Monotonic Enumerations of Complete Sets.

Albrecht Hoene

Technical Report 91-02-02

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
University of Washington

Seattle 98195

Monotonic Enumerations of Complete Sets
Albrecht Hoene

Technical Report 91

Department of Computer Science and Engineering, FR-35

University of Washington, Seattle, WA 98195 USA

Monotonic Enumerations of Complete Sets

Albrecht Hoene *
Technische Universitat Berlin
Fachbereich Informatik
Franklinstr. 28/29
1000 Berlin 10, Germany

January 27, 1991

Abstract

The following notion of p I i ted by

Hoene, Siefkes, and Young, A set L is polynomially enumerable by iteration if there exists &
polynomisl-time computable function f and string = such that L = {2, f(2), fS@), -}
B eotonically enumerable by iteration if the function f i lexicographically increasing,
L ths papér we show that many complexity casses between P and PSPACE have monoton-
{cally enumerable complete set. For the counting hierarchy we exhibit a connecton between

the quan fits classes and of

sets, Every class of the form YK, and CK in this hierarchy is shown to possess ‘monotonically
 amerable complete sets. However, classes of the form 3K have monotonically enumerable
complete sets if and only if they are closed under complement, which shows & striking dif-
formuce between the existential quantifier and the other two quantifiers. In particular, it
okl that for all £ > 1 the class T13 has monotonically enumerable complete sets, whereas
4 has monotonically enumerable complete setsif and only if the polynomial-time hierarchy
collapses to s kth level. Moreover, we give complete characterizations of PSPACE and the
class GOPtP in terms of monotonic enumeration functions.

1 Introduction

Approaches to gain insight into the nature of the still unsolved P L NP £ PSPACE-problem
mostly deal with elaborated or refined notions of nondeterministic computations. Examples are

b Soaey 0 i un A AR

Research sapported by a Deuteche Forschungsgesellichaft Postdoktorandenstipendium. The author's current
\ddsens o Deperiment of Compater Science and Engincering, FR-35, Universty of Washingion, Seattle, WA
98195.

the polynomial-time hierarchy ([19]), modified acceptance criteria for nondeterministic Turing
machines ({5, 17, 9]) and the counting hierarchy ([21]). However, recently in a vatiety of papers
2 broader approach has been taken. Instead of studying solely the membership problem for such
classes it has been asked which properties seemingly complex sets possess that can be efficiently
computed. Among the questions that have been studied in this context are: Which complex
sets are paddable ((3]), which sets are efficiently near-testable ([3, 7]), which sets are efficiently
hashable ((6]), and which sets have efficient implicit membership tests ([11]) (for an overview
see [10]). Going further it has been tried to completely characterize classes that are defined in
terms of inism by other than inism-properties—thus trying to get a new
understanding of nondeterminism. Here two recent examples are the class of polynomial-time
near-testable sets (8, 7]) and the class of polynomial-time nearly near-testable sets ({11]), which
yielded complete characterizations for the classes P and §OPtP, respectively.

A natural problem arising in this context is the question: Which sets have efficent enumer-
ation algorithms? But even though in recursive function theory the notion of enumerability is

robust under a multitude of intuitively appealing definitions, things turn out to be more involved
in the polynomial-time bounded setting (a discussion of definitions for polynomial enumerability
suggested in the literature can be found in [13]). In [13] (see also [12]) the following definition
was introduced: A set is polynomially enumerable by iteration if for a polynomial-time com-
putable function f and some string the set L can be enumerated by iterative application of /
on 2, isen L = {z,f(z), f(f()),---}. The results of [13] show that all exponential-time complete
sets and all so far constructed NP-complete sets are polynomially enumerable by iteration.

In this paper we study monotonic enumerations, that is, we consider sets that are polynomi-
i functions. Sets that are monoton-

ally le via increasing
ically enumerable in this sense at first glance seem to have a very easy structure. In [13] both
positive and negative results were obtained on this issue. It was shown that there are complete
sets in @P that are ically bi ble (that is, the function not only
enumerates the set itself but is also an enumeration function for the set’s complement), and that

every monatonically bi-enumerable set is contained in ®P. However, it was also shown that the
52-classes in the polynomial-time hierarchy are not likely to have monotonically enumerable
complete sets—as their existence would imply the collapse of the polynomial-time hierarchy. In
Section 3 we address the question which other classes than the aforementioned between P and
PSPACE do have monotonically enumerable complete sets. We show that inspite of the negative
result for S for all k the II-classes do have monotonically enumerable complete sets. In fact, we
show a far more general result: we consider Wagner's counting hierarchy ([21]), which, roughly
speaking, consists of all classes that can be obtained from P by iterative application of the 3
V.quantifier, and the counting quantifier C; (for precise definitions see Section 2). Our main

theorem of Section 3 is that all classes in the counting hierarchy that are not of the form 3C
for some C in fact do have complete sets that are monotonically enumerable. However, for each
class of the form 3C in this hierarchy it holds that it has monotonically enumerable complete
sets if and only if 3C is closed under complement. Thus, compared to the Y— and C;-quantifier
the existential quantifier seems to have a quite different nature.

In Section 4 give two complete characterizations of complexity classes in terms of monotonic
enumeration functions. As mentioned above, one such characterization was given in [13], namely
that a set L is in ®P if and only if L is polynomial-time reducible to some monotonically bi-
enumerable set. Here we obtain complete characterizations for PSPACE and §OptP, where the
latter class has been introduced and studied in [11]. ®OPtP can be viewed as a ®P-computation
with a functional A}-precomputation, and is closely related to the class of polynomial-time nearly
near-testable sets (for definitions see [11]).

For PSPACE we show that PSPACE is exactly the class of languages that are polynomi-
ally reducible to some monotonically enumerable set, which in turn coincides with the class
of sets that are polynomially reducible to some monotonically enumerable set with a one-one
polynomial-time invertible enumeration function. For @OptP we give a characterization in

-enumerable in a certain sense. We introduce
piecewise monotonically bi-enumerable sets, and show that a set is in @OptP if and only if it is

terms of enumeration functions that are weakly

polynomially reducible to some piecewise monotonically bi-enumerable set.
In the next section we give definitions and collect a couple of basic facts on monotonically
enumerable sets.

2 Basics

We use the standard alphabet £ = {0,1)". For each string w € E* by w* we denote its
lexicographic successor and for w € E* by w™ its lexicographic predecessor. w -5 and wb
stand for the string w appended by bit b. For comparisons betsween strings with respect to the
lexicographical ordering we write <iez U, OF Z iez y Tespectively. “max” and “min” applied
t0 sets of strings refer to the lexicographical ordering. We denote the natural numbers by IV.
Frequently we will interpret strings as binary encodings of natural numbers: for w € £* we
define w to be [|{v € B : [v] = [u] and v <iez w}].

