This �eld consists of an arbitrary

number of typed sub-�elds, each of which places restrictions on the use of the credentials. The

Kerberos protocol does not specify how the sub-�elds are to be interpreted except to stress that

restrictions must be additive. Each sub�eld can only place additional restrictions on the use of

credentials, never remove restrictions or grant additional privileges.

When credentials are requested, the requesting principal can specify that restrictions be placed on

their use. If credentials are issued based on existing credentials, restrictions may be added, but not

removed. The remaining details of the proxy mechanism (as described earlier) are subsumed by

the authentication mechanism itself.

5.5 Discussion

There are several advantages to supporting proxies within the authentication mechanism instead

of on top of it. As already stated, transparency is one of the reasons. The second advantage is

that the initial authentication of a user can itself be thought of as the granting of a proxy and

restrictions can be placed on the credentials based on the characteristics of the initial exchange

with the authentication server.

A disadvantage of implementing proxies using conventional cryptography is that each proxy can

be used at only a particular end-server

9

. This disadvantage is o�set somewhat by the di�culty of

9

This disadvantage also applies to the mixture of conventional and public key systems where the proxy's session

key is from a conventional cryptosystem.

9



revoking a proxy that can be used anywhere.

Implementing proxies within Kerberos itself allows one to issue a proxy for the Kerberos \ticket-

granting" service. Such a proxy allows the grantee to obtain proxies with identical restrictions for

additional end-servers as needed. This eliminates the disadvantage of basing the proxy mechanism

on conventional cryptography.

6 The Restrictions

Regardless of the method used to implement restricted proxies, the interpretation of the authoriza-

tion �eld must be speci�ed. The authorization �eld should be interpreted as a collection of typed

sub�elds. Each type corresponds to a di�erent restriction. This section describes the restrictions

that should be supported.

6.1 Grantee

This restriction includes the identity of the principal which is authorized to use a proxy. In order to

use a proxy with this �eld speci�ed, the authorized principal must present its own authentication

credentials

10

to the end-server along with the proxy.

If the grantee restriction is missing, the proxy is a bearer proxy and may be used by anyone

possessing it. In the case of a bearer proxy, the bearer must present a corresponding authenticator

to prove that it also possesses the session key associated with the proxy, thus preventing an attacker

from using a proxy obtained by eavesdropping on the network.

6.2 Issued-to

The issued-to restriction is not really a restriction. Instead, it is informational only. It would be

included in a bearer proxy to identify the principal to whom the proxy was issued. It could be used

by the end-server to maintain an audit trail. A proxy with more than one issued-to �eld should

be considered invalid, and a principal issuing a bearer proxy should strongly consider including this

�eld.

It is expected that the most common use of this �eld might be in bearer proxies issued by an

authorization server. Such a proxy could be used without requiring a grantee to further authenticate

itself to the end-server, but the issued-to �eld would still allow the end-server to know on whose

behalf it is really performing the operation.

10

Or an additional proxy granted by the authorized principal.

10



6.3 Issued-for

The issued-for restriction speci�es the identity of the end-server. It is only necessary if the method

used to implement proxies supports proxies that may be used for more than one end-server.

6.4 Require-Authenticator(this,last)

When the grantee sub�eld is speci�ed, the authenticator associated with the proxy is usually not

required. The authenticator corresponding to the personal credentials of the grantee must still be

presented and is su�cient. There are cases, however, when the authenticator corresponding to such

a proxy should be required. A prime example is in the case of the standing proxy described at

the end of section 2.4. Although the subordinate server possesses a standing proxy it should still

have to prove that the intermediate server passed it the credentials to which it is attaching the

proxy. Without such a requirement, the subordinate server could use a ticket obtained through

other means (such as by eavesdropping on the network).

Adding the require-authenticator restriction to a proxy speci�es that the bearer must include

an authenticator corresponding to the proxy even if the grantee restriction has been speci�ed. An

argument to this restriction indicates that the authenticator restriction corresponds, not to this

proxy, but to the previous proxy in a chain of cascaded proxies. It is this form that would be

needed in the standing proxy example.

6.5 Accept-Once

The accept-once restriction tells an end-server that it is only to accept a proxy one time. The

end-server would have to maintain a list of all one-time proxies and check the list each time one

is received. Once used, the proxy would have to remain in the end-servers list until the expiration

time of the proxy.

The accept-once restriction can take an identi�er as an argument. If present, only the identi�er

and the name of the grantor need be stored in the end-server's list of used proxies. Any other proxy

bearing the same identi�er, and received by the end-server within the expiration time of the �rst

proxy would be rejected. A real life example of such an identi�er is a check number.

6.6 For-use-by-Group

The for-use-by-group restriction speci�es that the proxy may only be used by a member of the

named group. To use such a proxy, the bearer would have to present the proxy along with an

additional proxy from the appropriate group server.

