
On Synchronization Patterns

in Parallel Programs

Jean-Loup Baer and Richard N. Zucker

Department of Computer Science and Engineering

University of Washington

Technical Report No. 91-04-01

April 1991



On Synchronization Patterns in Parallel Programs

�

Jean-Loup Baer and Richard N. Zucker

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195

Abstract

E�cient synchronization is a key element in obtaining good speed-up from parallel programs.

The overhead introduced by synchronization, especially lock manipulation, can sometimes re-

move any bene�t from parallelizing programs. Techniques to e�ciently obtain locks under high

contention have been studied in the literature using arti�cial programs. We consider the impact

of these techniques in a more realistic framework using a sample of real parallel programs run-

ning on a shared-bus multiprocessor system. Cycles lost to lock contention and the number of

processors waiting to acquire a lock are the two principal metrics that we use. Trace-driven simu-

lation experiments are performed for sequentially consistent and weakly consistent architectural

models.

1 Introduction

Shared-memory multiprocessors have become much more prevalent in recent years. There are sev-

eral commercially available systems with multiple CPU's such as those produced by Sequent, En-

core, Silicon Graphics and Alliant. These machines can provide a signi�cant performance increase

for programs that have large portions of their execution that can proceed in parallel. Assuming

that a program can be parallelized, there are still potential bottlenecks to achieving the maximum

possible speed up on a parallel machine. One major source of the bottlenecks has to do with syn-

chronization. While synchronization is most often required by the algorithm, the implementation of

the synchronization primitives and, more speci�cally, the use of locks to guarantee mutual exclusion

could be a determinant factor in the degradation of the speed-up.

The e�cient implementation of locks in hardware (in the context of shared-bus systems) and

software has been studied before [3],[12]. Locking schemes that can deal with high contention for

locks very well, given the right hardware support, were developed. The e�ciency of these locking

schemes was tested using synthetic programs designed to have high amounts of lock contention.

�

This work was supported by NSF Grants CCR-8904190 and CCR 8702915.

1



However, that research did not deal with real parallel programs. It is not clear, therefore, whether

the extra hardware and/or software sophistication is justi�ed. The purpose of this paper is to

investigate the impact of lock manipulation in a more realistic environment.

We will therefore examine various aspects of the locking behavior of several parallel programs.

Some of these aspects are architecturally dependent, e.g., the overhead incurred in the lock acqui-

sition, while others, e.g., the number of processors waiting to acquire a lock, depend mostly on the

algorithm and programming paradigm unless locks are implemented so poorly that their overhead

overshadows that of contention for the lock. We study how these, and related, factors impact exe-

cution time and processor utilization in a shared-bus multiprocessor system. Two di�erent locking

schemes, a very e�cient one (queuing locks [12]) and the more usual one (test-and-test-and-set [17]),

will be tested. We will also perform experiments using a weakly consistent memory access model.

The paper is organized as follows. In section 2 we cover the methodology we used when collecting

our information and discuss the benchmarks selected and their characteristics. In section 3 we

present our results and discuss some of their implications. In section 4 we consider the impact of

the memory access model. Concluding remarks are given in section 5.

2 Methodology

2.1 Traces

Our studies were done using trace-driven simulation. This performance evaluation tool allows us to

contrast a number of di�erent architectural variations (e.g., consistency model) as well as to assess

the e�ect of changes in system parameters (e.g., bus and memory cycle times). Since the latter

parameters did not modify the general trends of our results, we will not consider them further. A

very important aspect of the trace-driven simulation, for the purposes of this study, is that we are

able to analyze the \ideal" behavior of the traced programs, i.e., we can determine how long any

section of the program would take given no interference from other programs or stalling due to

cache misses.

We used traces of programs running on a Sequent Symmetry Model B with 20 Intel 80386

processors. These traces were collected using the MPTrace system [9]. MPTrace is an in-line

tracing technique. It only saves the entry address of each basic block and memory references

within that block that cannot be statically reconstructed. In a post-processing phase the trace is

expanded to give the full memory reference trace. This includes the number of cycles needed to

execute each instruction, assuming no wait states. All times given in the statistics are expressed in

2



units of these cycles.