In our proofs we will need two types of pairing functions, the first of which has to be sensitive
to the lexicographical ordering and maps tupels of a special format bijectively to T*. For a
polynomial p satisfying n < m = p(n) < p(m) for all n,m! and some fixed k such a function
will code the set U = {(z,21,...,2¢)| |zl = p(lz]), 1 < i < k} into {0,1)* and preserve the

‘Throughout the paper we will implicitly assume that all the polynomials have this property.

natural lexicographical ordering between the k + 1-tupels? (see also [13, 11]). For k + 1-tupels
not in U the function pair}, is undefined. For k + 1-tupels (z,21,7a, ... ,2k) € Uf we define

Pairl(z,21,22,-128) = T:Tr..Tk

the i-th string in the lexicographical ordering in {0, 1}*
if pair}(z,21,22,...,) is the lexicographically i-the string
in the image of U? under pair}.

[z,21,22,-., 7]}

For any polynomial p satisfying the above requirements the function [z, 21,22, - 24l} : Uf —
{0,1}* is polynomial-ti 1 invertible and maps Uf to {0,1}" in a
e O A e e eeomet e maite [0 metead
of [,

If the strings to be paired do not fulfill the special length requirements above then we will

make use of a special separation character (“#”), e.g., to pair the strings = and y we write
z#y. Tn proofs that employ this kind of pairing function the result will not depend on the
lexicographical ordering.

In a variety of cases we will consider the disjoint union of two sets A and B which we define
by

AwB = {z0]z € A}U {y1|y € B}.

For complexity classes we use standard notation as P, NP, PSPACE, and 5o on (see [15]). For
a class of languages C we denote by coC the class of languages that are complements of languages
in C. If we talk about reductions we will always mean polynomial-time many-one reductions
(<2,), and completeness will always be understood with respect to this kind of reduction.

The counting quantifiers (C} G?) and the counting hierarchy were introduced in [21]—
generalizing ideas of 5, 18] (see also [20]).

Definition 2.1 For a polynomial-time computable function f : £* — IN, a polynomial p, and
a predicate R(z,y) the quantifiers G;, C; and &’ are defined by

1. Cy Rz,y) = ||{

yl = p(|2l) and R(z,)} > f(z)

2. Gy R(z,y) <= ||{y: Iyl = p(Iz]) and Rz, y)}|| = f(z)
In the following we will drop the index p from the quantifiers.
Definition 2.2 Let K be any class of languages.

That s (21, 22,.+,28) < (31,92, 98) iff (30 S i< B)[z; =, for 1 <5 < i and 2i4 <tes wina).

1. A set L is in CK if there is a polynomial-time computable function f : 5% — IV, a
polynomial p and a predicate R(z,y) € K such that z € L <= C;y R(z,y) holds.

2. A set L is in GK if there is a polynomial p and a predicate R(z,y) € K
such that z € L <=> Gy R(z,y) holds.

In the same sense we will use 3 and V (see [1]).

Definition 2.3 [21] The polynomial counting hierarchy (CH) is the smallest family of language

classes that satisfies
1. P € CH, and
2. IfK € CH then 3K € CH, VK € CH, and CK € CH.

All of the classes in CH were shown to have complete problems in [21].

We will also consider the class @OptP, which is closely connected to the class of nearly
near-testable sets, which was introduced and studied in [11]. Let OptP be Krentel's class of
polynomial-time computable optimization functions (for a definition see [16] or [11]).

Definition 2.4 [11] A set L is in @OptP if there ezists a function f : * — £, f € OptP and
4 nondeterministic polynomial-time Turing machine N such that

z€L <> N accepts f(z) on an odd number of computation paths.
For the characterization of this class we will use the the following fact (11, Lemma 2.1]):
Proposition 2.5 For a language L the following are equivalent:
1. L € 0ptP

2. There is a nondeterministic polynomial-time Turing machine N, a polynmomial p and a
predicate R(z,y) € P such that for all z and z = max{y : |y| = p(|z|) and R(z,y)}

2€L <= N accepts [z,2]z on an odd number of computation paths.
3. There is a function f € FPNP i.e., f is computable by a polynomial-time Turing machine
that has access to an NP-oracle, and a nondeterministic polynomial-time Turing machine

N such that

2L <= N accepts f(z) on an odd number of computation paths.

We now define the notion of enumerability we study more formally and collect a couple of

basic facts and previous results on this issue.

Definition 2.8 [13]
1. A function f:S* — £* is monotonic if z <tz f(z) for allz € £*.

2. A set L is (polynomially) monotonically enumerable by iteration (short: monotonically
enumerable) if L is finite or cofinite or there ezists a polynomial-time computable mono-

tonic function f and a string = such that

L = {z, f(2), f(f(2)),

f is called the enumeration function.

3. A set I is (polynomially) monotonically bi-enumerable by iteration (short: monotonically
bi-enumerable) if L is finite, cofinite, or L is monotonically enumerable via a function f

and there ezist strings = and y such that

L={z, f(@), f(f(@),.-} and T ={5f(),fSW):-

Frequently we vill call sequences of the form v, f(v), f(f(v)),..- “chains (started at v)".
It is immediate that any set that is monotonically enumerable is contained in PSPACE.
A straightforward construction shows that there exist sets in P that are not monotonically
enumerable. In [13] the degree of difficulty of ically bi sets was determined

Theorem 2.7 [13]
1. Every monotonically bi-enumerable set is in ©P.
2. There is a ®P-complete set that is monotonically bi-enumerable.

1t follows that a set L is <Z,-reducible to some monotonically bi-enumerable set if and only
if L is in ®P. In the following sections we will exhibit more classes that have monotonically
enumerable complete sets. However, the next proposition shows that it is unlikely that all
complete sets of any of these classes are monotonically enumerable as it would imply that they
are equal to P (see also [7]).

Proposition 2.8 For any set L there ezists a set I such that

2. If is monotonically enumerable then L € P

6

Proof For aset L # @, 5° let I be defined by 5*4 L. Clearly, L =, L. If f is a monotonic
enumeration function for £ then membership in L for some string y can be tested in the following
/1 for some y' and it holds that y € L if

way: if y = y/0 for some y' then y € L. Otherwise y
and only if £(3/0) = y- o
Now the following is immediate:

Corollary 2.9 Let C D P be a class that has complete sets and is closed downwards under
<7, -reductions. If every complete problem for C is monotonically enumerable then C = P
3 Monotonically Enumerable Complete Sets

Which classes between P and PSPACE do have monotonically enumerable complete sets? From
[13] we know that, e.g., for any k > 1 it is not likely that 5} has monotonically enumerable
complete sets as it would imply PH = Ef. However, in this section we show that many classes
of the counting hierarchy do have complete sets that are monotonically enumerable. In [13]
it was shown that there exists a monotonically enumerable coNP-complete set (e.g., under an
appropriate encoding {(z,)| is a Boolean formula that has no satisfying assignment greater
or equal to y} provides such a set). Our main theorem of this section is the following:

Theorem 3.1 Let K be any class of the counting hierarchy.
1. IfC = VK, or C = CK then C has monotonically enumerable complete sets.

