
A Compendium of Problems Complete for P

(Preliminary)

December 20, 1991

RCS Revision: 1.46

Raymond Greenlaw

�

H. James Hoover

y

Walter L. Ruzzo

z

Department of Computing Science

University of Alberta

Technical Report TR 91{11

Department of Computer Science

University of New Hampshire

Technical Report TR 91{14

Department of Computer Science and Engineering

University of Washington

Technical Report TR 91{05{01

Abstract

This paper serves two purposes. Firstly, it is an elementary introduction to the

theory of P-completeness | the branch of complexity theory that focuses on identify-

ing the problems in the class P that are \hardest," in the sense that they appear to

lack highly parallel solutions. That is, they do not have parallel solutions using time

polynomial in the logarithm of the problem size and a polynomial number of processors

unless all problem in P have such solutions, or equivalently, unless P = NC . Secondly,

this paper is a reference work of P-complete problems. We present a compilation of

the known P-complete problems, including several unpublished or new P-completeness

results, and many open problems.

This is a preliminary version, mainly containing the problem list. The

latest version of this document is available in electronic form by anony-

mous ftp from thorhild.cs.ualberta.ca (129.128.4.53) as either a compressed

dvi �le (TR91-11.dvi.Z) or as a compressed postscript �le (TR91-11.ps.Z),

or from cs.washington.edu (128.95.1.4) as a compressed postscript �le

(tr/1991/05/uw-cse-91-05-01.ps.Z).

c

1990, 1991 Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo

�

Author's address: Department of Computer Science, University of New Hampshire, Durham, NH 03824,

e-mail address: greenlaw@unh.edu

y

Research supported by the Natural Sciences and Engineering Research Council of Canada grant OGP

38937. Author's address: Department of Computing Science, University of Alberta, Edmonton, Alberta,

Canada T6G 2H1, e-mail address: hoover@cs.ualberta.ca

z

Research supported in part by NSF grants ECS-8306622, CCR-8703196, CCR-9002891, and by

NSF/DARPA grant CCR-8907960. A portion of this work was performed while visiting the Univer-

sity of Toronto, whose hospitality is gratefully acknowledged. Author's address: Department of Com-

puter Science and Engineering, FR-35, University of Washington, Seattle, WA 98195, e-mail address:

ruzzo@cs.washington.edu



� A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

Additional Problems

The author's would be pleased to receive suggestions, corrections, and additional prob-

lems. Please send new problems, bibliography entries and/or copies of the relevant papers

to Ray Greenlaw at the address on the title page.



A Compendium of Problems Complete for P � i

Contents

Part I: Background and Theory 1

1 Introduction 1

1.1 Setting the Scene : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.2 Feasibility : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

1.3 Completeness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1.4 Overview of this Paper : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

2 Parallel Models and Complexity Classes 5

2.1 Parallel Machines : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

2.2 Computation Problems versus Decision Problems : : : : : : : : : : : : : : : 6

2.3 Complexity Classes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

2.4 The Complexity Classes P and NC : : : : : : : : : : : : : : : : : : : : : : : 8

2.5 Reducibility : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

2.6 Completeness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

3 Two Basic P-complete Problems 12

3.1 The Generic P -complete Problem : : : : : : : : : : : : : : : : : : : : : : : : 12

3.2 The Circuit Value Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

4 Evidence That NC Does Not Equal P 15

4.1 General Simulations Are Not Fast : : : : : : : : : : : : : : : : : : : : : : : 15

4.2 Fast Simulations Are Not General : : : : : : : : : : : : : : : : : : : : : : : 16

4.3 Natural Approaches Provably Fail : : : : : : : : : : : : : : : : : : : : : : : 19

4.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

5 The Circuit Value Problem 21

5.1 The Circuit Value Problem is P -Complete : : : : : : : : : : : : : : : : : : : 21

5.2 Restricted Versions of the Circuit Value Problem : : : : : : : : : : : : : : : 23

6 Parallel Versions of Sequential Paradigms 32

6.1 Strong P -completeness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

6.2 Approximations to P -complete problems : : : : : : : : : : : : : : : : : : : : 33

6.3 Greedy Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36



ii � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

6.3.1 Lexicographically Ordered Greedy Algorithms : : : : : : : : : : : : : 36

6.3.2 Generic Greedy Algorithms : : : : : : : : : : : : : : : : : : : : : : : 38

7 Boolean Circuits 41

7.1 Boolean circuits : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41

7.2 Uniform Circuit Families : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42

7.3 The Class NC

k

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43

7.4 NC

k

Reducibility : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43

7.5 Other Notions of Reducibility : : : : : : : : : : : : : : : : : : : : : : : : : : 44

7.6 Random NC : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45

8 Acknowledgements 46

Part II: P -Complete and Open Problems 47

A List of P-Complete Problems 47

A.1 Circuit Complexity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

A.1.1 Circuit Value Problem (CVP) : : : : : : : : : : : : : : : : : : : : : : 47

A.1.2 Topologically Ordered Circuit Value Problem (TopCVP) : : : : : : : 47

A.1.3 Monotone Circuit Value Problem (MCVP) : : : : : : : : : : : : : : 48

A.1.4 Alternating Monotone Fanout 2 CVP (AM2CVP) : : : : : : : : : : 48

A.1.5 NAND Circuit Value Problem (NANDCVP) : : : : : : : : : : : : : 48

A.1.6 Synchronous Alternating Monotone Fanout 2 CVP (SAM2CVP) : : 48

A.1.7 Planar Circuit Value Problem (PCVP) : : : : : : : : : : : : : : : : : 49

A.1.8 Arithmetic Circuit Value Problem (*) (ArithCVP) : : : : : : : : : : 49

A.1.9 Min-Plus Circuit Value Problem (MinPlusCVP) : : : : : : : : : : : 50

A.1.10 Inverting an NC

0

Permutation (*) (InvNC0Perm) : : : : : : : : : : 50

A.2 Graph Theory : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50

A.2.1 Lexicographically First Maximal Independent Set (LFMIS) : : : : : 50

A.2.2 Lexicographically First Maximal Clique (LFMC) : : : : : : : : : : : 51

A.2.3 Alternating Graph Accessibility Problem (AGAP) : : : : : : : : : : 51

A.2.4 Hierarchical Graph Accessibility Problem (HGAP) : : : : : : : : : : 51

A.2.5 Restricted Chromatic Alternating Graph Accessibility Problem

(RCAGAP) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52

A.2.6 Lexicographically First � + 1 Vertex Coloring (LFDVC) : : : : : : : 52



A Compendium of Problems Complete for P � iii

A.2.7 High Degree Subgraph (HDS) : : : : : : : : : : : : : : : : : : : : : : 53

A.2.8 High Connectivity Subgraph (HCS) : : : : : : : : : : : : : : : : : : 54

A.2.9 Ordered High Degree Vertex Removal (OHDVR) : : : : : : : : : : : 54

A.2.10 Ordered Low Degree Vertex Removal (OLDVR) : : : : : : : : : : : 55

A.2.11 Ordered Vertices Remaining (OVR) : : : : : : : : : : : : : : : : : : 55

A.2.12 Nearest Neighbor Traveling Salesman Heuristic (NNTSH) : : : : : : 55

A.2.13 Lexicographically First Maximal Subgraph for � (LFMS(�)) : : : : 56

A.2.14 Minimum Feedback Vertex Set (MFVS) : : : : : : : : : : : : : : : : 56

A.2.15 Edge Maximal Acyclic Subgraph (EMAS) : : : : : : : : : : : : : : : 57

A.2.16 General Graph Closure (GGC) : : : : : : : : : : : : : : : : : : : : : 58

A.3 Search Problems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

A.3.1 Lexicographically First Maximal Path (LFMP) : : : : : : : : : : : : 59

A.3.2 Lexicographically First Depth First Search Ordering (LFDFS) : : : 59

A.3.3 Breadth-Depth Search (BDS) : : : : : : : : : : : : : : : : : : : : : : 60

A.3.4 Stack Breadth First Search (SBFS) : : : : : : : : : : : : : : : : : : : 60

A.3.5 Alternating Breadth First Search (ABFS) : : : : : : : : : : : : : : : 61

A.4 Combinatorial Optimization and Flow Problems : : : : : : : : : : : : : : : 62

A.4.1 Linear Inequalities (LI) : : : : : : : : : : : : : : : : : : : : : : : : : 62

A.4.2 Linear Equalities (LE) : : : : : : : : : : : : : : : : : : : : : : : : : : 62

A.4.3 Linear Programming (*) (LP) : : : : : : : : : : : : : : : : : : : : : : 62

A.4.4 Maximum Flow (MaxFlow) : : : : : : : : : : : : : : : : : : : : : : : 63

A.4.5 Homologous Flow (HF) : : : : : : : : : : : : : : : : : : : : : : : : : 64

A.4.6 Lexicographically First Blocking Flow (LFBF) : : : : : : : : : : : : 64

A.4.7 First Fit Decreasing Bin Packing (FFDBP) : : : : : : : : : : : : : : 64

A.4.8 General List Scheduling (GLS) : : : : : : : : : : : : : : : : : : : : : 65

A.5 Local Optimality : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

A.5.1 MAXFLIP Veri�cation (MAXFLIPV) : : : : : : : : : : : : : : : : : 66

A.5.2 Local Optimality Kernighan-Lin Veri�cation (LOKLV) : : : : : : : : 66

A.5.3 Unweighted, Not-All-Equal Clauses, 3SAT/FLIP (U3NSATFLIP) : : 66

A.5.4 Unweighted MAXCUT/SWAP (UMS) : : : : : : : : : : : : : : : : : 67

A.5.5 Unweighted 2SAT/FLIP (U2SATFLIP) : : : : : : : : : : : : : : : : 67

A.5.6 Unweighted SWAP (USWAP) : : : : : : : : : : : : : : : : : : : : : : 67

A.5.7 Unweighted STABLE NET (USN) : : : : : : : : : : : : : : : : : : : 67



iv � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

A.6 Logic : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 68

A.6.1 Unit Resolution (UNIT) : : : : : : : : : : : : : : : : : : : : : : : : : 68

A.6.2 Horn Unit Resolution (HORN) : : : : : : : : : : : : : : : : : : : : : 68

A.6.3 Propositional Horn Clause Satis�ability (PHCS) : : : : : : : : : : : 68

A.6.4 Relaxed Consistent Labeling (RCL) : : : : : : : : : : : : : : : : : : 69

A.6.5 Generability (GEN) : : : : : : : : : : : : : : : : : : : : : : : : : : : 69

A.6.6 Path Systems (PATH) : : : : : : : : : : : : : : : : : : : : : : : : : : 70

A.6.7 Uni�cation (UNIF) : : : : : : : : : : : : : : : : : : : : : : : : : : : : 70

A.6.8 Logical Query Program (LQP) : : : : : : : : : : : : : : : : : : : : : 70

A.7 Formal Languages : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 71

A.7.1 Context-Free Grammar Membership (CFGmem) : : : : : : : : : : : 71

A.7.2 Context-Free Grammar Empty (CFGempty) : : : : : : : : : : : : : 71

A.7.3 Context-Free Grammar In�nite (CFGinf) : : : : : : : : : : : : : : : 72

A.7.4 Context-Free Grammar �-Membership (CFG�mem) : : : : : : : : : : 72

A.7.5 Straight-Line Program Membership (SLPmem) : : : : : : : : : : : : 72

A.7.6 Straight-Line Program Nonempty (SLPnonempty) : : : : : : : : : : 72

A.7.7 Labeled GAP (LGAP) : : : : : : : : : : : : : : : : : : : : : : : : : : 73

A.7.8 Two-Way DPDA Acceptance (2DPDA) : : : : : : : : : : : : : : : : 73

A.8 Algebraic Problems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74

A.8.1 Finite Horizon Markov Decision Process (FHMDP) : : : : : : : : : : 74

A.8.2 Discounted Markov Decision Process (DMDP) : : : : : : : : : : : : 74

A.8.3 Average Cost Markov Decision Process (ACMDP) : : : : : : : : : : 75

A.8.4 Gaussian Elimination with Partial Pivoting (GEPP) : : : : : : : : : 75

A.8.5 Iterated Mod (IM) : : : : : : : : : : : : : : : : : : : : : : : : : : : : 76

A.8.6 Generalized Word Problem (GWP) : : : : : : : : : : : : : : : : : : : 76

A.8.7 Subgroup Containment (SC) : : : : : : : : : : : : : : : : : : : : : : 77

A.8.8 Subgroup Equality (SE) : : : : : : : : : : : : : : : : : : : : : : : : : 77

A.8.9 Subgroup Finite Index (SFI) : : : : : : : : : : : : : : : : : : : : : : 77

A.8.10 Group Independence (GI) : : : : : : : : : : : : : : : : : : : : : : : : 78

A.8.11 Group Rank (GR) : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

A.8.12 Group Isomorphism (SI) : : : : : : : : : : : : : : : : : : : : : : : : : 78

A.8.13 Group Induced Isomorphism (GII) : : : : : : : : : : : : : : : : : : : 78

A.8.14 Intersection of Cosets (IC) : : : : : : : : : : : : : : : : : : : : : : : : 79



A Compendium of Problems Complete for P � v

A.8.15 Intersection of Subgroups (IS) : : : : : : : : : : : : : : : : : : : : : : 79

A.8.16 Group Coset Equality (GCE) : : : : : : : : : : : : : : : : : : : : : : 79

A.8.17 Conjugate Subgroups (CS) : : : : : : : : : : : : : : : : : : : : : : : 79

A.8.18 Uniform Word Problem for Finitely Presented Algebras (UWPFPA) 80

A.8.19 Triviality Problem for Finitely Presented Algebras (TPFPA) : : : : 80

A.8.20 Finitely Generated Subalgebra (FGS) : : : : : : : : : : : : : : : : : 80

A.8.21 Finiteness Problem for Finitely Presented Algebras (FPFPA) : : : : 81

A.8.22 Uniform Word Problem for Lattices (UWPL) : : : : : : : : : : : : : 81

A.8.23 Generator Problem for Lattices (GPL) : : : : : : : : : : : : : : : : : 82

A.8.24 Boolean Recurrence Equation (BRE) : : : : : : : : : : : : : : : : : : 82

A.9 Geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82

A.9.1 Plane Sweep Triangulation (PST) : : : : : : : : : : : : : : : : : : : 82

A.9.2 3-Oriented Weighted Planar Partitioning (3OWPP) : : : : : : : : : 83

A.9.3 Visibility Layers (VL) : : : : : : : : : : : : : : : : : : : : : : : : : : 84

A.10 Real Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 85

A.10.1 Real Analogue to CVP (RealCVP) : : : : : : : : : : : : : : : : : : : 85

A.10.2 Fixed Points of Contraction Mappings (FPCM) : : : : : : : : : : : : 85

A.10.3 Inverting a One-to-One Real Functions (IOORF) : : : : : : : : : : : 86

A.11 Miscellaneous : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 86

A.11.1 General Deadlock Detection (GDD) : : : : : : : : : : : : : : : : : : 86

A.11.2 Two Player Game (GAME) : : : : : : : : : : : : : : : : : : : : : : : 87

A.11.3 Cat & Mouse (CM) : : : : : : : : : : : : : : : : : : : : : : : : : : : 87

A.11.4 Longcake (LONGCAKE) : : : : : : : : : : : : : : : : : : : : : : : : 88

B Open Problems 89

B.1 Algebraic Problems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 89

B.1.1 Integer Greatest Common Divisor (IntegerGCD) : : : : : : : : : : : 89

B.1.2 Extended Euclidean Algorithm (ExtendedGCD) : : : : : : : : : : : 89

B.1.3 Relative Primeness (RelPrime) : : : : : : : : : : : : : : : : : : : : : 89

B.1.4 Modular Inversion (ModInverse) : : : : : : : : : : : : : : : : : : : : 89

B.1.5 Modular Powering (ModPower) : : : : : : : : : : : : : : : : : : : : : 89

B.1.6 Short Vectors (SV) : : : : : : : : : : : : : : : : : : : : : : : : : : : : 90

B.1.7 Short Vectors Dimension 2 (SV2) : : : : : : : : : : : : : : : : : : : : 90

B.1.8 Sylow Subgroups (SylowSub) : : : : : : : : : : : : : : : : : : : : : : 90



vi � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

B.1.9 Two Variable Linear Programming (TVLP) : : : : : : : : : : : : : : 90

B.1.10 Univariate Polynomial Factorization over Q (UPFQ) : : : : : : : : : 91

B.2 Graph Theory Problems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 91

B.2.1 Edge-Weighted Matching (EWM) : : : : : : : : : : : : : : : : : : : 91

B.2.2 Bounded Degree Graph Isomorphism (BDGI) : : : : : : : : : : : : : 91

B.2.3 Graph Closure (GC) : : : : : : : : : : : : : : : : : : : : : : : : : : : 91

B.2.4 Restricted Lexicographically First Independent Set (RLFMIS) : : : 91

B.2.5 Maximal Path (MP) : : : : : : : : : : : : : : : : : : : : : : : : : : : 92

B.2.6 Maximal Independent Set Hypergraph (MISH) : : : : : : : : : : : : 92

B.3 Geometric Problems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92

B.3.1 2-Oriented Weighted Planar Partitioning (2OWPP) : : : : : : : : : 92

B.3.2 Limited Re
ection Ray Tracing (LRRT) : : : : : : : : : : : : : : : : 92

B.3.3 Restricted Plane Sweep Triangulation (SWEEP) : : : : : : : : : : : 93

B.3.4 Successive Convex Hulls (SCH) : : : : : : : : : : : : : : : : : : : : : 93

B.3.5 Unit Length Visibility Layers (ULVL) : : : : : : : : : : : : : : : : : 93

B.4 CC Problems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 93

B.4.1 Comparator Circuit Value Problem (CCVP) : : : : : : : : : : : : : 94

B.4.2 Lexicographically First Maximal Matching (LFMM) : : : : : : : : : 94

B.4.3 Stable Marriage (SM) : : : : : : : : : : : : : : : : : : : : : : : : : : 94

B.5 RNC Problems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 95

B.5.1 Directed or Undirected Depth First Search (DFS) : : : : : : : : : : 95

B.5.2 0-1 Maximum Flow (0-1 MaxFlow) : : : : : : : : : : : : : : : : : : : 95

B.5.3 Maximum Matching (MM) : : : : : : : : : : : : : : : : : : : : : : : 95

B.5.4 Perfect Matching Existence (PME) : : : : : : : : : : : : : : : : : : : 95

C Undigested Papers 97

References 98

Problem Index 113



46 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

8 Acknowledgements

We wish to thank the following for contributing new problems and pointing us to ap-

propriate literature: Richard Anderson, Paul Beame, Anne Condon, Steve Cook, Derek

Corneil, Joachim von zur Gathen, Arvind Gupta, John Hershberger, David Johnson, Luc

Longpr�e, Mike Luby, Pierre McKenzie, Andrew Malton, Satoru Miyano, John Reif, Jack

Snoeyink, Paul Spirakis, Iain Stewart, Ashok Subramanian, Eva Tardos, Martin Tompa,

and H. Venkateswaran.



Part II: P -Complete Problems � 47

Part II: P -Complete and Open Problems

A List of P-Complete Problems

This section contains a list of P -complete problems. For each entry we give a description of

the problem and its input, references to source papers showing the problem P -complete, a

hint illustrating the main idea of the completeness reduction, and mention related versions

of the problem.

Problems marked by (*) are P -hard but are not known to be in P . Other problems are

in P , although we usually omit the proofs that they are.

Many of the problems given here were originally shown P -complete with respect to log

space reduction. Any log space computation is immediately in NC

2

by Borodin's simula-

tion [Bor77]. Thus any problem log space complete for P is also �

NC

2

m

complete for P . In

most cases the same reduction can be done in NC

1

, i.e. the problem is �

NC

1

m

complete for

P . We have noted some exceptions to this below, but have not been exhaustive.

The problems are divided into the following categories: circuit complexity, graph the-

ory, search, combinatorial optimization and 
ow, local optimality, logic, formal languages,

algebraic, geometry, real analysis, and miscellaneous.

A.1 Circuit Complexity

The circuit value problem (CVP) plays the same role in P -completeness theory that satis�-

ability does in NP -completeness theory. In this section we give many variants of CVP that

are P -complete and are particularly useful for proving other problems are P -complete. See

Section 5 of this paper for more details.

A.1.1 Circuit Value Problem (CVP)

Given: An encoding � of a Boolean circuit � plus inputs x

1

; : : : ; x

n

.

Problem: Does � on input x

1

; : : : ; x

n

output 1?

Reference: [Lad75]

Hint: A proof is given in Section 5 of this paper.

Remarks: For the two input basis of Boolean functions, it is known that CVP is P -

complete except when the basis consists solely of or, consists solely of and, or consists of

any or all of the following: xor, equivalence, and not [GP86, Par87].

A.1.2 Topologically Ordered Circuit Value Problem (TopCVP)

Given: An encoding � of a Boolean circuit � plus inputs x

1

; : : : ; x

n

, with the additional

assumption that the vertices in the circuit are numbered and listed in topological order.



48 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

Problem: Does � on input x

1

; : : : ; x

n

output 1?

Reference: Folklore.

Hint: A proof is given in Theorem 5.3. Also see the remarks following the proof of

Theorem 5.7.

Remarks: All of the reductions in Sections 5 and A.1 preserve topological ordering, so the

restrictions of all of these variants of the Circuit Value Problem to topologically ordered

instances remain P -complete.

A.1.3 Monotone Circuit Value Problem (MCVP)

Given: An encoding � of a monotone Boolean circuit �, that is one constructed solely of

and and or gates, plus inputs x

1

; : : : ; x

n

.

Problem: Does � on input x

1

; : : : ; x

n

output 1?

Reference: [Gol77]

Hint: Reduce CVP to MCVP. A proof is given in Section 5.2.

A.1.4 Alternating Monotone Fanout 2 CVP (AM2CVP)

Given: An encoding � of a monotone Boolean circuit �, plus inputs x

1

; : : : ; x

n

. On any

path from an input to an output the gates are required to alternate between or and and

gates. Inputs are required to be connected only to or gates, and outputs must come directly

from or gates. The circuit is restricted to have fanout exactly two for inputs and internal

gates, and to have a distinguished or gate as output.

Problem: Does � on input x

1

; : : : ; x

n

output 1?

Reference: Folklore.

Hint: A proof is given in Section 5.2.

Remarks: [GSS82] gave a completeness proof for monotone, fanout 2 CVP.

A.1.5 NAND Circuit Value Problem (NANDCVP)

Given: An encoding � of a Boolean circuit � constructed only of nand gates, plus inputs

x

1

; : : : ; x

n

. The circuit is restricted to have fanout two for inputs and nand gates.

Problem: Does � on inputs x

1

; : : : ; x

n

output 1?

Reference: Folklore.

Hint: Reduction of AM2CVP to NANDCVP. A proof is given in Section 5.2.

Remarks: Any complete basis of gates su�ces, by the obvious simulation of nand gates

in the other basis. For example, nor gates form a complete basis. NOR CVP is de�ned

analogously to NANDCVP. See Post [Pos41] for a characterization of complete bases. See

the remarks for Problem A.1.1 for other bases, not necessarily complete, for which the

associated circuit value problem is still complete.

A.1.6 Synchronous Alternating Monotone Fanout 2 CVP (SAM2CVP)

Given: An encoding � of a monotone Boolean circuit �, plus inputs x

1

; : : : ; x

n

. In addition

to the restrictions of ProblemA.1.4, this version requires the circuit to be synchronous. That



Part II: P -Complete Problems � 49

is, each level in the circuit can receive its inputs only from gates on the preceding level.

Problem: Does � on input x

1

; : : : ; x

n

output 1?

Reference: [GHR91]

Hint: A proof is given in Section 5.2. The reduction is from AM2CVP.

A.1.7 Planar Circuit Value Problem (PCVP)

Given: An encoding of a planar Boolean circuit �, that is one whose graph can be drawn

in the plane with no edges crossing, plus inputs x

1

; : : : ; x

n

.

Problem: Does � on input x

1

; : : : ; x

n

output 1?

Reference: [Gol77, McC81]

Hint: Reduce CVP to PCVP. Lay out the circuit and use cross-over circuits to replace

crossing lines with a planar subcircuit. A planar xor circuit can be built from two each

^;_;: gates; a planar cross-over circuit can be built from three planar xor circuits. An

m gate CVP instance is embedded in an m�m grid as follows. Gate i will be in cell (i; i),

with its value sent along a wire in the i

th

row both to the left and to the right. Gate i's

inputs are delivered to it through two wires in the i

th

column, with data 
owing down the

wires from above and up from below. Let gate i's inputs be the outputs of gates j and k,

and suppose j happens to be less than i. In cell (j; i) (which happens to be above (i; i)) at

the point where j's horizontal (rightgoing) output wire crosses i's �rst (vertical, downgoing)

input wire, insert a two input, two output planar subcircuit that discards the value entering

from above and passes the value entering from the left both to the right and down. The

input to i from k is treated similarly, with the obvious changes of orientation if k > i. At

all other wire crossings, insert a copy of the planar crossover circuit. Note that given i and

j, the wiring of cell (i; j) is easily determined based on whether i < j; i = j, i is an input

to j, etc. Hence the reduction can be performed in NC

1

, (even if the original circuit is not

topologically sorted.)

Remarks: It is easy to see that monotone planar crossover networks do not exist, so the

reduction above cannot be done in the monotone case. In fact, the monotone version of

PCVP is in LOGCFL � NC

2

[DC80, DC89, Gol80] when all inputs appear on one face of

the planar embedding. The more general problem where inputs may appear anywhere is

also known to be in NC [Kos90, DK91].

A.1.8 Arithmetic Circuit Value Problem (*) (ArithCVP)

Given: An encoding of an arithmetic circuit � with dyadic operations +;�; � and inputs

x

1

; : : : ; x

n

from a ring.

Problem: Does � on input x

1

; : : : ; x

n

output 1?

Reference: [Ven83]

Hint: Reduce NANDCVP to ArithCVP as follows: true! 1, false! 0, and :(u^v)!

1� u � v, where 0 denotes the additive identity and 1 denotes the multiplicative identity of

the ring.

Remarks: The problem is not necessarily in FP for in�nite rings like Z or Q, since

intermediate values need not be of polynomial length. It will be in FP for any �nite ring,

and remains P -hard in any ring. It is also P -complete to decide whether all gates in an



50 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

arithmetic circuit over Z have \small" values, say values of a magnitude 2

n

k

for some

constant k. Is in NC for circuits of degree 2

log

O(1)

, where the degree of a node is 1 for

inputs, and d

1

+d

2

(max(d

1

; d

2

)) when the node is product (respectively, sum) of the values

computed by two nodes of degree d

1

and d

2

[VSBR83, MRK88].