MPTrace provides us with a per processor trace �le of all memory references. All lock-spinning

is removed from the trace �le. Only the actual lock operation is left. How locks are simulated is

described below in section 2.4.

2.2 Model architecture

1

��

��

v v v

N

��

��

?

6

Processor

Cache

Bu�er

Memory's

Bu�ers

Memory

Figure 1: Model Architecture

We simulated a bus-based architecture similar to the Sequent Symmetry Model B (cf. Figure 1)

from which the traces were collected. Each processor has a two way set-associative 64 Kbyte cache.

The line size is 16 bytes. The caches are write-back with LRU replacement. The Illinois protocol

is used for hardware enforced cache coherence [4]. The cache-bus interface includes a four element

bu�er. All memory requests, write-backs, cache-cache transfers, and coherence actions initiated by

the processor must pass through this bu�er. The bu�er depth was initially set to four which is

larger than the usual write bu�er in a system with a write-back cache. This was in anticipation of

the larger bu�er requirements of a weakly consistent architecture [7]. The wisdom of such a choice

is discussed in section 4. If a dirty line is in the bu�er to be written-back, it is visible to the cache

coherence mechanism.

The bus modeled is a 64 bits wide (data and address) split transaction bus. Arbitration is round-

robin. A split transaction occurs only on memory requests. While the read/write is performed in

the memory module or bu�ered in the memory controller, the bus is not held so that it may be used

3



by other devices. This implies that a request may arrive at the memory while a previous request

is being processed. Hence our model incorporates a two element bu�er at the memory input. This

also means that the bus may be busy when a memory access completes. Therefore we have a two

element bu�er at the memory output.

The memory has an access time of three cycles. So, assuming no contention in the bu�ers or on

the bus, a cache read miss causes the processor to stall for six cycles: One cycle to send the request

to memory, three cycles to access memory, and two cycles to send the 16 byte line back since the

bus is eight bytes wide. The caches use a write allocate strategy on a write miss and consequently

a write miss also causes a six cycle stall.

2.3 Benchmarks

The programs that we simulated include VLSI CAD tools and scienti�c programs written in either

C or C++. The C++ programs (the �rst three in table 1), were written using the Presto [5]

programming environment. Presto consists mainly of a number of C++ classes which provide for

synchronization and user level threads. The scheduling and context switching of the threads are

executed at the user level. Thus, the instructions that perform the thread management are in the

trace. In the C traces (the last three in table 1) these system functions are not included.

The three Presto programs are Grav, Pdsa, and FullConn. Grav implements the Barnes and

Hut clustering algorithm for simulating the time evolution of large numbers of stars interacting

under gravity [11]. The program trace ran for three timesteps of evolution for a system of 2000

stars. Pdsa [18] does topological optimization using simulated annealing. FullConn is a run of a

Synapse [19] distributed simulation of a fully-connected processor network.

The three C programs are Pverify, Qsort, and Topopt. Pverify [8] is a combinational logic

veri�cation program which compares two di�erent circuit implementations to determine whether

they are functionally (Boolean) equivalent. The circuits used for the trace were combinational

benchmarks for evaluating test generation algorithms. Topopt [8] does topological compaction of

MOS circuits using dynamic windowing and partitioning techniques. It is based upon a simulated

annealing algorithm for its topological optimizations. Its input was a technology independent

multi-level logic circuit. Qsort [13] is a quicksort program run on 1,000,000 random integers. This

is not the best benchmark since sorting is more likely to be done as a subroutine of a program and

therefore is not typical of an entire program. In addition, this program was written for research

purposes and only sorts integers, which again may not be typical of real programs. Nonetheless, it

4



provides some useful insight as long as one keeps these limitations in mind.

Tables 1 and 2 list \ideal" (in the sense given at the beginning of this section) statistics about

these traces. The programs were run on a system with either 9, 10, or 12 processors being active.

Due to the allocation scheme used in Presto most data is allocated as shared even when it need not

be. This is re
ected in the numbers given. In the C programs only a little more than a third of the

data references are to shared data. The column \work cycles" refers to the number of cycles that

the traced instructions would take to execute assuming the \ideal" conditions: no cache misses or

other stalls. Grav and Qsort have been simulated with signi�cantly longer traces with no change

in the basic results we present.