2, IfC = 3K then C has monotonically enumerable complete sets if and only if C is closed

under complement.
As an immediate corrolary we obtain:
Corollary 3.2 Letk > 1.
1. There ezist II}-complete sets that are monotonically enumerable.
2. ([13]) There is a monotonically enumerable Z}-complete set if and only if PH = £},

Before we give the proof of Theorem 3.1 we illustrate our basic enumeration technique by
giving two examples.

Example 3.3 There is a set that is monotonically enumerable and complete for Il5.

Proof Let L be complete for II3, p a polynomial and R(z,,%) a polynomial-time predicate
such that
zel << Wy R(z,3,2).

Here and throughout the rest of the proof we assume that all quantifiers range over strings of
exact length p(|z[) and R(z, y, 2) holds only for triples that satisfy |y| = |2| = p(|z]). We define
b= {z.v,2ls: W <iee 37 R(2,¥,7) and V2’ <ix 2-R(z,3, 7)),

Iz = {le, 170D, 1206 : z € L),

and
L=ILwis

‘We claim that L is complete for I3 and i ble. For the
note that L is in I13, since L; and L, are in T3, which is closed under disjoint union. Moreover,
L trivially reduces to L via the function g(z) = [z, 1), 17(=D]5 . 1.

It remains to show that L is monotonically enumerable. First note that for all z the string
[2,0¢z), 02D}, belongs to Ly, which encodes all triples (z,y,2) such that for all y' smaller
than y a 2/ has been found such that R(z, ', #) holds, and for y a z satisfying R(z,4,2) has not
yet been found. Ly permits a polynomial-time computable function to search in a monotonic

enumerating fashion for a conditional witness proving @ € L or z ¢ L. For the case z € L
such a conditional witness is a string of the form [z, 17(=)), 2] such that R(z,17(%, z) holds:
such a string witnesses z € L under the condition that the enumeration function h, started at
[2,07(1=D), 021D}, reaches by iterative application the string [z, 170=), 2]5. The definition of the
function h—as given below—makes sure that such a conditional witness [z, 17!, zJs is reached
by the chain [z, 0%(1), 07(1=D]3, h([z, 0°(1=D, 0P(=D];),.... if and only if z € L.

For the case z ¢ L a conditional witness will be of the form [z,y, 1#(=D]; such that
R(z,y,17(D)) does not hold; under the condition that the enumeration function h reaches by
iterative application the string [z,y, 170D} from [z,07(1=1),07(=D]5 it witnesses that for this y
there is no z such that R(z,y,2) holds, and thus by definition z ¢ L.

The enumeration function h is specified s follows: on all inputs of the form [z,y,2)3 - 1it
is defined by h([z,y,2]s - 1) = [z+,0°0=*D,07(=*D]; . 0. This is correct, since for all z there is
at most one string of the form [z,y, z]a - 1, which may belong to L ([z, 17D, 17(1=D]; . 1) and its
lexicographical successor (in L) is [z+,07(=*D, 07(<*D] . 0.

I for inputs of the form [z, 3, 2Js -0 conditional witness is found the corresponding element
of Ly is accessed or omitted, that is,

(2,170, 12(=D]; . 1 for y = 170=) and R(z,y,2)
h([z,9,2)s-0) = 1
WG] { 2,0, D)0 for 2 = 190D and ~R(z,,2)

8

Note that for any string [z, 9, 2}a -0 € L, for which one of the two conditions above holds, there
does not exist a [z,y/, 7] - 0 that is lexicographically greater than [z,y,]s -0 and belongs to L
as well

In the remaining cases the search for a witness is continued by mapping the input [z,y, 2Ja -0
to the lexicographically next string w that satisfies (z,y, zJa -0 € L implies w € L”. We define

[2,9,2%]5- 0 for z # 1°0?) and -R(z,y,2)

h((z,4,7)s-0) = { [z, 0205 -0 for y # 170D and R(z,y,2)

Clealy, this function is computable in polynomial-time. The special form of our pairing function
[+-+-]s makes sure that h is lexicographically increasing. o

The next example will show that there are GP-complete monotonically enumerable sets
Formally, this class does not belong to the counting hierarchy, but the enumerating techniques
are essentially the same as for the C—quantifier. First we note that without loss of generality
the quantifiers can have the following special form, which will be needed in the proof of Theorem
3.1

Proposition 3.4 Let K be a class in the counting hierarchy. If L € CK (L € GK, respectively)
then there is a polynomial p and a predicate R(z,y) € K such that for the function f(z) =
2/aale-1

Lzel < CGyR@y) (679 Riz.y) for GK).

2 Va,y[R(2,9) = (v = 3y, bl = [l = 1/2-p((=]), and 3 = 01/27(D)]
Example 3.5 There is a set that is monotonically enumerable and complete for GP.

Proof Let L beaset that is complete for GP, p be a polynomial, and R(z, y) be a polynomial-
time computable predicate such that the requirements of Proposition 3.4 are satisfied, i.e.,

1/2:p(121)-1

zel <= |[{y: |yl =p(la)) and R(z,)|

holds. The set L defined by

{{z,y,mls : there are exactly strings ¥’ such that |y'| = |3], ¥’ <iez ¥ and R(z,v)}

is monotonically enumerable and complete in GP. It is monotonically enumerable, since the

polynomial-time computable function

[,y*,n*]s for y # 170D and R(z,y)
(2, 9mls) = { [2,5%,nls for y # 170D and - R(z,y)
(z+, 020D, 02(=* D]y otherwise

is monotonic, and—started at [3,0°©), 0°®)];—h enumerates L. Clearly, L isin GP. Note that
Rz, 17(=1) does not hold. Thus, for w € 5* such that [u] = p(le]) and i = 2!/22(=D~t

rel = ErEulel

holds. Hence L is complete for GP, since L is complete for GP. o
Proof of Theorem 3.1

1. To show the claim we will do the following: for some class C of the counting hierarchy of
the form @1 ... Q&P and some complete language L € C, we will construct a language L that is
monotonically enumerable. Moreover L will be reducible to I, and if @ # 3 then L will be in
C, thus proving the theorem.

Now fix some k > 1 and let C = @1Qs...QkP be a class of the counting hierarchy, i.e.,
Qi€ {3,%,C) for 1 < i < k, and let L be complete for C. There is a polynomial p and a
k + L-ary predicate R(z,21,..-,&) € P such that

zel = QnQu...QuakR(z, 21,0 012k)-
Again, throughout the proof we assume that all quantifiers @; range over strings that have
exactly length p(Jz[). Without loss of generality we can assume that p and R are chosen such

that for all Q; = C the requirements from Proposition 3.4 are satisfied.
By fixing the first i variables, from L we obtain the languages L

Li = {[z,31,- -, %

: Qinziv ... Qxzk R(z, 21,

and for 1 < i < kit holds that Li € Qi+1Qi+2--- Q&P

We now construct the language L that will be monotonically enumerable and complete for
Cif @ #3. As in example 3.3, L will be the disjoint union of two sets Ly and Lp. The latter
one has the same role as the language L in example 3.3, namely to permit a simple reduction
from L to L. This language is defined by