A.1.9 Min-Plus Circuit Value Problem (MinPlusCVP)

Given: An encoding of a (min;+) circuit � and rational inputs x

1

; : : : ; x

n

.

Problem: Does � on input x

1

; : : : ; x

n

output a non-zero value?

Reference: [Ven83]

Hint: Reduce MCVP to MinPlusCVP as follows: true! 1, false! 0, u^v ! min(u; v),

and u _ v ! min(1; u+ v).

Remarks: The above reduction works in any ordered semi-group with additive identity 0

and an element 1 such that 1 + 1 � 1 > 0. If there is a non-zero element 1 such that such

that 1 + 1 = 0 (e.g., in Z

2

) then reduce NANDCVP via :(u ^ v) ! 1 + min(u; v). In a

well-ordered semigroup where 0 is the minimum element, one or the other of these cases

holds. If the semigroup is in�nite, the problem may not be in P .

A.1.10 Inverting an NC

0

Permutation (*) (InvNC0Perm)

Given: An n-input, n-output NC

0

circuit computing a bijective function f : f0; 1g

n

!

f0; 1g

n

and y 2 f0; 1g

n

.

Problem: Is the last bit of f

�1

(y) equal to 1?

Reference: [H�as87, Section 2.5], [H�as88]

Hint:

Remarks: Not known to be in P in general, although the family of permutations used to

show P -hardness is polynomial time invertible.

A.2 Graph Theory

A.2.1 Lexicographically First Maximal Independent Set (LFMIS)

Given: An undirected graph G with an ordering on the vertices and a designated vertex v.

Problem: Is vertex v in the lexicographically �rst maximal independent set of G?

Reference: [Coo85]

Hint: A proof is given in Section 6.3.1.

Remarks: This is an instance of Problem A.2.13. LFMIS is P -complete for bipartite or

planar graphs restricted to degree at most 3 [Miy89]. Karp observed that the completeness

of LFMIS implies that determining the i

th

node chosen by any deterministic sequential

algorithm for either LFMIS or LFMC (Problem A.2.2) is also complete [Kar84]. Computing

or approximating the size of the lexicographically �rst maximal independent set is also P -

complete; see Section 6.2. Karp and Wigderson gave the �rst NC algorithm for �nding a

maximal independent set [KW85], subsequently improved by Luby [Lub86], by Alon, Babai

and Itai [ABI86], and by Goldberg and Spencer [GS89]. These algorithms do not compute

the lexicographically �rst maximal independent set.



Part II: P -Complete Problems � 51

A.2.2 Lexicographically First Maximal Clique (LFMC)

Given: An undirected graph G with an ordering on the vertices and a designated vertex v.

Problem: Is vertex v in the lexicographically �rst maximal clique of G?

Reference: [Coo85]

Hint: Finding a maximal clique is equivalent to �nding a maximal independent set in the

complement graph of G (Problem A.2.1).

A.2.3 Alternating Graph Accessibility Problem (AGAP)

Given: A directed graph G = (V;E), a partition V = A[B of the vertices, and designated

vertices s and t.

Problem: Is apath(s; t) true, where apath is de�ned as follows. Vertices in A are \uni-

versal," those in B are \existential." Such a graph is called an alternating graph or an

ANDnOR graph. Then apath(x; y) holds if and only if

1. x = y, or

2. x is existential and there is a z with (x; z) 2 E and apath(z; y), or

3. x is universal and for all z with (x; z) 2 E, apath(z; y) holds.

Reference: [CKS81, Imm81, Imm83]

Hint: Reduce AM2CVP (Problem A.1.4) to AGAP. Create two existential nodes 0 and 1.

Put edge (x

i

; 0) into E if input x

i

is 0, and edge (x

i

; 1) into E if input x

i

is 1. and gates are

universal nodes and or gates are existential nodes. Inputs to a gate correspond to children

in the alternating graph. For output z, apath(z; 1) holds if and only if the output z is 1.

Remarks: The original proof simulated an alternating Turing machine (ATM) directly to

show that AGAP was complete for ATM log space [Imm81]. Since ASPACE(logn) = P

[CKS81], this showed AGAP was P -complete too. When this problem is generalized to hi-

erarchical graphs it remains in P , provided the graph is \breadth-�rst ordered;" see [LW87].

The proof sketched above also shows that the problem remains P -complete when the parti-

tion (A;B) induces a bipartite graph. When restricted to only existential nodes, the prob-

lem is equivalent to the \directed graph accessibility problem," variously called \GAP" and

\STCON," and known to be complete for NL [Sav70]. Peterson (personal communication,

198x) shows that the undirected version of AGAP is also P -complete. When restricted

to undirected graphs with only existential nodes, this problem is equivalent to the \undi-

rected graph accessibility problem," called \UGAP" or \USTCON," which is known to be

complete for the special case of nondeterministic log space known as symmetric log space

(SL) [LP82].

A.2.4 Hierarchical Graph Accessibility Problem (HGAP)

Given: A hierarchical graph G = (V;E) and two designated vertices s and t. A hierarchical

graph � = (G

1

; : : : ; G

k

) consists of k subcells G

i

, 1 � i � k. Each subcell is a graph that



52 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

contains three types of vertices called pins, inner vertices, and nonterminals. The pins are

the vertices through which the subcell can be connected to from the outside. The inner

vertices cannot be connected to from the outside. The nonterminals stand for previously

de�ned subcells. A nonterminal inside G

i

has a name and a type. The name is a unique

number or string. The type is a number from 1; : : : ; i� 1. A nonterminal v of type j stands

for a copy of subcell G

j

. The neighbors of v are in a one-to-one correspondence with the

pins of G

j

via a mapping that is speci�ed as part of �.

Problem: Is there a path between s and t in the expansion graph of G? An expansion

graph is a hierarchical graph expanded. The graph is expanded by expanding cell G

k

recur-

sively. To expand subcell G

i

expand its subcells G

1

; : : : ; G

i�1

recursively and replace each

nonterminal of v of type j with a copy of the expansion of subcell G

j

.

Reference: [LW87]

Hint: The reduction is from the alternating graph accessibility problem, Problem A.2.3.

Remarks: Hierarchical versions of the following problems are also P -complete: graph

accessibility in undirected graphs, determining whether a directed graph contains a cycle,

and determining whether a given graph is bipartite [LW87]. There are several other very

restricted versions of hierarchical graph problems that are P -complete [LW87].

A.2.5 Restricted Chromatic Alternating Graph Accessibility Problem (RCA-

GAP)

Given: An alternating graph G = (V;E), two natural numbers k and m (where k � m �

log jV j), a coloring c : E ! f1; : : : ; mg, and two vertices s and t. (Note that the coloring is

an unrestricted assignment of colors to the edges. It may assign the same color to several

edges incident to a common vertex. See Problem A.2.3 for the de�nition of an alternating

graph.)

Problem: Are there k di�erent colors i

1

; : : : ; i

k

2 f1; : : : ; mg such that apath(s; t) holds in

the subgraph of G induced by the edges with colors i

1

; : : : ; i

k

. (See Problem A.2.3 for the

de�nition of apath.

Reference: [LW87]

Hint: There is a trivial reduction from the alternating graph accessibility problem, Problem

A.2.3. Membership of RCAGAP in P follows from membership of AGAP in P , since there

are at most 2

k

� jV j possible sets of colors to try.

Remarks: The problem remains P -complete if the vertices are restricted to being breadth

�rst ordered [LW87]. When generalized to hierarchical graphs, the problem becomes NP -

complete [LW87].

A.2.6 Lexicographically First �+ 1 Vertex Coloring (LFDVC)

Given: A graph G = (V;E) with � equal to the maximum degree of any vertex in V , and

an ordering v

1

; : : : ; v

n

on the vertices of V , a designated color c, and a vertex v.

Problem: Is vertex v colored with color c in the lexicographically least coloring of the

vertices of G? The coloring uses at most � + 1 colors. If c

i

is the color of v

i

, where

c

i

2 f1; : : : ;�+ 1g, then each coloring corresponds to a (�+ 1)-ary number, and the least

coloring is well-de�ned.



Part II: P -Complete Problems � 53

Reference: [Lub84]

Hint: Computing the lexicographically least coloring is easily done in polynomial time by

examining each vertex in order and coloring it with the smallest available color. To show

completeness, reduce NANDCVP to LFDVC. The coloring will correspond to evaluating

the circuit in topological order. Let v

1

; : : : ; v

n

be the gates of a circuit � and assume without

loss of generality that the gates are numbered in topological order. Each gate in the circuit

will be represented by four vertices in G, with the order on the vertices induced from the

order of the gates. Consider a nand gate, v

i

 :(v

j

; v

k

). Introduce three new vertices,

v

0

i

; v

0

j

; v

0

k

where v

0

j

; v

0

k

appear after v

j

; v

k

, and v

0

i

appears after all these but before v

i

in the

topological ordering. The gate is then represented by the edges (v

j

; v

0

j

), (v

k

; v

0

k

), (v

0

j

; v

0

i

),

(v

0

k

; v

0

i

), and (v

0

i

; v

i

). One �nal �x is necessary. To keep the degree down to 3, a fanout tree

may be required on the output of each gate. The resulting graph can be colored with only

3 colors in the order fT; F;Xg (even though 4 might be necessary for a di�erent ordering).

Remarks: The problem of �� 1 coloring is NP -complete [GJ79]. For graphs that are not

an odd cycle or complete, a � coloring can be found in polynomial time (Brook's theorem,

see [BM76]). However, this is not necessarily the lexicographically �rst. The � + 1 vertex

coloring is NC

1

reducible to �nding a maximal independent set [Lub84], but the maximal

independent set algorithm [KW85] does not produce the lexicographically �rst maximal

independent set. It is possible to color a graph with � colors in NC [KN88, HS87, BK86],

although the coloring produced is not the lexicographically �rst. There is an NC algorithm

for 5 coloring planar graphs [Nao87].

A.2.7 High Degree Subgraph (HDS)

Given: A graph G = (V;E) and an integer k.

Problem: Does G contain a vertex induced subgraph with minimum degree at least k?

Reference: [AM84a]

Hint: Reduce AM2CVP to HDS. The proof illustrated here is for k = 3, although it can

be generalized to any �xed k � 3. A true input k

1

connected to gate i is represented

by a gadget with �ve vertices k

1

; v

1

; v

2

; v

3

, and k

0

1

. The edges in the gadget are (v

1

; k

1

),

(v

1

; k

0

1

), (v

1

; v

2

), (v

2

; k

0

1

), (v

2

; v

3

), (v

3

; k

1

), (v

3

; k

0

1

), and k

0

1

is connected to a vertex in the

gadget for gate i as described below. A false input is represented by a single vertex. An

and gate i with inputs l

1

and l

2

, and outputs l

0

1

and l

0

2

is represented by a fourteen vertex

gadget. The gadget is composed of two of the gadgets used to represent true inputs and

an additional four vertices. l

0

1

and l

0

2

label the vertices corresponding to k

0

1

in the true

input gadget. w

1

and w

2

label the positions corresponding to k

1

in their respective copy

of the true input gadget. The four additional vertices are labeled l

1

; l

2

; w

3

, and w

4

. l

1

; l

2

,

and w

3

are connected into a three clique. w

4

is connected to w

1

; w

2

, and w

3

. Inputs to gate

i are connected to l

1

and l

2

, and the outputs l

0

1

and l

0

2

are connected to the appropriate

input positions of other gates. The representation of an or gate is very similar to the and

gadget, omitting w

3

and connecting l

1

; l

2

directly to w

4

. Finally, there is a binary tree that

has as its leaves the vertices corresponding to the k

1

's of the true inputs and has the vertex

corresponding to the output vertex of the circuit as its root. The computation of a HDS of

degree 3 proceeds on this new graph so that HDS is nonempty if and only if the output of

the circuit is true.



54 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

Remarks: Although not stated as a \lexicographically �rst" problem, the HDS in a graph

is unique, hence this is another instance of Problem A.2.13. There is an NC algorithm

computing a HDS for k = 2. Let K(G) denote the largest k such that there is an induced

subgraph of G with minimum degree k. For �xed 0 � c � 1, consider �nding an approxima-

tion d such that K(G) � d � cK(G). For any c < 1=2 there is an NC algorithm for �nding

d, and for any c > 1=2 the problem of �nding d is P -complete [AM84a]. A \complemen-

tary" low degree subgraph problem has also been studied and for several natural decision

problems it is NP -complete [Gre89]. Decision problems based on ordered vertex removal

relating to subgraph computations are also P -complete [Gre89]. A special case of HDS is

the Color Index Problem [VS88]: given an undirected graph G = (V;E), is the color index

of G less than or equal to four? The color index is the maximum over all subgraphs H ,

of G, of the minimum degree of H . Asking if the color index is � 4 is the complement to

asking if there are any high degree subgraphs of order 5. The original reduction is from

the ordered low degree vertex removal problem, Problem A.2.10. See remarks for Problem

A.2.6.

A.2.8 High Connectivity Subgraph (HCS)

Given: A graph G = (V;E) and an integer k.

Problem: Does G contain a vertex induced subgraph of vertex (edge) connectivity at

least k?

Reference: [KSS89, Ser90]

Hint: The reduction is from MCVP and is similar to that used to prove Problem A.2.7,

the high degree subgraph problem, is P -complete.

Remarks: Approximation algorithms for this problem exhibit a threshold type behavior.

Below a certain value on the absolute performance ratio the problem remains P -complete for

�xed k, and above that ratio there are NC algorithms to approximate the problem [SS89].

Speci�cally, let o be the maximum size of a k vertex-connected induced subgraph of G.

Then for 0 � c � 1=4 it is possible to �nd, in NC , a vertex induced subgraph of size � co,

but for 1=4 < c � 1 this not possible unless NC = P . For edge-connectivity, the threshold

is c = 1=2.

A.2.9 Ordered High Degree Vertex Removal (OHDVR)

Given: An undirected graph G = (V;E) with a numbering on the vertices in V and two

designated vertices u and v.

Problem: Is there an elimination order on V , v

1

; : : : ; v

n

, satisfying the properties that u

is eliminated before v and for 1 � i � n, v

i

is the lowest numbered vertex of maximum

degree in the (i � 1)-st remaining subgraph of G? An elimination order is a sequence of

vertices ordered as they and their corresponding edges are to be deleted from the graph.

Reference: [Gre89]

Hint: The reduction is from NAND CVP with fanin and fanout restrictions to 2. The

circuit is transformed directly into a graph. The vertices in the graph are ordered so that

gates evaluating to false in the circuit are deleted �rst in the instance of OHDVR. A

special vertex of degree four is added and its removal order is compared with that of the



Part II: P -Complete Problems � 55

vertex corresponding to the output gate of the circuit.

A.2.10 Ordered Low Degree Vertex Removal (OLDVR)

Given: An undirected graph G = (V;E) with a numbering on the vertices in V and two

designated vertices u and v.

Problem: Is there an elimination order on V , v

1

; : : : ; v

n

, satisfying the properties that u is

eliminated before v and for 1 � i � n, v

i

is the lowest numbered vertex of minimum degree

in the (i� 1)-st remaining subgraph of G?

Reference: [VS88, Gre89]

Hint: This is the complementary problem to Problem A.2.9. The problem de�ned in [VS88]

is more restricted than the one presented here. Their graphs are also required to have the

property that u appears before v in some minimum elimination sequence if and only if u

appears before v in all minimum degree elimination sequences.

A.2.11 Ordered Vertices Remaining (OVR)

Given: An undirected graph G = (V;E) with a numbering on the vertices in V , a desig-

nated vertex u, and an integer k.

Problem: Is there an elimination order on V , v

1

; : : : ; v

n

, satisfying the properties that

u = v

j

for some j < (n � k) and for 1 � i � n, v

i

is the lowest numbered vertex of maxi-

mum degree in the (i� 1)-st remaining subgraph of G?

Reference: [Gre89]

Hint: The reduction is from Problem A.2.9.

Remarks: The ordered low degree subgraph membership problem is also P -

complete [Gre89]. The problem here is to determine whether a designated vertex is in

a remaining subgraph when all vertices in that remaining subgraph have small degree.

A.2.12 Nearest Neighbor Traveling Salesman Heuristic (NNTSH)

Given: A distance matrix D with entries (d

ij

) and two distinguished vertices s and l.

Problem: Does the nearest neighbor tour starting at s visit l as the last vertex before com-

pleting the tour at s? The nearest neighbor tour is a greedy heuristic that always chooses

the nearest unvisited vertex as the next vertex on the tour.

Reference: [KLS89]

Hint: Reduce NNTSH to NAND CVP. Without loss of generality, assume the gates are

numbered in topological order. Gate k with inputs i

1

and i

2

, and outputs o

1

and o

2

is

replaced by the gadget described below. The gadget has vertices A; i

1

; i

0

1

; i

2

; i

0

2

; o

0

1

; o

1

; o

2

; o

0

2

,

and B. Let the triple (x; y; z) mean the distance between x and y is d. The triples

in the gadget are (A;B; 3k + 2); (A; i

1

; 3k); (A; i

2

; 3k + 1); (i

1

; i

0

1

; 0); (i

2

; i

0

2

; 0); (i

0

1

; o

0

1

; 3k +

1); (i

0

2

; o

0

1

; 3k); (o

0

1

; o

1

; 0); (o

1

; o

2

; 3k); (o

2

; o

0

2

; 0), and (o

0

2

; B; 3k). Vertex B of gate k is con-

nected to vertex A of gate k + 1. The distances between vertices that have been left un-

speci�ed are assumed to be very large. The edges between \i" vertices and those between

\o" vertices represent inputs and outputs respectively. An edge included (not included) in

the tour represents a true (false) value. true circuit inputs are \chained" together and



56 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

the tour begins at the �rst true input. By inserting a new node C before vertex B in

the last gadget, and connecting B and C to the �rst true input in the input chain, the

tour constructed by the NNTSH is such that B (C) is visited last if and only if the circuit

evaluates to true (false).

Remarks: The nearest merger, nearest insertion, cheapest insertion, and farthest inser-

tion heuristics are all P -complete [KLS89]. The double minimum spanning tree and nearest

addition heuristics are in NC [KLS89].

A.2.13 Lexicographically First Maximal Subgraph for � (LFMS(�))

Given: A graph G = (V;E) with an ordering on V , a designated vertex v, and a polyno-

mial time testable, nontrivial, hereditary property �. A property is nontrivial if there are

in�nitely many graphs that satisfy the property and at least one graph that doesn't. A

property � is hereditary on induced subgraphs if whenever G satis�es � so do all vertex

induced subgraphs.

Problem: Is v in the lexicographically �rst maximal subgraph H of G that satis�es �?

Reference: [Miy89]

Hint: Given a property � that is nontrivial and hereditary, Ramsey's theorem implies that

either � is satis�ed by all cliques or by all independent sets of vertices. This observation

combined with the facts that the lexicographically �rst maximal clique problem, Problem

A.2.2, and the lexicographically �rst maximal independent set problem are P -complete are

used to show LFMS(�) is P -complete.

Remarks: The following are examples of properties that meet the criteria stated in the

problem: bipartite, chordal, clique, comparability graph, edge graph, forest, independent

set, outerplanar, and planar. Not all problems computing a lexicographically �rst solution

are P -complete. For example, the lexicographically �rst topological order problem is com-

plete for NLOG [Sho89] and the lexicographic low degree subgraph membership problem is

NP -complete [Gre89].

A.2.14 Minimum Feedback Vertex Set (MFVS)

Given: A directed graph G = (V;E) that is cyclically reducible (de�ned below) and a

designated vertex v.

Problem: Is v contained in the minimum feedback set of G that is computed by the

algorithm given in [WLS85]?

Reference: [BDAP88]

Hint: We review some terminology [WLS85]. A node z of G is deadlocked if there is a

directed path in G from z to a node y that lies on a directed cycle. The associated graph

of node x with respect to G, A(G,x), consists of node x and all nodes of G that are not

deadlocked if x is removed from G. A directed graph is cyclically reducible if and only if

there exists a sequence of nodes (y

1

; : : : ; y

k

) such that each of the graphs A(G

i�1

; y

i

) is

cyclic, where G

0

= G and G

i

= G

i�1

�A(G

i

; y

i

), for 1 � i � k.

A set is called a feedback vertex set if it contains at least one vertex from every cy-

cle [Kar72]. It is minimum if no other feedback vertex set has fewer elements. Wang,

Lloyd, and So�a gave a polynomial time algorithm for computing feedback sets in cyclically



Part II: P -Complete Problems � 57

reducible graphs [WLS85]. Thus, MFVSP is in P . The reduction is from MCVP. Let

(g

1

; : : : ; g

k

) denote an instance � of MCVP including inputs, where g

k

is the output gate.

From � a graph G is constructed as follows:

1. associate nodes g

0

i

and g

i

00
with each g

i

,

2. for each input g

i

, if g

i

is true (false) add a loop edge to g

0

i

(g

i

00
),

3. for each and gate g with inputs i and j add edges (g

0

; i

00

), (i

00

; j

00

), (j

00

; g

0

), (g

00

; i

0

),

(i

0

; g

00

), (g

00

; j

0

), and (j

0

; g

00

) to G,

4. for each or gate g with inputs i and j add edges (g

00

; i

0

), (i

0

; j

0

), (j

0

; g

00

), (g

0

; i

00

), (i

00

; g

0

),

(g

0

; j

00

), and (j

00

; g

0

) to G,

5. add edges (g

k

0
; g

k

00
) and (g

k

00
; g

k

0
).

It is easy to see that G is cyclically reducible. Set v = g

0

k

to complete the reduction.

Remarks: The question of whether a graph has a feedback vertex set of size k is NP -

complete [Kar72]. Bovet, De Agostino, and Petreshci give an algorithm for �nding a mini-

mum feedback set that requires O(k log

2

n) time and O(n

4

) processors on a CREW-PRAM,

where k denotes the size of the minimum feedback set. Greenlaw proved that a related prob-

lem, the lexicographically �rst maximal acyclic subgraph problem, is P -complete [Gre90].

Ramachandran proved that �nding a minimum weight feedback vertex set in a reducible


ow graph with arbitrary weights is P -complete [Ram88]. She also proved the following

four problems are NC equivalent: �nding a minimum feedback arc set in an unweighted

reducible 
ow graph, �nding a minimum weight feedback arc set in a reducible 
ow graph

with unary weights on the arcs, �nding a minimum weight feedback vertex set in a reducible


ow graph with unary weights on the vertices, and �nding a minimum cut in a 
ow network

with unary capacities [Ram88].

A.2.15 Edge Maximal Acyclic Subgraph (EMAS)

Given: A directed graph G = (V;E) with an ordering on the edges and a designated

edge e.

Problem: Is e contained in the edge maximal acyclic subgraph?

Reference: [Gre90]

Hint: The edge maximal acyclic subgraph is de�ned to be the subgraph computed by an

algorithm that builds up the subgraph by processing edges in order. It adds an edge to the

subgraph if its inclusion does not introduce a cycle. The reduction is from NOR CVP. A

gadget is designed that replaces each gate in the circuit. A gadget for gate g with inputs i

1

,

i

2

and outputs o

1

, o

2

has three nodes g(top), g(mid), and g(bot). The edges in the gadget

are (g(top),i

1

(mid)), (g(top),i

2

(mid)), (g(mid),i

1

(bot)), (g(mid),i

2

(bot)), (g(bot),o

2

(top)),

(g(top),g(mid)), (g(mid),g(bot)), (g(bot),o

1

(top)), and (g(bot),g(top)). The �rst �ve edges

are upwarding pointing edges and are ordered �rst. The last four edges are ordered within

the gadget as listed. true input i to gate g is represented by a node with an edge to g(top).

false input i to gate g is represented by two nodes forming a cycle with g(top). The edges



58 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

are ordered so that the edge leading into g(top) is not put in the set the algorithm con-

structs. The edges of the output gate are \grounded." One of the edges leaving g

out

(bot)

is used as the designated edge e.

Remarks: The decision problem \Is the edge maximal subgraph of size k?" is also P -

complete [Gre90]. The feedback arc set problem [Kar72] is an equivalent formulation of the

maximum acyclic subgraph problem. Approximation algorithms for this problem are im-

portant because there are very few classes of graphs for which the problem is known to be in

P [BS90]. Greenlaw proves decision problems based on several other natural approximation

algorithms are P -complete [Gre90]. He also gives two approximation algorithms that are

in NC . Berger has an NC approximation algorithm that, assuming the input graph does

not contain two-cycles, generates a subgraph containing more than half the arcs [Ber91].

Ramachandran proved that �nding a minimum weight feedback arc set in a reducible 
ow

graph with arbitrary weights on the arcs in P -complete [Ram88].

A.2.16 General Graph Closure (GGC)

Given: An undirected graph G = (V;E), a subset E

0

� V � V with E

0

\ E = �, and a

designated edge e = (u; v) 2 E

0

.

Problem: Is e in the general closure G(G;E

0

) of G? That is, the graph obtained from G

by repeatedly joining non-adjacent pairs of vertices u and v whose degree sum is at least

jV j and such that (u; v) 2 E

0

. The edges in E

0

are called admissible edges.

Reference: [Khu89]

Hint: An O(n

3

) algorithm solving the problem is given in [Khu89]. The reduction is

from MCVP, Problem A.1.3. The idea is to replace gates in the circuit by gadgets. We

will describe only the gadgets for inputs and and gates. The gadgets for or gates are

similar. A true (false) value is associated with the output vertex of a gadget if its degree

has increased by the addition of an admissible edge (remained the same). The gadget is

constructed so that \values" do not propagate back up through the circuit. N will denote

the total number of vertices contained in all the gadgets. An additional N vertices are

added and connected so as to double the degrees of the vertices in the construction of the

graph containing gadgets. The total degree of the graph constructed is 2N . A true input

is represented by two vertices with an admissible edge between them and the degree of

each vertex is N . A false input is represented similarly except on the output side the

vertex has degree N � 1. The gadget representing an and gate �

k

consists of thirteen

vertices. We describe the upper left part, which consists of �ve vertices, �rst. We'll call

the vertices 1, 2, 3, 4, and 5. Vertex 1 has a connection from one of �

k

's inputs. Vertices

1 and 5 have degree N � 1 and vertices 2, 3, and 4 have degree N . The admissible edges

are (1; 2); (1; 3); (1; 4); (2; 5); (3; 5), and (4; 5). The upper right part of the gadget is similar

with vertices 6-10 playing the roles of 1-5. Vertices 5 and 10 are connected to vertex 11

via admissible edges. Vertex 11 has degree N � 2. Vertex 11 is connected to the outputs

of the gadget. These are vertices 12 and 13. They both are of degree N . The gadgets are

connected in the obvious manner. The circuit evaluates to true if and only if the admissible

edge (11; 13) of the gadget corresponding to the output gate is added to G.

Remarks: The complexity of the general graph closure problem in which E

0

= V �V �E

is open, see Problem B.2.3.