Program # of Work References

Proc. Cycles All Data Shared

Grav 10 2,841 1,185 423 377

Pdsa 12 2,458 1,206 431 410

FullConn 12 3,848 967 346 332

Pverify 12 5,544 2,431 682 254

Qsort 12 2,825 1,177 252 142

Topopt 9 10,182 4,135 1,113 413

Table 1: Benchmark Ideal Statistics

Cycles and references are averages per processor and are in 1000's.

Program Lock Nested Avg. Total % of

Pairs Locks Held Held Time

Grav 6389 2579 200 1,131 39.8

Pdsa 3110 1467 190 510 20.7

FullConn 652 134 334 210 5.5

Pverify 555 0 3642 2,021 36.5

Qsort 212 0 52 11 0.3

Topopt 0 0 N/A 0 0.0

Table 2: Benchmark's Ideal Lock Statistics

Lock pairs and nested locks are averages per processor.

The average held and total held are in cycles.

In table 2 the \ideal" data on locking patterns as taken from the traces is given. The column

\Nested locks" refers to when a lock is locked while another lock, the outer lock, is already held by

5



the same processor. These nested locks occur only in Presto programs when threads are removed

from the run queue. The outer lock is the scheduler lock and the inner lock is the thread queue

lock. The inner one is sometimes held when the outer one is not held. However, this does not

often happen. So, as far as lock contention is concerned, the inner lock is not usually a source of

contention. Therefore, for Grav, Pdsa and FullConn we need only consider the total number of

locks minus the number of nested locks.

Most of the time, the locks are held for only a few hundred cycles. An exception is Pverify

where the locks are held for a very long time.

2.4 Locking

We want to study the e�ect of locking algorithms on real programs from two di�erent, and com-

plementary, viewpoints: the e�ect of lock implementation on the overall system and the pattern

of locking in parallel programs. To remove as many artifacts as possible for the study on locking

patterns, we need a locking algorithm that causes minimal interference with processors doing useful

work. For this reason, we have chosen to simulate a scheme similar to queuing locks [12].

In queuing locks a processor wanting to acquire a lock performs a single atomic exchange

operation to get the address of a memory location, say M, and a special value, say A. It also stores

an address N and a value B for the next processor. It then spins by reading the value stored in

memory location M until that value is di�erent from A. It does its spinning by reading the value in

the cache, therefore causing no bus activity. When the value is di�erent from A, it knows that it

has acquired the lock. When it releases the lock, it will change the value B in location N to some

new value C thus passing the lock to another waiting processor, if any. Each processor spins on

a di�erent memory location, and therefore there is no problem with contention since the lock is

handed o� to a speci�c processor. In the scheme implemented on our simulator, when a processor

wants to acquire a lock, a memory access is made. When the result of that access returns to the

processor, it sees whether or not it has the lock. If so, it enters the critical section. Otherwise it

stalls. When the lock is released, the processor releasing the lock does a memory access. Also, a

cache to cache transfer is done if another processor is waiting for the lock.

The simulator scheme is not a true representation of queuing locks. In an exact queuing lock

implementation, there would be an additional memory access in the phase when a processor gets

on the queue for the lock. In addition, in the Illinois protocol that we are using, there would

be an additional memory access after the release of the lock if a processor is waiting and there

6



would be no cache to cache transfer. We used the slightly more e�cient scheme to minimize the

implementation constraints. With the results that we have generated so far, we believe that the

two missing bus transactions have no impact on the validity of our results as applied to queuing

locks. We are currently modifying our simulator to verify this assumption.

In order to assess the importance of a sophisticated implementation of lock manipulation, we

simulated the same traces using the more mundane test-and-test-and-set (T&T&S) primitive. In

this scheme the value of the lock variable is read. If it is locked, then the processor spins by reading

this value until it is free. Since a copy of the lock variable is in the processor's cache, the spinning

does not consume any bus bandwidth. When the lock is free, the change in value in the lock variable

is seen by the waiting processor via hardware enforced cache coherence. The processor then does

an atomic test-and-set to get the lock. If several processors are spinning, there will be a burst of

tra�c as all the processors try to get the lock after it has been freed. The ones that fail will still

cause a great deal of bus activity, which may slow down the processor that has the lock [3],[12].

