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Abstract

Parallel Simulation of Petri Nets

by Gregory Scott Thomas

Chairperson of the Supervisory Committee: Professor John Zahorjan
Department of Computer Science
and Engineering

We present a parallel simulation protocol for performance Petri nets, Petri
nets in which transition firings take randomly selected amounts of time. This
protocol is interesting for two reasons. First, application of standard conserva-
tive or optimistic parallel simulation to Petri nets results in either unnecessarily
low (possibly no) parallelism or simply fails to produce correct results. Thus, this
new protocol may be thought of as addressing a class of models not amenable to
standard parallel simulation, with Petri net models being a particular example.
Second, performance Petri nets are currently analyzed using numerical techniques
that have time and space requirements exponential in the size of the net. Simu-
lation, and particularly parallel simulation, is thus a practical alternate analysis

method for these models, as we show by measurement of execution times.

Our new protocol is derived from the rules of conservative parallel simulation.
While this approach normally relies on use of the actual or “future” timestamps
on the message paths into a component of the model to determine the latest
simulation time to which that component can safely progress, we have introduced
a new technique that loosens this restriction. Our technique, called Selective
Receive, allows model components to sometimes ignore certain of their input
channels and thus to determine their local clock times based on only a subset of
their potential inputs. This technique is helpful in simulating Petri net models.
We believe that it may be of use in speeding up the parallel simulation of other

systems as well.



Finally, the development of a parallel simulation protocol for Petri nets sug-
gested a small modification to their definition that, while not affecting the ex-
pressive power of the nets, allows for much more efficient simulations. We show
that parallel simulations using this modification can achieve unboundedly high

speedups relative to a sequential simulation that does not employ this approach.
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Chapter 1

Introduction

This thesis concerns the application of conservative parallel simulation to the
analysis of performance Petri nets. In this chapter we motivate the topic, state
the goals of our work, mention work related to ours, and detail the organization

of the remainder of the thesis.

1.1 Motivation

Two primary considerations motivated our selection of this topic:

1. The high modeling power of Petri nets is tempered by their low decision
power;! analytic analysis techniques are either nonexistent, computation-
ally intractable, or of narrow applicability. Decision power can generally be
improved by reducing modeling power. Instead, we wish to improve deci-
sion power while preserving modeling power by using a nonanalytic method

of analysis.

2. To date, applications of parallel simulation have been limited to a few par-

ticular areas, e.g., queueing network models; the question of its suitability

! Modeling power refers to the ability to represent systems, and decision power
refers to the ability to analyze models to answer questions about the systems they
represent [Peterson 77, Peterson 81, Ciardo 87].



for other areas is of interest. We wish to extend the domain of parallel

simulation to include Petri nets.

These considerations dovetail: simulation is a popular nonanalytic method of
analysis, and Petri nets comprise an application with markedly different seman-

tics than those of queueing network models.

We are interested in Petri nets as a tool for system performance analysis.
Although performance Petri nets have seen considerable use in this role, their
utility is limited by the shortcomings of the analytic techniques employed in
their analysis; these techniques are of exponential complexity or are applicable
only to restricted classes of nets. Simulation is an attractive alternative to these
analytic methods because it is likely to be of smaller complexity and applicable

to unrestricted classes of nets.

Simulation is not, however, itself devoid of shortcomings, one of which is its
propensity toward voracious consumption of computational resources. Parallel
simulation strives to mitigate this shortcoming by engaging multiple processors to
decrease execution time. Consequently, it is our method of choice. Furthermore,
we focus on conservative parallel simulation because we expect its performance
characteristics for this application to be more stable (and often better) than those

of an optimistic approach.

1.2 Goals

Our intent is to facilitate the analysis of nets which are larger and more complex
than those amenable to analytic techniques. The specific goals of this work may

be summarized as follows:

1. Devise a conservative parallel simulation protocol, known as the Transition
Firing Protocol (TFP), which correctly simulates any net belonging to the
class of Petri nets defined in Section 2.4, and which provides parallelism

that scales with the size of the net.



2. Determine the amenability of performance Petri nets to conservative par-

allel simulation by implementing TFP and measuring its performance.

3. Compare the computational complexity of conservative parallel simulation
of performance Petri nets to that of analytic techniques, again by measure-

ment.

For reasons that shall be expounded in Chapter 3, only certain decompositions
of Petri nets map directly to the standard paradigm of conservative parallel
simulation. Other decompositions require a new paradigm; the first goal is to

create such a paradigm.

The construction of Persephone, a Petri net simulator that implements TFP,

is central to the second goal. Persephone serves several purposes:

It is a proof by existence that conservative parallel simulation can be applied

to Petri nets.

o It provides a vehicle for experimenting with, testing, and debugging the

protocol.

e It enables concrete measurements of performance and complexity to be

made.

e It is an analysis tool for systems and Petri nets that is useful in its own

right.

Attainment of the first goal and the implementation of Persephone affirma-
tively answers the question of whether conservative parallel simulation can be
used to analyze Petri nets; the second goal is to answer the question of whether
it can be used effectively. For parallel simulation to be considered effective in a
problem domain, its use of multiple processors (think of this as an “investment”)
must provide some benefit (a “return”) over the use of a single processor by a
sequential simulation. The chief benefit sought is a reduction of execution time

in direct proportion to the number of processors applied. For example, ideally



a parallel simulation running on ten processors should execute ten times faster
than a sequential simulation of the same model. Therefore, the investigation
comprising the second goal is undertaken by measuring the performance of our

simulator on a set of benchmark nets.

While the second goal concerns the issue of parallel versus sequential simu-
lation, the thrust of the third goal is simulation versus analytic techniques: how

execution time grows as model complexity increases.

