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Abstract

Although most people believe that nonlinear planning is more efficient
than the linear approach. this intuition has never been formally justified nor
empirically validated. In this paper we do both, characterizing the type of
domains that offer the maximum performance differentiation and the features
that distinguish the relative overhead of the two algorithms. As we expected,
the nonlinear planner has a large advantage in temporally constrained domains
where the specific order of plan steps is critical. Contrary to expectations,
however, the linear algorithm had higher overhead for all but the smallest
problems.

! This research was sparked by discussions with David McAllester who developed the algo-
rithms, and benefited from conversations with Steve Hanks. Tony Barrett implemented the
molecular biology domain and suggested the link between nonlinear heuristics and abstrac-
tion. This research was funded in part by National Science Foundation Grants IRI-8902010
and IRI-8957302, Office of Naval Research Grant 90-J-1904. and a grant from the Xerox
corporation.



1 Introduction

Since the early work on NOAH [Sacerdoti, 1975, the common wisdom of the
planning community has held that nonlinear planners, i.e. those that represent
plans as partially ordered sets of actions, are more efficient than planners
that quickly commit to a totally ordered sequence. It is somewhat surprising,
therefore, that this intuition has never been formally justified.

In this paper we evaluate the efficiency of nonlinear planning both ana-
lytically and through empirical studies of randomly generated problems. We
consider two main questions:

e What characteristics of a problem domain (if any) give an advantage to
a nonlinear planning algorithm?

o How is the performance of linear and nonlinear planners affected by the
amount of domain theory information?

The answer to the first question is not terribly surprising. The two planning
approaches are comparable in performance when there are few constraints on
the order of plan steps. However, the nonlinear approach is vastly superior
when the domain is tightly constrained. Section 3 defends these claims both
analytically and experimentally.

The answer to the second question is more surprising. Given the simplicity
of the linear planner, we expected it to have lower overhead. However, this was
not the case. Section 4 explains why the nonlinear approach is less affected by
the number of initial conditions.

Although our analysis and experiments are specific to planners using the
STRIPS representation, section 5 suggests possible extensions. In addition,
we discuss other factors (amenability to heuristics and abstraction) that dis-
tinguish between the planning approaches.

2 Algorithms

Before presenting our results, we summarize the algorithms and representa-
tions implemented. Both linear and nonlinear planners use what is known as
the STRIPS action representation [Chapman, 1987] although it is in fact a
simplification of that used by STRIPS [Fikes and Nilsson, 1971, Davis, 1990].
Each operator has a set of preconditions, an add-list and a delete-list (the
members of which are propositional schemata that are function-free atomic)



and a set of constraints. For example, the blocks world operator (puton 7x
7y) which takes block ?x from 7z and puts it on ?y has three preconditions:
(on 7x ?z), (clear 7x), and (clear ?7y). The operator adds (on ?x 7y)
and (clear 7z), but deletes (on 7x ?z) and (clear ?y). The constraints
specify that ?x, 7y, and ?z cannot be co-referential. Also neither ?x nor ?y can
co-refer with table. The limitations of this action representation have been
clearly documented in [Chapman, 1987]; never-the-less, we have succeeded
in encoding a number of domains, including the blocks world, two artificial
worlds, a discrete time version of Minton’s scheduling world [Minton, 1988],
and an approximation of Stefik’s MOLGEN molecular biology domain [Stefik,
1981].

Both planners implemented were based on algorithms developed by David
McAllester [McAllester, 1989, McAllester and Rosenblitt, 1991]. They each
require three arguments: a set of domain operators, a set on initial conditions,
and a set of goal conjuncts; they return sequences of steps. Both planners use
least-commitment, constraint-posting techniques when reasoning about the
arguments to the operators, and both planners operate via backward chaining.
To ensure fairness, both planners were implemented in COMMON LISP using
a shared set of data structures and subroutines. The most important such
subroutine is the variable binding and unification code which handles both
codesignation and noncodesignation constraints.?