3 Results

3.1 Queuing Lock Implementation

In this section we present the results that we found when we examined the behavior of our bench-

marks using our approximation to queuing locks. We are mostly interested in the number of lock

transfers and the number of processors waiting at the time of the transfer and the impact of these

numbers on the degradation in processor utilization. We would also like to see which \ideal" statis-

tics (e.g., number of lock pairs, the times locks are held) are good predictors of lock contention.

The basic statistics that we collected from the simulation of our benchmarks are summarized in

table 3. The run-time for Topopt is somewhat skewed compared to the numbers in table 1 because

there is one processor whose trace, has a much higher average cycle per instruction (CPI) although

it has the same length in references. For a given processor, its utilization is calculated as the

number of work cycles for that processor divided by the total number of cycles until that processor

completed simulating its trace. The processor utilization given in the tables is the average of each

processor's utilization.

As shown in table 3, the programs with the largest number of lock acquisitions (cf. table 2),

Grav and Pdsa, have the lowest processor utilization and the highest percentage of stalls due to

waiting for a lock. It is of course not a surprise that the program with the most locks shows this

behavior. What is interesting is that although the locks are held for almost the shortest period

7



Program run-time Processor Stall Causes

(cycles) Utilization cache lock

(%) miss wait

Grav 9,228,727 32.6 3.2 96.5

Pdsa 7,105,257 40.3 10.2 89.5

FullConn 4,407,243 95.5 86.9 10.2

Pverify 5,997,346 96.1 100.0 0.0

Qsort 4,307,966 67.8 99.7 0.3

Topopt 13,818,998 99.3 100.0 0.0

Table 3: Benchmark Runtime Statistics: Queuing Lock Implementation

The stall causes are the percent of stalls caused by that event.

of time, on the average, they still end up causing by far the most contention. Furthermore, the

amount of time the program executes in \locked mode" is not a signi�cant factor either since

Pverify's percentage of time in that mode is much greater than Pdsa's and Pverify's processor

utilization is greatly superior to Pdsa's.

Some more details on the lock contention are shown in table 4. We give the number of lock

transfers, i.e., the number of times a lock is released by a processor and acquired by another waiting

processor. The level of contention for the lock is re
ected in the number of waiters. This number is

the average of the number of processors still waiting for the lock after it has been released by one

processor and acquired by the �rst waiter. For Grav and Pdsa this number is slightly over half the

number of processors. This is extremely heavy contention since, by comparison, a barrier would

yield a number less than half the number of processors. By contrast, Pverify almost never has two

processors wanting the lock simultaneously and FullConn does not have this happen a signi�cant

number of times.

In summary, the best predictor for programs with high lock contention that can be found

through the \ideal" analysis is the number of lock acquisitions. Grav and Pdsa have the most lock

acquisitions by a factor of greater than four and a half and have the worst behavior. This is what

we would expect. As the number of lock acquisitions increases, there is a greater chance of there

being contention for the lock. This is true even though Grav and Pdsa on the average hold locks for

some of the shortest periods of time. The percentage of time that locks are held is not a predictor

of locking behavior. In the \ideal" analysis of Pverify, locks are held for a percentage of time almost

as long as for Grav. However, the e�ect of lock contention is minimal on the run-time of Pverify.

8



Program Time Transfer Lock Stats

held Number Waiters Time

at Transfer held

Grav 211 28,725 5.19 336

Pdsa 203 16,977 6.18 356

FullConn 389 344 0.40 844

Pverify 3766 28 0.00 41

Qsort 120 180 0.89 174

Table 4: Lock Contention Statistics: Queuing Lock Implementation

Lock holding times are averages in cycles.

Some of the results might be in
uenced by the Presto programming environment. The two

programs with the most lock contention are Presto programs. It is clear from FullConn that

writing a program in Presto does not automatically mean that there will be a lot of lock contention.

However, even if programming in Presto introduces many stall cycles due to lock contention, it still

is a useful tool. The Presto programming environment is based on user-level threads instead of

system level threads and thereby the losses due to lock contention might be recouped since there

are no traps to the kernel [2]. A version of the Grav and Pdsa programs written directly in C, and

trying to attain the same level of parallelism, would have this overhead to contend with. However,

the lock contention, while present at the system level, would not show up in the application level

traces. It is also interesting to note that the Presto program with the best lock behavior, FullConn,

was written by someone familiar with the inner workings of Presto as part of his Ph.D. dissertation.