Ln={z,170,...,?0D), : z €L}

Similar to Ly in example 3.3, the sets L; are defined to facilitate an easy search by a lex-
icographically increasing function for conditional witnesses proving (z,21,...,zi}i € Li or
[z,71,...,)i ¢ Li. These languages will be defined inductively and depend on the quanti-
fier structure for L. There are three different cases. Let Lxy1 = 5°. For 1< i <k we define
Qi=V:
Li = {521,007kl ¢
V2 <iez 7i (2,21,
[2,21,.22klk € Liga}

1,z()i € Li and

Li = {lz,z1,.o2ule :
V! <ies 3i(2, 1, 7im,)i ¢ Li and
[2,21,-- 2lk € Lina}

=~

= {{#,z1,.-ozale & =y ly] = |n] and
there are exactly # strings y/ such that [V
(2,21, 12ic1, y'042PD); € L and
221512k, 90D € Lia)

=1yl,¥ <ty , and

Now let I = L1 Lp. To show that L is complete for C first note that

zel & [z,170, . 700). 1€l

holds. For @ # 3, L is contained in C, since 1 is the disjoint union of two C languages: it is
easily seen that Lp is contained in C, and 14 € C follows from the fact that Li€QiQisr--- QP
for Qs # 3, which we will prove below. First note that for any K € CH it holds that GKVK,
and 3K are closed under intersection ([20]), and GK C CK (20, Corollary 10]). We show that
for1< i< kand

Qi=3: Li€VeoQisr...QkP

Qi=V,C: Li€Qi...QxP

by backward induction on i. For the case i = k the claim is easily seen to be true.

Suppose the claim holds for i + 1 with 1 < i <k, and let K = Qi1 QuP Li can be
written as the intersection of some language S and Lip1, where S € VK for Qi =V, § € co3K for
@i=3,and § € GK for @ = C. For @s41 = ¥,C the claim holds by the induction hypothesis
List € K, and the fact that GK,VK, and 3K are closed under intersection.

For Quat = 3, Lisn s in YeoQisa.. Q4P- With CK” = coCK' for all K’ € CH it follows
that coQisz--- QkP € Qi1 --- QkP, and thus Lis1 € VK. Hence for Q; = C we get LineGK
(using VK C GK), and thus L; € Q; ... Q«P. For @i = V the argument is analogous.

Showing that L indeed is monotonically enumerable requires somewhat more work. We first
prove in Lemma 3.6 that there is a uniform polynomial-time computable function f; that—
started at the ing minimal el the words in Ly(z) for each individ-
ual z. Ly(2) consists of the strings in Ly that are of the form [2,21,..-,2k]k. Moreover, if the
input to fy is the lexicographically biggest string in L1(=) then the enumeration function will
have the property that it returns the answer to the question “z € L”.

. for each 0 < i < k and (2, 21,..-,%) such that |z} = p(lz[) for 1 S j S Flet

More generall

Ly iyt ghlh [0 gy o aulh € Din)

,z;) implies that all strings

Note that the use of [--]i in the definition of Lin(
(202100 Zr Tit1y o2 ThE € Liga(2,21,-+, %) satisfy the length requirement, i.e., Jx;l = pllz
fori+1<j<k

¢ computable monotonic function fu, which for every =

Lemma 3.6 There is a polynomial-tim
are the strings of L1(x) in the lezicographical ordering

enumerates Ly(z), i-€., if wo, w1, Wi
then
wint for0<i<i
hlw)={ =eL” ifi=jandz€l
Ggl” ifi=jandz ¢L

Proof of Lemma 3.6
First we note that for every 0 < i < k every string of the form [z,21,.--,%i»
belongs t0 Lisa (2, 1,-.-,2:) (this is easily verified by induction), and thus is the lexicographical

oAl .. 0PlI=],

minimum of this set.
We now show that for every i such that 0 <
L ,z;) for every individual (2,21,

i < k there exists a function fipr that

enumerates Lis1(2,21,- ,2;) in the above sense. That

is, if v0, U1, ... ,vr are the elements of Lisa(2,31,..,%:) in the lexicographical ordering then
¥n <t ffy(v0) = va. Moreover, if [z, 21, ..,zili € Li then fI!(w) = “[z,21,-- ,zili € L
and 1 [2, 20,0l € L then Fi3i(oo) = “lo,o1,-..oils ¢ L7 Then for § = 0 the claim of

the Lemma follows.
The proof is by backward induction on i. First let i = k and w
Liss = ¢, we have Lipa(z,21,..02x) = {w}, and we define fi1(w)

[z, 21,- - -»@klk; Since
“w € Ly if

R(z,z1,...,2x) holds and frp2(w) = “w ¢ Lx” otherwise.

Now fix some i > 0 and suppose there is a polynomial function firr, which
for every (z,z1,...,%i)—started at [z,z1, 123, 0°02D . 0%, —enumerates the set
biss(z,21,...,2i) as claimed. We have to distinguish three cases. Let w = [2,Z1,..-,Tklk-
We define
Qi=Y: Ji(w)=

2,21, s i

1€ Lia" if 2,
5 ..,x‘,\,;l’_muﬂlv gvﬂti)]k ifzi # JLEON f-+\(w
1€ Lin” if fun(w) = “[2, 21, zili € L7
otherwise

Jilw) = 4
< yzictlio1 € Liat” if 2 = 170D, fipa(w) = (2,21, 2l € L7
D, 00D i # 10D, () = oz, ozl €17
(z,21,...,2i)i € Li"

7“;."0?(&
2,21, Zicilic1 € Lic” if fira (]
Jinr(w) otherwise

For the last case let @i = g, [g] = [nl, and yi = y0'/?7=D. Note that by ous assumption
on the counting quantifier C and the predicate R the “true” value of the counter wil be at
most 2/27(12), Thus for w = (2,21, ., Zx]x Where ¥ <iez 11/22(=) and @ > 2"/27(=) we define
Ji(w) = w* (the definition of f; on these inputs will not affect the enumerated set). If w is
not of this form we compute fis1(®) With © = 2,21, -, Ziz1, Ui Zito - axlee I fin (@)
, fisa() is not of the form “(z,21, o @ie1, Uil € L7
(@215« sBit s YinZit1s oo k- We define

does not yield absolute information, i
1,0l ¢ L7 then et
Fi(10) = (22210« Zir Tt oo 2}k ¢

The remaining cases are defined as follows (let di = 0if fi41() = oo, 21,0y zict Wi £ L
and d; = 1if fia () = 42,21, o 2ion, Uiki € L7):

C: fiw=

2,21,y Zictfi1 € Limt” ify = 12PN, 4 4y > 21/2RED
Yz, 21,0 iclic € Lict” if y = /270D, g d; < 2220001
(21210, rzicn, Pt 00D, . 0P ify 1/220ED, 4 =1

ytn, 0000, 0p0eD], ify # /200N d; =0

(2,215 Timy

To prove that the function J; satisfies the claim we have to check the possible cases. We will
consider only the cases Qi = ¥ and @i = C. For the case @; = 3 the arguments are analogous.