1.3 Related Work

TFP resembles in some ways several of the protocols developed by Taubner
[Taubner 88]. That work was performed in the context of “Petri net driven
execution” of distributed programs—the firing of a transition causes the invoca-
tion of a procedure, with the Petri net itself used to determine the flow of control
(e.g., [Hartung 88])—rather than in the context of simulation of performance

Petri nets.

Our work differs significantly from Taubner’s in at least three ways. First,
Taubner assumes untimed nets, so there is no notion of simulation time. Second,
our conflict resolution strategy is different from each of those proposed by Taub-
ner. Finally, because each transition firing results in a procedure execution, the
amount of overhead required to run the protocol is less important for execution
of distributed programs than it is in our simulation context, where a transition
firing involves very little inherent work. Thus, we have been more sensitive to

these overheads in designing our protocol and prototype implementation.

1.4 Organization

Chapter 2 discusses the components and semantics of Petri nets. It defines the
particular class of nets we use, surveys analysis methods and tools, and describes
how Petri nets are applied. Benchmark nets are introduced in modeling ex-

amples. Chapter 3 characterizes different simulation paradigms and discusses



various approaches to applying parallel simulation to Petri nets.

An overview of TFP is presented in Chapter 4. TFP exploits a fundamental
modification to the standard algorithm for conservative parallel simulation. This

modification, which we call Selective Receive, is described in Chapter 5.

In Chapter 6 we discuss one aspect of performance Petri net analysis, conflict
resolution, for which a slight redefinition of the model semantics suggested by

the parallel approach leads to greatly improved analysis performance.

Chapter 7 discusses the implementation of Persephone. Chapter 8 reports
the performance of Persephone on a group of benchmark nets and compares it
to that of the analytic techniques. Chapter 9 concludes by summarizing the

contributions of this thesis and suggesting areas for further work.



Chapter 2

Petri Nets

This chapter serves as an introduction to Petri nets. After discussing the compo-
nents and semantics of basic nets, various standard and nonstandard extensions
of basic nets are presented. These extensions are incorporated in the class of nets
we use, which is defined in Section 2.4. The ensuing sections describe methods
of analysis, tools for analysis, and how Petri nets are applied. The chapter con-
cludes with examples in which Petri net models of systems are constructed; these

nets later serve as benchmarks for performance measurements.

For more extensive introductions and bibliographies, refer to [Peterson 77,
Peterson 81, Reisig 85, Murata 89]. Additionally, [Drees et al. 87] is a bibliogra-

phy containing over two thousand entries.

2.1 Background

Petri nets are a modeling tool that is both graphical and mathematical
[Murata 89]. This thesis is concerned primarily with their graphical aspects,

because it is topology that has the dominant impact on simulation.

Petri nets have evolved from the ideas in C. A. Petri’s dissertation [Petri 62].
They are the focus of special net theory, which is a branch of general net theory
[Petri 80]. Special net theory deals with flow phenomena in single nets; net

morphisms and relations between nets are the gist of general net theory.
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Figure 2.1: A net before firing.

2.2 Basic Nets

There are many kinds of Petri nets, and different ways to rep-
resent them. Our nets most closely resemble place/transition-nets
[Genrich & Stankiewicz-Wiechno 80] without capacities, and we adopt a predom-

inantly graphical representation.

A Petri net is a bipartite! directed graph. The two types of nodes are called
places and transitions. Places are drawn as circles, and transitions are drawn as
bars or rectangles. When expedient, nodes may be labeled. Arcs are directed
from places to transitions or from transitions to places. If there is an arc (p, t)
from a place p to a transition ¢, we say that p is an input place of t and that ¢ is
an output transition of p. Similarly, if there is an arc (¢, p) from ¢ to p, we say

that p is an output place of t and that t is an input transition of p.

Zero or more tokens reside at each place. Tokens are drawn as small filled
circles (dots) inside places; alternatively, the number of tokens at a place may be

drawn inside the place.

The number of tokens at a place is called the marking of the place. The
marking of a net is given by the vector of markings of its places, and may be

interpreted as the state of the net.

The net in Figure 2.1 consists of three places (p1, p2, and p3) and one tran-

![Petri 87] contains an interesting discourse on the duality implications of this
fact.
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Figure 2.2: A net after firing.
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Figure 2.3: A net with a decision place.
sition (t1). Transition t1 has input places p1 and p2, and output place p3. p1

contains one token, p2 contains two tokens, and p3 contains zero tokens, so the

marking of the net is the vector (1, 2, 0).

A transition is enabled when each of its input places contains at least one
token. An enabled transition may fire, removing a token from each input place
and depositing a token at each output place. Each transition firing produces a

new marking.

In Figure 2.1, transition t1 is enabled. Figure 2.2 depicts the net in Figure 2.1
after the completion of the firing of t1.

Transition firings are not always so simple. In Figure 2.3, p1 is a decision
place—a place which is a source for more than one regular? arc. Whenever there

is a token at p1, t1 and t2 are in conflict because the firing of one disables the

2As explained in Section 2.3.1, a regular arc is an arc that is not an inhibitor
arc.



other.

Let P be the set of places of a net, p; € P, OT(p;) the set of output transitions
of p;, and R* the reflexive transitive closure of the relation R C P2, defined by
piRp; if and only if OT(p;) N OT(p;) # 0. R* partitions P into a set of equiva-
lence classes (called locksets in [Taubner 88]). The places in such an equivalence
class, along with their output transitions, constitute a static conflict set. It is
possible for multiple transitions in a static conflict set to become enabled at the
same time, but for only some subset of them to begin firing at that time (due to
the limited number of tokens available in the decision places of the static conflict

set).

A dynamic conflict set is a set of transitions (and their associated input
places) that are actually enabled and competing for tokens (at decision places)
at some point in time. A dynamic conflict set is thus a subset of some static

conflict set.