Grav and Pdsa, with their poorer behavior, were written as part of a ten week seminar.

3.2 Importance of the Lock Implementation

Tables 5 and 6 show the same statistics as tables 3 and 4, but with locks implemented using the

Test&Test&Set primitive. The di�erences between the two sets of tables indicate the importance

of an e�cient lock implementation.

Naturally, there won't be any major di�erence in the behavior and run-time of programs with

low lock acquisitions, i.e., the last four programs. The interesting �gures are for the two programs

that exhibit high lock contention. As can be seen, Grav takes 8.0% longer when using T&T&S

than when using queuing locks and Pdsa takes 8.1% longer. In looking at table 6 we see that locks

in those two programs are not held signi�cantly longer than when using queuing locks nor are there

9



Program run-time Processor Stall Causes

(cycles) Utilization cache lock

(%) miss wait

Grav 9,970,129 30.7 3.6 96.4

Pdsa 7,680,362 37.9 9.8 90.2

FullConn 4,416,720 94.6 88.0 12.0

Pverify 5,996,557 96.1 99.1 0.9

Qsort 4,310,056 67.6 99.4 0.6

Table 5: Benchmark Runtime Statistics: T&T&S

The stall causes are the percent of stalls caused by that event.

Program Time Transfer Lock Stats

held Number Waiters Time

at Transfer held

Grav 217 28,742 5.16 343

Pdsa 208 16,882 6.21 363

FullConn 409 338 0.30 978

Pverify 3767 36 0.03 48

Qsort 130 166 0.61 181

Table 6: Lock Contention Statistics: T&T&S

Lock holding times are averages in cycles.

more processors waiting at the transferring locks. The run-time increase is mainly due to three

factors. The �rst is the time needed to transfer the lock. When there are many processors waiting

for a lock, it takes approximately 21-25 cycles for any processor to get the lock vs. 1.2-1.5 cycles

for the queuing lock scheme that we simulated. Multiplying the di�erence by the number of lock

transfers gives us an idea of the magnitude of the increase due to this factor. In Grav this results in

78% of the increase in run-time and in Pdsa 77%. The second factor is the length of time that locks

are held. Even though in the T&T&S implementation transferring locks are held only �ve to six

cycles longer, this ends up being an important di�erence. In the case of a transferring lock, this cost

of �ve to six cycles is paid by a waiting processor for each processor that precedes it in acquiring

the lock. So, for the two programs under consideration, this extra cost contributes approximately

thirty cycles to each time that a processor waits for a transferring lock. This causes 17% of the

increased run-time for both Grav and Pdsa. The third factor is that with a high number of waiting

10



processors, there is a concomitant 
urry of Test-and-Sets that causes increased bus contention. This


urry occurs after a processor has acquired the lock and does not appear to a�ect that processor's

behavior since the lock holding times do not signi�cantly change. A plausible explanation is that

the processor with the lock must already have the working set for the critical section in its cache

(for a detailed description of what happens when the lock is released in T&T&S see [3]). However,

the increased bus contention does have an overall impact. The bus utilization for Grav doubled

when using T&T&S and for Pdsa increased 40%, and this slows down even those processors that

do not want the lock. We can surmise that the remainder of the increase in execution time, 5% for

Grav and 6% for Pdsa, is caused by this factor.

In summary, an e�cient lock implementation can signi�cantly reduce the execution times of

programs with high lock contention. It appears that the decrease in execution time is mostly due

to the reduction in time for lock acquisition per se, and secondarily to a decrease in lock holding

time and to lower bus contention, allowing better progress of those processors that are not waiting

for the lock.

4 Weak Memory Access Model

As the speed of processors increases faster than the speed of access to main memory, the relative

cost of a cache miss increases. This is especially true in large scale multiprocessors that use a

multi-stage interconnection network between the processors and memory. Several ideas have been

put forward to reduce the frequency with which the full penalty of a cache miss must be paid.