2.1 The Nonlinear, Causal-Link Planner

The causal-link algorithm, developed by McAllester, is loosely descended from
TWEAK [Chapman, 1987], but is conceptually simpler and has what McAllester
terms the “systematic property” [McAllester and Rosenblitt, 1991]. Loosely
speaking, this means that the planner is guaranteed to search the space of
partial plans in an orderly fashion — visiting every possible plan exactly once.
A stronger criterion than completeness, systematicity is an essential property
used in our analysis of section 3.

McAllester’s key innovation is the use of causal links that record why a
step was introduced into a plan. If P is a proposition that is added by step S;
and is a precondition of step S;, then S{'}—)*Sj denotes the causal link. A link

S,-—I-)»Sj is said to be threatened if a step Sy may possibly be ordered between
S; and S;, and S; deletes a proposition that possibly codesignates with P.

?To encourage experimentation, our planning and testing code is freely available for
research purposes; contact one of the authors.
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A nonlinear plan step S has an open condition if one of the preconditions of
S has no causal link to an establishing step. The following algorithm builds
a nonlinear plan by eliminating open conditions while ensuring the safety of
threatened links.

Algorithm: Nonlinear, Causal-Link Planner (OPS, INITS, GOALS)

1. Initialize PRIORITY-QUEUE so it contains a single nonlinear plan with two
ordered steps and no bindings. The initial step adds the propositions in
INITS, but has neither preconditions nor a delete-list. The final step has
GOALS as its preconditions, but has empty add and delete-lists.

o

. If PRIORITY-QUEUE is empty, return failure, otherwise remove a nonlin-
ear plan, PLAN, from PRIORITY-QUEUE.

3. If PLAN has no open preconditions and no threatened causal links then
return a topological sort of the steps of PLAN after substituting for vari-
ables using bindings.

4. If some causal link S{'E)Sj of PLAN is threatened, then select some step
Sk of PLAN such that Sy deletes P and S; might be between S; and S
and do the following:

(a) If S might precede S;, insert PLAN; to PRIORITY-QUEUE where
PLAN; is derived by adding the ordering constraint Sy < S; to the
partial ordering of PLAN.

(b) If Sk might follow S;, insert PLAN; to PRIORITY-QUEUE where
PLAN; is derived by adding the ordering constraint S; > S; to
the partial ordering of PLAN.

(c) For each consistent set of constraints that prevents S from deleting
P, insert PLAN3 to PRIORITY-QUEUE where PLANj is derived from
PLAN by adding the constraints to its bindings.

(d) Go to step 2.

5. If no causal link in PLAN is threatened then select some open precondition
P of a step S; of PLAN and do the following:

(a) For each operation O of OPS that possibly adds P, insert PLAN,4
to PRIORITY-QUEUE where PLAN, is derived from PLAN by adding

a new step S, of type O, by adding the causal link Sn'}j‘)Sj, by
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constraining S, < S;, and by adding bindings that force 5, to add
P.

(b) For each step S; in PLAN that possibly adds P and that is possibly
prior to S;, insert PLAN;s to PRIORITY-QUEUE where PLAN; is de-

rived from PLAN by adding the causal link S',-—‘iSj, by constraining
S; < 5;, and by adding bindings that force S; to add P.

(¢) Go to step 2.

A version of this algorithm has been proven sound, complete, and system-
atic [McAllester and Rosenblitt, 1991]. Note that if an appropriate ranking
function is used for PRIORITY-QUEUE, then the algorithm performs A* search.
We tested the algorithm with numerous search strategies. See section 5 for
the relationship between various ranking functions and abstraction planning
(Sacerdoti, 1974, Yang and Tenenberg, 1990].

2.2 The Linear Planner

In the treatment of [McAllester and Rosenblitt, 1991], the preceding algorithm
is derived from a backward-chaining linear planner via what McAllester terms
quotient acceleration. For our purposes, 1t suffices to note that the linear algo-
rithm is the same as the nonlinear except it considers sequences of steps rather
than partially ordered sets. Because of this simplification, the linear algorithm
does not require data structures for links, ordering or open conditions, but it
shares the data structures and routines for variable bindings and constraints.
The algorithm works by building a plan backwards, considering all steps that
could possibly achieve a subgoal without deleting any other subgoal; when it
finds such a step it creates a new plan by eliminating the resolved subgoal(s)
and adding the weakest preconditions for the new step as new subgoals. The
planner terminates when all of the subgoals of a plan unify with the initial
conditions.