When a dynamic conflict set exists, a subset of its transitions must be chosen
to fire. This is called conflict resolution. A number of different proposals have
been made for selecting the subset to fire. We use a technique modeled on that
proposed for Generalized Timed Petri Nets [Holliday & Vernon 87|, which uses
the notion of mazimal sets. A maximal set is a set of transitions within a dynamic
conflict set such that, if those transitions were to fire, no other transitions in the
conflict set could also fire. In general, there may be many distinct maximal sets

corresponding to a particular dynamic conflict set.

2.3 Extensions

The nets described in the previous section have limited modeling power. To
remedy this, a number of extensions of Petri nets have been proposed. These

extensions, as well as some novel ones, are the topics of the next sections.



10

2.3.1 Standard

The extensions presented in this section have been widely adopted, either out of
necessity (e.g., time is essential for performance evaluation), or for the sake of

convenience.

Time

As formulated originally, Petri nets lack any timing information. The notion of
time is most commonly introduced by associating a delay with each transition
or with each place.®> The two approaches are equivalent [Sifakis 80], so the one
most natural for the intended application should be chosen. In this thesis, only

the approach which associates delays with transitions is considered.

The introduction of delays changes the semantics of firing so that instead of
tokens being deposited in a transition’s output places at the instant of firing, the
tokens are deposited after a delay chosen from the firing time distribution of the
transition. Let é be such a chosen delay of transition ¢, which begins firing at
time 7. Tokens are removed from the input places of ¢t at 7, and deposited in
the output places of ¢ at 7 + §. More than one firing of ¢ may be in progress

concurrently.

Furthermore, the state of a net augmented with time is not completely de-
scribed by the marking of the net. The remaining firing times of all firings in
progress constitute the additional information necessary to fully characterize the

state of the net.

Nets can be classified according to whether the delays are deterministic or
nondeterministic. Nets having deterministic delays are called timed Petri nets;
those having nondeterministic delays are called stochastic Petri nets. Stochastic
nets with exponentially or geometrically distributed delays are isomorphic to

homogeneous Markov chains, making them amenable to standard Markovian

3[Petri 87] illustrates several semantic difficulties engendered by the introduc-
tion of time to nets.
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Figure 2.4: A net with multiple arcs.

analysis techniques [Hoel et al. 72]. Although timed nets complicate analysis
because they lack the memoryless property possessed by the exponential and
geometric distributions, there do exist models which allow both deterministic

and nondeterministic delays in a single net [Molloy 85].

From the point of view of simulation, however, the distributions of the delays
are of little consequence. One of the advantages that simulation has over analytic
techniques is that it allows arbitrary distributions to be used. Section 7.3.1 lists

the distributions supported by Persephone.

Arc Multiplicity

It is often convenient to allow multiple tokens to flow between two nodes at each
firing. This is represented by multiple arcs between a given source and sink, as
shown in Figure 2.4. There must be at least two tokens at p1 and at least one
token at p2 to enable t1, and three tokens are deposited at p3 when t1 fires.
Figure 2.5 shows the net in Figure 2.4 after the firing of t1. It also illustrates
how multiple arcs are depicted as a single arc with an attached multiplicity, a
convention borrowed from circuit diagrams. If not labeled, an arc is assumed to

have multiplicity 1.

For place p and transition ¢, an arc (p, t) of multiplicity m means that m
tokens are required at p to enable ¢t. An arc (¢, p) of multiplicity m means that

each time ¢ finishes firing it deposits m tokens at p.



12

pl 2
3 o0
[ J
P2 tl Pr3
Figure 2.5: A net with arc multiplicities.
" @\Q
p2 @/tl p3

Figure 2.6: A net with an inhibitor arc.

Petri nets in which arcs can have multiplicities greater than one are called
generalized Petri nets. They are equivalent to nets in which arc multiplicities

must equal one [Peterson 77].

Inhibitor Arcs

The ability to determine that a place has zero tokens is useful, and is facilitated
by an extension known as inhibitor arcs. In Figure 2.6, the inhibitor arc from p1
to t1 indicates that t1 cannot fire unless there are zero tokens at p1; since there
is a token at p1, t1 is inhibited from firing. The small circle which replaces the
arrowhead is intended to suggest inversion, another convention borrowed from
circuit diagrams. When it is necessary to distinguish inhibitor arcs from other

arcs, the latter shall be referred to as regular arcs.

The addition of inhibitor arcs fundamentally changes the modeling power and

the decision power of Petri nets. Petri nets with inhibitor arcs are equivalent to
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Figure 2.7: A net with arc weights for conflict resolution.

Turing machines [Peterson 77].

2.3.2 Nonstandard

In this section we describe extensions which are novel or which have not been

widely adopted.

Arc Weights

Each regular arc may have a weight associated with it. The weight is interpreted

differently depending on whether the source of the arc is a place or a transition.

Conflict Resolution If the arc’s source is a place, then the weight is used
to resolve conflicts at that place, as explained in Section 2.2 and Chapter 6.
The basic idea is that a higher weight gives a higher priority. In Figure 2.7, for
example, p1 will give a token to t1 three times as often as it gives a token to t2.
If not labeled, an arc is assumed to have weight 1; therefore, if all output arcs of

a place have equal weights, no weights need be specified.

Deposit Branching If the arc’s source is a transition, then the weight is used
for deposit branching at that transition. Deposit branching allows a transition
to deposit tokens in an output place chosen at random each time the transition

fires, rather than depositing tokens in each output place. Let 5 = Sy U Sw
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Figure 2.8: A net with arc weights for deposit branching.

denote the set of output arcs for a transition ¢, with Sy being the unweighted
arcs and Sw being the weighted arcs. When ¢ fires, it deposits tokens on each
arc in Sy, and randomly chooses one of the arcs in Sy to deposit tokens on.
In Figure 2.8, Sw = {(t1,p2),(t1,p3),(t1,p4)}, and Sy = {(t1,p1)}; when t1
fires, it deposits a token at p1, and chooses either p2, p3, or p4 (with respective
probabilities 0.5, 0.2, and 0.3) to deposit a token at.