For Q; = ¥ suppose Li(,Z1,...,%i-1) consists of the strings v, v1,...,vr (lexicograph-
ically ordered) and f; has enumerated Li(z,31,.. %iz1) correctly up to the n-th step with
n <1 ie, fA(t) = tn = [2,21,...2klk. By definition of Li(z,21,...,%i-1) this means that
Va! <sep 2i[£,21,---s2ict, 20l € Li- 1 z; now has reached the lexicographically biggest value
it possibly can assume, namely z; 172D, and for this value the function fir on input
vn returns “(z,z1,...,zi] € Li" then it is clear that for all z{ of length p(|z]) it holds that
(21, -+, Zic1,2l); € Li and thus by definition (2,21, ., Zic1)ic1 € Liz. Hence in the first
case the output of f(vs) is correct. If z; # 170D and fi41 on input v, yields “[z,z1,...,z] € Li”
then for all 2 <z 2 it holds that [z,21,...,Zi-1, 2} € Li and thus the output in the second
case is correct. However, if on input v, the function fiy1 returns Yz, 21, s Zic1, 3k € L7
then [z,21,...,7i-1,2l) € L certainly does not hold that for all z} of length p(|z]), and thus
[£,21,.+ -, @i1i-1 is not contained in L;_. Hence case three is correct. The last case is a direct
consequence of the induction hypothesis, and thus for Q; = V the function f; works as claimed.

13

For Qi = C recall that (2,21, -+ ,Zi-t)i-1 is in Li_1 if and only if for more than 2!/2#()=t
strings 2/ of length p(|z]) it holds that [z,z1,...,,2
the strings in lexicographical order in Li(z,1,...,i-1) and assume that Ji has enumerated
Li(#,21,..,2i1) correctly up 0 v = 2,21, .. Zklk

1,28 € Li. Let vo,v1,...,vr again be

Let z; = yn, |y] = |nl, and y; = y0!/?#(1=). Then there are exactly # strings of the form
y01/27(=) with [y'| = 01/22(=D and y' <ier y such that z,21,.--,7i-1, ,y'01/27=D); € L. By
our standardization of the C-quantifier any string z, for which [2,21,...,i-1,2}i € Li holds,
must be of the form z = 20"/2#(12)) for some /. Thus it also holds that there are exactly
strings z <iee Y0/27) such that [z, 21+, ic1,2]i € Li As for @i = V the case that
Jis1(un) does not return absolute information is again covered by the induction hypothesis, i.e.,
Ji(va) is correct. Consider the case that y has reached its maximal possible value 1122z
Let 5, be the substitution of vy as above. If fi+1(#a) returns “{z,21,...,2i—1,%li € Li” then
(2,21, 2i_1li-1 € Licy if and only if the counter # incremented by one exceeds 21/2#(1z)-1
(case one). If firi(3a) returns “(z,21,...,zi—1, i € Li” then (2,21, +yZi—1)ie1 € Ly if and
only if the counter i exceeds 2!/2#I#)-1 (case two). Finally, if y has not reached its maximal
value (y # 11/2#(2D)) then the counter is increased—depending on whether fis1(9n) indicates
that “{z,21, .., 2i-1,)i € Li” or “[z,21,....,2ic1, Uil # Li" (cases three and four). In any case
it holds that fi(t) = vas1-

End of the proof of Lemma 3.6 o

From the enumeration function f; for the sets Ly(z) as constructed in Lemma 3.6 we can
build the enumeration function for L very easily. Recall that L is the disjoint union of ; and
Lp. We define the enumeration function h for L as follows. Again, let w = [z,21,.-.,2].

[z, 12020, ..., 170=D], . 1 if fi(w)=“z€L”
h(w-0)={ [z+,000*D, .., 020=*D), .0 if fi(w) ="z ¢ L"
fu(w)-0 otherwise

h(w-1) = [+, 001
This function enumerates L in lexicographical order. Clearly its outputs are lexicographically
bigger than its inputs. Started at the lexicographical minimum of L
as an easy induction shows.

2. Let K be a class in the counting hierarchy. It holds that if 3K is closed under complement
then 3K = VcoK,, and since coK is a class of the counting hierarchy as well it follows from part
1 of the Theorem that in this case 3K has monotonically enumerable complete sets.

For the reverse direction note that for any language L € K that has an enumeration function

hit holds that T € 3K. This is direct consequence of the equivalence

LoD, o

produces all its elements

2€l > W<prz: y€Landz <iezh(y)

14

Hence it holds that if there exists a monotonically enumerable complete st L for 3K then
VeoK C 33K = 3K, which in tur implies 3K C VeoK. Thus 3K must be closed under
complement.

End of the proof of Theorem 3.1 a

4 Complete Characterizations

In this section we give two complete characterization of complexity classes i terms of monotonic

enumerations.
Theorem 4.1 For any language L the following statements are equivalent:

1. Le PSPACE
9. There is a set L such that L <2, L and L is monotonically enumerable.

3. There is a set I such that L <&, L and L is monotonically enumerable via a one-one

enumeration function f which is polynomial-time invertible on range(f).

To prove this Theorem we need a result of Bennett on reversible Turing machines ((2), which
was used in a similar fashion in [4]. A Turing machine is reversible if the function that maps its

IDs (instantaneous descriptions, see [15]) to its succesing IDs is one-to-one.

Proposition 4.2 (/2]) I a function is computable by a Turing mackine on space then [is
computable by a reversible Turing machine on space 0(8?).

Proof of Theorem 4.1 It suffices to show that there exists a PSPACE-complete set L that
is monotonically enumerable via a one-one poynomial time invertible enumeration function,
thus proving “1 = 3". “3 = 2" is inmediate, and “2 = 1" follows from the fact that every
monotonically enumerable set is in PSPACE and PSPACE is closed under polynomial-time
reductions.

Let us first give an example of a et that is PSPACE-complete and monotonically enumerable
({14]) Let L be PSPACE-complete and M" be a polynomial-space bounded Turing machine that
accepts L. Without loss of generality we assume that M’ runs exactly 9r(1z) steps on every input
+ for some polynomial r. We choose a polynomial ¢ and an encoding of the set of IDs of M’
into T+ such that all IDs of M’ on input z are represented by some string of exact length
a(lz]), and g(n) > r(n) for all n. Without loss of generality we can assume that M has some
standard accepting ID, some standard rejecting ID, and some standard initial ID. For an input

2 we denote the corresponding strings of length g((z]) by Ca(2), Cr(2), and Co(z), respectively.

Then for
L’ = {[2.n,Cls Inl = IC| = q({=]) and after # steps M’ on = reaches the ID encoded by C}

it holds that z € L <= [z,w,Ca(2)ls € L' where w is the binary encoding of 27 by

a(lz]) bits. Thus L' is PSPACE-complete, and it is not hard to see that L' is monotonically
enumerable, e, “map all inputs [z,n, Cls that satisfy C # Ca(2), CR(z) has a successing ID €
and 7 < 2702 to [z,n*,C']s , and map all other inputs to [a+,090=*D, Co(a+)]s”, describes an
numeration function for L', However, this enumeration function is not one-one. Even though by
Proposition 4.2 there is a polynomial-space bounded reversible Turing machine M that accepts
L we have to overcome the following diffculties: for reversible machines it is not clear how the
assumptions on having an easily computable running time (270D in the example above) and
having an casily accessible accepting ID (C(2)) can be assured simultancously. Note that both
assumptions are necessary in the above construction to permit an easy reduction from L to 17
Also, we have to make sure that no string of the form 2,092, Co(z)}s is accessed from more
than one string by the enumeration function. To achieve our goal we will have to repeat and
rewind the reversible computation of M on an input z in some careful way.