Algorithm: Linear Planner (OPS, INITS, GOALS)

1. Initialize PRIORITY-QUEUE to contain the single partial plan with sub-
goals GOALS, no steps, and no bindings.

2. If PRIORITY-QUEUE is empty, return failure, otherwise remove a partial
plan, PLAN, from PRIORITY-QUEUE.



3. If the subgoals of PLAN unify with a subset of the initial conditions
yielding a substitution S that is consistent with the bindings of PLAN,
then return the sequence of steps after substituting for variables using
the bindings of PLAN.

4. For each operation O in OPS and each subset G of the subgoals of PLAN
that is possibly added by O with bindings S that are consistent with
the bindings of PLAN, insert PLANy to PRIORITY-QUEUE where PLAN, is
defined as follows.

o The steps of PLAN; consist of an O-type step followed by the steps
of PLAN.

o The subgoals of PLAN; consist of the the subgoals of PLAN minus
G union the preconditions of the new O step.

e The bindings of PLAN; consist of the bindings of PLAN union S
union whatever noncodesignation constraints are required to ensure
that the delete-list of the new step does not even possibly interfere
with a subgoal of PLAN. If multiple, minimal noncodesignation
constraints fulfill this condition, then a new plan must be created
for each such set.

5. Go to step 2.

Since step 4 of the linear algorithm has the potential to insert a large num-
ber of partial plans to the queue, we explored with a variety of search strategies,
including iterative deepening, before settling on a lazy evaluation scheme in
which successor plans are added gradually and in the same order by step 4
as they are in the nonlinear algorithm’s step 5. This drastically decreased
the linear algorithm’s branching factor and sped the algorithm considerably
in almost every test.

3 Effect of Flexibility in Plan Ordering

Common intuition suggests that a nonlinear planner has the biggest advantage
over a linear planner when the steps to achieve a goal must be performed in
a specific order. When there are no constraints on the ordering of steps in a
plan, both linear and nonlinear planners should perform similarly, although
with differing amounts of overhead. Although many people accept this charac-
terization, it has never been justified formally. In this section we provide both
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an analytic and empirical explanation of this phenomena. Then in section 4
we discuss the relative overhead of the two algorithms.

3.1 Unconstrained Ordering
3.1.1 Analytic Predictions

One can consider the search space of a nonlinear planner to be an abstraction
of that of a linear planner. Let each node in the graph be a partial plan and
each directed edge be labeled with the new step added to the plan. If various
bindings are generated that allow the new step to resolve more than one goal,
each combination forms a separate node in the search space. Likewise different
nodes are created for each set of bindings that prevent the step from deleting
subgoals. Thus a node may have several outgoing edges labeled with the same
step.

Where the nonlinear has a single, unordered path labeled with the steps
{A, B, C}, the linear planner may generate paths labeled {A<B<C}, {A<
C<B}, {B<A<C}, {B<C<A}, {C<A<B}, and {C<B<A} if the problem
has no constraints eliminating any of these orderings. In general if a path in
the nonlinear planner has n steps, there will be n! corresponding paths in the
linear search space.

One way to look at the effectiveness of the two algorithms is to compare
their ratios of successful paths in the search space to the total number of paths.
Consider the search tree to a depth of n. The success ratio for the nonlinear
planner is

s/p

where s is the number of successful paths and p is the total number of paths.
The success ratio for the linear planner is

sn!

— G

oy /p
since each path in the nonlinear corresponds to n! paths in the linear search
space. Thus nonlinear and linear planners should perform comparably in the
case where the order of steps doesn’t matter.