Members of Sy are distinguished graphically by having them branch from a
single segment emanating from the source. As with conflict resolution weights,

deposit branching weights are assumed to be 1 if not specified.

Deposit branching allows some models to be expressed by simpler nets—it
does not change the modeling or decision power of Petri nets. This is illustrated
by Figure 2.9, a model without deposit branching which is equivalent to the
model in Figure 2.8. It uses the decision place p5 and the three zero-delay
transitions t1, t2, and t3 to achieve the same effect as that achieved by t1 with
deposit branching in Figure 2.8. In general, an n-way deposit branch replaces

one decision place, n zero-delay transitions, and n + 1 arcs.

Generalized Inhibitor Arcs

Consider a regular arc r of multiplicity m directed from place p to transition t.

The constraint imposed on ¢ by r is that ¢ can fire only if there are m or more
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Figure 2.9: A net without deposit branching.

tokens at p. The complementary constraint—that ¢ can fire only if there are

fewer than m tokens at p—can be expressed by generalized inhibitor arcs.

Generalized inhibitor arcs combine inhibitor arcs and arc multiplicities in a
natural way. An ordinary inhibitor arc (i.e., an inhibitor arc of multiplicity 1)
prevents its sink from firing if there is at least 1 token at its source. A generalized
inhibitor arc of multiplicity m prevents its sink from firing if there are at least m
tokens at its source. This definition is symmetric to that of generalized regular
arcs: a generalized regular arc (from place to transition) of multiplicity m allows
its sink to fire if there are at least m tokens at its source. As with ordinary
inhibitor arcs, the firing of a generalized inhibitor arc’s sink consumes no tokens

from its source. If not labeled, an inhibitor arc is assumed to have multiplicity 1.

2.4 Performance Petri Nets

Petri nets augmented with delays and branching probabilities to facilitate the
derivation of performance measures have been called performance Petri nets
(PPNs) [Vernon et al. 86]. Definition 2.1 specifies the particular class of PPNs
we use. It incorporates the extensions described in Section 2.3, but is other-
wise similar to classes of PPNs appearing in the literature. In the sequel, all
references to PPNs refer to this class unless noted otherwise. (Petri nets that

are not PPNs are sometimes referred to as classical or untimed Petri nets.)
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[Ajmone Marsan & Chiola 87] is recommended as an introduction to PPNs.

Definition 2.1 (Performance Petri Net) A performance Petri net N is a 7-

tuple:
N = (P,T,A,U,W,A,M,)
P = {p1,p2,-..,Pn} places
T = A{t1,t2,. s tm} transitions
Ar C {PxT}uU{T x P}  regular arcs
A C {PxT} inhibitor arcs
A = ArpUA; arcs
U A= {1,2,...} arc multiplicities
W : Ap—=TR arc weights
A = (61,02,...,0m) firing delay distributions
My = (p9,03,...,1%) initial marking

P and T are finite sets. U is a mapping that assigns to each a € A its
multiplicity U(a). Similarly, W assigns to each a € Apg its weight W(a). If
a € {PxT}, then W(a) > 0, butifa € {T'x P}, W(a) can be negative; W(a) < 0

implies that @ does not participate in deposit branching—it is “unweighted.”

A can be viewed as a mapping from a transition ¢; to its firing delay distribu-
tion 6;, i.e., A(t;) = 6;. Each §; is a probability distribution, e.g., uniform(a, b).
Unlike many other definitions of PPNs, our PPNs are not restricted to having

only a certain kind of distribution.

My assigns to each p; € P its initial marking p9. Similarly, for any marking
M, the mapping M : P — {0,1,...} is defined as M (p;) = p;. Further mappings

are given in Definition 2.2.
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Definition 2.2 (Node I/O Set Functions) The following functions each

map a node of a performance Petri net N to a subset of its input or output

nodes.
Ipr(t) = {pl(p,t) € Ar} input places via regular arcs
Ipr(t) = {p|(p,t) € A1} input places via inhibitor arcs
Ip(t) = {p|(p,t) € A} input places
Ir(p) = {t|@,p) € A} input transitions
Opu(t) = {p]|({,p) € AANW((t,p)) <0} output places via unweighted arcs
Opw(t) = {p]|({,p)€e AANW((t,p)) >0} output places via weighted arcs
Op(t) = {p|(t,p) € A} output places
Orr(p) = {t|(p,t)€ AR} output transitions via regular arcs
Ori(p) = {t|(pt)€ Ar} output transitions via inhibitor arcs
Or(p) = {t|(p,t) € A} output transitions

The value of zero or more of these functions may be () for zero or more nodes.
The rules for transition enabling and firing can now be stated.

Definition 2.3 (Transition Enabling) A transition t € T is enabled if and
only if

(Vp € Ipr(t), M(p) > U((p,1))) \(¥p € Ip1(1), M(p) < U((p,1))).

Definition 2.4 (Transition Firing) Define the indicator function g : T'x P —
{0,1} by
1, (t,p) € Opw(t) and
B(t,p) = (t,p) is the arc selected by t to receive the deposit
0, otherwise
Let M; be the marking of N at the start of the firing of transition ¢t € T,
and Mjy the marking at the end of the firing of {. Assuming no transitions fire

concurrently, the effect of the firing of ¢ is that Vp € P,

Ma(p) = Mi(p) + 6(p, 1),

where ¢(p,t) is the net token flow through p due to ¢ and is given in Table 2.1.
It is necessary to use net flow rather than unidirectional flow because of the

possibility that p is both an input and output place of .
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Table 2.1: Net token flow through a place due to an adjacent transition.

| (,t) € Ipr(t) | (t,p) € Opu(t) | (t,p) € Opw (1) || o(p,t) |
no no no 0
no no yes U((t,p)) = B(t,p)
no yes no ((t,p))
yes no no -U((p,1))
yes 1o yes U@, 1)+ () 3t
yes yes o U((p,1) + U((t,))

2.5 Analysis

After a Petri net model of a system has been constructed, the net must be
analyzed to determine properties of the model. Analysis problems, their com-

plexities, and techniques for solving them are discussed in the next sections.