These ideas have focused on ways to change the programmer's model of memory by relaxing the

hardware constraints of having to enforce sequential consistency [16]. These alternative memory

models include weak ordering [7]. It is important to know whether the additional hardware features

required for an e�cient implementation of weak ordering, e.g., bu�ers, are warranted in terms of

improved execution time. To that e�ect, we simulated a machine similar to the one presented in

Section 2 but where the memory model implemented by hardware is that of weak ordering. In

subsection 4.1 we describe what weak ordering is. In subsection 4.2 we present our simulation

results.

4.1 Weak Ordering

Most multiprocessor systems are sequentially consistent. Lamport [16] says:

11



[A system is sequentially consistent if] the result of any execution is the same as

if the operations of all the processors were executed in some sequential order, and the

operations of each individual processor appear in this sequence in the order speci�ed

by its program.

Thus, in a sequentially consistent system the end result of the programmust be as if each instruction

had �nished executing before the next instruction is started and the instructions are executed in

program order. If this is not the case, then certain algorithms, such as Dekker's Algorithm for

mutual exclusion [6] may not work correctly (an example of what could happen can be found

in [7]).

Weak ordering is de�ned as [7]:

In a multiprocessor system, storage accesses are weakly ordered if:

1. accesses to global synchronizing variables are strongly ordered and if

2. no access to a synchronizing variable is issued in a processor before all previous

global data accesses have been performed and if

3. no access to global data is issued by a processor before a previous access to a

synchronizing variable has been performed.

For our purposes, strongly ordered and sequentially consistent accesses can be considered as syn-

onymous (distinctions between the two are examined in [1]). Performed is de�ned formally in [7].

Basically it means that a STORE is performed when the value stored by the processor executing

the instruction can be seen by all other processors, and that the value to be returned by a LOAD

has been set and cannot be changed.

In a weakly ordered system, the only restrictions on the access of normal, i.e., non-synchronizing,

memory references is that imposed by the program's own data dependencies [15]. Otherwise mem-

ory references may be executed in any order. Therefore an order that maximizes system per-

formance may be used. This includes letting reads and instruction fetches take precedence over

writes, prefetching data, issuing instructions out of order or letting them complete out of order,

and delaying cache coherence invalidation signals until after the write to a line in the cache has

been performed. However, according to the second and third rules of weak ordering, whenever a

synchronization operation is performed all references to shared data must complete and no new

references to shared data may be made until the synchronization has completed. This means some

12



explicit synchronization operation visible to the hardware, such as a Test&Set, must be used to

obtain a lock.

In our simulation we model the bypassing of accesses in the bu�ers between the caches and

the bus. Any memory reference whose miss in the cache would cause the processor to stall may

be placed at the front of the bus access bu�er for that processor. Those references are loads and

instruction fetches (this could also be done in a sequentially consistent system for the instruction

fetch, but it is more complicated). The accesses that can be bypassed are writes, write backs, and

invalidation signals. An access is considered performed when it is in the cache and any writes to

it have completed. Once it is in the cache, its value is visible to the other processors due to the

hardware enforced cache coherence.

When a synchronization operation occurs the processor stalls until all the memory accesses

currently bu�ered or underway complete. This also means that all the lines for the cache misses have

returned and been installed in the cache. Once this has been completed, then the synchronization

variable may be accessed.

In our model we neither prefetch, nor do out of order instruction issue or completion, nor delay

invalidation signals. Prefetching into the cache can be done in both sequentially consistent and

weakly ordered models since the hardware enforced cache coherence protocol will assure correctness.

Therefore its performance impact would be essentially the same for both models. Moreover, the

prefetching strategy, either hardware or software based, is fairly elaborate and cannot be included

in our trace information. Similarly, modeling out of order instruction issue or completion is not

possible given the traces we have. No instruction types are given, only the number of cycles for

the instruction to complete. A di�erent methodology would have to be used for assessing the

performance of superscalar or multi-functional units processors. This is outside the scope of this

paper.