Part II: P -Complete Problems � 59

A.3 Search Problems

A.3.1 Lexicographically First Maximal Path (LFMP)

Given: A graph G = (V;E) with a numbering on the vertices and two designated vertices

s and t.

Problem: Is vertex t on the lexicographically �rst maximal path in G beginning at s? A

maximal path is a path that cannot be extended because any attempt at extending it will

result in an encounter with a node that is already on the path. The lexicographically �rst

maximal path is the maximal path that would appear �rst in the \alphabetical" listing of

all paths from s, where the alphabetizing is done with respect to the vertex numbers.

Reference: [AM87b]

Hint: The reduction is from a version of CVP consisting of not and or gates. The key

idea is the construction of a subgraph called a latch. A latch consists of six nodes connected

in a rectangular fashion. The latches are hooked together and labeled in a clever manner.

A latch that has been traversed (not traversed) in the construction of the lexicographically

�rst maximal path indicates a true (false) value for the corresponding gate. Vertex t is

a special vertex in a latch corresponding to the output gate.

Remarks: LFMP remains P -complete when restricted to planar graphs with maximum

degree three. If the maximum degree of any vertex in G is at most �, then there is an

algorithm that can �nd a maximal path in O(� log

3

n) time using n

2

processors [AM87b].

There is also an NC algorithm for �nding a maximal path in planar graphs [AM87b]. The

complexity of the general problem of �nding a maximal path is open [AM87b], although

known to be in RNC [And87].

A.3.2 Lexicographically First Depth First Search Ordering (LFDFS)

Given: A graph G = (V;E) with �xed ordered adjacency lists, and two designated vertices

u and v.

Problem: Is vertex u visited before vertex v in the depth �rst search of G induced by the

order of the adjacency lists?

Reference: [Rei85]

Hint: Follows easily from Problem A.3.1, since the leftmost path in the lexicographically

�rst depth �rst search tree is the lexicographically �rst maximal path [And85]. Reif

[Rei85] gives a direct reduction from NOR CVP to DFS, taking advantage of the �xed

order by which the adjacency lists are examined. We present the directed case from

which the undirected case is easily derived. Without loss of generality, assume gates

are numbered in topological order. The gadget described below replaces nor gate i

having inputs i

1

and i

2

, and outputs to gates j

1

and j

2

. The gadget has 8 vertices

enter(i); in(i; i

1

); in(i; i

2

); s(i); out(i; 1); out(i; 2); t(i), and exit(i). Let the triple (x; y; z)

denote a directed edge (x; y) with y appearing z

th

on x's adjacency list. The gadget

has triples (enter(i); in(i; i

1

); 1), (in(i; i

1

); in(i; i

2

); 2), (in(i; i

2

); s(i); 2), (s(i); out(i; 1); 1),

(out(i; 1); s(i); 1), (out(i; 1); in(j

1

; i); 2), (out(i; 2); out(i; 1); 1),

(out(i; 2); in(j

2

; i); 2), (t(i); out(i; 2); 1), (enter(i); t(i); 2), (t(i); exit(i); 2), (s(i); exit(i); 2),

and (exit(i); enter(i + 1); 1). Additionally, (in(j

1

; i); out(i; 2); 1) and (in(j

2

; i); t(i); 1) are

triples connected to the gadget. true inputs are \chained" together. The lexicographic



60 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

DFS of the graph constructed visits vertex s(n), where n corresponds to the output gate,

before (after) t(n) if and only if the circuit evaluates to true (false).

Remarks: The directed case can be easily reduced to the undirected case. The reduc-

tion is dependent on the adjacency lists �xing the order in which the adjacent nodes

are examined. The problem remains open if this constraint is relaxed. For example,

the problem remains open for graphs presented with all adjacency lists sorted in order

of increasing vertex number. The problem remains P -complete if the input is speci�ed

by a �xed vertex numbering [And85, Gre88b]. Anderson showed that computing just the

�rst branch of the lexicographically �rst DFS tree, called the lexicographically �rst max-

imal path, is P -complete [And85] (see Problem A.3.1). Computing the LFDFS tree in

planar graphs is P -complete as well [And85]. In RNC , it is possible to �nd some depth-

�rst vertex numbering and the depth-�rst spanning tree corresponding to it; see Problem

B.5.1 [AA88, AAK90]. Computing a depth-�rst vertex numbering for planar graphs is in

NC [Smi86, HY87]. Computing the lexicographically �rst depth-�rst numbering for DAGs

is in NC [Grear, dlTK88, dlTK89]. Determining whether a directed spanning tree of a

general graph has a valid DFS numbering is in NC [SV85].

A.3.3 Breadth-Depth Search (BDS)

Given: A graph G = (V;E) with a numbering on the vertices and two designated vertices

u and v.

Problem: Is vertex u visited before vertex v in the breadth-depth �rst search [HS84] of G

induced by the vertex numbering? A breadth-depth �rst search starts at a node s and visits

all children of s pushing them on a stack as the search proceeds. After all of s's children

have been visited, the search continues with the node on the top of the stack playing the

role of s.

Reference: [Gre88b, Grear]

Hint: The proof sketched below is due to Anderson [And88]. Reduce LFDFS to BDS.

Insert a new vertex between every pair of connected nodes in the original graph. Suppose

in the original graph corresponding to the circuit that vertex u

i

has children v

1

; : : : ; v

k

and

that these vertices are visited in this order by the greedy DFS algorithm. Let c

1

; : : : ; c

k

be

the nodes inserted by the reduction between (u

i

and v

1

), : : :, (u

i

and v

k

) respectively. The

c

i

's are assigned numbers so that in increasing order they are listed as c

k

; : : : ; c

1

. The vertex

numbers assigned to these nodes are speci�ed to \reverse" the breadth-depth search in the

new levels. In this way the DFS order of the original graph can be maintained. Vertex u is

visited before vertex v in an instance of LFDFS if and only if the vertex corresponding to

u is visited before the vertex corresponding to v in the constructed instance of BDS.

A.3.4 Stack Breadth First Search (SBFS)

Given: A graph G = (V;E) with a numbering on the vertices and two designated vertices

u and v.

Problem: Is vertex u visited before vertex v in the stack breadth �rst search of G induced

by the vertex numbering? A stack breadth �rst search is a breadth �rst search that is

implemented on a stack. The nodes most recently visited on a new level are searched from



Part II: P -Complete Problems � 61

�rst at the next level.

Reference: [Gre88b, Grear]

Hint: The reduction is from SAM2CVP to SBFS. Sort the inputs nodes and assign false

inputs lower numbers than true inputs. In increasing order let f

1

; : : : ; f

k

; t

1

; : : : ; t

m

denote

the ordering induced by this numbering. A new vertex e

1

is introduced and given a number

between f

k

and t

1

. For each gate a vertex is introduced and its connections in the circuit

are maintained in the graph being constructed. A start vertex s is added and connected to

all inputs. Additionally, a new chain of vertices starting from s is added. The vertices in

this chain are s; e

1

; e

2

; : : : ; e

D

, where D denotes the depth of the circuit. The search order

speci�ed by stack breadth �rst search is such that vertex e

l

for l odd (even) corresponding

to an or (and) level in the instance of SAM2CVP is visited before vertex v if and only if

the gate corresponding to vertex v evaluates to false (true) in the circuit.

Remarks: The lexicographic breadth �rst search problem, which has a natural implemen-

tation on a queue, is de�ned as follows: given a graph G with �xed ordered adjacency lists

is vertex u visited before vertex v in the breadth �rst search of G induced by the order of

the adjacency lists. This problem is in NC [Gre88b, dlTK88, dlTK89].

A.3.5 Alternating Breadth First Search (ABFS)

Given: A graph G = (V;E) with E partitioned into two setsM and U , a designated vertex

v, and a designated start vertex s.

Problem: Does vertex v get visited along an edge from the set M during an alternating

breadth �rst search of G? An alternating breadth �rst search, which has applications in

some matching algorithms, is a breadth �rst search in which only edges in the set U (M)

can be followed in going from even (odd) to odd (even) levels.

Reference: [And85, And88]

Hint: Anderson's proof was from a version of CVP composed of or and not gates. The

reduction we present is from NAND CVP. Let t

1

; : : : ; t

k

denote true inputs, f

1

; : : : ; f

l

denote false inputs, and g

1

; : : : ; g

m

denote nand gates. A new vertex s is created from

where the search will originate. For each t

i

, 1 � i � k, two new vertices t

0

i

and t

00

i

are

introduced, for each f

i

, 1 � i � l, a new vertex f

0

i

is introduced, and for each g

i

, 1 � i � m,

a vertex v

i

is introduced. f

0

i

is connected to s by an edge in U and to v

j

, where j is such

that f

0

i

was input to gate g

j

, by an edge in M . t

00

i

is connected to s by an edge in U , t

00

i

is

connected to t

0

i

by an edge inM , and t

0

i

is connected to v

j

, where j is such that t

0

i

was input

to gate g

j

. If gate g

i

has outputs to gates g

j

and g

h

, then (v

i

; v

j

) and (v

i

; v

h

) are edges in

M . For each of these gates receiving inputs from g

i

there are two additional vertices. For

g

j

they are called v

ij

and v

0

ij

. (v

i

; v

ij

) is an edge in U , (v

ij

; v

0

ij

) is in M , and (v

0

ij

; v

j

) is in

U . For gate g

h

similar vertices and edges are added. The circuit evaluates to true (false)

if and only if the vertex corresponding to the output gate of the circuit is visited along an

edge in M (U).

Remarks: The matching constructed by the search is not necessarily maximal. The prob-

lem of �nding a maximum matching is in RNC [MVV87]. The problem of �nding a perfect

matching is also in RNC [KUW85, MVV87].



62 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

A.4 Combinatorial Optimization and Flow Problems

A.4.1 Linear Inequalities (LI)

Given: An integer n � d matrix A and an integer n� 1 vector b.

Problem: Is there a rational d � 1 vector x > 0 such that Ax � b? (It is not required to

�nd such an x.)

Reference: [Coo82, Val82a, Kha79]

Hint: LI is in P by [Kha79]. The following reduction of CVP to LI is due to [Coo82].

1. If input x

i

is true (false) it is represented by the equation x

i

= 1 (x

i

= 0).

2. A not gate with input u and output w, computing w  :u is represented by the

inequalities w = 1� u and 0 � w � 1.

3. An and gate with inputs u; v computing w u^ v is represented by the inequalities

0 � w � 1, w � u, w � v, and u+ v � 1 � w.

4. An or gate is represented by the inequalities 0 � w � 1, u � w, v � w, and w � u+v.

Note for any gate, if the inputs are 0 or 1 the output will be 0 or 1. To determine the

output z of the circuit, add the inequalities required to force z = 1. If the system has a

solution then the output is true and otherwise the output is false.

A.4.2 Linear Equalities (LE)

Given: An integer n � d matrix A and an integer n� 1 vector b.

Problem: Is there a rational d� 1 vector x > 0 such that Ax = b?

Reference: [Coo82, Val82a, Kha79]

Hint: LE is NC

1

reducible to LI since Ax � b and �Ax � �b if and only if Ax = b. Thus

LE is in P. For completeness an instance of LI can be reduced to LE as follows: for each

inequality in LI there is a corresponding equality in LE with an additional \slack" variable

that is used to make the inequality into an equality.

Remarks: If LE is restricted so the coe�cients of A and b are either �1; 0; or 1 then LE

is still P -complete. This follows from the reduction given by Itai [Ita78]. The restricted

version of LE is denoted [�1,1] LE.

A.4.3 Linear Programming (*) (LP)

Given: An integer n�d matrix A, an integer n�1 vector b, and an integer 1�d vector c.

Problem: Find a rational d� 1 vector x such that Ax � b and cx is maximized.

Reference: [DLR79, Kha79, DR80, Val82a]

Hint: LP is not in P , but is in FP by [Kha79]. Reduce LI to LP by picking any cost vector

c, say c =

~

0, and checking whether the resulting linear program is feasible.

Remarks: The original reduction in [DLR79] is from HORN, Problem A.6.2, to LP.

In [DR80], LP and LI are shown to be log space equivalent by reducing LP to LI using

rational binary search [Pap78, Rei78] to �nd the value of the maximum and an x that



Part II: P -Complete Problems � 63

yields it. However, it is not clear how to perform this reduction in NC

1

. Since LP and

LI are complete via NC

1

reductions though, there must be a NC

1

reduction between the

two problems. Although we know that LP and LI are NC

1

equivalent, the NC

1

reduction

between them is not an obvious one. It is also P -hard to approximate cx to within any con-

stant fraction, even given a feasible solution x

0

. (Anne Condon, personal communication,

April 1991; reduction is from Problem A.8.2.)

A.4.4 Maximum Flow (MaxFlow)

Given: A directed graph G with each edge labeled with a capacity c

i

� 0 two distinguished

vertices, source s and sink t, and a value f .

Problem: Is there a feasible 
ow of value k, i.e. is the value of the maximum 
ow into the

sink � f?

Reference: [GSS82, LW87]

Hint: The �rst P -completeness proof for a decision problem derived from maximum 
ow

was for the problem of determining whether the 
ow is odd or even [GSS82]. We give this

reduction. (The proof given in [LW87] for the more natural threshold problem stated above

is similar.) The reduction is from AM2CVP (Problem A.1.4) to MaxFlow. Gates v

i

and

connections e

ij

of � are associated with nodes v

0

i

and edges e

0

ij

of G. G has additional nodes

s; t and an over
ow edge for each v

0

i

. Each edge e

ij

of � has a capacity and a 
ow associated

with it. This capacity is 2

i

, and the 
ow is 2

i

if gate v

i

is true and 0 otherwise. A node v

0

i

with inputs v

0

j

and v

0

k

has a maximum possible in
ow of 2

j

+2

k

, and out
ow to other gates

of d2

i

(d is the outdegree of v

i

). The remaining 
ow is absorbed by the over
ow edge from

v

0

i

with capacity 2

j

+ 2

k

� d2

i

. This over
ow edge is directed toward t in case v

i

is an and

gate and toward s in case v

i

is an or gate. Thus the nodes must be topologically ordered

with the output �rst and the inputs last, and the output gate must be an or gate. Note

that all edge capacities are even except the one from v

0

to t. Thus the maximum 
ow for

G is odd if and only if � outputs true.

Remarks: This reduction produces exponential edge capacities in G. In a network with

edge capacities expressed in unary, computing the magnitude of the maximum 
ow is in

RNC

2

[Fea84] and a method for �nding the 
ow in RNC is also known [KUW86]. If the

network is restricted to being acyclic MaxFlow remains P -complete [Ram87]. Flows in

planar networks can be computed in NC [JV82]. Two commodity 
ow (2CF) is de�ned

like MaxFlow except there are two sources and two sinks, and there are two separate 
ows

functions for the commodities. Since MaxFlow is a special case of 2CF and 2CF is in P by

results of Itai [Ita78] and Khachian [Kha79], it follows that 2CF is P -complete. Itai de�ned

several other variants of 2CF that are also P -complete. They are de�ned below. (l; u)-2CF

is a case of 2CF in which there are lower and upper bounds on the capacity of each edge.

Selective (l; u)-2CF is de�ned to be a 2CF with lower and upper bounds on the sum of

the two 
ows on each edge. Stein and Wein [SW91] show that, althought there is an RNC

algorithm to approximate maximum 
ow, approximating the minimum cost maximum 
ow

is P -complete.



64 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

A.4.5 Homologous Flow (HF)

Given: A directed graph G with each edge (v; w) labeled with a lower and upper bound

on 
ow capacity l(v; w); u(v;w) � 0 and two distinguished vertices, source s and sink t.

Problem: Is there a feasible 
ow in the network? A feasible 
ow is one in which the 
ow

assigned to each arc falls within the lower and upper bounds for the arc. A homologous


ow is a 
ow in which pairs of edges are required to have the same 
ow.

Reference: [Ita78]

Hint: It follows that HF is in P by the results of Itai [Ita78] and Khachian [Kha79]. We

describe the reduction given by Itai [Ita78] and note that it is a log space reduction. The

reduction is from [�1,1] LE. Let

P

m

j=1

a

ij

x

j

= b

i

, for i = 1; : : : ; n be an instance of [�1,1]

LE. For � 2 f�1; 0; 1g, let J

i

�

= fj j a

ij

= �g. Another formulation of the original

equations is

P

j2J

i

1

x

j

�

P

j2J

i

�1

x

j

= b

i

, for i = 1; : : : ; n. There are n sections in the 
ow

network constructed and each one has m + 5 vertices fv

i

1

; : : : ; v

i

m

; y

i

; z

i

; J

i

�1

; J

i

0

; J

i

1

g. For

� = �1; 0; 1, if j 2 J

i

0

then add (v

i

j

; J

i

�

) as a nonrestricted edge, one with lower bound 0

and upper bound 1, to the network. Add (J

i

1

; z

i

) with lower and upper capacities equal

to b

i

. (J

i

1

; y

i

) and (J

i

�1

; y

i

) are homologous nonrestricted edges. (J

i

1

; z

i

) and (J

i

1

; y

i

) are

nonrestricted edges. An additional node z

0

is added as a source and z

n

is the sink. For

each j, (z

0

; v

1

j

); (z

1

; v

2

j

); : : : ; (z

n�1

; v

n

j

) are pairwise nonrestricted homologous edges. Let f

denote the 
ow, given a solution x to the equations a feasible 
ow is x

j

= f(z

0

; v

1

j

) = � � � =

f(z

n�1

; v

n�1

j

) and given a feasible 
ow it is easy to construct solution x.

A.4.6 Lexicographically First Blocking Flow (LFBF)

Given: A directed acyclic graph G = (V;E) represented by �xed ordered adjacency lists

with each edge labeled with a capacity c

i

� 0 and two distinguished vertices, source s and

sink t.

Problem: Is the value of the lexicographically �rst blocking 
ow odd? A blocking 
ow is a


ow in which every path from s to t has a saturated edge | an edge whose 
ow is equal to

its capacity. The lexicographically �rst blocking 
ow is the 
ow resulting from the standard

sequential depth �rst search blocking 
ow algorithm.

Reference: [AM87a]

Hint: The reduction given in Problem A.4.4 can be easily modi�ed to show this problem

is P -complete.

Remarks: The problem of �nding the lexicographically �rst blocking 
ow in a 3 layered

network is also P -complete. A 3 layered network is one in which all source to sink paths

have length 3. Cheriyan and Maheshwari also give an RNC algorithm for �nding a blocking


ow in a 3 layered network [CM89].

A.4.7 First Fit Decreasing Bin Packing (FFDBP)

Given: A list of n items v

1

; : : : ; v

n

, where each v

i

is rational number between 0 and 1, and

two distinguished indices i and b.

Problem: Is the i

th

item packed into the b

th

bin by the �rst �t decreasing bin packing

heuristic?



Part II: P -Complete Problems � 65

Reference: [AMW89]

Hint: Reduce AM2CVP (Problem A.1.4) to FFDBP. Without loss of generality, we can

assume the gates �

1

; : : : ; �

n

are numbered in topological order. The reduction transforms the

sequence �

1

; : : : ; �

n

into a list of items and bins. Let �

i

= 1� i=(n+1) and � = 1=(5(n+1)),

and T

i

(F

i

) denote any item of size �

i

(�

i

� 2�). We describe how to construct the list of

items and bins. For and gate �

i

with outputs to gates �

j

and �

k

construct bins of size

�

i

; 2�

i

� 4�; �

i

+ �

j

� 3�, and �

i

+ �

k

� 4� and items of size �

i

; �

i

; �

i

� 2�; �

i

� 2�; �

i

� 3�,

and �

i

� 4�. For an or gate �

i

with outputs to gates �

j

and �

k

construct bins of size

2�

i

�4�; �

i

; �

i

+�

j

�3�, and �

i

+�

k

�4� and the same items as for the and gate. The output

gate �

n

is treated specially and has bins of size �

n

and �

n

, and items of size �

n

; �

n

; �

n

� 2�,

and �

n

� 2�. For gates receiving a constant circuit input, a T

i

(F

i

) is removed if the gate

receives a false (true) input. The lists of bins are concatenated in the order of their

corresponding gate numbers and similarly for the items. To get unit size bins let u

1

; : : : ; u

q

be the non-increasing list of item sizes and let b

1

; : : : ; b

r

be the list of variable bin sizes as

constructed above. Let B = max

i

b

i

and C = (2r+1)B. For 1 � i � 2r, set v

i

= C� iB�b,

if i � r and C � ib, otherwise. Packing these 2r items into r bins of size C has the a�ect of

leaving b

i

space in the i

th

bin. By concatenating the \u" and \v" item lists and normalizing

the bin sizes, a �rst �t decreasing bin packing of the items will place the item corresponding

to the second T

n

in �

n

's list into the last bin if and only if the circuit evaluates to true.

Remarks: The problem remains P -complete even if unary representations are used for

the numbers involved. This is one of the �rst such problem where large numbers do not

appear to be required for P -completeness (in contrast see MaxFlow, Problem A.4.4). The

problem of determining if I is the packing produced by the best �t decreasing algorithm is

also P -complete [AMW89]. In [AMW89] there is an NC algorithm that produces a packing

within 11=9 of optimal. This is the same performance as for �rst �t decreasing.

A.4.8 General List Scheduling (GLS)

Given: An ordered list of n jobs fJ

1

; : : : ; J

n

g, a positive integer execution time T (J

i

) for

each job, and a non-preemptive schedule L. The jobs are to be scheduled on two identical

processors.

Problem: Is the �nal o�set produced by the list scheduling algorithm non-zero? The �nal

o�set is the di�erence in the total execution time of the two processors.

Reference: [HM87]

Hint: Reduce NOR CVP to GLS. Without loss of generality, assume the gates in the

instance of NOR CVP are numbered in reverse topological order. The input wires to gate i

are numbered 4

2i

and 4

2i+1

. The output wire of gate 1, the overall circuit output, is labeled

4. Let V

i

be the sum of the labels on the output wires of gate i. For gate i, 17 jobs are

introduced with the following execution times | 1 job at 2 � 4

2i+1

, 14 jobs at 4

2i

=2, and 2

jobs at (4

2i

+ V

i

)=2. The initial job has execution time equal to the sum of the labels of all

true input wires. The remaining jobs are listed in descending order of gate number. The

�nal o�set will be 4 (0) if and only if the output gate i is true (false).

Remarks: The problem is in NC if the job times are small, that is n

O(1)

. NC algorithms for

scheduling problems with either intree or outtree precedence constraints are known [HM86,

HM87].



66 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

A.5 Local Optimality

A.5.1 MAXFLIP Veri�cation (MAXFLIPV)

Given: An encoding of a Boolean circuit � constructed of and, or, and not gates, plus

inputs x = x

1

; : : : ; x

n

. The circuit's m output values y = y

1

; : : : ; y

m

.

Problem: Is the circuit's output a local maximum among the neighbors of x when y is

viewed as a binary number? The neighbors of x are vectors of length n whose Hamming

distance di�ers from x by 1. That is, they can be obtained from x by 
ipping one bit.

Reference: [JPY88]

Hint: The problem is easily seen to be in P . The reduction is from the MCVP, Problem

A.1.3. Let � denote an instance of MCVP with input x

1

; : : : ; x

n

. Construct an instance of

MAXFLIP as follows. The new circuit is the same as � except for a modi�cation to the

input. Add a \latch" input that is and'd with each of �'s inputs before they are fed into

later gates of �. Set the latch input to value 0. The output of the circuit constructed will

be 0. The input x

1

; : : : ; x

n

; 0 will be locally optimal if and only if the output is 0 when the

latch input is 1. This is true if and only if the output of � on its input is 0.

Remarks: The complementary problem, called the FLIP veri�cation problem, in which

the output is minimized is also P -complete [JPY88]. The general problems MAXFLIP and

FLIP are PLS -complete [JPY88]. PLS stands for polynomially local search.

A.5.2 Local Optimality Kernighan-Lin Veri�cation (LOKLV)

Given: A graph G = (V;E) with weights w(e) on the edges and a partition of V into two

equal size subsets A and B.

Problem: Is the cost of the partition, c(A;B), a local optimum among the neighbors of the

partition? The cost of the partition is de�ned to be the sum of the costs of all edges going

between the sets A and B. We follow the presentation in [JPY88] to de�ne the neighbors.

A swap of partition (A;B) is a partition (C;D) such that (C;D) is obtained from (A;B)

by swapping one element of A with an element of B. The swap (C;D) is a greedy swap if

c(C;D)� c(A;B) is minimized over all swaps of (A;B). If (C;D) is the lexicographically

smallest over all greedy swaps, then (C;D) is said to be the lexicographically greedy swap

of (A;B). A sequence of partitions (A

i

; B

i

), each obtained by a swap from the preceding

partition, is monotonic if the di�erences A

i

�A

0

and B

i

�B

0

are monotonically increasing.

A partition (C;D) is a neighbor of (A;B) if it occurs in the unique maximal monotonic

sequence of lexicographic greedy swaps starting with (A;B).

Reference: [JPY88]

Hint: The reduction is from MAXFLIPV, Problem A.5.1.

Remarks: A problem called the weak local optimum for Kernighan-Lin veri�cation problem

in which the neighborhoods are larger is also P -complete [JPY88]. The general versions of

these problems, local optimality Kernighan-Lin and weak local optimality Kernighan-Lin

are both PLS -complete [JPY88].

A.5.3 Unweighted, Not-All-Equal Clauses, 3SAT/FLIP (U3NSATFLIP)

Given: A Boolean formula F in CNF with 3 literals per clause and a truth assignment s.



Part II: P -Complete Problems � 67

Each clause has a weight of 1. The clauses are not-all-equals clauses with positive literals.

A truth assignment \satis�es" a clause C under the not-all-equals criterion if it is such that

C has at least one true and one false literal.

Problem: Is the assignment s the maximum cost assignment of F over all neighbors of

s? The cost of the assignment is the sum of the weights of the clauses it satis�es. The

neighbors of s are assignments that di�er from s in one bit position.

Reference: [PSY90, SY]

Hint: The reduction is from NOR CVP.

Remarks: The weighted version of the problem is PLS -complete [PSY90].

A.5.4 Unweighted MAXCUT/SWAP (UMS)

Given: A graph G = (V;E) with weights of size 1 on the edges and a subset S � V .

Problem: Is S the maximum cost subset of nodes, where the cost is the sum of the weights

of the edges leaving nodes in S, over all neighbors of S? A neighbor of S is a set of size jSj

whose symmetric di�erence with S contains one node.

Reference: [PSY90, SY]

Hint: The reduction is from U3NSATFLIP, Problem A.5.3.

Remarks: The weighted version of the problem is PLS -complete [PSY90].

A.5.5 Unweighted 2SAT/FLIP (U2SATFLIP)

Given: A Boolean formula F in CNF with 2 literals per clause and a truth assignment s.

Each clause has a weight of 1.

Problem: Is the assignment s the maximum cost assignment of F over all neighbors of s?