2.5.1 Problems

From their inception, Petri nets have seen widespread use as a tool for verifying
the correctness of systems. For example, analysis of a Petri net model of a
system can show that the system cannot deadlock. To address various correctness
issues, a number of analysis problems for classical Petri nets have been formulated

[Peterson 81, Murata 89], several of which are paraphrased below.

Reachability A marking M’ is immediately reachable from a marking M if
3t € T such that the firing of ¢ transforms M to M’ (written M % M).
The “reachable” relation is the reflexive transitive closure of the “immedi-
ately reachable” relation: M’ is reachable from M if 3 a sequence of tran-
sition firings o = t1t5 - - - 1), that transforms M to M’ (written M = M').
The reachability set R(N, M) of net N with marking M is the set of all
markings reachable from M. The reachability problem is to determine,
given a marking M, if M € R(N, My). Many other Petri net problems can

be stated in terms of this basic problem.
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Liveness A net N is liveifVt € T, VM € R(N, M), 30 IM' such that M = M’
and t is enabled in M’. Liveness can be used to verify the absence of

deadlock in a system.

Boundedness A net N is k-bounded if Vp € P, VM € R(N, M), M(p) < k.
Boundedness is important for modeling components having finite capacities,
e.g., buffers. A bounded net has a finite reachability set, which is why
boundedness is a property crucial for analytic techniques requiring a finite

state space.

Conservation A net N is strictly conservative if YM € R(N,My),
Yopep M(p) = X ,ep Mo(p). N is conservative with respect to a weight-
ing vector w = (wy,wsa,...,wp),n = |Plyw; > 0, if YM € R(N, M),
Yoiwi- M(p;) = Y ;wi - Mo(pi). Conservation is helpful for modeling re-

sources which are neither created nor destroyed.

More recently, PPNs have been used to model systems in which time plays
a critical role. Generally we are interested not only in the correctness of such a
system, but also in its performance. Thus, in addition to solving the problems
stated above, for PPNs we want to determine properties such as the average
number of tokens at a place or the rate at which a transition fires [Molloy 85,

Murata 89].

2.5.2 Complexity

The extreme difficulty of many Petri net analysis problems has led researchers
to restrict the classes of nets they analyze in the hope that relatively efficient
solution techniques can be found for certain subclasses of nets. Representative

examples of complexity results for classical Petri net analysis problems are:

e The problem of determining whether the reachability set of one net is a

subset of the reachability set of another net is undecidable.

e The preceding problem, but for bounded reachability sets, is of nonprimitive

recursive complexity.
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e The reachability problem requires at least exponential space and time.

e The boundedness problem requires at least exponential space and time.

Details appear in [Peterson 81, Jantzen 87].

Although these results were derived for untimed nets, they are applicable to
performance nets as well. In particular, the exhaustive enumeration algorithms
used to solve reachability-type problems are of exponential complexity regardless
of whether or not the net is timed, because the worst-case size of the reachability
set is exponential in the size of the net. More importantly, the Markovian analysis
techniques applied to PPNs are also of exponential complexity, as demonstrated

vividly by the measurements presented in Section 8.2.

2.5.3 Techniques

Nearly all techniques for solving Petri net analysis problems are analytic. A
nonanalytic technique which may be applied to certain problems is simulation.

These techniques are the subjects of the next sections.

Analytic

Analytic methods are important because they provide exact solutions. Moreover,
to solve any of the correctness problems mentioned in Section 2.5.1, an analytic

method must be used—simulation cannot be used to prove properties of models.

There are three categories of analytic techniques for solving classical Petri

net analysis problems [Peterson 81, Murata 89]:

o The coverability tree algorithm exhaustively constructs a tree of reachable
markings. For a bounded net the coverability tree contains all possible
reachable markings, so it is called the reachability tree. For an unbounded
net the reachability set is infinite; the coverability tree employs a represen-

tation which keeps it finite but loses information.
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Numerous problems, including those in Section 2.5.1, can be solved using
the reachability tree. The coverability tree, because of the information lost,
cannot solve as many problems; of those in Section 2.5.1, it can solve only

boundedness and conservation.

The two major drawbacks to this approach are its exponential complexity

and the loss of information.

e In the matriz equation approach, nets are represented by matrices. This
allows many problems, e.g., conservation, to be formulated as matrix equa-

tions.

This approach possesses two serious deficiences. The first is that solutions
give no information about the order of transition firings. The second is
that some solutions correspond to transition firing sequences which are not

possible.

e The reduction method reduces nets to simpler nets while preserving prop-
erties such as boundedness or liveness by applying transformations which
preserve these properties. The resulting nets might then be simple enough
to be analyzed by one of the standard (expensive) techniques. Thus, this
method by itself does not solve problems, but is used in conjunction with

other methods to solve problems.

The basic analytic technique for solving PPN analysis problems involves com-
puting the steady-state probability distribution of the underlying Markov chain
[Molloy 85, Murata 89]. The states of the Markov chain correspond to the mark-
ings in the reachability set, so this technique suffers from the same exponential

complexity that plagues the coverability tree approach.

Simulation

Although simulation is ill suited for classical analysis problems, it is especially
well suited for the performance analysis domain. Its most attractive feature

is its broad applicability: it can handle nets of virtually any size, nets having
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arbitrary firing delay distributions, and nets incorporating arbitrary extensions.
Furthermore, simulation can easily provide transient solutions, while analytic

techniques supply only steady-state solutions.