3.1.2 Empirical Results

To test this prediction, we created an artificial domain theory, called ART1,
that has fifteen possible action types that each achieve a different predicate
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when their individual initial condition is present. Each action type is indepen-
dent — they overlap neither preconditions nor add lists. and every action’s
delete list is empty. As a result, the order in which a plan’s subgoals are han-
dled, and the eventual ordering of the steps was predicted to be irrelevant to
either algorithm.

Given this domain, we generated 75 solvable problems each consisting of 15
randomly permuted initial conditions and between 1 and 15 randomly selected
and permuted goal propositions such that 5 problems were generated for each
number of goal conjunctions. Each problem was given to both algorithms; the
results are shown in figure 1. Each point on the graph represents the average of
five random tests with that number of conjuncts. Performance was measured
in milliseconds of Dec 5000 CPU time.

CPU Time (ms)

8000 =
-t Linear CPU
6000 ~ ~®  Nonlinear CPU
4000 4
2000 +
0 1
0 20

Number of Goal Conjuncts

Figure 1: Both Planners can Handle the Unconstrained Domain

It is clear from the graph that both planning algorithms have close to linear
time complexity in the number of goals for this unconstrained domain. Graphs
showing the number of partial plans created during the search have an identical
shape. It must be noted that the performance shown is dependent on the fact
that only solvable problems were generated. While the nonlinear algorithm
would have quickly quit attempting an impossible goal in this domain, the
linear algorithm would have explored an exponential number of plans in a
futile attempt to find a satisfactory ordering. Similarly, the performance of
the linear planner is dependent on the use of an aggressive search strategy (i.e.
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depth-oriented search), while the nonlinear planner’s smaller overall search
space renders it less dependent on a particular strategy.

The reader may be surprised that the simple linear planner appears twice
as slow as its nonlinear sibling — even in a domain carefully constructed to
neutralize the nonlinear advantage. This is explained in section 4.

3.2 Constrained Ordering

Now we consider the case where nonlinear planners should prove their worth,
the case where step-ordering is highly constrained.

3.2.1 Analytic Predictions

*

In the extreme case there is only one possible ordering of any pair of steps. If
the linear planner generates a plan with steps {A<B<C<D}, no other order
of those steps is possible. The plan {A<B<D} or {A<C} could be generated,
since the steps included are in order, but { A<D<C<B} will never be a path
in the search space.

For each path in the nonlinear search space with n steps, there will now
be 2"~! paths in the linear search space. This exponential growth can be
shown inductively, since increasing the length of the nonlinear plan from n to
n +1 doubles the number of paths. If the path begins with the correct step it
continues with the possible paths for the remaining n steps. Otherwise it can
never include that step without violating ordering constraints and continues
with the possible paths for the other n steps.

The success ratio for the nonlinear planner is the same as before, s/p, where
s is the number of successful paths and p is the total number of paths. But
now each successful nonlinear path corresponds to 2"~! paths in the linear
search space to a depth of n. This gives

3
pzn—l

which is worse than the nonlinear success ratio by an exponential factor.

3.2.2 Empirical Results

To test this prediction, we created an artificial domain theory, called ART2,
which resembles ART1 except that the temporal ordering of plan steps is
tightly constrained by the delete lists of each action. For any set of goals,
there exists a single ordering of steps that will achieve the goal; switching the
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Figure 2: Nonlinear Planner Excels in Constrained Domains

¢ + 1st step before the :th causes the : + 1st to delete the preconditions for
the ith. In all other respects, the action types are independent and identical
to those of ART1.

Given this domain, we generated 75 solvable problems in the same fash-
ion as the previous experiment: 5 random problems for each number of goal
conjuncts between 1 and 15. As shown in figure 2, the nonlinear planner main-
tained its near linear time complexity, while the linear planner was incapable of
solving even moderately sized problems before the resource cutoff. A graph of
the number of partial plans created had an identical shape. The performance
of the linear planner was not improved by changing the search strategy. The
conclusion is clear — domains with tight interaction between the ordering of
steps from different subgoals provide an extreme advantage for the nonlinear
algorithm.