The cost of the assignment is the sum of the weights of the clauses it satis�es. The neighbors

of s are assignments that di�er from s in one bit position.

Reference: [PSY90, SY]

Hint: The reduction is from UMS, Problem A.5.4.

Remarks: The weighted version of the problem is PLS -complete [PSY90].

A.5.6 Unweighted SWAP (USWAP)

Given: A graph G = (V;E) with 2n nodes and a set S of n nodes.

Problem: Is S the minimum cost set of n nodes, where the cost is the sum of the weights

of the edges leaving S, over all neighbors of S? A neighbor of S is a set of n nodes whose

symmetric di�erence with S consists of two nodes.

Reference: [PSY90, SY]

Hint: The reduction is from UMS, Problem A.5.4.

Remarks: The weighted version of the problem is PLS -complete [PSY90].

A.5.7 Unweighted STABLE NET (USN)

Given: A graph G = (V;E) whose edges all have weights of �1 and an assignment B of

labels x

i

2 f�1;+1g to each node i.



68 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

Problem: Does the assignment B yield maximum cost;

P

i;j

x

i

x

j

over all i; j; over all

neighbors of B? A neighbor of B is an assignment of labels that di�ers from B on only one

node.

Reference: [PSY90, SY]

Hint: The reduction is from UMS, Problem A.5.4.

Remarks: The weighted version of the problem is PLS -complete [PSY90].

A.6 Logic

A.6.1 Unit Resolution (UNIT)

Given: A Boolean formula F in conjunctive normal form.

Problem: Can the empty clause 2 be deduced from F by unit resolution? A unit is a

clause with only one term. For example, the unit resolvent of F = A _ B

1

_ � � � _ B

m

and

the unit G = :A is B

1

_ � � � _B

m

.

Reference: [JL76]

Hint: Jones and Laaser provide a poly-time algorithm for unit resolution [JL76]. To showB

follows from the assumptionA

1

^� � �^A

m

, negateB, add it to the set of clauses and derive the

empty clause. Reduce CVP to UNIT as described below. A gate in the circuit v

k

 v

i

^ v

j

is represented by the clauses of v

k

, v

i

^v

j

, that is, (:v

k

_v

i

)^ (:v

k

_v

j

)^ (v

k

_:v

i

_:v

j

).

Similarly, v

k

 v

i

_ v

j

is represented by the clauses of v

k

, v

i

_ v

j

and v

k

 :v

i

is

represented by the clauses of v

k

, :v

i

.

Remarks: Under the appropriate de�nitions, it is known that approximating this problem

is also P -complete [SS89].

A.6.2 Horn Unit Resolution (HORN)

Given: A Horn formula F , that is, a conjunctive normal form (CNF) formula with each

clause a disjunction of literals having at most one positive literal per clause.

Problem: Can the empty clause 2 be deduced from F by unit resolution?

Reference: [DLR79, JL76]

Hint: Reduce an arbitrary Turing machine to a CNF formula as in [Coo71b]. All of the

clauses are Horn clauses. Most clauses are of the form :P

a

i�1;t

_ :P

b

i;t

_ :P

c

i+1;t

_ P

f(a;b;c)

i;t+1

,

where P

i

; t

a

is true if at time t tape cell i contains symbol a (or symbol (a; s) if the tape

head is over the cell and the Turing machine is in state s). The function f(a; b; c) depends

on the Turing machine. For cells i � 1; i; i+ 1 containing symbols a; b; c the value of cell i

at the next time step is f(a; b; c). Alternatively, reduce CVP to HORN as for UNIT. The

clauses for v

k

 v

i

^ v

j

and for v

k

 :v

i

are already in Horn form. For v

k

 v

i

_ v

j

the

clauses of v

k

, v

i

_ v

j

are not in Horn form, but replacing the or by an and gate and

associated not gates using DeMorgan's laws results in a set of Horn clauses.

A.6.3 Propositional Horn Clause Satis�ability (PHCS)

Given: A set S of Horn clauses in the propositional calculus.

Problem: Is S satis�able?



Part II: P -Complete Problems � 69

Reference: [Pla84, Kas86]

Hint: The reduction is straightforward from the alternating graph accessibility problem,

Problem A.2.3.

Remarks: The problem remains P -complete when there are at most 3 literals per

clause [Pla84]. Plaisted has shown that two problems involving proofs of restricted depth

are also P -complete. They are the two literal Horn clause unique matching problem and

the three literal Horn clause problem [Pla84].

A.6.4 Relaxed Consistent Labeling (RCL)

Given: A relaxed consistent labeling problem G consisting of a set of variables V =

fv

1

; : : : ; v

n

g and a set of labels L = fL

1

; : : : ; L

n

g, where L

i

consists of the possible labels

for v

i

. A binary predicate P , where P

ij

(x; y) = 1 if and only if the assignment of label x

to v

i

is compatible with the assignment of label y to v

j

. A designated variable P

0

and a

designated label f .

Problem: Is there a valid assignment of the label f to P

0

in G?

Reference: [Kas86, GHR91]

Hint: The original reduction is from the propositional Horn clause satis�ability problem,

Problem A.6.3 [Kas86]. The reduction we sketch is from NAND CVP. A variable is intro-

duced for each circuit input. The variable must have label 1 (0) if the circuit input is true

(false). We view each nand gate as being represented by three variables. Consider nand

gate k with inputs i and j, and outputs s and t. The variables for k will be denoted k, L

k

,

and R

k

. The possible labels for a nand gate (variable k) are 0, 1, T , T

0

, and F . T and

T

0

are used to denote true values, and F is used to denote a false value. The possible

labels for variables L

k

and R

k

are 0 and 1. The constraints for variable k with its inputs

are as follows: P

ik

(0; 1) = 1, P

ik

(1; T ) = 1, P

ik

(0; T

0

) = 1, P

ik

(1; F ) = 1, P

jk

(0; 1) = 1,

P

jk

(0; T) = 1, P

jk

(1; T

0

) = 1, and P

jk

(1; F ) = 1. The constraints on L

k

and R

k

are the

same. When k has any label l from f1; T; T

0

g, then P

kL

k

(l; 1) = 1. When k has a label l from

f0; Fg, then P

kL

k

(l; 0) = 1. All other possible labelings are not allowed. The constraints

involving nand gate s (t) use L

k

(R

k

). Notice since inputs have only one possible label,

they must be assigned this label. The remainder of the labeling is done so that the circuit

gets evaluated in a topological manner. Let o denoted the number of the output gate of the

nand circuit instance. There is a valid assignment of label 1 to node L

o

if and only if the

output of gate o is true.

Remarks: The general consistent labeling problem is NP -complete.

A.6.5 Generability (GEN)

Given: A �nite set W , a binary operation � on W (presented as a table), a subset V � W ,

and w 2 W .

Problem: Is w contained in the smallest subset of W that contains V and is closed under

the operation �?

Reference: [JL76]

Hint: The reduction is from unit resolution, Problem A.6.1. De�ne a � b to be the unit

resolution of clauses a and b. Let W be all the subclauses of a formula F in an instance of



70 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

UNIT, and V be all of its clauses. Let w be the empty clause.

Remarks: If � is associative, GEN is complete for NSPACE(logn). The problem remains

in P even with more than one operation. Under the appropriate de�nitions, it is known

that approximating this problem is also P -complete [SS89].

A.6.6 Path Systems (PATH)

Given: A path system P = (X;R; S; T ) where S � X , T � X , and R � X �X �X .

Problem: Is there an admissible node in S? A node x is admissible if and only if x 2 T ,

or there exists admissible y; z 2 X such that (x; y; z) 2 R.

Reference: [Coo74, JL76]

Hint: Reduce GEN to PATH by de�ning (x; y; z) 2 R if and only if x = y � z.

Remarks: This is the �rst problem shown to be log space complete for P . The original

proof by Cook does a direct simulation of a Turing machine [Coo74]. Under the appropriate

de�nitions, it is known that approximating this problem is also P -complete [SS89].

A.6.7 Uni�cation (UNIF)

Given: Two symbolic terms s and t. Each term is composed of variables and function

symbols. A substitution for x in a term u is the replacement of all occurrences of a variable

x in u by another term v.

Problem: Is there a series of substitutions � that unify s and t? That is, gives �(s) = �(t).

The two terms are called uni�able if such a � exists.

Reference: [DKM84, Yas84, DKS88]

Hint: The reduction given in [DKM84] is from MCVP. The reductions given in [DKS88]

are from NAND CVP.

Remarks: Unrestricted uni�cation is also P -complete [DKM84]. Unrestricted uni�cation

is where we allow substitutions to map variables to in�nite terms. It is convenient to

represent terms as labeled directed acyclic graphs. A term is linear if no variable appears

more than once in the term. The following two restricted versions of uni�cation are also

both P -complete: (a) both terms are linear, are represented by trees, and have all function

symbols with arity less than or equal to two; (b) both terms are represented by trees, no

variable appears in both terms, each variable appears at most twice in some term, and all

function symbols have arity less than or equal to two [DKS88]. A restricted problem called

term matching can be solved on a CREW-PRAM in randomized time O(log

2

n) usingM(n)

processors, where M(n) denotes the complexity of an n�n matrix multiplication [DKS88].

A term s matches a term t if there exists a substitution � with �(s) = t. Vitter and Simons

give

p

n time parallel algorithms for uni�cation and some other P -complete problems [VS86].

A.6.8 Logical Query Program (LQP)

Given: An extended logic program P , and a ground clause C of the form

p(�x) :| q

1

(�y

1

); : : : ; q

k

(�y

k

). A ground clause is one in which all arguments (e.g., �x and �y

i

above) are constants. An extended logic program is a basic logic program plus an extensional

data base instance. A basic logic program is a �nite set of rules. A rule is a disjunction



Part II: P -Complete Problems � 71

of literals having exactly one positive literal, called the head. The negative literals in the

clause are called subgoals. The set of predicate symbols that appear only in subgoals is

called the Extensional Database, or EDB. An EDB fact is an EDB predicate with constants

as arguments. An EDB instance is a �nite set of EDB facts. C is a theorem of P if the

head of C is derivable from its subgoals in P .

Problem: Is C a theorem of P?

Reference: [UVG88]

Hint: Reduce PATH, Problem A.6.6, to LPQ. Let (X;R; S; T) be an instance of PATH.

Without loss of generality, assume S = fsg. Let t(Y ) be an EDB relation specifying that

node Y is in T . Let r(U; V;W ) be an EDB relation specifying that the triple of nodes

(U; V;W ) is in R. The basic logic program consists of the two rules a(Y ) :| t(Y ) and

a(Y ) :| r(Y; V;W); a(V ); a(W ). The relation a models \admissibility" in the path system,

so a(s) is a theorem of P if and only if s is admissible in the path system.

Remarks: Remains P -complete even for very restricted programs. In NC for programs

with the \polynomial fringe property." See [UVG88] for details. See also [AP87] for related

results.

A.7 Formal Languages

A.7.1 Context-Free Grammar Membership (CFGmem)

Given: A context-free grammar G = (N; T; P; S) and a string x 2 T

�

.

Problem: Is x 2 L(G)?

Reference: [JL76]

Hint: Reduce GEN to CFGmem. Let (W; �; V; w) be an instance of GEN. Construct the

grammar G = (W; fag; P;w), where P = fx! yz j y � z = xg [ fx! � j x 2 V g. It follows

that � 2 L(G) if and only if w is generated by V .

Remarks: Goldschlager remarks it is the presence of �-productions in the input grammar

that make the membership question di�cult [Gol81]. Lewis, Stearns, and Hartmanis' log

2

n

space algorithm [LSH65] and Ruzzo's AC

1

(hence NC

2

) algorithm [Ruz80] for general

context free language recognition can both be modi�ed to work with an �-free grammar

given as part of the input.

A.7.2 Context-Free Grammar Empty (CFGempty)

Given: A context-free grammar G = (N; T; P; S).

Problem: Is L(G) is empty?

Reference: [JL76, Gol81]

Hint: The reduction given in Problem A.7.1 su�ces. The following reduction of MCVP

to CFGempty (due to Martin Tompa, private communication) is also of interest. Given a

circuit � construct the grammar G = (N; T;P; S) such that N = fi j v

i

is a vertex in �g,

T = fag, and S = n, where v

n

is the output of �. Let �(g) denote the value of gate g. The

productions in P are of the following form:

1. For input v

i

, i! a if �(v

i

) is true,



72 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

2. i! jk if v

i

 v

j

^ v

k

,

3. i! j j k if v

i

 v

j

_ v

k

.

Then �(v

i

) is true if and only if i)

�


, where 
 2 fag

�

.

Remarks: Note, this reduction and the one for CFGinf, have no �-productions yet remain

complete. The original proof of Jones and Laaser reduced GEN to CFGempty. Their proof

used the reduction for CFGmem and instead checked if L(G) is empty [JL76].

A.7.3 Context-Free Grammar In�nite (CFGinf)

Given: A context-free grammar G = (N; T; P; S).

Problem: Is L(G) is in�nite?

Reference: [Gol81, JL76]

Hint: Use a grammar similar to G in the proof for CFGempty, Problem A.7.2, except

production i ! a is replaced by i ! x, and the productions x ! a and x ! ax are also

added.

A.7.4 Context-Free Grammar �-Membership (CFG�mem)

Given: A context-free grammar G = (N; T; P; S).

Problem: Is � 2 L(G)?

Reference: [Gol81, JL76]

Hint: Use a grammar similar to G in the proof for CFGempty, Problem A.7.2, except

production i! a is replaced by i! �.

A.7.5 Straight-Line Program Membership (SLPmem)

Given: A straight-line program over alphabet �, j�j � 1, with operations taken from

� = � [ ff�g;�;[; �g, and a string x.

Problem: Is x a member of the set constructed by the program?

Reference: [Goo83]

Hint: By noting there is a log space alternating Turing machine that \parses" x relative

to the program, the problem is easily seen to be in P . Reduce MCVP to SLPmem by the

following: true ! f�g, false ! �, ^ ! �, and _ ! [.

Remarks: The original reduction was from GEN. Remains in P if \ is allowed. The anal-

ogous membership question for regular languages presented as regular expressions (NFAs)

is complete for NSPACE(logn).

A.7.6 Straight-Line Program Nonempty (SLPnonempty)

Given: A straight-line program over alphabet �, j�j � 1, with operations taken from

� = � [ ff�g;�;[; �g, and a string x.

Problem: Is the set constructed by the program non-empty?

Reference: [Goo83]



Part II: P -Complete Problems � 73

Hint: Reduce SLPmem to SLPnonempty. Change non-empty constants to f�g, and test

membership of �.

Remarks: With \ added, SLPnonempty becomes complete for nondeterministic exponen-

tial time [Goo83].

A.7.7 Labeled GAP (LGAP)

Given: A �xed context free language L over alphabet �, a directed graph G = (V;E) with

edges labeled by strings in �

�

, and two vertices s and t.

Problem: Is there a path from s to t such that the concatenation of its edge labels is

in L?

Reference: [Ruz79, GHR91]

Hint: Reduce the 2-way DPDA acceptance problem, Problem A.7.8 to LGAP. Let M =

(Q;�

0

;�; �; q

0

; Z

0

) be a 2-way DPDA [HU79] and let x 2 �

0

be an input string. Without

loss of generality, the PDA has a unique �nal con�guration q

f

and accepts with empty stack

with its head at the right end of the input. Let � = � [ fZ j Z 2 �g. Let V be the set

containing the special vertex s, together with all \surface con�gurations" of the PDA, i.e.

Q � f1; : : : ; jxjg. There is an edge from hp; ii to hq; ji labeled � 2 �

�

if and only if when

reading x

i

the PDA has a move from p to q that moves its input head j � i 2 f�1; 0; 1g

cells to the right, pops Z 2 �, and pushes � 2 �

�

, where � = Z�. Additionally, there

is an edge from the special vertex s to the initial surface con�guration hq

0

; 1i, labeled Z

0

(the initial stack symbol). The designated vertex t is hq

f

; jxji. Finally, L = L(G), where

G : fS ! aSaS j a 2 �g [ fS ! �g, i.e., the semi-Dyck language D

j�j

on j�j letters [Har79,

Section 10.4].

Remarks: Remains P -complete when L is D

2

. An equivalent statement is that it is P -

complete to decide, given a deterministic �nite state automatonM , whetherD

2

\L(M) = �.

If G is acyclic then the problem is complete for SAC

1

= LOGCFL [Ruz79].

A.7.8 Two-Way DPDA Acceptance (2DPDA)

Given: A two-way deterministic pushdown automatonM and a string x.

Problem: Is x accepted by M?

Reference: [Coo71a, Gal74, Gal77, Lad75]

Hint: See, e.g., [HU79] for a de�nition of 2DPDAs. Cook [Coo71a] gives a direct simulation

of a polynomial time Turing machine by a logarithmic space auxiliary pushdown automaton.

Galil [Gal74, Gal77] shows existence of a P -complete language accepted by a 2DPDA, in

e�ect showing that the logarithmic space worktape isn't crucial to Cook's simulation. (See

also [Sud78] for a general reduction of auxiliary PDAs to ordinary PDAs.) Ladner [Lad75]

gives a much more direct proof by observing that a suitably encoded version of CVP is

solvable by a 2DPDA, basically by doing a depth �rst search of the circuit, using the stack

for backtracking.

Remarks: Remains in P when generalized to nondeterministic and/or logarithmic space

auxiliary PDAs [Coo71a]. When restricted to polynomial time PDAs, or one-way PDAs,

even with a logarithmic space worktape, the problem is in NC ; speci�cally it is complete

for LOGDCFL in the deterministic case, and for LOGCFL = SAC

1

in the nondeterministic



74 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

case.

A.8 Algebraic Problems

A.8.1 Finite Horizon Markov Decision Process (FHMDP)

Given: A nonstationary Markov decision process M = (S; c; p) and an integer T . Before

de�ning the problem, we present some background on Markov decision processes. The term

�nite horizon refers to the time bound T . S is a �nite set of states and contains a desig-

nated initial state s

0

. Let s

t

denote the current state of the system for each time t = 1; 2; : : :

Associated with each state s 2 S is a �nite set of decisions D

s

. A cost of c(s; i; t) is incurred

at time t by making decision i 2 D

s

t

. The next state s

0

has probability distribution given

by p(s; s

0

; i; t). If c and p are independent of t then the process is said to be stationary. A

policy � is a mapping that assigns to each time step t and each state s a decision �(s; t). A

policy is stationary if � is independent of time, and can then be suplied as an input.

Problem: Is the expectation of the cost,

P

T

t=0

c(s

t

; �(s

t

; t); t), equal to 0?

Reference: [PT87]

Hint: There is a polynomial time algorithm for the problem that uses dynamic program-

ming. The reduction is from the monotone circuit value problem, Problem A.1.3. Let

c = ((a

i

; b

i

; c

i

); i = 1; : : : ; k) denote an encoding of MCVP, where a

i

denotes gate type, and

b

i

and c

i

denote the numbers of gate i's inputs. A stationary Markov process M = (S; c; p)

is constructed from the circuit instance as follows. S has one state q

i

for each i, 1 � i � k.

There is an additional state in S called q. If (a

i

; b

i

; c

i

) corresponds to a circuit input, then

the corresponding state q

i

has a single decision 0 with p(q

i

; q; 0) = 1, and cost c(q

i

; 0) = 1

(0) if a

i

is a false (true) input. All other costs of this process are 0. There is one decision

0 for state q and p(q; q; 0) = 1. If a

i

is an or gate then there are two decisions 0 and 1

from state q

i

. The associated probabilities are p(q

i

; q

b

i

; 0) = 1 and p(q

i

; q

c

i

; 1) = 1. The

associated costs are both 0. If a

i

is an and gate then there are two decisions 0 and 1 from

state q

i

. p(q

i

; q

b

i

; 0) = 1=2 and p(q

i

; q

c

i

; 1) = 1=2, with associated costs 0. The initial state

is k corresponding to the output gate of the circuit; the time horizon T is k. It is easy to

verify that the expected cost of the process is 0 if and only if the circuit evaluates to true.

Remarks: The reduction shows that the �nite horizon stationary version of the problem is

P -hard. This problem is not known to be in P . The deterministic version of the FHMDP,

which requires that p has only values 0 or 1, is in NC [PT87]. Note, this last result holds

for both the stationary and nonstationary versions of the problem.

A.8.2 Discounted Markov Decision Process (DMDP)

Given: A stationary Markov decision process M = (S; c; p) and a real number � 2 (0; 1).

See Problem A.8.1 for de�nitions. This problem is in�nite horizon, that is, there is no time

bound.

Problem: Is the expectation of the cost,

P

1

t=0

c(s

t

; �(s

t

; t))�

t

, equal to 0?

Reference: [PT87]

Hint: The problem can be phrased as a linear programming problem and solved in poly-

nomial time. The same construction as used in Problem A.8.1 can be used to show this



Part II: P -Complete Problems � 75

problem is P -complete.

Remarks: The in�nite horizon, discounted, deterministic problem is in NC [PT87]. The

deterministic problem requires that p has values only 0 or 1.

A.8.3 Average Cost Markov Decision Process (ACMDP)

Given: A stationary Markov decision process M = (S; c; p). See Problem A.8.1 for de�ni-

tions. This problem is in�nite horizon, that is, there is no time bound.

Problem: Is the lim

T!1

�

P

T

i=0

c(s

t

; �(s

t

; t))=T

�

= 0?

Reference: [PT87]

Hint: The problem can be phrased as a linear programming problem and solved in poly-

nomial time. The reduction is from a synchronous variant of MCVP, Problem A.1.6. The

construction is a modi�cation to that given in Problem A.8.1. Instead of having states

corresponding to circuit inputs going to a new state q, they have transitions to the initial

state. The limit is 0 if and only if the circuit instance evaluates to true.

Remarks: The in�nite horizon, average cost, deterministic problem is in NC [PT87]. The

deterministic problem requires that p has values only 0 or 1.

A.8.4 Gaussian Elimination with Partial Pivoting (GEPP)

Given: An n � n matrix A with entries over the reals or rationals and an integer l.

Problem: Is the pivot value for the l

th

column positive when Gaussian elimination with

partial pivoting is performed on A? Partial pivoting is a technique used to obtain numerical

stability in which rows of the matrix are exchanged so that the largest value in a given

column can be used to perform the elimination.

Reference: [Vav89]

Hint: The standard Gaussian elimination algorithm requires O(n

3

) operations. Since the

size of the numbers involved can be bounded by a polynomial in n (see [Vav89]), the problem

is in P . To show completeness reduce NAND CVP to GEPP. Without loss of generality,

assume the inputs and gates of the circuit are numbered in topological order from 1 to G,

where G numbers the output gate. A 2G� 2G matrix A = (a

i;j

) is constructed from the

instance of CVP. The entries of A are described below. A true circuit input i contributes

entry �3:9 in position a

2i�1;i

and entry 0 in position a

2i;i

. For false input i or nand gate

i, A has entry �3:9 in position a

2i�1;i

and 4:0 in position a

2i;i

. If gate i is an input to gate

k, then A has entry 0 in position a

2k�1;i

and entry 1 in position a

2k;i

. For 1 � i � G, A

has entry a

2i;G+i

= 1. All unspeci�ed matrix entries have value 0. The pivot value used

in eliminating column G is positive (negative) if and only if the circuit evaluates to false

(true).

Remarks: The reduction does not rely on large numbers, and therefore it shows that the

problem is strongly P -complete. Another decision problem that is strongly complete for

P based on Gaussian elimination with partial pivoting is as follows: given matrix A, and

integers i and j, is the pivot used to eliminate the j

th

column taken from the initial i

th

row? Vavasis also shows that Gaussian elimination with complete pivoting is P -complete.

In complete pivoting both rows and columns are interchanged so that the largest remaining



76 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

matrix entry can be used as a pivot. The reduction for complete pivoting does not show

the problem is strongly P -complete. This question is open.

A.8.5 Iterated Mod (IM)

Given: Integers a; b

1

; : : : ; b

n

.

Problem: Is ((� � � ((a mod b

1

) mod b

2

) � � �) mod b

n

) = 0?

Reference: [KR89]

Hint: Reduce NAND CVP to IM. Without loss of generality, assume the gates are num-

bered in reverse topological order from G down to 1, where the output gate is numbered

1. Let y

1

; : : : ; y

r

denote the inputs and Y

l

2 f0; 1g denote the value of input y

l

. The input

wires to gate g are numbered 2g and 2g � 1. Let a be a bit vector of length 2G+ 1 whose

j

th

bit is Y

l

if edge j is incident from input y

l

, and 1 otherwise. Let O

g

represent the set of

out-edge labels from gate g. For 1 � g � G, we construct moduli b

1

; : : : ; b

2G

as follows:

b

2g

= 2

2g

+ 2

2g�1

+

X

j2O

g

2

j

and b

2g�1

= 2

2g�1

:

The output gate in the NAND CVP instance has value 0 if and only if

((� � �((a mod b

1

) mod b

2

) � � �) mod b

2G

) = 0:

Remarks: The polynomial iterated mod problem is the problem in which

a(x); b

1

(x); : : : ; b

n

(x) are univariate polynomials over a �eld F and the question is to deter-

mine if

((� � � ((a(x) mod b

1

(x)) mod b

2

(x)) � � �) mod b

n

(x)) = 0:

This problem is in NC [KR89]. The proof technique used to show IM is P -complete can

be modi�ed to show the superincreasing knapsack problem is also P -complete [KR89]. The

superincreasing knapsack problem is de�ned analogously to the knapsack problem [GJ79]

with weights w

1

; : : : ; w

n

, except for 2 � i � n, w

i

>

P

i�1

j=1

w

j

.

A.8.6 Generalized Word Problem (GWP)

Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s

�1

js 2 Sg,

where s

�1

denotes the inverse of s. Let S

�

denote the set of all �nite words over S. Let

U = fu

1

; : : : ; u

m

g � S

�

, where m 2 N and let x 2 S

�

.

Problem: Is x 2 hUi? That is, is x in the subgroup of F generated by U?

Reference: [AM84b, Ste89]

Hint: Stewart reported an error in the result contained in [AM84b]. The reduction

in [AM84b] is a generic one from a normal form Turing machine. However, it reduces a Tur-

ing machine computation to a version of GWP where S is a countably in�nite set [Ste89].

Stewart shows using the Nielsen reduction algorithm that this problem is still in P . Stew-

art calls this P -complete problem the generalized word problem for countably-generated free

groups (GWPC). He shows that GWPC is log space reducible to GWP thus proving GWP

is P -complete as well [Ste89].



Part II: P -Complete Problems � 77

Remarks: For a natural number k, GWPC(k) and GWPC(� k) are the generalized

word problems for �nitely-generated subgroups of countably-generated free groups where all

words involved are of length exactly k and at most k respectively. Stewart shows GWPC(k)

and GWPC(�k) are P -complete for k > 2 [Ste90]. When k = 2 the problems are complete

for symmetric log space (SL). The word problem for a free group is to decide whether x

equals the empty word in F . This problem is solvable in deterministic log space [LZ77].