Let L be as above, M be a reversible Turing machine that accepts L, and r be a polynomial
such that each M runs less than 27() steps if it accepts the input z. ‘We choose a polynomial
p such that 27(®) > 21#(") for all n € IV, and all configurations of M on input z that do not
exceed size r([z]) can be encoded in strings of length p(|z[) (as above). Without loss of generality
we can assume that M has standard initial ID, which has no predecessing ID; if € L, the
computation of M ends in some standard accepting ID, which has no successing ID; and M
does not terminate if z ¢ L ([2]). The strings of length p(jz]), that represent the initial and the
accepting ID will be denoted be Co(z) and Ca(2)- We assume that for each n the string 0°(")
does not represent an ID of M. Tn the following we will identify the IDs with its encodings and
assume that for each z the IDs of M have always the exact length p(z))-

1 will be the language that is monotonically enumerable by a one-one function. We define
L by explicitly giving the enumeration function h. As in the example above L will consist of
tupels of the form [z,n,Cks with |n] = |C| = p(lzl) where C is some ID of M on input 2. For
each z the string v = [2,0°(=), Co(z)]s will belong to L. In the following we will fix z and split
the set of strings of the form [z,n,Cls for some n and C into intervals. Let K = 2707 and

I; = {f2,n,Cls : 2K(j= 1) S 7 < 2K} for j € {1,....,6}. Strings that are not in any of these
intervals will not belong to L.

The intervals Iy, I, Iy will be used to produce some easily accessible string that represents
the outcome of the computation of M on z: for my with fy = 6K the chain V' = vy, h(n), ..
will reach a string ¢ = [z, m4, Cls € Iy such that C = C4(z) holds if z € L and C # Ca() if

16

= ¢ L. In the latter case C vill be the ID that is reached by M after K steps. Hence

9(z) = [2,ma, CA@)ls

provides a polynomial-time computable reduction from L to L—thus ensuring the completeness
of L. Tn the intervals Iy, Is, s this process vil be reversed, that is, from the string ¢ the initial
ID is reconstructed, and the chain V" reaches the string [, mr, Co(2)ls, 7 = 12K—independent
of whether z € L holds or not. Thus, by defining h([z,m, Co(z)ls) = [a*,0*D, Co()]s we
can “glue the different -pieces together” in a one-one fashion, and the same will be repeated
for the lexicographical successor of .

For each configuration C by C, we denote its successing configuration (if it exists) and by
C, its predecessing configuration (if it exists)-

In Iy the computation of M (z) is simulated: h maps each [z, n, Cla with # < K to[z,n%,Cils
until C = Ca(z). Inputs [z,n,Cla for which i = K holds or for which C = Ca(z) and 2 < K
holds are mapped to [£,ms, Cla with 1 = 4K — 2 L., into Iy. Tnputs that are not mappable
by the above rules (e.g, C does not represent an ID with a successing one, of # > K) are not
in L and will be mapped in a padding fashion:

h(fz,n,Cl) = [l2,7,Cla,0..--0,0-.Ola-
Note that at this point the chain V. reaches some string v = [z, mz,Clo in T2, and it holds
C = Calz)if z € L and iy = 2K and C # Ca(a) if z ¢ L.

In T we will rewind the computation of M(z) and increase the counter: h(lz,n,Cla) =
{z,n*,Cyls until € = Co(@). [&,m, Co(a)]s is mapped to 2, ms, Co(a)la with 1ha = v+ 2K, that
‘s into . Strings in I that can not be mapped by this rules will be padded a5 above. This way
the chain V' arrives at the string vs = [z,ms, Co(@)]a, which still carries the information on the
length of the computation of M(z): it holds that 6K — N = s, where N is the length of the
computation if z € Land N = K ifz ¢ L.

In Iy we repeat the computation and increase th
(z.n*,Cyls: Again, inputs that are not mappable by this rule are padded. From the construction
it follows that the string vy € Iq that is reached at this point by the chain V" is (2, ma,Ca@)s
if z € L and [z,mq,Cls, C # Ca(z) otherwise.

In I, Is, and Ig we reverse this process by changing the directions of the computations—thus
deriving the initial configuration again. Since the algorithm works similar to the intervals I~ I3,
for this intervals we give a more compact description of h. As before, allstrings in the intervals
I, Ts, and Ip that are not mappable by the following rules will be padded.

e counter: h([z,n,Cls) is defined to be

I For i< TK define h(jz,n,Cls) = [z,1*,Cola if C # Cof=), and h((z,n,Cla) = [2,m5,Cla
with s = 10K - 2(7 — 6K) if C Co(z)-

17

Iy: Define A((z,n,Cl) = [2,0%,Cils if C # Ca(z): 1 C = Ca(z) define h([z,n,Ca(z)l) =
A+ 2K.

[z.me, Cls with g
Ig: Define h([z,n,Cls) = [z,n*,Cyls-

Finally, all strings apart from [z,m7,Co(2)}s that do not belong to one of the intervals
... I5 will be padded.

 is polynomial-time computable, and, looking at the single cases, it is not diffcult to check
that for each string [,n,Cls

ither h=1 is undefined or there is exactly one string that is mapped
to [z,n,C]s by h. As an example, consider a string w = [2,n,Cls € Is. In the two following cases
h-(u) is not defined: C # Co(z) and Cj does not exist; C = Co(z) and #is odd. 1f C = Colz)
and i s even then h=1(w) is the unique string [z, m, Co] € Iu that satisfies 7 = 10K ~2(1~6K)

Note that the use of the padding function does not violate the one-oneness of the h, since
strings 07" do not represent valid IDs of M, and thus have no successing of predecessing IDs.
Note also that for each [z,n,Cls it can be easily determined, in which interval it is, and thus
which of the above rules has to be applied. Since the padding function is polynomial-time

invertible as well, h is polynomial-time invertible. o
Before giving the characterization of the class GOpIP let's have a look at monotonic bi-
Ifaset Lis lly bi ble via an ion function h then

there exist strings v and w such that L = {o,h(0),...} and T = {w,h(w),....}, that is,
partitioned into two chains. In this case h has the following two properties:

(A) For all strings z 2ier max{v, w}: 3y[y <ies 2 <tex h(y))

(B) For all strings z: Y91, ¥2 (1 <tes % <lex h()s ¥ <tex Z <iez h(12) = 11 = w2l

which intuitively say that all but fiite number of strings are passed by exactly one chain. In fact,
properties (A) and (B) imply that forall 7 € {z : 2 >tes max{v, w}} it holds that z € range(h),

i, h-1(z) is defined, and h is one-to-one on this set (see the proof of Theorem 4.4). Clearly,
<uch a function can easily be modified to be a monotonic bi-enumeration function ‘Thus havin,

n enumeration function with properties (A) and (B) is a necessary and sufficient condition for
a set to be monotonically bi-enumerable.
Now, relaxing requirement (A) we come to the following definition:

Definition 4.3 A set L is lly) piecewise ically b by itera-
tion (short: piecewise monotonically bi-enumerable) if L is finite or cofinite or there crists
s polynomial-time computable monotonic function f, which enumerates L, and for all z it holds

Vano 1 [<tee 2 <tex f(1), 92 <tex 7 <tex f(10) > 11 = va)-

18

A

se” will be given by the proof of Theorem 4.4, which

The justification for the term “piecewi
hows that such an enumeration function partitions I* intointervals [zo,z1):[21,22): [22, 7]
nd the enumeration function bi-enumerates the set within these intervals and fails to do 5o at
the edges.