The major disadvantage of simulation is that it does not, in general, provide
exact solutions. Depending on the application, this may or may not be important
(e.g., if the additional inaccuracy introduced by simulation is insignificant com-
pared to the inaccuracy inherent in the model, then exact solutions are unlikely

to be important).

2.6 Tools

The difficulty of Petri net analysis problems precludes analyzing all but the
most minuscule nets by hand; automated tools are necessary. Issues involved
in building tools for the creation and analysis of Petri nets are treated in
[Jensen 87]. Dozens of such tools exist; summaries of a number of them appear

in [Feldbrugge 86, Feldbrugge & Jensen 87].

A prominent example of a performance-oriented tool is the Generalized Timed
Petri Net Analyzer (GTPNA) [Holliday & Vernon 86]. Among the extensions
to classical Petri nets made by Generalized Timed Petri Nets (GTPNs) are
arc multiplicities and state-dependent transition firing durations and frequen-
cies [Holliday & Vernon 87]. GTPNA builds the reachability graph of a bounded
net and then computes performance measures from the Markov chain associated
with the graph. Optimization is performed to reduce the state space, but the

complexity is still exponential in the worst case.

2.7 Applications

Uses of Petri nets include analysis, design, modeling, performability, performance
evaluation, representation, specification, synthesis, validation, and verification.
These uses are not mutually exclusive; for example, a system might be designed

using Petri nets, which can be analyzed to verify that the system possesses certain
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properties. This versatility is one of the strengths of Petri nets.

In the following sections we mention areas in which Petri nets have been

applied, and present a series of modeling examples.

2.7.1 Examples from the Literature

Petri nets have been applied in a multitude of domains. Areas of application
reported in the literature include cache coherence protocols [Girault et al. 87],
communication protocols [Diaz 87], computer aided software engineering
[Baldassari & Bruno 88], credit authorization systems [Hildebrand 85], databases
[Voss 87a], distributed systems [Sanders & Meyer 87|, fault tolerant systems
[Lu et al. 87], finite state machines [Peterson 81], flexible manufacturing sys-
tems [Alla et al. 85], high-performance computer architecture [Baer 87|, human-
machine interaction [Oberquelle 87], the A-calculus [Meijer 87], local area
networks [Ajmone Marsan et al. 87|, logic [Genrich et al. 80], music descrip-
tion and processing [Haus & Rodriguez 88|, natural language representation
[Koseska-Toszewa & Mazurkiewicz 88], office automation [Voss 87b], parallel sys-
tems [Vautherin 87], production systems [Valette 87], programming language se-
mantics [Jensen & Schmidt 86], project planning and scheduling [Peterson 81],
real-time control systems [Barke 90], replicated file systems [Dugan & Ciardo 87],
scheduling problems [Carlier et al. 85], software engineering [Reisig 87], and

telecommunication systems [Lopez & Palaez 88].

The preceding list is by no means exhaustive—there are often multiple refer-
ences in an area, and there are many areas other than those listed above. Further
examples of applications may be found in [Peterson 77, Peterson 81, Reisig 85,

Murata 89].

2.7.2 Modeling Examples

In this section we demonstrate the use of PPNs in the modeling of systems via
four examples. The PPNs we present are named CentralServer, CommChannel,

Multiprocessor, DB All-At-Once, and DB One-At-A-Time, respectively.
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Disk2

Merge CPU Fork

Figure 2.10: Central server model.

To reduce the clutter of the nets, we replace two arcs by one two-headed arc
between place p and transition ¢ when p is both an input and output place of ¢

or, more precisely, when p € Ipr(t) Ap € Opu(t) NU((p,t)) = U((t,p)).

Central Server

Figure 2.10 shows a model of a central server system useful for the perfor-
mance evaluation of a simple time-shared computer system. This is an ap-
plication often addressed using queueing network models. We include it here
because much of the work on parallel simulation techniques has used queue-
ing network models (and especially this one) as an application [Reed et al. 88,
Nicol 88, Wagner & Lazowska 89, Greenberg & Lubachevsky 90] and because
queueing network models are easily represented by PPNs. In this model, af-
ter a job receives service at CPU it moves with equal probability to Disk1, Disk2,
or back to CPU; after being serviced by a disk, a job returns to CPU.* It may be
used, for example, to answer questions about the effect of configuration on job

performance.

A PPN that represents the central server model is depicted in Figure 2.11.
FEach (node, output arc) pair in the model is realized by a (place, transition) pair
and associated arcs in the net. The places CPUFree, Disk1Free, and Disk2Free

are required to model sequential access to the respective devices. Tokens repre-

4The Fork and Merge nodes are required by the RESQ [Sauer et al. 80] queue-
ing network model specification language used in [Reed et al. 88].
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Figure 2.11: Central server net.

sent jobs, with the initial marking determined by the initial distribution of the

job population. Transition delays correspond to the service times of the nodes.

Communication Channel

Consider a system in which users on one host (HostA) generate messages to be
sent to another host (HostB). The messages are decomposed into transmission
units called frames and then transmitted over an errorless full-duplex commu-
nication channel. HostB replies to each frame it receives by transmitting an
acknowledgement (ACK) to HostA. At most one frame and one ACK can be on
the channel at one time. A window flow control protocol is used; a window of size
w allows HostA to send up to w unacknowledged frames. Such a model might be

used to evaluate how the window size (which is related to the number of buffers
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HostA HostB

Users

Messagesg

Framer

Frames

Controller Controller

Channel

Figure 2.12: Communication channel model.

in the receiver) affects performance.

An abstraction of such a system is shown in Figure 2.12. With respect to
an OSI-type model of communication [Tanenbaum 88], Framer represents every-
thing above the datalink layer and Controller represents the data link and phys-
ical layers. Framer transforms messages from Users into frames and presents the
frames to Controller for transmission. The Controllers of HostA and HostB

exchange frames over Channel and implement the flow control protocol.