A.8.7 Subgroup Containment (SC)

Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s

�1

js 2 Sg,

where s

�1

denotes the inverse of s. Let S

�

denote the set of all �nite words over S. Let

U = fu

1

; : : : ; u

m

g; V = fv

1

; : : : ; v

p

g � S

�

, where m; p 2 N .

Problem: Is the group generated by U a subgroup of the group generated by V ?

Reference: [AM84b]

Hint: A variant of the Nielsen reduction algorithm can be used to show the problem is in

P . The reduction is from the generalized word problem, Problem A.8.6. Observe that for

any x 2 S

�

and U � S

�

, x 2 hUi if and only if hxi is a subgroup of hUi.

Remarks: Since hUi is a subgroup of hV i if and only if hU [ V i is normal in hV i, it

follows that the normal subgroup problem, which is also in P , is P -complete. The problem

of determining whether hUi is normal in hU; xi is also P -complete [AM84b].

A.8.8 Subgroup Equality (SE)

Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s

�1

js 2 Sg,

where s

�1

denotes the inverse of s. Let S

�

denote the set of all �nite words over S. Let

U = fu

1

; : : : ; u

m

g; V = fv

1

; : : : ; v

p

g � S

�

, where m; p 2 N .

Problem: Is hUi = hV i?

Reference: [AM84b]

Hint: A variant of the Nielsen reduction algorithm can be used to show the problem is in

P . The reduction is from the subgroup containment problem, Problem A.8.7. Observe hUi

is a subgroup of hV i if and only if hU [ V i = hV i.

A.8.9 Subgroup Finite Index (SFI)

Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s

�1

js 2 Sg,

where s

�1

denotes the inverse of s. Let S

�

denote the set of all �nite words over S. Let

U = fu

1

; : : : ; u

m

g; V = fv

1

; : : : ; v

p

g � S

�

, where m; p 2 N .

Problem: Is hUi a subgroup of hV i with �nite index in hV i? The index of U in V is the

number of distinct right cosets of U in V .

Reference: [AM84b]

Hint: A variant of the Nielsen reduction algorithm can be used to show the problem is in

P . The reduction is from the subgroup containment problem, Problem A.8.7. Note, hUi is

a subgroup of hV i if and only if hU [ V i has �nite index in hV i. Let x 2 S

�

. The problem

of determining whether hUi has �nite index in hU; xi is also P -complete [AM84b].



78 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

A.8.10 Group Independence (GI)

Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s

�1

js 2 Sg,

where s

�1

denotes the inverse of s. Let S

�

denote the set of all �nite words over S. Let

U = fu

1

; : : : ; u

m

g � S

�

, where m 2 N .

Problem: Is U independent? That is, does each x 2 hUi have a unique freely reducible

representation. A word w is freely reducible if it contains no segment of the form ss

�1

or

s

�1

s.

Reference: [AM84b]

Hint: A variant of the Nielsen reduction algorithm can be used to show the problem is in

P . The reduction is from an arbitrary polynomial time Turing machine [AM84b].

A.8.11 Group Rank (GR)

Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s

�1

js 2 Sg,

where s

�1

denotes the inverse of s. Let S

�

denote the set of all �nite words over S. Let

k 2 N . Let U = fu

1

; : : : ; u

m

g � S

�

, where m 2 N .

Problem: Does hUi have rank k? The rank is the number of elements in a minimal

generating set.

Reference: [AM84b]

Hint: A variant of the Nielsen reduction algorithm can be used to show the problem is in

P . The reduction is from the group independence problem, Problem A.8.10. Observe U is

independent if and only if hUi has rank the number of elements in U .

A.8.12 Group Isomorphism (SI)

Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s

�1

js 2 Sg,

where s

�1

denotes the inverse of s. Let S

�

denote the set of all �nite words over S. Let

U = fu

1

; : : : ; u

m

g; V = fv

1

; : : : ; v

p

g � S

�

, where m; p 2 N .

Problem: Is hUi isomorphic to hV i?

Reference: [AM84b]

Hint: A variant of the Nielsen reduction algorithm can be used to show the problem is in P .

The reduction is from the group independence problem, Problem A.8.10. U is independent

if and only if hUi and hfs

1

; : : : ; s

jU j

gi are isomorphic.

A.8.13 Group Induced Isomorphism (GII)

Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s

�1

js 2 Sg,

where s

�1

denotes the inverse of s. Let S

�

denote the set of all �nite words over S. Let

U = fu

1

; : : : ; u

m

g; V = fv

1

; : : : ; v

p

g � S

�

, where m = p 2 N .

Problem: Does the mapping � de�ned by �(u

i

) = v

i

for i = 1; : : : ; m, induce an isomor-

phism from hUi to hV i?

Reference: [AM84b]

Hint: A variant of the Nielsen reduction algorithm can be used to show the problem is in P .

The reduction is from the group independence problem, Problem A.8.10. U is independent

if and only if � as de�ned above induces an isomorphism from hUi to hfs

1

; : : : ; s

jU j

gi.



Part II: P -Complete Problems � 79

A.8.14 Intersection of Cosets (IC)

Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s

�1

js 2 Sg,

where s

�1

denotes the inverse of s. Let S

�

denote the set of all �nite words over S. Let

x; y 2 S

�

. Let U = fu

1

; : : : ; u

m

g; V = fv

1

; : : : ; v

p

g � S

�

, where m = p 2 N .

Problem: Is hUix\ yhV i non-empty?

Reference: [AM84c]

Hint: A polynomial time algorithm for the problem is given in [AM84c]. The reduction is

from an arbitrary polynomial time Turing machine [AM84c].

Remarks: The intersection of right cosets problem and the intersection of left cosets

problem are subproblems of the intersection of cosets problems and they are both P -complete

as well. For example, the right coset problem is P -complete since hUix\hV iy is non-empty

if and only if hUixy

�1

\ ehV i is non-empty, where e denotes the empty word.

A.8.15 Intersection of Subgroups (IS)

Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s

�1

js 2 Sg,

where s

�1

denotes the inverse of s. Let S

�

denote the set of all �nite words over S. Let e

denote the empty word. Let U = fu

1

; : : : ; u

m

g; V = fv

1

; : : : ; v

p

g � S

�

, where m = p 2 N .

Problem: Is hUi \ hV i 6= hei?

Reference: [AM84c]

Hint: A polynomial time algorithm for the problem is given in [AM84c]. The reduction is

straightforward from the intersection of right cosets problem, see Problem A.8.14.

A.8.16 Group Coset Equality (GCE)

Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s

�1

js 2 Sg,

where s

�1

denotes the inverse of s. Let S

�

denote the set of all �nite words over S. Let

x; y 2 S

�

. Let U = fu

1

; : : : ; u

m

g; V = fv

1

; : : : ; v

p

g � S

�

, where m = p 2 N .

Problem: Is hUix = yhV i?

Reference: [AM84c]

Hint: A polynomial time algorithm for the problem is given in [AM84c]. The reduction is

from Problem A.8.15.

Remarks: The following three decision problems are also P -complete: equality of right

cosets | Does hUix = hV iy?, equivalence of cosets | Are there x; y such that hUix =

yhV i?, and equivalence of right cosets | Are there x; y such that hUix = hV iy? [AM84c].

A.8.17 Conjugate Subgroups (CS)

Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s

�1

js 2 Sg,

where s

�1

denotes the inverse of s. Let S

�

denote the set of all �nite words over S. Let

U = fu

1

; : : : ; u

m

g; V = fv

1

; : : : ; v

p

g � S

�

, where m = p 2 N .

Problem: Is there an x 2 S

�

such that x

�1

hUix = hV i?

Reference: [AM84c]

Hint: A polynomial time algorithm for the problem is given in [AM84c]. The reduction is



80 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

from the equivalence of right cosets problem, see Problem A.8.16.

Remarks: The problem of determining whether x

�1

hUix is a subgroup of hV i is also

P -complete [AM84c].

A.8.18 Uniform Word Problem for Finitely Presented Algebras (UWPFPA)

Given: A �nitely presented algebra A = (M;A;�) and a pair of terms x; y. M is a �nite set

of symbols and A :M ! N de�nes the arity of each symbol. N represents the non-negative

integers. M is partitioned into two sets: G = fa 2 M j A(a) = 0g consists of generator

symbols and O = fa 2 M j A(a) > 0g consists of operator symbols. The set of terms over

M is the smallest subset of M

�

such that:

1. all elements of G are terms,

2. if � is m-ary and x

1

; : : :x

m

are terms, then �(x

1

; : : : ; x

m

) is a term.

Let � denote the set of terms. � is a set of unordered pairs of terms called axioms. � is the

smallest congruence relation on � satisfying the axioms of �.

Problem: Is x � y?

Reference: [Koz77]

Hint: A polynomial time algorithm for the problem is given in [Koz77]. The reduction

is from the monotone circuit value problem, Problem A.1.3. Let B be an instance MCVP

represented as a list of assignments to variables C

1

; : : : ; C

n

of the form C

i

= 0; C

i

= 1; C

i

=

C

j

_ C

k

, or C

i

= C

j

^ C

k

, where i > j; k. B is in MCVP provided value(C

n

) = 1, where n

denotes the output gate of the circuit. The reduction is as follows: G = fC

1

; : : : ; C

n

; 0; 1g,

O = f_;^g, � = B [ f0 _ 0 � 0; 0 _ 1 � 1; 1 _ 0 � 1; 1 _ 1 � 1; 0 ^ 0 � 0; 0 ^ 1 � 0; 1 ^ 0 �

0; 1 ^ 1 � 1g. B is in MCVP if and only if C

n

� 1.

A.8.19 Triviality Problem for Finitely Presented Algebras (TPFPA)

Given: A �nitely presented algebra A = (M;A;�). See Problem A.8.18 for de�nitions.

Problem: Is A trivial? That is, does it contain only one element.

Reference: [Koz77]

Hint: A polynomial time algorithm for the problem is given in [Koz77]. The reduction

is from MCVP. Construct � as done in the proof hint for Problem A.8.18. Let �

0

=

� [ fC

n

� 0g. Using notation from Problem A.8.18, it follows that B is an instance of

MCVP if and only if C

n

� 1, that is, if and only if 1 �

�

0
0 that is, if and only if �= �

�

0
is

trivial.

A.8.20 Finitely Generated Subalgebra (FGS)

Given: A �nitely presented algebra A = (M;A;�) and terms x

1

; : : : ; x

n

; y. Let [x] =

fy 2 � j x � yg. See Problem A.8.18 for de�nitions.

Problem: Is [y] contained in the subalgebra generated by [x

1

]; : : : ; [x

n

]?

Reference: [Koz77]



Part II: P -Complete Problems � 81

Hint: A polynomial time algorithm for the problem is given in [Koz77]. This problem is a

general formulation of GEN, Problem A.6.5, and so it follows that it is also P -complete.

A.8.21 Finiteness Problem for Finitely Presented Algebras (FPFPA)

Given: A �nitely presented algebra A = (M;A;�). See Problem A.8.18 for de�nitions.

Problem: Is A �nite?

Reference: [Koz77]

Hint: A polynomial time algorithm for the problem is given in [Koz77]. The reduc-

tion is from MCVP and is similar to that used in Problem A.8.19. The algebra con-

structed in that proof is modi�ed as follows: add another generator b to G, and the axioms

fb ^ b � 0; b ^ 0 � 0; 0 ^ b � 0; b _ b � 0; b _ 0 � 0; 0 _ b � 0g to �

0

to obtain �

00

. �

00

is

�nite if �

0

is trivial and otherwise it is in�nite.

A.8.22 Uniform Word Problem for Lattices (UWPL)

Given: Let E be a set of equations and e

1

= e

2

an equation. We present some preliminary

de�nitions before de�ning the problem. A lattice is a set L with two binary operations

f+; �g that satis�es the lattice axioms. Let x; y; z 2 L. The lattice axioms are as follows:

1. associativity: (x � y) � z = x � (y � z), (x+ y) + z = x+ (y + z),

2. commutativity: x � y = y � x, x+ y = y + x,

3. idempotence: x � x = x, x + x = x, and

4. absorption: x+ (x � y) = x, x � (x+ y) = x.

Let U be a countably in�nite set of symbols. The set of terms over U , W (U), is de�ned

inductively as follows:

1. If � is in U , then � is in W (U).

2. If p; q are in W (U), then (p+ q), (p � q) are in W (U).

Let e

1

and e

2

be terms over U . An equation is a formula of the form e

1

= e

2

. A valuation

for a given lattice L is a mapping � : U ! L. The valuation is extended to W (U) by

de�ning �(p + q) = �(p) + �(q), and �(p � q) = �(p) � �(q). A lattice satis�es an equation

e

1

= e

2

under a valuation �, denoted L j=

�

e

1

= e

2

, if and only if �(e

1

) = �(e

2

). A lattice

L satis�es a set of equations E, denoted L j=

�

E, if and only if L satis�es every member of

E under �. E implies e

1

= e

2

, denoted E j= e

1

= e

2

, if and only if for every lattice L and

valuation � such that L j=

�

E, it follows that L j=

�

e

1

= e

2

.

Problem: Does E j= e

1

= e

2

?

Reference: [Cos88]

Hint: A polynomial time algorithm for the problem is given in [Cos88]. The reduction

is from the implication problem for propositional Horn clauses [JL76]. See Problems A.6.1

and A.6.2. Let � be a set of propositional formulas of the form x

i

^x

j

) x

k

, where x

1

; x

2

; : : :



82 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

are propositional variables. Let � be the formula x

1

^ x

2

) x

3

. The problem is to test if �

implies �. Let � represent the formula x

j

^x

j

) x

k

. In the instance of UWPL we construct

the equation �

�

as follows �

i

� �

j

� �

k

= �

i

� �

k

. Let E

�

= f�

�

j � 2 �g. It follows that �

implies � if and only if E

�

j= �

�

.

Remarks: The problem remains P -complete if we use inequalities instead of equations.

Furthermore, the problem remains P -complete when E = � and the terms are represented

by dags instead of trees. However, if E = � and the terms are represented as trees the

problem is in DLOG [Cos88]. This problem is called the identity problem for lattices.

A.8.23 Generator Problem for Lattices (GPL)

Given: Let L be a lattice. Let E be a set of equations and e; g

1

; : : : ; g

n

be terms over

U . Let � : U ! L be a valuation (see Problem A.8.22). We present some preliminary

de�nitions �rst. Let X � L. The sublattice generated by X is the smallest subset of L that

contains X and is closed under the operations of L. e is generated by g

1

; : : : ; g

n

in L under

�, denoted L j=

�

gen(e; g

1

; : : : ; g

n

), if and only if �(e) is in the sublattice of L generated

by the set f�(g

i

) j i = 1; : : : ; ng. E implies that e is generated by g

1

; : : : ; g

n

, denoted E j=

gen(g

1

; : : : ; g

n

), if and only if for every lattice L and valuation � such that L j=

�

E, it

follows that L j=

�

gen(e; g

1

; : : : ; g

n

).

Problem: Does E j= gen(e; g

1

; : : : ; g

n

)?

Reference: [Cos88]

Hint: A polynomial time algorithm for the problem is given in [Cos88]. The reduction is a

continuation of the reduction used in Problem A.8.22. Since E

�

j= �

�

if and only if E

�

j=

gen(�

1

� �

2

� �

3

; �

1

; �

2

), it follows that GPL is also P -complete.

Remarks: The problem remains P -complete when E = � and the terms are represented

by dags instead of trees. However, if E = � and the terms are represented as trees the

problem is in DLOG [Cos88]. This problem is called the generator problem for free lattices.

A.8.24 Boolean Recurrence Equation (BRE)

Given: (M;B; F; j), where M is an m� n Boolean matrix, B is an n� n Boolean matrix,

F is an n� 1 Boolean vector, and j is an integer in the range 0 to n.

Problem: Is the �rst entry ofM �Y

j

a 1? Y

j

is de�ned recursively as Y

0

= F , Y

k

= B �Y

k�1

for k � 1.

Reference: [BBMS88]

Hint: The reduction is from an alternating Turing machine that uses O(logn) space.

Remarks: If 0 � j � log

k

n, then the problem is complete for AC

k

[BBMS88]. That is, the

class of problems accepted by alternating Turing machines in O(logn) space and O(log

k

n)

alternations.

A.9 Geometry

A.9.1 Plane Sweep Triangulation (PST)

Given: An n vertex polygon P that may contain holes, and a designated vertex u.



Part II: P -Complete Problems � 83

Problem: Is a vertical edge connecting to u in the plane sweep triangulation of P? The

plane sweep triangulation is the triangulation produced by sweeping from top to bottom a

horizontal line L. When L encounters a vertex v of P , each diagonal from v to another vertex

in P , which does not cross a previously drawn diagonal, is added to the triangulation.

Reference: [ACG90]

Hint: It is easy to see the plane sweep triangulation algorithm runs in polynomial time.

The reduction is from a variant of planar CVP, Problem A.1.7. The new version of PCVP

consists of not gates of fanout 1, or gates of fanout 1, routing gates, and fanout gates

that take one value and produce two copies of it. This instance of PCVP is required to be

laid out on a planar grid in a special manner with alternating layers of routing and logic.

The reduction involves constructing \geometric" gadgets for routing (left and right shifts

in the grid), \vertical" wires, fanout 1 or gates, and not gates. The presence (absence) of

a vertical edge in the triangulation denotes a true (false) value. The vertex u is a special

\target" vertex in the output gate of the circuit. A vertical line is connected to u in the

triangulation if and only if the circuit evaluates to true.

Remarks: The problem of �nding some arbitrary triangulation is in NC [Goo89]. If

the polygon P is not allowed to have holes then the complexity of the problem is open.

In [ACG90] they conjecture that this restricted version is in NC .

A.9.2 3-Oriented Weighted Planar Partitioning (3OWPP)

Given: A set of non-intersecting line segments s

1

; : : : ; s

n

in the plane, a set of associated

integer weights w

1

; : : : ; w

n

, and two designated segments r and t. The segments are 3-

oriented meaning that there are only three di�erent possible slopes for the segments.

Problem: Do segments r and t \touch" in the partitioning of the plane constructed by

extending segments in the order of their weights? Segments are extended until they reach

another segment or a previous segment extension.

Reference: [ACG90]

Hint: It is easy to see that the process of extending the segments can be performed in

polynomial time. The reduction is from the same version of PCVP as used in Problem

A.9.1. The gates of the instance of PCVP are numbered in topological order. Gadgets are

constructed for routing and for logic. There are gadgets for right and left shifts, fanout

gates, or gates, not gates, and true inputs. true values in the circuit are transmitted as

vertical extensions of segments. The most interesting gadget is the one for the not gate and

we describe this. The gadgets for the other constructs all involve only two di�erent sloped

segments, whereas to simulate not gates three di�erent slopes are required. The instance of

PCVP was laid out on a grid so we consider a not gate numbered i that receives its input on

channel j and has its output on channel k. A blocking segment is one that is used to prevent

the extension of another line segment and whose weight is very large. These segments don't

play an active role in simulating the gate. The not gadget consists of six blocking segments

and three additional segments | called \one," \two," and \three" indicating their relative

weights. That is, segment one is processed �rst within the gadget followed by two and then

three. Segment two is a horizontal segment whose potential extension spans channels j and

k, and is blocked on both ends. Two lies directly to the left of channel j. Segment three

is a vertical segment on channel k blocked \above" segment two but with the possibility of



84 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

being extended downward across two's extension. Channel j, the input to not gate i, is

blocked above segment two. Segment one has a slope of �1 and its potential extension is

blocked at both ends. Segment one lies completely to the left of channel j. Its rightward

extension would cross channel j as well as segment two's extension. We now describe how

this gadget simulates a not gate. If the input to gate i is true (false) then the vertical

segment on channel j has (has not) been extended to where it is blocked. This prevents

(allows) segment one from being extended across segment two. Thus, segment two can be

(cannot be) extended towards the right across channel k. This prevents (allows) segment

three from being extended across segment two's extension indicating a false (true) value

for the output of the gate. The assignments of weights and the construction of all gadgets

can be accomplished in log space. Segment r is the vertical segment corresponding to the

output wire of the circuit. Segment t is a special output \pad." r will touch t when extended

if and only if the circuit evaluates to true.

Remarks: The complexity of the 2-oriented version of the problem is open [ACG90].

In [ACG90] they remark that the problem has been reduced to an instance of MCVP that

has a very restricted topology, although not planar. Thus, it is open whether or not this

version of the problem is in NC .

A.9.3 Visibility Layers (VL)

Given: A set of n non-intersecting line segments in the plane and a designated segment s.

Problem: Is the label assigned to segment s by the visibility layering process congruent

to one mod three? The visibility layering process is repeatedly to compute and delete the

upper envelope of the remaining set of segments and label those segments with the current

depth. The upper envelope consists of those segments visible from the point (0;+1). A

segment is visible from a point p if a ray cast from p can hit the segment before hitting any

other segment.

Reference: [ACG90, Her90]

Hint: The visibility layering process is polynomial time [Her90]. The reduction presented

in [Her90] is from the monotone CVP. We sketch this reduction. The gates in the instance of

CVP are assumed to be numbered in topological order. A grid is constructed that consists

of V + 1 rows and E columns, where V (E) is the number of nodes (edges) in the dag

corresponding to the circuit. Gadgets are constructed for the and and or gates. Gadgets

consist of horizontal line segments of varying lengths. The gadget for and gate k with

inputs i and j (i < j), and outputs l and m (l < m) consists of three horizontal segments

situated in row k of the grid. One segment spans column i, one segment spans column j, and

another segment spans from column i through column m. The gadget for or gate k with

inputs i and j (i < j), and outputs l and m (l < m) consists of three horizontal segments

situated in row k of the grid. One segment spans column j, one segment spans columns i

through j, and another segment spans columns j through m. If an input associated with a

given column is true (false) then a horizontal segment is put (is not put) in to span that

column in row 0. \Deepeners," which are horizontal line segments spanning single columns

of the grid, are used to make sure gate input values arrive at the \right time" and also to

make sure that once a gate has been evaluated its outputs a�ect only the desired gates.

The output of the circuit is true if and only if a s has a label whose value is congruent to



Part II: P -Complete Problems � 85

one mod three.

Remarks: The reduction given in [ACG90] is similar and is also from a variant of MCVP.

The main di�erence is in the way fanout is treated. The version of MCVP used in [ACG90]

consists of crossing fanout gates, single output and gates, and single output or gates. An

instance consists of alternate routing and logic layers. Gadgets are constructed for the three

types of gates and a similar decision problem to the one in [Her90] is posed to determine

the output of the circuit. If the length of all segments is required to be the same then the

complexity of the problem is not known [ACG90]. In [ACG90] they conjecture that this

version of the problem is in NC .

A.10 Real Analysis

A.10.1 Real Analogue to CVP (RealCVP)

Given: A feasible real function V de�ned on (�1;+1). A real function f is feasible if,

given a su�ciently accurate �xed-point binary approximation to x 2 [�2

n

; 2

n

], a �xed-point

binary approximation to f(x) with absolute error < 2

�n

, can be computed in time n

O(1)

.

(Su�ciently accurate means that the error in approximating the input x is < 2

�n

O(1)

. This

�xes the number of input bits, the continuity of f limits its range, and thus �xes the number

of output bits, both are polynomial in n.)

Problem: Compute V (x) with absolute error < 2

�n

.

Reference: [Hoo91] [Hoo90]

Hint: The function V computes the continuous analog of the circuit value function by

mapping circuit descriptions, along with their possible inputs, onto the real line. To evalu-

ate the circuit � on input x, treat the encoding � as an integer, and the bits x as an n-bit

�xed-point binary fraction, and add the two. The value of V (�:x) is then a rational number

that encodes the values of the gates of � on the input x. To make V continuous between

these evaluation points, V is simply linearly interpolated.

Remarks: The same function yields a family of P -complete polynomials fp

n

g computable

by feasible-size-magnitude circuits. A +,�,� arithmetic circuit family is feasible-size-

magnitude if the n

th

member is polynomial size and its output over the interval [�2

n

;+2

n

]

can be computed without generating any intermediate values with magnitude exceeding

2

n

O(1)

.

A.10.2 Fixed Points of Contraction Mappings (FPCM)

Given: An NC real function C that behaves as a contractor on some interval I (with

integer endpoints) contained in (�1;+1). The end points of I are speci�ed as integers.

A real function f is in NC if an approximation to f(x) with absolute error < 2

�n

, for

x 2 [�2

n

;+2

n

], can be computed in NC (with the same input/output conventions as for

RealCVP).

Problem: Compute the �xed point of C in I with absolute error < 2

�n

.

Reference: [Hoo91]

Hint: Same basic technique of RealCVP, but the function C evaluates the circuit level by

level, thus converging to a �xed point which encodes the �nal state of the circuit. Finding



86 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

the �xed point is in P since each iteration of the contraction mapping reduces the width of

the interval by some constant factor.

Remarks: This provides an argument that fast numerical methods based on �xed points

probably have to use contraction maps with better than linear rates of convergence, such

as Newton's method.

A.10.3 Inverting a One-to-One Real Functions (IOORF)

Given: An NC real function f on [0; 1], that is increasing, and has the property that

f(0) < 0 < f(1). Thus there is a unique root x

0

such that f(x

0

) = 0. A real function f is

in NC if an approximation to f(x) with error < 2

�n

, for x 2 [�2

n

;+2

n

], can be computed

in NC .

Problem: Compute x

0

with error < 2

�n

.

Reference: [Ko90]

Hint: Map intermediate con�gurations of a log space DTM onto the real line.

Remarks: This problem was expressed originally in terms of log space computability and

reductions | if f is log space computable then f

�1

(0) is not log space computable unless

DLOG = P . The problem remains hard even if f is required to be di�erentiable.

A.11 Miscellaneous

A.11.1 General Deadlock Detection (GDD)

Given: A multigraph D = (V;E) with V = � [ �, where � = fp

1

; : : : ; p

n

g is the set of

process nodes and � = fr

1

; : : : ; r

m

g is the set of resource nodes ; and a set T = ft

1

; : : : ; t

m

g,

where t

i

denotes the number of units of r

i

. The bipartite multigraph D represents the state

of the system. The edges in V are of the form (p

i

; r

j

) denoting a request of process p

i

for

resource r

j

or of the form (r

j

; p

i

) denoting an allocation of resource r

j

to process p

i

.

Problem: Is D a deadlock state? A deadlock state is one in which there is a non-trivial

subset of the processes that cannot change state and will never change state in the future.

Reference: [Spi87]

Hint: The reduction is from MCVP. Let � = (�

1

; : : : ; �

n

) denote an instance of MCVP.

There will be one process p

i

associated with each �

i

and one additional special process p

0

.