The delaying of invalidation signals would work if we had a single-word line size since both

processors would be writing to the same word. The �rst invalidation should not only invalidate the

other line but also cancel the second invalidation. It would not matter which value survives the

invalidations, since if there are no synchronization operations to order them, either is a valid value

according to the memory model. However, this delaying is not possible with multi-word lines. If

two processors both have a write hit on a line in a shared state, then whichever invalidation is done

�rst will cause the cancellation of the other invalidation and convert it into a write miss. It will also

invalidate this other processor's copy of the line. If the two writes are directed to di�erent words in

13



the same line (false sharing) and are executed before either invalidation, then the �rst invalidation

would cause the value �rst written to be lost. Since we use a multi-word line size in our model, we

do not delay the invalidation and when there is a write hit on a line in a shared state, the write is

not done until the invalidation completes successfully.

4.2 Weak Ordering Results

Tables 7 and 8 summarize the results from running our benchmarks assuming a weakly ordered

memory system. The column di�erence (%) shows the percent decrease in execution time for the

weak memory model. As can be seen, in all cases it is less than 1%, and sometimes much less than

that. Recall that in the system we model, the only bene�t of weak-ordering is bypassing. This will

usually result in a performance improvement when there is a write miss that would otherwise cause

a processor stall. Grav and Pdsa, the �rst two programs in table 7, have cache write hit ratios

lower than the other programs but weak ordering has no signi�cant e�ect because the very high lock

contention overwhelms any possible bene�t. In the other cases, the programs with lower write hit

ratios show the best improvements but these improvements are minuscule. Qsort's improvement is

surprisingly low given that its write hit ratio is almost the same as that of Pverify. But its processor

utilization is low because of a large number of read misses due to the magnitude of the data set

being sorted. These read misses dominate (recall table 3) and are much more frequent than write

misses since the reads almost always precede the exchanges (writes) of the same lines.

As can be seen by comparing table 8 with table 4, there is no signi�cant di�erence in the patterns

of locking using the two memory models. Although the overall runtime was not signi�cantly

di�erent, there was a possibility that locking would be di�erent. In a weakly ordered system a

processor must stall at every synchronization point to let all shared accesses complete. We found

that there were almost never any uncompleted shared accesses when a lock or unlock was done.

Therefore, it is debatable whether cache-bus bu�ers should be as deep as those we simulated.

Given these results it does not seem as if weak ordering is worth implementing in a shared-bus

system such as the one we are simulating. One cannot forget that there would be extra costs

involved in implementing weak consistency. Bypassing must be possible in the memory access

bu�er. Since the cache must be able to handle requests while a request is outstanding, the caches

must be lockup-free [14] thus increasing the complexity of the cache and possibly increasing the

cache cycle time. It is conceivable that this cost could more than outweigh the bene�t obtained by

reducing the number of stalls on write misses.

14



Program run-time Processor Di�er- Write

(cycles) Util. ence Hit

(%) (%) (%)

Grav 9,221,719 32.6 0.08 90.9

Pdsa 7,084,835 40.5 0.29 90.5

FullConn 4,381,518 95.5 0.31 91.6

Pverify 5,987,383 96.3 0.17 98.4

Qsort 4,306,958 67.9 0.02 99.0

Topopt 13,796,023 99.4 0.17 97.4

Table 7: Weak Ordering Runtime Statistics

Di�erence is the di�erence between these numbers and those in table 3

Program Time Transfer Lock Stats

held Number Waiters Time

at Transfer held

Grav 211 28,468 5.25 338

Pdsa 203 16,919 6.26 357

FullConn 390 373 0.34 857

Pverify 3758 21 0.00 40

Qsort 100 151 1.05 155

Table 8: Weak Ordering Lock Contention Statistics

Although weak ordering does not appear worthwhile in this architecture, it does not mean that

it is not worth investigating. If the miss penalty were greater, e.g., because the memory latency is

much higher as in a multistage interconnection based system, or the number of writes to memory

increased (as in the case of a write-through cache), then the bene�t would be greater and might

justify the cost [10]. Delaying of various cache coherence signals does not appear to be as promising.

These signals are generated when there is a write hit on a line in a shared state. Since this is a

write, it does not cause a stall and we have already seen that there are not enough writes to make

a signi�cant di�erence.

5 Conclusions

E�cient synchronization is a key element in obtaining good speed-up from parallel programs. In

this paper we have shown that the number of lock acquisitions in the \ideal" analysis is the best

15



predictor of the level of contention to get a lock. The percentage of time that locks are held during

the running of the program is inconsequential. Also, as has been shown with arti�cial programs,

the choice of a better lock algorithm like queuing locks can make a signi�cant di�erence in program

performance.