11



6.7 Quota

The quota restriction speci�es a currency and a limit. It limits the quantity of a resource that can

be consumed or obtained. It will most often be found in a proxy issued by an accounting server.

6.8 Group-Membership

This restriction speci�es that the grantee is a member of only the listed groups. It would be included

in a proxy issued by a group server. It is important to keep in mind that this restriction limits

the groups to which one is a member. Without this restriction, the grantee would be considered a

member of all groups maintained by the group server granting the proxy.

6.9 Accompanying

This restriction requires that the proxy can only be used when accompanying another proxy. The

restriction can identify the proxy which must be accompanied by including the principal identi�er of

the grantor, and the issue time of the credentials. A standing proxy, would require an accompanying

proxy, but the accompanying proxy would not be identi�ed. A standing proxy will usually be issued

with the accompanying and the require-authenticator(last) restrictions speci�ed.

6.10 Authorized

The authorized restriction speci�es a complete list of those objects which may be accessed using

the rights granted by a proxy. This restriction will usually be speci�ed when individuals grant a

proxy or generate a capability. It will also be speci�ed in a proxy returned by an authorization

server. There should be no constraints on the form of the names of the object

11

. They are to be

interpreted by the end-server.

6.11 Rights

The rights restriction is identical to the authorized restriction except that each object is followed

by a list of access rights. As was the case with name of the object, there are no constraints on the

form that the access rights can take. They are to be interpreted by the end-server.

11

Though certainly the grantor and the end-server must agree on the form.

12



6.12 Write-above

If implementing multi-level security the write-above restriction restricts the use of the proxy for

writing objects to those objects above (inclusive) the speci�ed security level. This restriction is in

addition to all other restrictions on access to data.

6.13 Read-below

If implementing multi-level security the read-below restriction restricts the use of the proxy for

reading objects to those objects below (inclusive) the speci�ed security level. This restriction is in

addition to all other restrictions on access to data.

6.14 Limit-restriction

Restrictions that are de�ned only for particular end-servers might be needed. If a proxy can be

used for a server that does not understand a restriction, the restriction or restrictions must be

associated with the name of the server to which the restrictions apply. This is accomplished with

the limit-restriction restriction which takes a list of servers, and a list of other restrictions. The

restrictions embedded within this restriction will be enforced by the named servers and ignored by

others.

6.15 The Propagation of Restrictions

Certain servers (authentication, authorization, and group servers for example) accept proxies and

issue proxies. If a proxy is issued based upon a proxy that includes restrictions, those restrictions

should be passed on to the proxy to be issued. If a restriction is limited (see limit-restriction)

then the restriction may be left out if it can be guaranteed that the proxy to be issued, and any

proxies that might later be derived from it, can not be used for any of the servers listed in the

limited restriction.

7 Discussion and Conclusions

The problems of authentication, authorization, and accounting are more similar than most people

realize. By subtly changing the way one thinks about the problems, the similarities become appar-

ent. By extending an authentication system to support restricted proxies, it becomes possible to

support exible distributed authorization and accounting mechanisms.

This paper has shown how restricted proxies can be supported in existing authentication systems,

and it has shown how they can be used for authorization and accounting. The resulting mechanisms

13



scale and appear natural when compared with their analogues in society.

Acknowledgments

I would like to thank Ed Lazowska, David Keppel, and Steve Bellovin who commented on earlier

drafts of this report.

References

[1] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The Digital distributed system security

architecture. In Proceedings of the 1989 National Computer Security Conference, pages 305{319,

1989.

[2] M. Gasser and E. McDermott. An architecture for practical delegation in a distributed system.

In Proceedings of the 1990 IEEE Symposium on Security and Privacy, pages 20{30, May 1990.

[3] Paul A. Karger. Authentication and discretionary access control in computer networks. Com-

puter Networks and ISDN Systems, 10(1):27{37, 1985.

[4] John T. Kohl and B. Cli�ord Neuman. The Kerberos network authentication service. DARPA

Internet Draft RFC, December 1990.

[5] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer. Section E.2.1: Kerberos au-

thentication and authorization system. Project Athena Technical Plan, MIT Project Athena,

Cambridge, Massachusetts, December 1987.

[6] S. J. Mullender and A. S. Tanenbaum. The design of a capability-based distributed operating

system. The Computer Journal, 29(4):289{299, 1986.

[7] B. Cli�ord Neuman. Sentry: A discretionary access contol server. Bachelor's Thesis, Mas-

sachusetts Institute of Technology, June 1985.

[8] Karen R. Sollins. Cascaded authentication. In Proceedings of the 1988 IEEE Symposium on

Research in Security and Privacy, pages 156{163, April 1988.

[9] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An authentication service for

open network systems. In Proceedings of the Winter 1988 Usenix Conference, pages 191{201,

February 1988. Dallas, Texas.

14