The representation of gates is as follows:

1. If �

i

is an input with a false (true) value then the edge (p

i

; rf

i

) ((rt

i

; p

i

)) is in D.

2. Suppose �

i

1

= �

i

2

= �

j

and �

k

, where j; k < i

1

; i

2

(the and gate has fanout 2). Then

edges (p

i

1

; r

i

1

j

), (p

i

1

; r

i

1

k

), (r

i

1

j

; p

j

), and (r

i

1

k

; p

k

) are added to D for �

i

1

, and edges

(p

i

2

; r

i

2

j

), (p

i

2

; r

i

2

k

), (r

i

2

j

; p

j

), and (r

i

2

k

; p

k

) are added to D for �

i

2

.

3. Suppose �

i

1

= �

i

2

= �

j

or �

k

, where j; k < i

1

; i

2

(the or gate has fanout 2).

Then edges (p

i

1

; r

i

1

jk

), (r

i

1

jk

; p

j

), and (r

i

1

jk

; p

k

) are added to D for �

i

1

, and edges

(p

i

2

; r

i

2

jk

), (r

i

2

jk

; p

j

), and (r

i

2

jk

; p

k

) are added to D for �

i

2

.



Part II: P -Complete Problems � 87

Edges are also added for the special process p

0

as follows: for 1 � i � n add (rf

i

; p

0

)

and (p

0

; rt

i

), and for 1 � j; k � n� 1 add (p

0

; r

nj

) and (p

0

; r

njk

). The graph D is not in a

deadlock state if and only if �

n

is true.

Remarks: Notice, in the reduction the maximum number of units of any resource is two.

The problem is in NC if t

i

= 1 for all i [Spi87]. That is, if there is only one unit of each

resource. If the system states are expedient, the resource allocator satis�es them as soon as

possible, and at most one request can be connected to any process at a given time then the

problem is in NC [Spi87].

A.11.2 Two Player Game (GAME)

Given: A two player game G = (P

1

; P

2

;W

0

; s;M) de�ned by P

1

\ P

2

= �;W

0

� P

1

[ P

2

,

s 2 P

1

, and M � P

1

� P

2

[ P

2

� P

1

. P

i

is the set of positions in which it is player i's turn

to move. W

0

is the set of immediate winning positions (de�ned below) for player one, and

s is the starting position. M is the set of allowable moves; if (p; q) 2 M and p 2 P

1

(or

P

2

) then player one (or two) may move from position p to position q in a single step. A

position x is winning for player one if and only if x 2 W

0

, or x 2 P

1

and (x; y) 2 M for

some winning position y, or x 2 P

2

and y is winning for every move (x; y) in M .

Problem: Is s a winning position for the �rst player?

Reference: [JL76]

Hint: Reduce AM2CVP to GAME. or gates in the circuit correspond to winning positions

for player one, and gates to winning positions for player two. W

0

is the set of all inputs

having value true and s is the output. s is winning if and only if the output of the circuit

is true.

Remarks: The original reduction by Jones and Laaser was from GEN to GAME [JL76].

Given W; �; V , and w construct the game G = (W;W �W;V;w;M), where the allowable

moves are given by

M = f(p; (q; r)) j q � r = pg [ f((p; q); p) j p; q 2 Wg [ f((p; q); q) j p; q 2 Wg.

Player one attempts to prove that a node p is generated by V . They do this by exhibiting

two elements q and r, also claimed to be generated by V , such that p = q � r. Player two

attempts to exhibit an element of the pair that is not generated by V . Since GAME is an

instance of AND/OR graph solvability it follows that determining whether an AND/OR

graph has a solution is also P -complete [Kas86].

A.11.3 Cat & Mouse (CM)

Given: A directed graph G = (V;E) with three distinguished nodes c, m, and g.

Problem: Does the mouse have a winning strategy in the game? The game is played as

follows. The cat starts on node c, the mouse on node m and g represents the goal node.

The cat and mouse alternate moves with the mouse moving �rst. Each move consists of

following a directed edge in the graph. Either player has the option to pass by remaining

on the same node. The cat is not allowed to occupy the goal node. The mouse wins if it

reaches the goal node without being caught. The cat wins if the mouse and cat occupy the



88 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

same node.

Reference: [CS76a, Sto84]

Hint: The reduction is from a log space alternating Turing machine M . Assume that M

starts in an existential con�guration I , has a unique accepting con�guration A that is exis-

tential, and each existential (universal) con�guration has exactly two immediate successors,

both of which are universal (existential). A directed graph is constructed with the number

of nodes in the graph proportional to the number of con�gurations ofM . We illustrate only

how existential con�gurations can be simulated and do not account for the cat or mouse

being able to pass on a move. There are two copies of each con�guration C, denoted C

and C

0

, in the graph we construct. The graph has additional nodes as well. Consider an

existential con�guration X ofM with its two succeeding universal con�gurations Y and Z.

Assume that the cat is on X , the mouse is on X

0

and it is the mouse's turn to move. X

is directly connected to Y and Z, whereas X

0

is connected to two intermediate nodes Y

1

and Y

2

. Y

1

(Z

1

) is connected to Y

0

(Z

0

) and Y

2

(Z

2

). Both Y

2

and Z

2

are connected to g.

The mouse simulates an existential move of M by moving to either Y

1

of Z

1

. If the mouse

moves to Y

1

(Z

1

) then the cat must move to Y (Z). Otherwise, the mouse's next move can

be to Y

2

(Z

2

) and from there onto g uncontested. From Y

1

(Z

1

) the mouse must move to

Y

0

(Z

0

) and an universal move is ready to be simulated. The simulation of universal moves

is fairly similar with the cat moving �rst. The game starts with the cat on I and the mouse

on I

0

. There is an edge from A

0

to g. M will accept its input if and only if the mouse has

a winning strategy.

A.11.4 Longcake (LONGCAKE)

Given: Two players H and V , a token, and an m � n Boolean matrix M . We describe

how the game is played. Initially, the token is on placed on position m

11

of M , it is H 's

turn to move, and the current submatrix is M . The term current submatrix denotes the

portion of M that the game is currently being played on. H 's turn consists of moving the

token horizontally within the current submatrix to some entry m

ij

= 1. At this point,

either all columns to the left of j or all columns to the right of j are removed from the

current submatrix, depending on which causes fewer columns to be removed. Notice, the

token occupies a corner of the current submatrix again. V 's turn is similar except V moves

vertically and rows are removed. The �rst player with no moves left loses.

Problem: Does H have a winning strategy on M?

Reference: [CT90]

Hint: The reduction is performed in two stages. First, MCVP is reduced to an acyclic

version of Schaefer's Geography game [Sch78] called ACYCLICGEO. This proves that

ACYCLICGEO is P -complete. Second, ACYCLICGEO is reduced to LONGCAKE.

Remarks: The game SHORTCAKE is the same as LONGCAKE except the larger portion

of the current submatrix is thrown away. SHORTCAKE is complete for AC

1

[CT90]. An-

other variant of these games called SEMICAKE is complete for LOGCFL= SAC

1

[CT90].



Part II: Open Problems � 89

B Open Problems

This section contains a list of open problems. The goal is to �nd an NC algorithm or a P -

completeness proof for the problem. Many of these open questions are stated as computation

problems to be as general as possible. The problems listed are divided into the following

categories: algebraic problems, graph theoretic problems, and miscellaneous problems.

B.1 Algebraic Problems

B.1.1 Integer Greatest Common Divisor (IntegerGCD)

Given: Two n-bit positive integers a and b.

Problem: Compute gcd(a; b).

Reference: [Gat84]

Remarks: For n

th

degree polynomials p; q 2 Q[x], computing gcd(p; q) is in NC

2

via an

NC

1

reduction to determinant [CS76b, BCP83]. IntegerGCD is NC

1

reducible to short

vectors dimension 2 (Problem B.1.7) [Gat84].

B.1.2 Extended Euclidean Algorithm (ExtendedGCD)

Given: Two n-bit positive integers a and b.

Problem: Compute integers s and t such that as+ bt = gcd(a; b).

Reference: [BGH82]

Remarks: The analogous problem for n

th

degree polynomials is in NC [BGH82].

B.1.3 Relative Primeness (RelPrime)

Given: Two n-bit positive integers a and b.

Problem: Are a and b relatively prime?

Reference: [Tom83]

Remarks: Is a special case of IntegerGCD, Problem B.1.1.

B.1.4 Modular Inversion (ModInverse)

Given: An n-bit prime p and an n-bit positive integer a, such that p does not divide a.

Problem: Compute b such that ab mod p = 1.

Reference: [Tom83]

Remarks: ModInverse is reducible to ExtendedGCD (compute s; t such that as + pt =

gcd(a; p) = 1), and also to ModPower, even restricted to prime moduli (compute a

p�2

mod p

and apply Fermat's Little Theorem).

B.1.5 Modular Powering (ModPower)

Given: Positive n-bit integers a, b, and c.

Problem: Compute a

b

mod c.



90 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

Reference: [Coo85]

Remarks: The complexity of the problem is open even for �nding a single bit of the

desired output. The problem is in NC for \smooth" c, that is, for c having only small

prime factors [Gat87]. In the interesting special case when c is a prime (the antithesis

of smooth) the problem is open. ModInverse, Problem B.1.4 is reducible to this restriced

case. The analogous problems when a and c are n

th

degree polynomials over a �nite �eld

of small characteristic, modular polynomial exponentiation and polynomial exponentiation,

are in NC

2

[FT88]. They are open for �nite �elds having large (superpolynomial) charac-

teristic. Note that ModPower can be reduced to the polynomial version with exponential

characteristic, simply by considering degree 0 polynomials.

B.1.6 Short Vectors (SV)

Given: Input vectors a

1

; : : : ; a

n

2 Z

n

that are linearly independent over Q.

Problem: Find a nonzero vector x in the Z-module (or \lattice") M =

P

a

i

Z � Z

n

such

that kxk � 2

(n�1)=2

kyk for all y 2M �

n

~

0

o

, where kyk =

�

P

y

2

i

�

1=2

is the L

2

norm.

Reference: [Gat84]

Remarks: Lenstra, Lenstra, and Lov�asz [LLL82] show that the problem is in P . Inte-

gerGCD, Problem B.1.1, is NC

1

reducible to SV [Gat84].

B.1.7 Short Vectors Dimension 2 (SV2)

Given: Input vectors a

1

; a

2

2 Z

2

that are linearly independent over Q, and an arbitrary

number c � 1.

Problem: Find a nonzero vector x such that kxk � ckyk for all y 2M �

n

~

0

o

.

Reference: [Gat84]

Remarks: IntegerGCD, Problem B.1.1, is NC

1

reducible to SV2 [Gat84].

B.1.8 Sylow Subgroups (SylowSub)

Given: A group G.

Problem: Find the Sylow subgroups of G.

Reference: [BSL87]

Remarks: The problem is known to be in P [Kan85], however, the NC question is open

even for solvable groups [BSL87]. For a permutation group G, testing membership in G,

�nding the order of G, �nding the center of G, and �nding a composition series of G are all

known to be in NC [BSL87]. Babai, Seres, and Luks present several other open questions

involving group theory [BSL87].

B.1.9 Two Variable Linear Programming (TVLP)

Given: A linear system of inequalities Ax � b over the rationals, where each row of A has

at most two nonzero elements.

Problem: Find a feasible solution if one exists.

Reference: [LMR86]



Part II: Open Problems � 91

Remarks: There is a known poly-log algorithm that uses n

log

k

n

processors on a CREW-

PRAM [LMR86].

B.1.10 Univariate Polynomial Factorization over Q (UPFQ)

Given: An n

th

degree polynomial p 2 Q[x].

Problem: Compute the factorization of p over Q.

Reference: [Gat84]

Remarks: UPFQ is NC

1

reducible to short vectors (Problem B.1.6) [Gat84].

B.2 Graph Theory Problems

B.2.1 Edge-Weighted Matching (EWM)

Given: A graph G with positive integer weights on its edges.

Problem: Find a matching of maximum weight.

Reference: [KUW86]

Remarks: EWM is in RNC (but not known to be in NC ) if all weights are polynomially

bounded [KUW86]. LFMM, Problem B.4.2 (and hence all of CC ), is NC reducible to

EWM, by assigning weight 2

rank(e)

to edge e.

B.2.2 Bounded Degree Graph Isomorphism (BDGI)

Given: Two graphs G and H . The vertices in G and H have maximum degree at most k,

a constant independent of the sizes of G and H .

Problem: Are G and H isomorphic?

Remarks: Luks showed the problem is in P [FHL80]. Without the degree bound, the

problem is in NP but not known to be in P , nor is it known to be either P -hard or NP -

complete.

B.2.3 Graph Closure (GC)

Given: An undirected graph G = (V;E) and a designated edge e = (u; v).

Problem: Is e in the closure of G? That is, the graph obtained from G by repeatedly

joining non-adjacent pairs of vertices u and v whose degree sum is at least jV j.

Reference: [Khu89]

Remarks: With the following modi�cation, the problem becomes P -complete (Problem

A.2.16): add a set of designated edges E

0

such that only vertices whose degree sum is at

least jV j and whose corresponding edge is in E

0

may be added to the closure [Khu89].

B.2.4 Restricted Lexicographically First Independent Set (RLFMIS)

Given: A planar, bipartite graph G with a numbering on the vertices.

Problem: Find the lexicographically �rst maximal independent set.

Reference: [Miy89]



92 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

Remarks: See Problem A.2.1. Finding the lexicographically �rst maximal subgraph

of maximum degree one in planar, bipartite graphs of degree at most three is P -

complete [Miy89].

B.2.5 Maximal Path (MP)

Given: A graph G with a numbering on the vertices and a designated vertex r.

Problem: Find amaximal path originating from r. That is, a path that cannot be extended

without encountering a node already on the path.

Reference: [AM87b]

Remarks: The lexicographically �rst maximal path problem, Problem A.3.1, is P -complete

even when restricted to planar graphs with maximum degree three. If the maximum degree

of any vertex in G is at most � then there is an algorithm that can �nd a maximal path in

O(� log

3

n) time using n

2

processors [AM87b]. There is also an NC algorithm for �nding

a maximal path in planar graphs [AM87b].

B.2.6 Maximal Independent Set Hypergraph (MISH)

Given: A �nite collection C = fC

1

; : : : ; C

n

g of �nite sets.

Problem: Find a subcollection D = D

1

; : : : ; D

k

of pairwise disjoint members of C such

that for every set S 2 C �D there is a T 2 D, such that S \ T 6= �.

Reference: [BL90, KR90]

Remarks: If C is a collection of two element sets (\dimension 2") then the problem

becomes the maximal independent set problem, which is known to be in NC (see Problem

A.2.1). Beame and Luby give an RNC algorithm for dimensionO(1), as well as an algorithm

for the general problem that is conjectured to be RNC .

B.3 Geometric Problems

B.3.1 2-Oriented Weighted Planar Partitioning (2OWPP)

Given: A set of non-intersecting segments s

1

; : : : ; s

n

in the plane, a set of associated inte-

ger weights w

1

; : : : ; w

n

, and two designated segments r and t. The segments are 2-oriented

meaning that there are only two di�erent possible slopes for the segments.

Problem: Do segments r and t \touch" in the partitioning of the plane constructed by

extending segments in the order of their weights? Segments are extended until they reach

another segment or a previous segment extension.

Reference: [ACG90]

Remarks: The 3-oriented version, Problem A.9.2, in which three di�erent slopes are al-

lowed, is P -complete [ACG90].

B.3.2 Limited Re
ection Ray Tracing (LRRT)

Given: A set of n 
at mirrors of lengths l

1

; : : : ; l

n

; their placements at rational points in the

plane; a source point S; the trajectory of a single beam emitted from S; and a designated



Part II: Open Problems � 93

mirror M .

Problem: Determine ifM is hit by the beam within n re
ections. At the mirrors the angle

of incident of the beam equals the angle of re
ection.

Reference: [GHR91]

Remarks: The general ray tracing problem is to determine if a mirror is ever hit by the

beam. When the mirrors are points, that is have no length, the general problem is in

NC [dlTG90]. In two or more dimensions, the general problem is in PSPACE . In three

dimensions, with mirrors placed at rational points, the general problem is PSPACE -hard.

The general problem is open for all mirrors of a �xed size as well. See [RTY90] for a detailed

discussion.

B.3.3 Restricted Plane Sweep Triangulation (SWEEP)

Given: An n vertex polygon P without holes.

Problem: Find the triangulation computed by the plane sweep triangulation algorithm.

Reference: [ACG90]

Remarks: The problem of �nding some arbitrary triangulation is in NC [Goo89]. If the

polygon is allowed to have holes then the problem is P -complete [ACG90]. See Problem

A.9.1

B.3.4 Successive Convex Hulls (SCH)

Given: A set S of n points in dimension d and a designated point p.

Problem: Determine if p is in the i

th

remaining convex hull that is formed by repeatedly

�nding and removing convex hulls from S.

Reference: [Cha85, Ata87, Cha89]

Remarks: The problem is open for two dimensions and up.

B.3.5 Unit Length Visibility Layers (ULVL)

Given: A set of n unit length, horizontal, non-intersecting line segments in the plane, a

designated segment s, and an integer d.

Problem: Is the label assigned to segment s by the visibility layering process d? The

visibility layering process is repeatedly to compute and delete the upper envelope of the

remaining set of segments and label those segments with the current depth. The upper

envelope consists of those segments visible from the point (0;+1).

Reference: [ACG90]

Remarks: The problem is P -complete if the restriction on unit lengths is removed [ACG90].

See Problem A.9.3.

B.4 CC Problems

Several reseachers independently suggested looking at the complexity of the Comparator

Circuit Value Problem, or CCVP (Problem B.4.1). CC is the class of problems reducible

to CCVP (Mayr and Subramanian [MS89]). Problems in this section are all equivalent to,



94 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

i.e. NC interreducible with, CCVP. While the evidence is less compelling than that for

RNC problems (Section B.5), it is generally considered unlikely that these problems are

P -complete, because of the lack of fanout in comparator circuits. On the other hand, no fast

parallel algorithms are known for them, with the partial exception of

p

n log

O(1)

n algorithms

for CCVP and some related problems. (Such algorithms were independently discovered by

D. Soroker, unpublished, and by Mayr and Subramanian [MS89]. Richard Anderson, also

unpublished, has improved the algorithms so as to use only

p

n processors. Mayr and

Subramanian note that these algorithms are P -complete, in the sense of Section ??.) It is

known that NL � CC � P [MS89].

Most of the results described in this subsection come from [MS89]. See also [Sub90,

Sub89, Fed89].

B.4.1 Comparator Circuit Value Problem (CCVP)

Given: An encoding � of a circuit � composed of comparator gates plus inputs x

1

; : : : ; x

n

.

A comparator gate outputs the minimum of its two inputs on its �rst output wire and

outputs the maximum of its two inputs on its second output wire. The gate is further

restricted so that each output has fanout at most one.

Problem: Does � on input x

1

; : : : ; x

n

output 1?

Reference: [Coo, MS89]

Remarks: Cook shows that CCVP is NC equivalent to computing the lexicographically

�rst maximal matching in a bipartite graph. Mayr and Subramanian [MS89] show that this

problem is NC equivalent to stable marriage (Problem B.4.3).

B.4.2 Lexicographically First Maximal Matching (LFMM)

Given: A graph G with an ordering on its edges.

Problem: Find the lexicographically �rst maximal matching.

Reference: [Coo, MS89]

Remarks: LFMM is NC equivalent to Comparator CVP (Problem B.4.1) [MS89]. This

problem resembles the lexicographically �rst maximal independent set problem, Problem

A.2.1, known to be P -complete. A P -completeness proof for LFMM would imply that

edge-weighted matching (Problem B.2.1) is also P -complete.

B.4.3 Stable Marriage (SM)

Given: For each member of a community of n men and n women, a ranking of the opposite

sex according to their preference for a marriage partner.

Problem: Find n marriages such that the set of marriages is stable. The set is unstable

if a man and woman exist who are not married to each other but prefer each other to their

actual mates.

Reference: [MS89]

Remarks: See, e.g., [Gib85] for background on the Stable Marriage problem. SM is

NC equivalent to Comparator CVP (Problem B.4.1) [MS89]. Several variations on Stable

Marriage are also known to be equivalent to CCVP; see [MS89].



Part II: Open Problems � 95

B.5 RNC Problems

The problems in this subsection are all known to be in RNC or FRNC , but not known to

be in NC . A proof that any of them is P -complete would be almost as unexpected as a

proof that NC = P . See Section 7.6 for more discussion.

B.5.1 Directed or Undirected Depth First Search (DFS)

Given: A graph G and a vertex s.

Problem: Construct the depth �rst search numbering of G starting from vertex s.

Reference: [AA88, AAK90]

Remarks: RNC algorithms are now known for both the undirected [AA88] and di-

rected [AAK90] cases, subsuming earlier RNC results for planar graphs [Smi86]. For DAGs,

DFS is in NC [Gre88a].

B.5.2 0-1 Maximum Flow (0-1 MaxFlow)

Given: Directed graph G with each edge labeled in unary with a capacity c

i

� 0 and two

distinguished vertices, source s and sink t.

Problem: Find a maximum 
ow.

Reference: [Fea84, KUW86]

Remarks: [Fea84] shows the problem of �nding the value of the maximum 
ow to be

in RNC . [KUW86] show how to construct a maximum 
ow, also in RNC . Both problems

remain in RNC when capacities are polynomially bounded, but are P -complete when ca-

pacities are arbitrary (Problem A.4.4). Venkateswaran [Ven90] shows that 0-1 MaxFlow is

hard for AC

1

.

B.5.3 Maximum Matching (MM)

Given: A graph G.

Problem: Find a maximum matching of G. A matching is a subset of the edges of G such

that no two edges of the subset are adjacent in G. A matching is a maximum matching if

no matching of larger cardinality exists.

Reference: [Fea84, KUW86, MVV87]

Remarks: Feather [Fea84] shows that the problem of �nding the size of maximummatching

is in RNC . Karp, Upfal, and Wigderson [KUW86] gave the �rst RNC algorithm for �nding

the maximum matching. A more e�cient algorithm was given by Mulmuley, Vazirani,

and Vazirani [MVV87]. Karlo� shows how any RNC algorithm for matching can be made

errorless [Kar86]. Maximum edge-weighted matching for unary edge weights and maximum

vertex-weighted matching for binary vertex weights are also known to be in RNC [KUW86,

MVV87].

B.5.4 Perfect Matching Existence (PME)

Given: A graph G.



96 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

Problem: Does G have a perfect matching? A perfect matching is a matching where each

vertex is incident to one edge in the matching.

Reference: [KUW86, MVV87]

Remarks: See remarks for Problem B.5.3. PME seems to be the simplest of the matching

problems not known to be in NC .



Part II: Open Problems � 97

C Undigested Papers

Listed below are a few papers we are aware of, but have not yet added to the main problem

lists. They will appear in the �nal version.

[KKS91, KS88]

References

[BGS90] J. L. Balc�azar, J. Gabarr�o, and M. Santha. Deciding bisimilarity is P-complete.

Technical Report LSI-90-25, Universitat Polit�ecnica de Catalunya, 1990.

[Den84] L. Denenberg. Computational Complexity of Logical Problems. PhD thesis, Har-

vard University, 1984.

[DL84] L. Denenberg and H. R. Lewis. The complexity of the satis�ablility problem for

Korn formulas. Theoretical Computer Science, 30(3):319{341, 1984.

[God87] G. Godbeer. The computational complexity of the stable con�guration problem

for connectionist models. Master's thesis, University of Toronto, 1987.

[GR88] A. M. Gibbons and W. Rytter. E�cient Parallel Algorithms. Cambridge Univer-

sity Press, Cambridge, UK, 1988.

[Lin91] Y. Lin. Parallel Computational Methods in Integer Linear Programming. PhD

thesis, The City University of New York, 1991.

[Lip87] J. Lipscomb. On the computational complexity of �nding a connectionist model's

stable state vectors. Master's thesis, University of Toronto, 1987.

[LKPar] Y. Lin-Kriz and V. Pan. On the parallel complexity of integer linear programming,

GCD and the iterated mod function. In Proceedings of the Third Annual ACM-

SIAM Symposium on Discrete Algorithms, to appear.

[SH90] R. Sarnath and X. He. A P-complete graph partition problem. Theoretical Com-

puter Science, 76:343{351, 1990.

[Ste91a] I.A. Stewart. On a greedy heuristic for �nding small dominating sets. Technical

report, University of Newcastle upon Tyne, 1991. Submitted for publication.

[Ste91b] I.A. Stewart. On two approximation algorithms for the clique problem. Technical

report, University of Newcastle upon Tyne, 1991.



98 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

References

[AA88] A. Aggarwal and R. Anderson. A random NC algorithm for depth �rst search.

Combinatorica, 8(1):1{12, 1988.

[AAK90] A. Aggarwal, R. Anderson, and M. Kao. Parallel depth-�rst search in general

directed graphs. SIAM Journal on Computing, 19(2):397{409, 1990.

[ABI86] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm

for the maximal independent set problem. Journal of Algorithms, 7:567{583,

1986.

[ACG90] M. J. Atallah, P. Callahan, and M. T. Goodrich. P-complete geometric prob-

lems. In Proceedings of the 1990 ACM Symposium on Parallel Algorithms and

Architectures, pages 317{326, Crete, Greece, July 1990.

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.

[All89] Eric W. Allender. P-uniform circuit complexity. Journal of the ACM,

36(4):912{928, October 1989.

[AM84a] R. J. Anderson and E. Mayr. Parallelism and greedy algorithms. Technical

Report STAN-CS-84-1003, Computer Science Department, Stanford University,

April 1984.

[AM84b] J. Avenhaus and K. Madlener. The Nielsen reduction and P -complete problems

in free groups. Theoretical Computer Science, 32(1,2):61{76, 1984.

[AM84c] J. Avenhaus and K. Madlener. On the complexity of intersection and conjugacy

in free groups. Theoretical Computer Science, 32(3):279{295, 1984.

[AM87a] R. Anderson and E. Mayr. Parallelism and greedy algorithms. In Advances in

Computing Research, volume 4, pages 17{38. JAI Press, 1987. Also Stanford

Technical Report STAN-CS-84-1003, 1984.

[AM87b] R. Anderson and E. Mayr. Parallelism and the maximal path problem. Infor-

mation Processing Letters, 24(2):121{126, 1987.

[AMW89] R. Anderson, E. Mayr, and M. Warmuth. Parallel approximation algorithms

for bin packing. Information and Computation, 82(3):262{277, 1989.

[And85] R. J. Anderson. The Complexity of Parallel Algorithms. PhD thesis, Stanford

University, 1985. Stanford Computer Science Department TR STAN-CS-86-

1092.

[And87] R. J. Anderson. A parallel algorithm for the maximal path problem. Combina-

torica, 7(4):315{326, 1987.