Given the shared-bus architecture used in these studies, a weakly ordered model of memory

does not provide any signi�cant performance bene�t over a sequentially consistent one. It may

well be that the overhead of a weakly ordered system would outweigh its bene�t. However, studies

need to be done on multi-stage interconnection networks. Superscalar architectures may also show

a bene�t from weakly ordered memory systems.

Acknowledgements

We would like to thank Eric Koldinger for supplying most of the traces and answering innumerable

questions about them and MPTrace. Also, Raj Vaswani explained the inner workings of Presto as

did Ed Felten for Grav, and Simon Kahan for Qsort.

References

[1] Sarita V. Adve and Mark D. Hill. Weak Ordering - A New De�nition and Some Implications.

Technical Report #902, Department of Computer Science, University of Wisconsin, Madison,

December 1989.

[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler Activations:

E�ective Kernel Support for the User-Level Management of Parallelism. Technical Report

90-04-02, Department of Computer Science, University of Washington, April 1990.

[3] Thomas E. Anderson. The Performance of Spin-Lock Alternatives for Shared-Memory Multi-

processors. IEEE Transactions on Parallel and Distributed Systems, 1(1):6{16, January 1990.

[4] James Archibald and Jean-Loup Baer. Cache Coherence Protocols: Evaluation Using a Mul-

tiprocessor Simulation. ACM Transactions on Computers Systems, 4(4):273{298, November

1986.

[5] Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. PRESTO: A System for Object-

Oriented Parallel Programming. Software - Practice and Experience, 18(8), August 1988.

[6] Edgar W. Dijkstra. Cooperating Sequential Processes. In F. Genuys, editor, Programming

Languages. Academic Press, 1968.

[7] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory Access Bu�ering in Multipro-

cessors. In 13th Annual International Symposium on Computer Architecture, pages 434{442,

1986.

16



[8] S. J. Eggers and R. H. Katz. Evaluating The Performance of Four Snooping Cache Coherence

Protocols. In 16th Annual International Symposium on Computer Architecture, pages 2{15,

1989.

[9] S. J. Eggers, D. R. Keppel, E. J. Koldinger, and H. M. Levy. Techniques for E�cient Inline

Tracing on a Shared-Memory Multiprocessor. In ACM SIGMETRICS and Performance '90,

International Conference on Measurement and Modeling of Computer Systems, pages 37{47,

1990.

[10] K. Gharachorloo et al. Memory Consistency and Event Ordering In Scalable Shared-memory

Multiprocessors. In Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems, April 1991.

[11] E. Felten. personal communication.

[12] Gary Graunke and Shreekant Thakkar. Synchronization Algorithms for Shared Memory Mul-

tiprocessors. Computer, 23(6):60{70, June 1990.

[13] Simon Kahan and Larry Ruzzo. Parallel Quicksand: Sorting on the Sequent. Technical Report

91-01-01, Department of Computer Science, University of Washington, January 1991.

[14] D. Kroft. Lockup-free Instruction Fetch/Prefetch Cache Organization. In 8th Annual Inter-

national Symposium on Computer Architecture, pages 81{87, June 1981.

[15] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. Wolfe. Dependence Graphs and Compiler

Optimizations. In ACM Symposium on Principles of Programming Languages, July 1981.

[16] Leslie Lamport. How to Make a Multiprocessor Computer that Correctly Executes Multipro-

cess Programs. IEEE Transaction on Computers C-28, C-28(9):690{691, September 1979.

[17] Z. Segall and L. Rudolph. Dynamic Decentralized Cache Schemes for an MIMD Parallel

Processor. In 11th Annual International Symposium on Computer Architecture, pages 340{

347, June 1984.

[18] M. Upton, K. Samii, and S. Sugiyama. Integrated Placement for Mixed Standard Cell and

Macro-Cell Designs. In Proceedings of the 27th Design Automation Conference, 1990.

[19] David B. Wagner. The Design of an Object-Oriented Parallel Simulation Environment. In

SCS Multiconference on Object-Oriented Simulation, 1991. To appear.

17