The PPN in Figure 2.13 is one possible portrayal of the system in Figure 2.12.
Each user produces messages at a rate determined by the delay of Msg. Each
message consists of three frames. If there is a frame enqueued (token in FrameQ),
a window slot available (token in Window), and no frame is on the channel (token
in FwdFree), then a frame is sent. After FrameSent’s delay, the frame arrives
at its destination and generates an ACK. If there is an ACK enqueued (token
in AckQ) and no ACK is on the channel (token in BwdFree), then an ACK is
sent. After AckSent’s delay, the ACK arrives at its destination and increments

the number of available window slots by one.

The requirement that at most one frame and one ACK be on the channel
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Figure 2.13: Communication channel net.
Processors
Bus

M1 M2 M3 M4 Memory Modules

Figure 2.14: Multiprocessor model.

at one time precludes concurrent firings of FrameSent and of AckSent. The
mechanism used here to prevent concurrent firings—FwdFree for FrameSent and

BwdFree for AckSent—is often used in Petri net modeling.

Multiprocessor

Figure 2.14 shows a model of a multiprocessor in which processors communicate
with each other via shared memory over a single common bus. A processor p
computes locally in its registers and cache until it issues a request r to one of
the memory modules m (each is equally likely), at which point p stalls until r
is satisfied. After acquiring the bus, r acquires m, is serviced, and generates a

reply /. v’ acquires the bus and returns to p, which resumes computing.
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Figure 2.15: Multiprocessor net.

A PPN which models a system having four memory modules appears in Fig-
ure 2.15. The initial markings of Processors and BusFree are the number of
processors and the number of buses, respectively. Tokens at Processors corre-
spond to processors computing locally. With an interrequest time given by the
delay of Request, a processor makes a request and stalls (a token moves from
Processors to RequestQ). If there is a request enqueued (token in RequestQ)
and the bus is available (token in BusFree), then the request acquires the bus
(a token is removed from RequestQ and from BusFree), arrives at a memory
module—M1, for example—after the bus delay (a token is deposited at M1Q af-
ter the delay of RequestGetsBus), and releases the bus (a token is deposited at
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BusFree). At M1, if there is a request enqueued (token in M1Q) and no other re-
quest is being serviced (token in M1Free), then the request acquires the memory
module (a token is removed from M1Q and from M1Free), generates a reply after
the memory delay (a token is deposited at ReplyQ after the delay of M1Done), and
releases the memory module (a token is deposited at MiFree). Replies acquire
and release the bus in exactly the same fashion as requests. The return of a reply

to Processors completes the cycle, allowing the processor to resume computing.

By increasing the number of tokens in place BusyProcessors, this net can
be used to evaluate how bus contention grows with the number of processors in
a multiprocessor. Similarly, changing the number of tokens in BusFree could

reflect adding additional buses to the machine.

Database Locking

As a final example, consider a database system in which transactions acquire
locks so that the integrity of the system is preserved in the face of concurrent
accesses. Let the number of lockable units (called granules) be G, and let them
be numbered 1,2,...,G. For the sake of simplicity, assume that each transaction
acquires a sequence of consecutively numbered granules; the sequence starts with
granule g, 1 < g < (, with probability 1/G; and that a transaction requiring
granule g also requires granule g + 1 (if it exists) with probability 0.5.

The set of all transactions can be partitioned into disjoint sets such that the
members of a set S require the same sequence of granules; call each 5 a class of

transactions. Let N((') denote the number classes for ¢ granules.

G
N(G) = Z number of sequences of length ¢
=1

G
= Y G-t+1
=1

G+ @
2

As an example, for three granules there are N(3) = 6 classes; the sequences of
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granules they correspond to are (1), (2), (3), (1,2), (2,3), and (1,2,3).

It is likely that the locking strategy—the procedure for obtaining locks ad-
hered to by transactions—has a significant influence on the system’s performance.
One view of the spectrum of strategies has endpoints “All-At-Once” (ALL) and
“One-At-A-Time” (ONE). In the ALL strategy, a transaction obtains at once
all the granules it needs; it must wait until all the desired granules are available
simultaneously. In the ONE strategy, a transaction obtains the granules it needs
one by one in ascending order (but still must obtain all of its granules before

proceeding to compute).

PPNs modeling each of these strategies for a three-granule system are given
in Figures 2.16 and 2.17. The two PPNs operate similarly. A token at G1, G2, or
G3 means the respective granule is available. RequestP and RequestT implement
a source of transactions (requests). Each request falls into one of the six classes;
a token at P_z represents a request of class z, e.g., a token at P_23 represents a
transaction which needs granules 2 and 3. The firing of transition Tz_ signifies
that the sequence of granules z has been obtained. After the delay of Tz_, the
granules that have been obtained are released, e.g., the firing of T23_ releases
granules 2 and 3. The delay of a granule-releasing transition (i.e., Tz_) is taken
to be the product of the number of granules released and a uniform with mean
1, because we expect that transactions which require more granules will compute

longer before releasing them.

The PPN in Figure 2.17 is almost a “superset” of the PPN in Figure 2.16
because locking procedure ONE embodies more steps than locking procedure
ALL. The additional steps are represented by the intermediate nodes for each
multi-granule request. A token at place Pz_y indicates that granules z have been
acquired already and granules y have yet to be acquired, e.g., a token at P12_3
indicates that granules 1 and 2 have been acquired already and granule 3 still
needs to be acquired. The firing of transition Tz_y indicates that granules z
have been acquired already and granules y have yet to be acquired. The delay of
an intermediate transition in Figure 2.17 is zero. A nonzero delay would model

the case where transactions could proceed to compute each time they acquired



Gl G2 G3
W
P_1
T1_
P_2
P_3
RequestP T3_
P_12
RequestT Ti2_
P_23
P_123
T123_

Figure 2.16: Net for database locking strategy ALL.

another granule.