References � 99

[And88] Richard Anderson. Reduction of lexicographic depth-�rst search to breadth-

depth search. Private communication, 1988.

[AP87] F. Afrati and C. H. Papadimitriou. The parallel complexity of simple chain

queries. In Proceedings of the Sixth Annual ACM Symposium on Principles of

Database Systems, pages 210{213, 1987.

[Ata87] M. J. Atallah. Posed the successive convex hull problem. Cited in [ACG90],

1987.

[BBMS88] A. Bertoni, M. C. Bollina, G. Mauri, and N. Sabadini. On characterizing classes

of e�ciently parallelizable problems. In Proceedings of the International Work-

shop on Parallel Computing and VLSI, pages 13{26. VLSI: Algorithms and

Architectures, North-Holland, Amsterdam, 1988.

[BCMV83] B. von Braunm�uhl, S. A. Cook, K. Mehlhorn, and R. Verbeek. The recognition

of deterministic CFL's in small time and space. Information and Control, 56(1-

2):34{51, January/February 1983.

[BCP83] A. Borodin, S. Cook, and N. Pippenger. Parallel computation for well-endowed

rings and space-bounded probabilistic machines. Information and Control, 58(1-

3):113{136, 1983.

[BDAP88] D. P. Bovet, S. De Agostino, and R. Petreschi. Parallelism and the feedback

vertex set problem. Information Processing Letters, 28(2):81{85, June 1988.

[Ber91] Bonnie Berger. The fourth moment method. In Proceedings of the Second

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 373{383. ACM,

1991.

[BGH82] A. Borodin, J. von zur Gathen, and J. E. Hopcroft. Fast parallel matrix and

GCD computations. In 23rd Annual Symposium on Foundations of Computer

Science, pages 65{71, Chicago, IL, November 1982. IEEE.

[BHC86] P. W. Beame, H. J. Hoover, and S. A. Cook. Log depth circuits for division

and related problems. SIAM Journal on Computing, 15(4):994{1003, November

1986.

[BIS90] D. A. Barrington, N. Immerman, and H. Straubing. On uniformity withinNC

1

.

Journal of Computer and System Sciences, 41(3):274{306, December 1990.

[BK86] J. Boyar and H. Karlo�. Coloring planar graphs in parallel. Manuscript, 1986.

[BL90] Paul Beame and Michael Luby. Parallel search for maximal independence given

minimal dependence. In Proceedings of the First Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, pages 212{218. ACM, 1990.

[BM76] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. MacMillan,

1976. Revised paperback edition, 1977.



100 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

[Bor77] A. Borodin. On relating time and space to size and depth. SIAM Journal on

Computing, 6(4):733{744, December 1977.

[Bor82] Allan Borodin. Structured vs. general models in computational complexity.

L'Enseignement Math�ematique, XXVIII(3-4):171{190, July-December 1982.

Also in [L'E82, pages 47{65].

[BS90] B. Berger and P. Shor. Approximation algorithms for the maximum acyclic

subgraph problem. In Proceedings of the First Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 236{243. ACM, 1990.

[BSL87] L. Babai, S. Seres, and E. M. Luks. Permutation groups in NC. In Proceedings

of the Nineteenth Annual ACM Symposium on Theory of Computing, pages

409{420, New York, NY, May 1987.

[Cha85] B. Chazelle. On the convex layers of a planar set. IEEE Transactions on

Information Theory, IT-31(4):509{517, 1985.

[Cha89] B. Chazelle. Posed the successive convex hull problem. Cited in [ACG90], 1989.

[CKS81] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of

the ACM, 28(1):114{133, January 1981.

[CM89] J. Cheriyan and S. N. Maheshwari. The parallel complexity of �nding a blocking


ow in a 3-layer network. Information Processing Letters, 31(3):157{161, 1989.

[Coo] S. A. Cook. The comparator circuit value problem. personal communication.

[Coo71a] S. A. Cook. Characterizations of pushdown machines in terms of time-bounded

computers. Journal of the ACM, 18(1):4{18, January 1971.

[Coo71b] S. A. Cook. The complexity of theorem proving procedures. In Proceedings of

the Third Annual ACM Symposium on Theory of Computing, pages 151{158,

Shaker Heights, OH, May 1971.

[Coo74] S. A. Cook. An observation on time-storage trade o�. Journal of Computer

and System Sciences, 9(3):308{316, December 1974.

[Coo79] S. A. Cook. Deterministic CFL's are accepted simultaneously in polynomial

time and log squared space. In Proceedings of the Eleventh Annual ACM Sym-

posium on Theory of Computing, pages 338{345, Atlanta, GA, April-May 1979.

[Coo81] S. A. Cook. Towards a complexity theory of synchronous parallel computation.

L'Enseignement Math�ematique, XXVII(1{2):99{124, January-June 1981. Also

in [L'E82, pages 75{100].

[Coo82] S. A. Cook. Reduction of the circuit value problem to feasible linear program-

ming. Private communication, 1982.

[Coo85] S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information

and Control, 64(1{3):2{22, January/February/March 1985.



References � 101

[Cos88] S. S. Cosmadakis. The word and generator problems for lattices. Information

and Computation, 77(3):192{217, 1988.

[CS76a] A. K. Chandra and L. J. Stockmeyer. Alternation. In 17th Annual Symposium

on Foundations of Computer Science, pages 98{108, Houston, TX, October

1976. IEEE. Preliminary Version.

[CS76b] S. A. Cook and R. Sethi. Storage requirements for deterministic polynomial time

recognizable languages. Journal of Computer and System Sciences, 13(1):25{37,

1976.

[CT90] Ashok K. Chandra and Martin Tompa. The complexity of short two-person

games. Discrete Applied Mathematics, 29:21{33, 1990.

[DC80] P. W. Dymond and S. A. Cook. Hardware complexity and parallel computation.

In 21st Annual Symposium on Foundations of Computer Science, pages 360{

372, Syracuse, NY, October 1980. IEEE.

[DC89] P. W. Dymond and S. A. Cook. Complexity theory of parallel time and hard-

ware. Information and Computation, 80(3):205{226, March 1989.

[DK91] Arthur L. Delcher and S. Rao Kosaraju. An NC algorithm for evaluating mono-

tone planar circuits. manuscript, 1991.

[DKM84] C. Dwork, P. C. Kanellakis, and J. C. Mitchell. On the sequential nature of

uni�cation. Journal of Logic Programming, 1:35{50, 1984.

[DKS88] C. Dwork, P. C. Kanellakis, and L. J. Stockmeyer. Parallel algorithms for term

matching. SIAM Journal on Computing, 17(4):711{731, 1988.

[DLR79] D. Dobkin, R. J. Lipton, and S. Reiss. Linear programming is log-space hard

for P. Information Processing Letters, 8(2):96{97, February 1979.

[dlTG90] P. de la Torre and R. Greenlaw. Discrete ray-tracing is in NC, 1990. Personal

communication.

[dlTK88] P. de la Torre and C. Kruskal. Fast parallel algorithms for all sources lexico-

graphic search and path �nding problems. Manuscript (appeared as University

of Maryland technical report CS-TR 2283, 1989), 1988.

[dlTK89] P. de la Torre and C. Kruskal. Fast and e�cient parallel algorithms for single

source lexicographic depth-�rst search, breadth-�rst search and topological-�rst

search. Manuscript, 1989.

[DR80] D. P. Dobkin. and S. Reiss. The complexity of linear programming. Theoretical

Computer Science, 11(1):1{18, 1980.

[DT85] Patrick W. Dymond and Martin Tompa. Speedups of deterministic machines

by synchronous parallel machines. Journal of Computer and System Sciences,

30(2):149{161, April 1985.



102 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

[Dym80] P. W. Dymond. Simultaneous Resource Bounds and Parallel Computation. PhD

thesis, University of Toronto, August 1980. Technical Report 145/80.

[Fea84] T. Feather. The parallel complexity of some 
ow and matching problems. Mas-

ter's thesis, Department of Computer Science, University of Toronto, 1984. TR

174/84.

[Fed89] T. Feder. A new �xed point approach to stable networks and stable marriages.

In Proceedings of the Twenty First Annual ACM Symposium on Theory of Com-

puting, Seattle, WA, May 1989.

[FF62] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,

1962.

[FHL80] M. Furst, J. Hopcroft, and E. Luks. Polynomial time algorithms for permutation

groups. In 21st Annual Symposium on Foundations of Computer Science, pages

36{41, Syracuse, NY, October 1980. IEEE.

[Fic91] Faith E. Fich. The parallel random access machine. In John H. Reif, editor,

Synthesis of Parallel Algorithms. Morgan Kaufman, San Mateo, CA, 1991. To

appear.

[FT88] Faith E. Fich and Martin Tompa. The parallel complexity of exponentiating

polynomials over �nite �elds. Journal of the ACM, 35(3):651{667, July 1988.

[FW78] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings

of the Tenth Annual ACM Symposium on Theory of Computing, pages 114{118,

San Diego, CA, May 1978.

[Gal74] Zvi Galil. Two way deterministic pushdown automaton languages and some

open problems in the theory of computation. In 15th Annual Symposium on

Switching and Automata Theory, pages 170{177, 1974. Published as [Gal77].

[Gal77] Zvi Galil. Some open problems in the theory of computation as questions about

two-way deterministic pushdown automaton languages. Mathematical Systems

Theory, 10:211{228, 1977.

[Gat84] J. von zur Gathen. Parallel algorithms for algebraic problems. SIAM Journal

on Computing, 13(4):802{824, November 1984.

[Gat87] J. von zur Gathen. Computing powers in parallel. SIAM Journal on Computing,

16(5):930{945, October 1987.

[GHR91] R. Greenlaw, H. Hoover, and W. L. Ruzzo. A compendium of problems complete

for P , 1991. This work.

[Gib85] A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, Cam-

bridge, 1985.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, 1979.



References � 103

[Gol77] L. M. Goldschlager. The monotone and planar circuit value problems are log

space complete for P. SIGACT News, 9(2):25{29, Summer 1977.

[Gol80] L. M. Goldschlager. A space e�cient algorithm for the monotone planar circuit

value problem. Information Processing Letters, 10(1):25{27, 1980.

[Gol81] L. M. Goldschlager. �-productions in context-free grammars. Acta Informatica,

16(3):303{308, 1981.

[Gol82] L. M. Goldschlager. A universal interconnection pattern for parallel computers.

Journal of the ACM, 29(4):1073{1086, October 1982.

[Goo83] G. B. Goodrich. The Complexity of Finite Languages. PhD thesis, University

of Washington, 1983.

[Goo89] M. T. Goodrich. Triangulating a polygon in parallel. Journal of Algorithms,

10(3):327{351, 1989.

[GP86] L. M. Goldschlager and I. Parberry. On the construction of parallel comput-

ers from various bases of Boolean functions. Theoretical Computer Science,

43(1):43{58, 1986.

[Gre88a] R. Greenlaw. Parallel complexity results about greedy breadth and depth �rst

search. Technical Report 88{07{05, Department of Computer Science, Univer-

sity of Washington, July 1988. Submitted for publication.

[Gre88b] Raymond Greenlaw. The Complexity of Parallel Computations: Inherently Se-

quential Algorithms and P-Complete Problems. PhD thesis, University of Wash-

ington, December 1988. Also, TR 88{12{01.

[Gre89] Raymond Greenlaw. Ordered vertex removal and subgraph problems. Journal

of Computer and System Sciences, 39(3):323{342, December 1989.

[Gre90] R. Greenlaw. The parallel complexity of approximation algorithms for the max-

imum acyclic subgraph problem. Technical Report 90-61, University of New

Hampshire, 1990. To appear Mathematical Systems Theory .

[Grear] Raymond Greenlaw. A model classifying algorithms as inherently sequential

with applications to graph searching. Information and Computation, to appear.

[GS89] M. Goldberg and T. Spencer. A new parallel algorithm for the maximal inde-

pendent set problem. SIAM Journal on Computing, 18:419{427, 1989.

[GSS82] L. M. Goldschlager, R. A. Shaw, and J. Staples. The maximum 
ow problem

is log space complete for P. Theoretical Computer Science, 21:105{111, 1982.

[Har79] M. Harrison. Introduction to Formal Language Theory. Addison Wesley, 1979.

[H�as87] Johan H�astad. Computational Limitations of Small-Depth Circuits. ACM doc-

toral dissertation award, 1986. MIT Press, 1987.



104 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

[H�as88] Johan H�astad. One-way permutations in NC

0

. Information Processing Letters,

26:153{155, 1988.

[Her90] J. Hershberger. Upper envelope onion peeling. In G. Goos and J. Hartmanis,

editors, 2nd Scandinavian Workshop on Algorithm Theory, volume 447 of Lec-

ture Notes in Computer Science, pages 368{379. Springer-Verlag, Berlin, New

York, 1990.

[HM86] D. Helmbold and E. Mayr. Perfect graphs and parallel algorithms. In Inter-

national Conference on Parallel Processing, pages 853{860. IEEE Computer

Society, 1986.

[HM87] D. Helmbold and E. Mayr. Fast scheduling algorithms on parallel computers.

Advances in Computing Research, 1987.

[Hon84] J. W. Hong. Similarity and duality in computation. Information and Control,

62:109{128, 1984.

[Hoo90] H. J. Hoover. Feasible real functions and arithmetic circuits. SIAM Journal on

Computing, 19(1):182{204, 1990.

[Hoo91] H. J. Hoover. Real functions, contraction mappings, and P-completeness. In-

formation and Computation, 93(2):333{349, 1991.

[HS84] E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Computer

Science Press, Rockville, Md., 1984.

[HS87] P. Hajnal and E. Szemeredi. Brooks coloring in parallel. Manuscript, 1987.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 1979.

[HY87] X. He and Y. Yesha. A nearly optimal parallel algorithm for constructing depth

�rst spanning trees in a planar graph, 1987. Manuscript.

[Imm81] N. Immerman. Number of quanti�ers is better than number of tape cells. Jour-

nal of Computer and System Sciences, 22(3):384{406, 1981.

[Imm83] N. Immerman. Languages which capture complexity classes (preliminary re-

port). In Proceedings of the Fifteenth Annual ACM Symposium on Theory of

Computing, pages 347{354, Boston, MA, April 1983.

[Ita78] A. Itai. Two{commodity 
ow. Journal of the ACM, 25(4):596{611, 1978.

[JL76] N. D. Jones and W. T. Laaser. Complete problems for deterministic polynomial

time. Theoretical Computer Science, 3(2):105{117, 1976.

[JPY88] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local

search? Journal of Computer and System Sciences, 37(1):79{100, 1988.



References � 105

[JV82] D. B. Johnson and S. M. Venkatesan. Parallel algorithms for minimum cuts

and maximum 
ows in planar networks (preliminary version). In 23rd Annual

Symposium on Foundations of Computer Science, pages 244{254, Chicago, IL,

November 1982. IEEE.

[Kan85] W. M. Kantor. Sylow's theorem in polynomial time. Journal of Computer and

System Sciences, 30(3):359{394, 1985.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and

J. W. Thatcher, editors, Complexity of Computer Computations, pages 85{104.

Plenum Press, New York, 1972.

[Kar84] R. M. Karp. Talk at the University of Toronto, 1984.

[Kar86] Howard Karlo�. A las vegas RNC algorithm for maximum matching. Combi-

natorica, 6(4):387{391, 1986.

[Kas86] S. Kasif. On the parallel complexity of some constraint satisfaction problems.

In Proceedings AAAI-86, pages 349{353, 1986.

[Kha79] L. G. Khachian. A polynomial time algorithm for linear programming. Dok-

lady Akademii Nauk SSSR, n.s., 244(5):1093{1096, 1979. English translation in

Soviet Math. Dokl. 20, 191{194.

[Khu89] S. Khuller. On computing graph closures. Information Processing Letters,

31(5):249{255, 1989.

[KKS91] Dimitris Kavadias, Lefteris M. Kirousis, and Paul Spirakis. the complexity of

the reliable connectivity problem. Information Processing Letters, 39:245{252,

1991.

[KLS89] G. A. P. Kindervater, J. K. Lenstra, and D. B. Shmoys. The parallel complexity

of TSP heuristics. Journal of Algorithms, 10(2):249{270, 1989.

[KN88] M. Karchmer and J. Naor. A fast parallel algorithm to color a graph with �

colors. Journal of Algorithms, 9(1):83{91, 1988.

[Ko90] K. Ko. Inverting a one-to-one real function is inherently sequential. In S. Buss

and P. Scott, editors, In Feasible Mathematics, A Mathematical Sciences Insti-

tute Workshop, pages 239{257. Birkhauser, Ithaca, New York, 1990.

[Kos90] S. Rao Kosaraju. On the parallel evaluation of classes of circuits. In K. V.

Nori and C. E. Veni Madhavan, editors, Foundations of Software Technology

and Theoretical Computer Science, volume 472 of Lecture Notes in Computer

Science, pages 232{237. Springer, 1990.

[Koz77] D. Kozen. Complexity of �nitely presented algebras. In Proceedings of the Ninth

Annual ACM Symposium on Theory of Computing, pages 164{177, Boulder,

CO, May 1977.



106 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

[KR89] H. J. Karlo� and W. L. Ruzzo. The iterated mod problem. Information and

Computation, 80(3):193{204, March 1989.

[KR90] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory

machines. In Jan van Leeuwan, editor, Handbook of Theoretical Computer Sci-

ence, volume A: Algorithms and Complexity, chapter 17, pages 869{941. M.I.T.

Press/Elsevier, 1990.

[KS88] Lefteris M. Kirousis and Paul Spirakis. Probabilistic log-space reductions and

problems prababilistically hard for p. In Proceedings, SWAT, volume 318 of

Lecture Notes in Computer Science, pages 163{175. Springer, 1988.

[KSS89] L. Kirousis, M. Serna, and P. Spirakis. The parallel complexity of the subgraph

connectivity problem. In 30th Annual Symposium on Foundations of Computer

Science, pages 294{299, Research Triangle Park, NC, October 1989. IEEE.

[KUW85] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is

in random NC. In Proceedings of the Seventeenth Annual ACM Symposium on

Theory of Computing, pages 22{32, Providence, RI, May 1985.

[KUW86] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a maximum matching

is in random NC. Combinatorica, 6(1):35{48, 1986.

[KUW88] R. M. Karp, E. Upfal, and A. Wigderson. The complexity of parallel search.

Journal of Computer and System Sciences, 36:225{253, 1988.

[KW85] R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal

independent set problem. Journal of the ACM, 32(4):762{773, 1985.

[Lad75] R. E. Ladner. The circuit value problem is log space complete for P. SIGACT

News, 7(1):18{20, January 1975.

[Law76] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rine-

hart and Winston, New York, 1976.

[L'E82] Logic and Algorithmic, An International Symposium Held in Honor of Ernst

Specker, Z�urich, February 5{11, 1980. Monographie No. 30 de L'Enseignement

Math�ematique, Universit�e de Gen�eve, 1982.

[Lei92] F. Thomas Leighton. Introduction to Parallel Algorithms and Architectures:

Arrays, Trees, Hypercubes. Morgan Kaufmann, 1992.

[LF80] R. E. Ladner and M. J. Fischer. Parallel pre�x computation. Journal of the

ACM, 27(4):831{838, October 1980.

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lov�asz. Factoring polynomials with

rational coe�cients. Mathematische Annalen, 261:513{534, 1982.



References � 107

[LMR86] G. S. Lueker, N. Megiddo, and V. Ramachandran. Linear programming with

two variables per inequality in poly-log time. In Proceedings of the Eighteenth

Annual ACM Symposium on Theory of Computing, pages 196{205, Berkeley,

CA, May 1986.

[LP82] H. R. Lewis and C. H. Papadimitriou. Symmetric space-bounded computation.

Theoretical Computer Science, 19:161{187, 1982.

[LR89] Tak Wah Lam and Walter L. Ruzzo. The power of parallel pointer manipula-

tion. In Proceedings of the 1989 ACM Symposium on Parallel Algorithms and

Architectures, pages 92{102, Santa Fe, NM, June 1989.

[LSH65] P. M. Lewis, R. E. Stearns, and J. Hartmanis. Memory bounds for recognition

of context{free and context{sensitive languages. In Proc. 6

th

IEEE Symp. on

Switching Theory and Logic Design, pages 191{202. IEEE Computer Society,

1965.

[LT82] T. Lengauer and R. E. Tarjan. Asymptotically tight bounds on time-space

trade-o�s in a pebble game. Journal of the ACM, 29(4):1087{1130, October

1982.

[Lub84] M. Luby. Private communication, 1984.

[Lub86] M. Luby. A simple parallel algorithm for the maximal independent set problem.

SIAM Journal on Computing, 15(4):1036{1053, 1986.

[LW87] T. Lengauer and K. W. Wagner. The correlation between the complexities of

the nonhierarchical and hierarchical versions of graph problems. In 4th Annual

Symposium on Theoretical Aspects of Computer Science, pages 100{113, 1987.

[LZ77] Richard J. Lipton and Yechezkel Zalcstein. Word problems solvable in log space.

Journal of the ACM, 24(3):522{526, 1977.

[McC81] W. F. McColl. Planar crossovers. IEEE Transactions on Computers, C-30(3),

1981.

[Miy89] Satoru Miyano. The lexicographically �rst maximal subgraph problems: P-

completeness and NC algorithms. Mathematical Systems Theory, 22(1):47{73,

1989.

[MR85] G. L. Miller and J. H. Reif. Parallel tree contraction and its applications. In

26th Annual Symposium on Foundations of Computer Science, pages 478{489,

Portland, OR, October 1985. IEEE.

[MRK88] G. L. Miller, V. Ramachandran, and E. Kaltofen. E�cient parallel evaluation

of straight-line code and arithmetic circuits. SIAM Journal on Computing,

17:687{695, 1988.



108 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

[MS89] E. W. Mayr and A. Subramanian. The complexity of circuit value and network

stability. In Proceedings, Structure in Complexity Theory, Fourth Annual Con-

ference, pages 114{123, Eugene, OR, June 1989. IEEE. Full version appears as

Stanford Technical Report STAN-CS-89-1278.

[MVV87] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix

inversion. Combinatorica, 7(1):105{113, 1987.

[Nao87] J. Naor. A fast parallel coloring of planar graphs with �ve colors. Information

Processing Letters, 25(1):51{53, 1987.

[Ofm63] Yu. P. Ofman. On the algorithmic complexity of discrete functions. Soviet

Physics Doklady, 7:589{591, 1963.

[Pap78] C. H. Papadimitriou. E�cient search for rationals. Information Processing

Letters, 8(1):1{4, 1978.

[Par86] Ian Parberry. Parallel speedup of sequential machines: A defense of the parallel

computation thesis. SIGACT News, 18(1):54{67, Summer 1986.

[Par87] Ian Parberry. Parallel Complexity Theory. Research Notes in Theoretical Com-

puter Science. Pitman/Wiley, 1987.

[PF79] N. Pippenger and M. J. Fischer. Relations among complexity measures. Journal

of the ACM, 26(2):361{381, April 1979.

[Pip77] N. Pippenger. Fast simulation of combinational logic networks by machines

without random-access storage. Allerton Conference on Communication, Con-

trol and Computing, 15:25{33, September 1977. Also available as Research

Report RC6582, IBM Research Division, Thomas J. Watson Research Center,

Yorktown Heights, NY, June 1977.

[Pip79] N. Pippenger. On simultaneous resource bounds. In 20th Annual Symposium

on Foundations of Computer Science, pages 307{311, San Juan, Puerto Rico,

October 1979. IEEE.

[Pip80] N. Pippenger. Pebbling. In Proceedings of the Fifth IBM Symposium on Math-

ematical Foundations of Computer Science. IBM Japan, May 1980.

[Pip81] N. Pippenger. Pebbling with an auxiliary pushdown. Journal of Computer and

System Sciences, 23(2):151{165, October 1981.

[Pla84] D. A. Plaisted. Complete problems in the �rst-order predicate calculus. Journal

of Computer and System Sciences, 29(1):8{35, 1984.

[Pos41] E. Post. The Two-Valued Iterative Systems of Mathematical Logic. Number 5

in Annals of Math. Studies. Princeton University Press, 1941.

[PS76] V. R. Pratt and L. J. Stockmeyer. A characterization of the power of vector

machines. Journal of Computer and System Sciences, 12:198{221, 1976.



References � 109

[PSY90] C. H. Papadimitriou, A. A. Sch�a�er, and M. Yannakakis. On the complexity of

local search. In Proceedings of the Twenty Second Annual ACM Symposium on

Theory of Computing, pages 438{445, Baltimore, MD, May 1990.

[PT87] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision

processes. Mathematics of Operations Research, 12(3):441{450, 1987.

[PTC77a] W. J. Paul, R. E. Tarjan, and J. R. Celoni. Correction to \Space bounds for a

game on graphs". Mathematical Systems Theory, 11:85, 1977.

[PTC77b] W. J. Paul, R. E. Tarjan, and J. R. Celoni. Space bounds for a game on graphs.

Mathematical Systems Theory, 10:239{251, 1977. See also [PTC77a].

[PV76] M. S. Paterson and L. G. Valiant. Circuit size is nonlinear in depth. Theoretical

Computer Science, 2:397{400, 1976.

[Ram87] V. Ramachandran. The complexity of minimum cut and maximum 
ow prob-

lems in an acyclic network. Networks, 17(4):387{392, 1987.

[Ram88] V. Ramachandran. Fast and processor-e�cient parallel algorithms for reducible


ow graphs. Technical Report UILU-ENG-88-2257, ACT-103, University of

Illinois at Urbana-Champaign, 1988.

[Rei78] S. Reiss. Rational search. Information Processing Letters, 8(2):87{90, 1978.

[Rei84] J. H. Reif. On synchronous parallel computations with independent probabilis-

tic choice. SIAM Journal on Computing, 13(1):46{56, February 1984.

[Rei85] J. Reif. Depth-�rst search is inherently sequential. Information Processing

Letters, 20(5):229{234, 1985.

[RTY90] John H. Reif, J. D. Tygar, and Akitoshi Yoshida. The computability and com-

plexity of optical beame tracing. In 31st Annual Symposium on Foundations of

Computer Science, pages 106{114, St. Louis, MO, October 1990. IEEE.

[Ruz79] W. L. Ruzzo. Complete pushdown languages. Unpublished manuscript, 1979.

[Ruz80] W. L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System

Sciences, 21(2):218{235, October 1980.

[Ruz81] W. L. Ruzzo. On uniform circuit complexity. Journal of Computer and System

Sciences, 22(3):365{383, June 1981.

[Sav70] W. J. Savitch. Relationships between nondeterministic and deterministic tape

complexities. Journal of Computer and System Sciences, 4(2):177{192, 1970.

[Sch78] T. J. Schaefer. On the complexity of some two-person perfect-information

games. Journal of Computer and System Sciences, 16(2):185{225, 1978.