4 Effect of Domain Theory Size

The linear and nonlinear algorithms share many of the costs of generating
new plans. A fair way to estimate these costs is by the number of unifications
requested since this correlates well (R* > 0.98) with CPU time. By this
metric, the cost of finding a step to establish each goal is the same in the
two algorithms, and the cost of testing for possible conflicts from deletes is
comparable. The nonlinear planner’s adding of new causal links has basically
the same cost as the linear planner finding all bindings for a new step that
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Figure 3: Nonlinear Planner Degrades More Slowly

resolve additional subgoals.

The biggest difference between the per-plan cost of the two approaches
concerns matches to the initial conditions. While the nonlinear algorithm has
a list of open goals that keeps getting smaller until the plan is completed, the
linear planner has no way to remove goals that unify with the initial conditions.
The only way for the linear algorithm to know if a plan is complete is to see
if its subgoals unify with a subset of the initial conditions, which can be an
expensive test. In practice, this must be done every time a new plan is created,
since any reasonable heuristic will take into account the number of open goals.

The nonlinear algorithm escapes this penalty by systematically considering
which subgoals could be established by the initial conditions and using causal
links to record this information. Since this decision is made on a per goal basis
not a per plan basis, the overhead is reduced. From this analysis, we predicted
that the linear planner’s overhead should rise more quickly than that of the
nonlinear algorithm as the number of initial conditions increased.

To test this conjecture, we generated 300 blocks world problems by gen-
erating a random problem and then adding varying amounts of random ir-
relevant initial conditions. Figure 3 shows the results of the experiment —
each point represents the ration of nonlinear to linear CPU time averaged
over all problems with that number of initial conditions. As is apparent from
the best-fitting line (correlation R?* = 0.96), the nonlinear algorithm takes
proportionally less time as the number of initial conditions grows.
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5 Discussion

In order for the field of artificial intelligence planning to mature, it is necessary
to precisely characterize the behavior of central algorithms. We view this paper
as the logical successor to Korf’s delineation of the effect of decomposition and
abstraction in planning [Korf, 1987).

This paper used both analytic arguments and empirical evidence to eval-
uate nonlinear planning. We showed that while linear and nonlinear planners
perform similarly in domains where step order is unrestricted, the nonlinear al-
gorithm dominates in cases where the order of plan steps is tightly constrained.
In addition, we showed that the relative performance of the nonlinear planner
improves as the number of initial conditions increases.

With any empirical comparison, there is a possible question of fairness.
By writing the planners in the same language, using the same data struc-
tures the same subroutines, and the same basic algorithm (modulo quotienting
[McAllester and Rosenblitt, 1991]), we feel that fairness is not a concern.

While our empirical results and the analysis of section 4 are are specific to
backward chaining planners, we suspect that they could be extended without
much difficulty. A more serious restriction is the reliance of our evaluation
on STRIPS representation. The lack of functions and conditionals is directly
exploited by the causal-link algorithm as it was earlier by TWEAK. With this
representation, the equivalent of an exponential number of linear plans can
be checked in polynomial time. Unfortunately, the work of Dean and Boddy
[Dean and Boddy, 1988] suggests that the domination of linear by nonlinear
planning may not extend to more expressive action representations. This is
an open question that deserves more attention.

One advantage of nonlinear planning that may extend to other action rep-
resentations has not been treated quantitatively in this paper. A nonlinear
planner is more amenable to advice than a linear algorithm; the algorithms
can exploit different types of heuristics. For example, the ideal, linear, goal-
ordering heuristic must dictate which subgoal needs to be tackled next in the
time-frame of the executor, while the nonlinear equivalent must only say which
subgoal is the most critical to achieve in the context of the planning process.
Another way to view this is to realize that for the causal-link algorithm, a
goal-ordering heuristic that considers only the predicate type, is equivalent
to an abstraction planner based on predicate criticalities [Sacerdoti, 1974,
Yang and Tenenberg, 1990]. This connection to abstraction supports our con-
jecture that for most domains it is easier to develop heuristics for a nonlinear
planner.
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