Note that these enumeration functions do not have to be one-one any more. Clearly, any

monotonically bi-enumerable set is piecewise monotonically bi-enumerable.
Theorem 4.4 For any set L the following are equivalent:
1. L € 80ptP

2. L i reducible to a piccewise monotonically bi-enumerable set.

Proof The proof involves some ideas of [11). Let L and T be infinte.

w17 Lot L be piecewise monotonically bi-enumerable via an enumeration function h having
property (B). We show that there exists 2 function f € FPNF and a nondeterministic polynomial-
time Tuting machine N such that 2 & I if and nly if N accepts f(z) on an odd number of
computation paths. Then by Proposition 2:5 it follows that L€ ®OptP.

Let vo = minL and wo = minT. Without loss of generality we assume that vo <ler Wo:
Fix a string z with wo <iez 2. If we know a string y € L such that wo Siez ¥ <iez z and h
b enumerates L on the interval Jys = (£ ¢ ¥ <oz % Stes 2h that is, {(K(@)li 2 0} N Lz =
T 11, then we can use the ®P-algorithm of [13, Theorem 6.5] to decide membership in L: on
input y#2, y <tes 2 the nondeterministic polynomial-time Turing machine N guesses a string
¢ Sios 7 <tee 2 and accepts if and only if A(2) # 2+, Since y € L, it holds that = € L if and
only if for an odd number of strings 2z, ¥ Siez Z <lez T it holds that z € L «= z* ¢ Lifand
only if N accepts on an odd number of computation paths.

We will now use the FPNP-precomputation to find such a string v for a given z. In some
cases the algorithm computing f as given below will detect that z € L holds. Then it will output
~ome fxed string that is accepted by N on an 0dd number of paths. The function f on inputs
+ with 4o Ziee is specifid by the folloving algorithm:

o Let A(z) = {z|wo <iez Z Stes 7 30232 91 # v, hlw) = h(y2) = 2}-
o If A(z) = 0 then f(z) = wo#2-
o If A(z) # 0 then let v, = max A(z).

(a) 1f (VY : O Stes Y <tex 7) [h(y) = y*] then “z € L”
jin [oz N {z]f(27) # 2} and output f(z) = wn#z

(b) else let v

It is easily verified that f can be computed in polynomial-time relative to an NP-oracle (v and

1 are determined using binary search).

To prove the correctness of the algorithm fist assume that A(z) is empty. In this case h
bi-enumerates L on Tus: If there is some z € TN fugs for which z ¢ {hi(wo)li > 0} then there
it o distinct stiingain/lE L andyn = il 2|l eek (i h(vy) and
Wy <ier 7 <tez h(w1), since L and T are infinte and h is lexicographically increasing. This

contradicts (B).

For the case that A(z) is nonemtpy Lemma 4.5 shows that all elements of A(z) belong to L.
1t follows that if for all y with vm Stes ¥ <tes & it holds that A(y) = y* then z € L, since h is
an enumeration function for L. In the other case upy is defined. By Lemma 4.5 it belongs to T,
and h bi-cnumerates L on the interval L. Thus the output f(z) = wn#z is correct.

Lemma 4.5 Let wo <iee 3, A() # 8, and wp, be defined.
L A@)CL
2. wy € T and {hi(wp)]i 2 0} N funz = B0 Do

Proof of Lemma 4.5

1. Suppose there s some z € A(z) and 2 ¢ L. Let 1 <tz Y2 <tes 2 s1ch that h(w) = hlya) = 2

Since L is infinte and h enumerates L there is some w € L such that v <ies 2 <iez

42 <tex W <iee # cannot hold, since property (B) would not hold for w. Also 41 <iez 0 <tez V2
o falee, sinee property (B) would not hold for 3. For the same reason w <fes ¥1 cA110¢ hold.

Hence we have a contradiction, which proves z € L.
9. Let v = max A(z) <iez = and %1 <iez Y2 <lez Um such that h(y1) = h(v2

e that 1 ¢ range(h), i.e., h-}(um) is not defined. Otherwise by the minimality of wp it
o ald follow that h=1{16) <ice m and a contradiction to the assumption that h has property

(B) can be derived in the same way as in 1. Hence wp, ¢ L. Also there camnot st & string
2 €T, such that h-3(z) is not defined, since it would contradict (B) in the same way 25

for A(z) = 0.
End of the proof of Lemma 4.5

«9=17: Let L € @OptP. We will construct a language 1 such that L is reducible to and L is

piccewise bi-enumerable. By Proposition 2.5, part 2 we know that there is a nondeterministic

polynomial-time bounded Turing machine N, a predicate R(z,y) € P, and a polynomial p such

that for all z and z = max{y : R(z,9),1y] =p(lz)}

seL e N accepts [s,2]s on an 0dd number of computation paths.

Without loss of generality we can assume that R(z, 0%(=)) holds and that N has the following
features: on input [z,]z all computation paths w have exactly length p(|z|); for all w such that

20

S

] = p(Jz]) — 1 the machine N accepts on the path u0; and for all w such that [w| = p(lz]) - 1
the machine N does not accept on the path wl if R(z,y) does not hold. Then in particular it
hokds that for all y of length p(Jz]) such that y >iez max{v : R(z,) [o] = p(laD)} the machine
N accepts [z,)2 on an even number of paths.

We now define the language L by the equivalence

(e,y,wh € L < thereisan odd number of strings [,/ w']s Stez [2,V:wh
such that Naccepts [z,y/]z on path u' and

V' tee max{v Ses 91 B(z,0), |0l =PIz}

The idea behind this definition is the following: since N accepts all inputs [,y]2 such that
¥ >1ez max{v : R(z,v), [v] = p(|z])} on an even number of paths, the string [z,2,170D]; with
2 = max{v: R(z,v), vl = p(|zD)} is in 1 if and only if [z, 172D, 17(=D]3 € L. More explicitly,
it holds

rel <> N accepts [z,2]; on an odd number of paths
—» there is an odd number of strings 2,1/, w') such that IV accepts [z,/]2
on path w' and [z, 2,007} <iez (2,9, w'ls Sies e, 170D, 150D}
= [o10e), 170 e |

Thus g(z) = [z, 170D, 170=D]5 reduces L to L.