[Ser90] M. J. Serna. The Parallel Approximability of P-complete Problems. PhD thesis,

Universitat Politecnica de Catalunya, Barcelona, 1990.



110 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

[Sho89] T. Shoudai. The lexicographically �rst topological order problem is NLOG-

complete. Information Processing Letters, 33(3):121{124, 1989.

[Smi86] J. R. Smith. Parallel algorithms for depth �rst searches I: Planar graphs. SIAM

Journal on Computing, 15(3):814{830, 1986.

[Spi87] P. Spirakis. The parallel complexity of deadlock detection. Theoretical Com-

puter Science, 52(1,2):155{163, 1987.

[SS79] W. J. Savitch and M. J. Stimson. Time bounded random access machines with

parallel processing. Journal of the ACM, 26(1):103{118, 1979.

[SS89] M. Serna and P. Spirakis. The approximability of problems complete for P.

In G. Goos and J. Hartmanis, editors, International Symposium on Optimal

Algorithms, volume 401 of Lecture Notes in Computer Science, pages 193{204.

Springer-Verlag, Berlin York, 1989.

[Ste89] I. A. Stewart. Complete problems for symmetric logspace involving free groups.

Technical Report 300, University of Newcastle upon Tyne, 1989. To appear,

Information Processing Letters.

[Ste90] I. A. Stewart. The complexity of restricted versions of the generalized word

problem for free groups. Manuscript, University of Newcastle upon Tyne, sub-

mitted for publication, 1990.

[Sto84] L. J. Stockmeyer. Unpublished notes on the Cat and Mouse Game, 1984.

[Sub89] Ashok Subramanian. A new approach to stable matching problems. Technical

Report STAN-CS-89-1275, Stanford, 1989.

[Sub90] A. Subramanian. The Computational Complexity of the Circuit Value and Net-

work Stability Problems. PhD thesis, Department of Computer Science, Stan-

ford University, 1990.

[Sud78] I. H. Sudborough. On the tape complexity of deterministic context-free lan-

guages. Journal of the ACM, 25(3):405{414, 1978.

[SV84] L. Stockmeyer and U. Vishkin. Simulation of parallel random access machines

by circuits. SIAM Journal on Computing, 13(2):409{422, May 1984.

[SV85] C. A. Schevon and J. S. Vitter. A parallel algorithm for recognizing unordered

depth-�rst search. Technical Report CS-85-21, Brown University, Department

of Computer Science, 1985.

[SW91] Cli�ord Stein and Joel Wein. Approximating the minimum-cost maximum 
ow

is P-complete. Manuscript, September 1991.

[SY] A. A. Sch�a�er and M. Yannakakis. Simple local search problems that are hard

to solve. SIAM Journal on Computing. To appear.



References � 111

[Tom82] M. Tompa. A pebble game that models alternation. Unpublished manuscript,

1982.

[Tom83] M. P. Tompa. Unpublished notes on NC reductions among problems in RP,

1983.

[UVG88] J. D. Ullman and A. Van Gelder. Parallel complexity of logical query programs.

Algorithmica, 3:5{52, 1988.

[Val82a] L. G. Valiant. Reducibility by algebraic projections. L'Enseignement

Math�ematique, XXVIII:253{268, 1982. Also in [L'E82, pages 365{380].

[Val82b] Leslie G. Valiant. Parallel computation. Technical Report TR-16-82, Harvard,

Center of Research in Computing Technology, April 1982. To be presented at

the 7th IBM Symposium on Mathematical Foundations of Computer Science,

Hakone, Kanagawa, Japan, May 24{26, 1982.

[Vav89] S. Vavasis. Gaussian elimination with pivoting is P-complete. SIAM Journal

on Discrete Mathematics, 2(3):413{423, 1989.

[Ven83] H. Venkateswaran. Private communication, 1983.

[Ven89] H. Venkateswaran. Two natural circuits for which interpreted pebbling helps.

Technical Report GIT-ICS-89-23, Georgia Institute of Technology, June 1989.

Submitted for publication.

[Ven90] H. Venkateswaran. The unary maximum 
ow problem is hard for ac

1

. Technical

Report GIT-ICS-90-xx, Georgia Institute of Technology, School of Information

and Computer Science, January 1990.

[VS86] J. S. Vitter and R. A. Simons. New classes for parallel complexity: A study of

uni�cation and other complete problems for P . IEEE Transactions on Com-

puters, TC-35:403{418, May 1986.

[VS88] S. Vishwanathan and M. A. Sridhar. Some results on graph coloring in parallel.

In Proceedings International Conference on Parallel Processing III, pages 299{

303, 1988.

[VSBR83] Leslie G. Valiant, S. Skyum, S. Berkowitz, and C. Racko�. Fast parallel com-

putation of polynomials using few processors. SIAM Journal on Computing,

12(4):641{644, November 1983.

[VT89] H. Venkateswaran and M. Tompa. A new pebble game that characterizes paral-

lel complexity classes. SIAM Journal on Computing, 18(3):533{549, June 1989.

[Wil88] Robert Wilber. White pebbles help. Journal of Computer and System Sciences,

36(2):108{124, April 1988.

[WLS85] C. C. Wang, E. L. Lloyd, and M. L. So�a. Feedback vertex sets and cyclically

reducible graphs. Journal of the ACM, 32(2):296{313, 1985.



112 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

[Yas84] H. Yasuura. On parallel computational complexity of uni�cation. In Proceedings

International Conference on Fifth Generation Computer Systems, pages 235{

243, 1984.



Problem Index � 113

Problem Index

0-1 MaxFlow : : : : : : : : : : : : : : : : : (B.5.2) 95

0-1 Maximum Flow : : : : : : : : : : : (B.5.2) 95

2-Oriented Weighted Planar

Partitioning : : : : : : : : : : : : : : : : :(B.3.1) 92

2DPDA : : : : : : : : : : : : : : : : : : : : : : :(A.7.8) 73

2OWPP : : : : : : : : : : : : : : : : : : : : : : (B.3.1) 92

3-Oriented Weighted Planar

Partitioning : : : : : : : : : : : : : : : : :(A.9.2) 83

3OWPP : : : : : : : : : : : : : : : : : : : : : : (A.9.2) 83

ABFS : : : : : : : : : : : : : : : : : : : : : : : : (A.3.5) 61

ACMDP : : : : : : : : : : : : : : : : : : : : : : (A.8.3) 75

AGAP : : : : : : : : : : : : : : : : : : : : : : : : (A.2.3) 51

Alternating Breadth First

Search : : : : : : : : : : : : : : : : : : : : : : (A.3.5) 61

Alternating Graph Accessibility

Problem : : : : : : : : : : : : : : : : : : : : (A.2.3) 51

Alternating Monotone Fanout 2

CVP : : : : : : : : : : : : : : : : : : : : : : : :(A.1.4) 48

AM2CVP : : : : : : : : : : : : : : : : : : : : :(A.1.4) 48

ArithCVP : : : : : : : : : : : : : : : : : : : : (A.1.8) 49

Arithmetic Circuit Value

Problem (*) : : : : : : : : : : : : : : : : :(A.1.8) 49

Average Cost Markov Decision

Process : : : : : : : : : : : : : : : : : : : : : (A.8.3) 75

BDGI : : : : : : : : : : : : : : : : : : : : : : : : (B.2.2) 91

BDS : : : : : : : : : : : : : : : : : : : : : : : : : : (A.3.3) 60

Boolean Recurrence Equation : (A.8.24) 82

Bounded Degree Graph

Isomorphism : : : : : : : : : : : : : : : : (B.2.2) 91

Breadth-Depth Search : : : : : : : : (A.3.3) 60

BRE : : : : : : : : : : : : : : : : : : : : : : : : : :(A.8.24) 82

Cat & Mouse : : : : : : : : : : : : : : : : : (A.11.3) 87

CCVP : : : : : : : : : : : : : : : : : : : : : : : : (B.4.1) 94

CFG�mem : : : : : : : : : : : : : : : : : : : : (A.7.4) 72

CFGempty : : : : : : : : : : : : : : : : : : : (A.7.2) 71

CFGinf : : : : : : : : : : : : : : : : : : : : : : : (A.7.3) 72

CFGmem : : : : : : : : : : : : : : : : : : : : : (A.7.1) 71

Circuit Value Problem : : : : : : : : (A.1.1) 47

CM : : : : : : : : : : : : : : : : : : : : : : : : : : :(A.11.3) 87

Comparator Circuit Value

Problem : : : : : : : : : : : : : : : : : : : : (B.4.1) 94

Conjugate Subgroups : : : : : : : : : (A.8.17) 79

Context-Free Grammar

�-Membership : : : : : : : : : : : : : : : (A.7.4) 72

Context-Free Grammar Empty (A.7.2) 71

Context-Free Grammar In�nite (A.7.3) 72

Context-Free Grammar

Membership : : : : : : : : : : : : : : : : (A.7.1) 71

CS : : : : : : : : : : : : : : : : : : : : : : : : : : : :(A.8.17) 79

CVP : : : : : : : : : : : : : : : : : : : : : : : : : :(A.1.1) 47

DFS : : : : : : : : : : : : : : : : : : : : : : : : : : (B.5.1) 95

Directed or Undirected Depth

First Search : : : : : : : : : : : : : : : : :(B.5.1) 95

Discounted Markov Decision

Process : : : : : : : : : : : : : : : : : : : : : (A.8.2) 74

DMDP : : : : : : : : : : : : : : : : : : : : : : : (A.8.2) 74

Edge Maximal Acyclic

Subgraph : : : : : : : : : : : : : : : : : : : (A.2.15) 57

Edge-Weighted Matching : : : : : :(B.2.1) 91

EMAS : : : : : : : : : : : : : : : : : : : : : : : : (A.2.15) 57

EWM : : : : : : : : : : : : : : : : : : : : : : : : (B.2.1) 91

Extended Euclidean Algorithm (B.1.2) 89

ExtendedGCD : : : : : : : : : : : : : : : : (B.1.2) 89

FFDBP : : : : : : : : : : : : : : : : : : : : : : :(A.4.7) 64

FGS : : : : : : : : : : : : : : : : : : : : : : : : : : (A.8.20) 80

FHMDP : : : : : : : : : : : : : : : : : : : : : : (A.8.1) 74

Finite Horizon Markov Decision

Process : : : : : : : : : : : : : : : : : : : : : (A.8.1) 74

Finitely Generated Subalgebra (A.8.20) 80

Finiteness Problem for Finitely

Presented Algebras : : : : : : : : : :(A.8.21) 81

First Fit Decreasing Bin

Packing : : : : : : : : : : : : : : : : : : : : : (A.4.7) 64

Fixed Points of Contraction

Mappings : : : : : : : : : : : : : : : : : : : (A.10.2) 85

FPCM : : : : : : : : : : : : : : : : : : : : : : : : (A.10.2) 85

FPFPA : : : : : : : : : : : : : : : : : : : : : : : (A.8.21) 81

GAME : : : : : : : : : : : : : : : : : : : : : : : (A.11.2) 87

Gaussian Elimination with

Partial Pivoting : : : : : : : : : : : : : (A.8.4) 75

GCE : : : : : : : : : : : : : : : : : : : : : : : : : (A.8.16) 79

GC : : : : : : : : : : : : : : : : : : : : : : : : : : : (B.2.3) 91

GDD : : : : : : : : : : : : : : : : : : : : : : : : : (A.11.1) 86

Generability : : : : : : : : : : : : : : : : : : (A.6.5) 69

General Deadlock Detection : : : (A.11.1) 86



114 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

General Graph Closure : : : : : : : :(A.2.16) 58

General List Scheduling : : : : : : : (A.4.8) 65

Generalized Word Problem : : : :(A.8.6) 76

Generator Problem for Lattices (A.8.23) 82

GEN : : : : : : : : : : : : : : : : : : : : : : : : : (A.6.5) 69

GEPP : : : : : : : : : : : : : : : : : : : : : : : : (A.8.4) 75

GGC : : : : : : : : : : : : : : : : : : : : : : : : : (A.2.16) 58

GII : : : : : : : : : : : : : : : : : : : : : : : : : : : (A.8.13) 78

GI : : : : : : : : : : : : : : : : : : : : : : : : : : : : (A.8.10) 78

GLS : : : : : : : : : : : : : : : : : : : : : : : : : : (A.4.8) 65

GPL : : : : : : : : : : : : : : : : : : : : : : : : : :(A.8.23) 82

Graph Closure : : : : : : : : : : : : : : : : (B.2.3) 91

Group Coset Equality : : : : : : : : : (A.8.16) 79

Group Independence : : : : : : : : : : (A.8.10) 78

Group Induced Isomorphism : : (A.8.13) 78

Group Isomorphism : : : : : : : : : : : (A.8.12) 78

Group Rank : : : : : : : : : : : : : : : : : : (A.8.11) 78

GR : : : : : : : : : : : : : : : : : : : : : : : : : : : (A.8.11) 78

GWP : : : : : : : : : : : : : : : : : : : : : : : : : (A.8.6) 76

HCS : : : : : : : : : : : : : : : : : : : : : : : : : : (A.2.8) 54

HDS : : : : : : : : : : : : : : : : : : : : : : : : : : (A.2.7) 53

HF : : : : : : : : : : : : : : : : : : : : : : : : : : : (A.4.5) 64

HGAP : : : : : : : : : : : : : : : : : : : : : : : : (A.2.4) 51

Hierarchical Graph

Accessibility Problem : : : : : : : (A.2.4) 51

High Connectivity Subgraph : : (A.2.8) 54

High Degree Subgraph : : : : : : : : (A.2.7) 53

Homologous Flow : : : : : : : : : : : : : (A.4.5) 64

Horn Unit Resolution : : : : : : : : : (A.6.2) 68

HORN : : : : : : : : : : : : : : : : : : : : : : : :(A.6.2) 68

IC : : : : : : : : : : : : : : : : : : : : : : : : : : : : (A.8.14) 79

IM : : : : : : : : : : : : : : : : : : : : : : : : : : : :(A.8.5) 76

Integer Greatest Common

Divisor : : : : : : : : : : : : : : : : : : : : : (B.1.1) 89

IntegerGCD : : : : : : : : : : : : : : : : : : (B.1.1) 89

Intersection of Cosets : : : : : : : : : (A.8.14) 79

Intersection of Subgroups : : : : : (A.8.15) 79

Inverting a One-to-One Real

Functions : : : : : : : : : : : : : : : : : : : (A.10.3) 86

Inverting an NC

0

Permutation

(*) : : : : : : : : : : : : : : : : : : : : : : : : : :(A.1.10) 50

InvNC0Perm : : : : : : : : : : : : : : : : : :(A.1.10) 50

IOORF : : : : : : : : : : : : : : : : : : : : : : : (A.10.3) 86

IS : : : : : : : : : : : : : : : : : : : : : : : : : : : : (A.8.15) 79

Iterated Mod : : : : : : : : : : : : : : : : : (A.8.5) 76

Labeled GAP : : : : : : : : : : : : : : : : : (A.7.7) 73

Lexicographically First � + 1

Vertex Coloring : : : : : : : : : : : : : (A.2.6) 52

Lexicographically First

Blocking Flow : : : : : : : : : : : : : : (A.4.6) 64

Lexicographically First Depth

First Search Ordering : : : : : : : (A.3.2) 59

Lexicographically First

Maximal Clique : : : : : : : : : : : : :(A.2.2) 51

Lexicographically First

Maximal Independent Set : : : (A.2.1) 50

Lexicographically First

Maximal Matching : : : : : : : : : : (B.4.2) 94

Lexicographically First

Maximal Path : : : : : : : : : : : : : : (A.3.1) 59

Lexicographically First

Maximal Subgraph for � : : : : (A.2.13) 56

LE : : : : : : : : : : : : : : : : : : : : : : : : : : : (A.4.2) 62

LFBF : : : : : : : : : : : : : : : : : : : : : : : : (A.4.6) 64

LFDFS : : : : : : : : : : : : : : : : : : : : : : : (A.3.2) 59

LFDVC : : : : : : : : : : : : : : : : : : : : : : :(A.2.6) 52

LFMC : : : : : : : : : : : : : : : : : : : : : : : : (A.2.2) 51

LFMIS : : : : : : : : : : : : : : : : : : : : : : : (A.2.1) 50

LFMM : : : : : : : : : : : : : : : : : : : : : : : (B.4.2) 94

LFMP : : : : : : : : : : : : : : : : : : : : : : : : (A.3.1) 59

LFMS(�) : : : : : : : : : : : : : : : : : : : : : (A.2.13) 56

LGAP : : : : : : : : : : : : : : : : : : : : : : : : (A.7.7) 73

Limited Re
ection Ray Tracing (B.3.2) 92

Linear Equalities : : : : : : : : : : : : : :(A.4.2) 62

Linear Inequalities : : : : : : : : : : : : (A.4.1) 62

Linear Programming (*) : : : : : : (A.4.3) 62

LI : : : : : : : : : : : : : : : : : : : : : : : : : : : : (A.4.1) 62

Local Optimality

Kernighan-Lin Veri�cation : : (A.5.2) 66

Logical Query Program : : : : : : : (A.6.8) 70

LOKLV : : : : : : : : : : : : : : : : : : : : : : :(A.5.2) 66

LONGCAKE : : : : : : : : : : : : : : : : : (A.11.4) 88

Longcake : : : : : : : : : : : : : : : : : : : : : (A.11.4) 88

LP : : : : : : : : : : : : : : : : : : : : : : : : : : : (A.4.3) 62

LQP : : : : : : : : : : : : : : : : : : : : : : : : : :(A.6.8) 70

LRRT : : : : : : : : : : : : : : : : : : : : : : : : (B.3.2) 92

MAXFLIP Veri�cation : : : : : : : :(A.5.1) 66

MAXFLIPV : : : : : : : : : : : : : : : : : : (A.5.1) 66

MaxFlow : : : : : : : : : : : : : : : : : : : : : (A.4.4) 63

Maximal Independent Set

Hypergraph : : : : : : : : : : : : : : : : :(B.2.6) 92

Maximal Path : : : : : : : : : : : : : : : : (B.2.5) 92



Problem Index � 115

Maximum Flow : : : : : : : : : : : : : : : (A.4.4) 63

Maximum Matching : : : : : : : : : : (B.5.3) 95

MCVP : : : : : : : : : : : : : : : : : : : : : : : (A.1.3) 48

MFVS : : : : : : : : : : : : : : : : : : : : : : : : (A.2.14) 56

Min-Plus Circuit Value

Problem : : : : : : : : : : : : : : : : : : : : (A.1.9) 50

Minimum Feedback Vertex Set (A.2.14) 56

MinPlusCVP : : : : : : : : : : : : : : : : : (A.1.9) 50

MISH : : : : : : : : : : : : : : : : : : : : : : : : :(B.2.6) 92

MM : : : : : : : : : : : : : : : : : : : : : : : : : : (B.5.3) 95

ModInverse : : : : : : : : : : : : : : : : : : : (B.1.4) 89

ModPower : : : : : : : : : : : : : : : : : : : : (B.1.5) 89

Modular Inversion : : : : : : : : : : : : (B.1.4) 89

Modular Powering : : : : : : : : : : : : (B.1.5) 89

Monotone Circuit Value

Problem : : : : : : : : : : : : : : : : : : : : (A.1.3) 48

MP : : : : : : : : : : : : : : : : : : : : : : : : : : : (B.2.5) 92

NAND Circuit Value Problem :(A.1.5) 48

NANDCVP : : : : : : : : : : : : : : : : : : : (A.1.5) 48

Nearest Neighbor Traveling

Salesman Heuristic : : : : : : : : : : (A.2.12) 55

NNTSH : : : : : : : : : : : : : : : : : : : : : : (A.2.12) 55

OHDVR : : : : : : : : : : : : : : : : : : : : : : (A.2.9) 54

OLDVR : : : : : : : : : : : : : : : : : : : : : : (A.2.10) 55

Ordered High Degree Vertex

Removal : : : : : : : : : : : : : : : : : : : : (A.2.9) 54

Ordered Low Degree Vertex

Removal : : : : : : : : : : : : : : : : : : : : (A.2.10) 55

Ordered Vertices Remaining : : :(A.2.11) 55

OVR : : : : : : : : : : : : : : : : : : : : : : : : : (A.2.11) 55

Path Systems : : : : : : : : : : : : : : : : : (A.6.6) 70

PATH : : : : : : : : : : : : : : : : : : : : : : : : (A.6.6) 70

PCVP : : : : : : : : : : : : : : : : : : : : : : : : (A.1.7) 49

Perfect Matching Existence : : : (B.5.4) 95

PHCS : : : : : : : : : : : : : : : : : : : : : : : : (A.6.3) 68

Planar Circuit Value Problem : (A.1.7) 49

Plane Sweep Triangulation : : : : (A.9.1) 82

PME : : : : : : : : : : : : : : : : : : : : : : : : : (B.5.4) 95

Propositional Horn Clause

Satis�ability : : : : : : : : : : : : : : : : (A.6.3) 68

PST : : : : : : : : : : : : : : : : : : : : : : : : : : (A.9.1) 82

RCAGAP : : : : : : : : : : : : : : : : : : : : :(A.2.5) 52

RCL : : : : : : : : : : : : : : : : : : : : : : : : : : (A.6.4) 69

Real Analogue to CVP : : : : : : : :(A.10.1) 85

RealCVP : : : : : : : : : : : : : : : : : : : : : (A.10.1) 85

Relative Primeness : : : : : : : : : : : :(B.1.3) 89

Relaxed Consistent Labeling : : (A.6.4) 69

RelPrime : : : : : : : : : : : : : : : : : : : : : (B.1.3) 89

Restricted Chromatic

Alternating Graph

Accessibility Problem : : : : : : : (A.2.5) 52

Restricted Lexicographically

First Independent Set : : : : : : : (B.2.4) 91

Restricted Plane Sweep

Triangulation : : : : : : : : : : : : : : : (B.3.3) 93

RLFMIS : : : : : : : : : : : : : : : : : : : : : : (B.2.4) 91

SAM2CVP : : : : : : : : : : : : : : : : : : : (A.1.6) 48

SBFS : : : : : : : : : : : : : : : : : : : : : : : : : (A.3.4) 60

SCH : : : : : : : : : : : : : : : : : : : : : : : : : : (B.3.4) 93

SC : : : : : : : : : : : : : : : : : : : : : : : : : : : :(A.8.7) 77

SE : : : : : : : : : : : : : : : : : : : : : : : : : : : :(A.8.8) 77

SFI : : : : : : : : : : : : : : : : : : : : : : : : : : : (A.8.9) 77

Short Vectors Dimension 2 : : : : (B.1.7) 90

Short Vectors : : : : : : : : : : : : : : : : : (B.1.6) 90

SI : : : : : : : : : : : : : : : : : : : : : : : : : : : : (A.8.12) 78

SLPmem : : : : : : : : : : : : : : : : : : : : : (A.7.5) 72

SLPnonempty : : : : : : : : : : : : : : : : (A.7.6) 72

SM : : : : : : : : : : : : : : : : : : : : : : : : : : : (B.4.3) 94

Stable Marriage : : : : : : : : : : : : : : : (B.4.3) 94

Stack Breadth First Search : : : :(A.3.4) 60

Straight-Line Program

Membership : : : : : : : : : : : : : : : : (A.7.5) 72

Straight-Line Program

Nonempty : : : : : : : : : : : : : : : : : : (A.7.6) 72

Subgroup Containment : : : : : : : :(A.8.7) 77

Subgroup Equality : : : : : : : : : : : : (A.8.8) 77

Subgroup Finite Index : : : : : : : : (A.8.9) 77

Successive Convex Hulls : : : : : : :(B.3.4) 93

SV2 : : : : : : : : : : : : : : : : : : : : : : : : : : (B.1.7) 90

SV : : : : : : : : : : : : : : : : : : : : : : : : : : : (B.1.6) 90

SWEEP : : : : : : : : : : : : : : : : : : : : : : (B.3.3) 93

Sylow Subgroups : : : : : : : : : : : : : :(B.1.8) 90

SylowSub : : : : : : : : : : : : : : : : : : : : : (B.1.8) 90

Synchronous Alternating

Monotone Fanout 2 CVP : : : :(A.1.6) 48

TopCVP : : : : : : : : : : : : : : : : : : : : : : (A.1.2) 47

Topologically Ordered Circuit

Value Problem : : : : : : : : : : : : : : (A.1.2) 47

TPFPA : : : : : : : : : : : : : : : : : : : : : : : (A.8.19) 80

Triviality Problem for Finitely

Presented Algebras : : : : : : : : : :(A.8.19) 80

TVLP : : : : : : : : : : : : : : : : : : : : : : : : (B.1.9) 90



116 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)

Two Player Game : : : : : : : : : : : : :(A.11.2) 87

Two Variable Linear

Programming : : : : : : : : : : : : : : : (B.1.9) 90

Two-Way DPDA Acceptance : :(A.7.8) 73

U2SATFLIP : : : : : : : : : : : : : : : : : : (A.5.5) 67

U3NSATFLIP : : : : : : : : : : : : : : : : (A.5.3) 66

ULVL : : : : : : : : : : : : : : : : : : : : : : : : (B.3.5) 93

UMS : : : : : : : : : : : : : : : : : : : : : : : : : (A.5.4) 67

Uni�cation : : : : : : : : : : : : : : : : : : : :(A.6.7) 70

Uniform Word Problem for

Finitely Presented Algebras : (A.8.18) 80

Uniform Word Problem for

Lattices : : : : : : : : : : : : : : : : : : : : :(A.8.22) 81

UNIF : : : : : : : : : : : : : : : : : : : : : : : : : (A.6.7) 70

Unit Length Visibility Layers : (B.3.5) 93

Unit Resolution : : : : : : : : : : : : : : : (A.6.1) 68

UNIT : : : : : : : : : : : : : : : : : : : : : : : : :(A.6.1) 68

Univariate Polynomial

Factorization over Q : : : : : : : : (B.1.10) 91

Unweighted 2SAT/FLIP : : : : : : (A.5.5) 67

Unweighted MAXCUT/SWAP (A.5.4) 67

Unweighted STABLE NET : : : :(A.5.7) 67

Unweighted SWAP : : : : : : : : : : : :(A.5.6) 67

Unweighted, Not-All-Equal

Clauses, 3SAT/FLIP : : : : : : : : (A.5.3) 66

UPFQ : : : : : : : : : : : : : : : : : : : : : : : : (B.1.10) 91

USN : : : : : : : : : : : : : : : : : : : : : : : : : : (A.5.7) 67

USWAP : : : : : : : : : : : : : : : : : : : : : : (A.5.6) 67

UWPFPA : : : : : : : : : : : : : : : : : : : : (A.8.18) 80

UWPL : : : : : : : : : : : : : : : : : : : : : : : (A.8.22) 81

Visibility Layers : : : : : : : : : : : : : : (A.9.3) 84

VL : : : : : : : : : : : : : : : : : : : : : : : : : : : (A.9.3) 84