It remains to show that L is indeed piecewise ically bi ble. The
function h we define will bi-enumerate L on the intervals Loy where a = [,3,070<)=11]; (or a =
(2,4,07(1=N=210];, depending on whether N accepts [z,y]z on the path o7=D1), b = [z,y/,0°0=D]5
surh that R(z,3) and R(z,y/) holds, but there s 10 value y” between y and such that (=, ")
holds. Strings of the form a = [z,y,0°("D]3, for which R(z,y) holds will be the points, for which
AV is not uniquely defined.

More concretely, for all inputs [z,y, w]s, such that there is a string (2,¥, s >tez (2,9, w3y
for which the value max{v <ies 4| R(z,v), [v] = p(jz])} has not changed (i.e., max{v Siex
W R(z,v), bl =)} = max{v <ie YIR(z,0) 1ol = p(laD}), we define h([z,y,w]a) =
2.4/}, which is the lexicographical smallest string >1cs [2,3,0la such that [z,,uks € L
if and only if [2,4/,w/)s € L. Since N accepts on each path of the form 0, i.e., on each second
path in the lexicographical ordering, this can be done in polynomial-time.

p(lz])} changes then from the definition of I it follows that w € {17(=)=10,17(D}. In this case
we define h([z,y,ul) = [z,y*, 0] if y # 170D and h([z,y,wls) = [z¥,020=*D, 02(=* D]y
otherwise. Since for all y, for which R(z,y) holds, [z, 9,07(=D]; belongs to L, in this case h

If we cannot find such a string [z,/, w/]s before the value of max{v <iez ¥l R(z,0), [v] =

21

maps all elements into L. Hence h enumerates 1, and it is not hard to see that this function

has property (B) as required.
End of the proof of Theorem 4.4 a
It follows that the class of nearly near-testable sets (for a definition see [11]) essentially

coincides with the class of piecewise monotonically bi-enumerable sets.
Corollary 4.6 For any language L the following are equivalent:
1. L is reducible to some nearly near-testable set.

2. L is reducible to some piecewise monotoncally bi-enumerable set.

5 Conclusion and Open Probl

This paper has studied monotonic enumerability. It has been shown that various complexity
classes can be completely characterized in terms of monotonic enumeration functions, and that
many complexity classes between P and PSPACE in fact do have monotonically enumerable
complete sets. For quantifier-defined complexity classes monotonic enumerability reveals sur-
prising differences between classes that are defined by a leading existential quantifier on the one
side and by a leading universal o counting quantifier on the other side.

Many problems remain open. What we would like to know is, which classes have complete
sets with one-one monotonic enumerations functions. We have seen that PSPACE s such a class,
but th ion functions d for the compl in Theorem 3.1 are certainly not
one-one. It seems even hard to construct a complete set for coNP that is one-one monotonically
enumerable. Can we get any evidence that this is impossible? Note that in [14] it was shown that
there exist GP-complete sets that are icall ble via one-one pol 1
invertible enumeration functions. On the other hand we would like to know more about the

relations to other kinds of monotonic enumerability. Which classes have enumerable complete
sets via enumeration functions that are not length-decreasing? It is also interesting to consider
honest ions, which means the chain is only allowed to reach strings that

are at most polynomially shorter than the greatest string reached o far.
Acknowledgments

I am grateful to Paul Young for helpful discussions, reading an earlier version of this paper,
and suggesting many improvements.

References
[1] J. Balcdzar, J. Diaz, and J. Gabarré. Structural Complezity I. Springer Verlag, 1988.

2] C. Bennett. Time/space trade-offs for reversible Turing machines. SIAM Journal on Com-
puting, 18(4):766-776, August 1989.

(3] L. Berman and J. Hartmanis. On isomorphisms and density of NP and other complete sets.
SIAM Journal on Computing, 6(2):305-322, 1977

[4] S. Femer, S. Kurtz, and J. Royer. Every polynomial every Ldegree collapses iff
P—PSPACE. In Proceedings 30th IEEE Symposium on Foundations of Computer Science,
pages 624-629. [EEE Computer Society Press, 1989.

J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on
Computing, 6(4):675-695, December 1977

6] J. Goldsmith, L. Hemachandra, and K. Kunen. On the structure and complexity of infinite
<ets with minimal perfect hash functions. Technical Report TR-339, University of Rochester,
Department of Computer Science, Rochester, NY, 14627, USA, May 1990.

7] 3. Goldsmith, L. Hemachdra, D. Joseph, and P. Young. Near-testable sets. SIAM Journal
on Computing. To appear.

=

J. Goldsmith, D. Joseph, and P. Young. Self-reducible, P-selective, near-testable, and P-
cheatable sets: The effect of internal structure on the complexity of a set. In Proceedings 2nd
Structure in Complezity Theory Conference, pages 50-59. IEEE Computer Society Press,
1987.

=

T. Gundermann, N.A. Nasser, and G. Wechsung. A survey on counting classes. In Pro-
ceedings 5th Structure in Complezity Theory Conference, pages 140-153. IEEE Computer
Society Press, 1990.

10 L. Hemachandra. Algorithms from complexity theory: Polynomial-time operations for
complex sets. In Proceedings SIGAL International Symposium on Algorithms, pages 221~
231. Springer-Verlag Lecture Notes in Computer Science #450, 1990.

[11] L. Hemachandra and A. Hoene. On sets with efficient implicit membership tests. SIAM
Journal on Computing. To appear.

12] L. Hemachandra, A. Hoene, and D. Siefkes. Polynomial-time functions generate SAT: On
Psplinters. In Mathematical Foundations of Computer Science, pages 259-269. Springer-
Verlag Lecture Notes in Computer Science #379, 1989.

23

[13] L. Hemachandra, A. Hoene, D. Siefkes, and P. Young. On sets polynomially enumerable
by iteration. Theoretical Computer Science. To appear.

{14] A. Hoene. Polynomiclle Splinter. PD thesis, Technische Universitat Berlin, 1990 In
German.

(15] 3. Hoperoft and J. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.

16] M. Krentel. The complexity of optimization problems. Journal of Computer and System
Sciences, 36:490-509, 1988.

(17] C. Papadimitriou and S. Zachos. Two remarks on the power of couating. In Proceedings 6th
GI Conference on Theoretical Computer Science, pages 269-276. Springer-Verlag Lecture
Notes in Computer Science #145, 1983.

(18] J. Simon. On the difference between one and many. In Proceedings 14th International
Colloguium on Automate, Languages, and Programming, pages 480-491. Springer-Verlag
Lecture Notes in Computer Science #52, 1977

19] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 31-22,
1977.

20] J. Torén. An oracle characterization of the counting hierarchy. In Proceedings Sth Structure
in Complezity Theory Conference, pages 213-223. IEEE Computer Society Press, 1955.

(21] K. Wagner. The complexity of combinatorial problems with succinct input representation
Acta Informatica, 23:325-356, 1986.

24