Finally, the arrival rate of each class of transactions is computed as a weighted
sum of probabilities which are generated by a model of the probabilistic behavior
of sequences of granule lock requests, multiplied by a scale factor to yield a
reasonable utilization. The rate is implemented by a combination of the delay of

RequestT and the deposit branching weights on RequestT’s output arcs.
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Figure 2.17: Net for database locking strategy ONE.



Chapter 3

Parallel Simulation

In this chapter we briefly characterize different simulation paradigms, discuss
various possible decompositions of nets for the purpose of parallel simulation,
and explain why the standard paradigm of parallel simulation does not work for

the most promising decompositions.

3.1 Simulation

In the following introduction, we adopt several of the definitions in

[Law & Kelton 82].

A system is a collection of entities acting together toward the accomplishment
of some goal. To study a system, a model of it is constructed. The model
consists of assumptions about the relationships between the entities of the system.
If the model is simple enough, mathematical techniques may be employed to
obtain analytic (exact) solutions to questions of interest. The many models too
complex to admit analytic solutions must be studied through simulation, wherein
a computer is used to numerically evaluate the model for some duration to obtain

estimates of the true values of solutions to questions of interest.

A simulation model can be static, representing the system at a particular
time, or dynamic, representing the system as it evolves over time. A dynamic

simulation model whose state variables change continuously with respect to time



34

parallel discrete-event simulation

/\

function-level distribution application-level distribution
model function distribution support function distribution

T

loose event-driven  tight event-driven

PN

conservative  optimistic

Figure 3.1: Taxonomy of parallel discrete-event simulation.

is called continuous, while one whose state variables change only at a count-
able number of points in time is called discrete. An event is an instantaneous
occurrence which may change the state of the system. A simulation using a dis-
crete model is often called a discrete-event simulation. This thesis is concerned

exclusively with discrete-event simulation.

3.2 Parallel Simulation

Because simulation often requires substantial computational resources, the use of
parallel and/or distributed computing has been actively investigated as a means
of accelerating the simulation process. There are a number of strategies for
incorporating parallelism in the simulation process. An abbreviated taxonomy
of parallel discrete-event simulation, based upon the presentations in [Kaudel 87,

Lin 90], appears in Figure 3.1.

In application-level distribution, different replications of the simulation are
distributed across the available processors, and the replications execute in paral-
lel. This strategy is useful for exploring large parameter spaces. In function-level
distribution, on the other hand, multiple processors cooperate on a single repli-
cation, the goal being to reduce the execution time of the replication. This

strategy is useful in situations in which the results of replication ¢ are used to
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select parameter values for replication ¢ + 1.

Support function distribution is one type of function-level distribution. It
uses different processors to perform different support functions, e.g., statistics
collection, random number generation, and event list manipulation. In general,
support function distribution provides little parallelism. In model function distri-
bution, different events are processed concurrently by different processors. There
are several strategies for doing this. The tight event-driven strategy processes
concurrently only those events occurring at the same simulation time (i.e., events
having identical timestamps). The loose event-driven strategy permits events
having different timestamps to be processed concurrently, and thus yields greater

potential parallelism.

In loose event-driven parallel simulation, the system to be simulated is com-
monly referred to as the physical system; the interacting components constituting
it are called physical processes. A physical system is mapped to a logical system, a
network of logical processes (LPs) that communicate (schedule events) by sending
timestamped messages through unidirectional channels [Chandy & Misra 81].
For an LP to correctly simulate the system entity it represents, it must pro-
cess messages in timestamp order, regardless of the real time order in which

messages may arrive.

In the conservative approach to loose event-driven parallel simulation, an
LP does not process a message until it knows that no message with an earlier
timestamp can ever arrive. In the optimistic approach, an LP can process a
message as soon as it arrives—it optimistically assumes that no message with an
earlier timestamp will arrive later. If a message with an earlier timestamp does
arrive later, the LP initiates a rollback computation to restore the simulation to

a correct state.

This thesis concentrates on the conservative approach.
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3.3 Parallel Simulation and PPNs

There are a number of ways to map a PPN into a network of LPs. In choosing
one, the basic tradeoff of parallel computing applies: increasing the number of
LPs working on the problem can decrease the elapsed execution time (a benefit)

but can also increase inter-LP communication overhead (a cost).

Perhaps the most natural PPN to LP mapping is an isomorphism: one LP per
PPN node and one channel per PPN arc. This node-based decomposition max-
imizes the potential parallelism of the simulation, and, since the number of LPs
scales directly with the number of PPN nodes, has the potential to address very
large problems running on massively parallel machines. However, this decompo-
sition has two drawbacks. First, because the amount of work each LP has to do
“per message” (e.g., updating the marking of a place when tokens are deposited)
is very small, the relative cost of message passing overhead is very large, leading
to potentially poor performance. Second, neither the standard conservative nor
optimistic method of parallel simulation can be used for this decomposition of

PPNs.

In standard parallel simulation, interaction among physical processes occurs
exclusively via explicit messages, with messages in the logical system correspond-
ing to messages in the physical system [Chandy & Misra 81]. The node-based
decomposition of PPNs violates this paradigm because the behavior of a node of
the net may be determined by state that is global with respect to that node rather
than through explicit message exchange. For example, this is always the case for
decision places. Asillustrated in Figure 2.15, if (decision) place BusFree has a to-
ken, it cannot on its own decide whether to send it to transition RequestGetsBus

or transition ReplyGetsBus since it cannot determine whether either is enabled.

Note that this problem exists for optimistic as well as conservative parallel
simulation. One might imagine optimistically sending the token both directions
in the case above, and relying on the rollback feature of optimistic simulation
to later undo the incorrect decision. However, this will not work. Under opti-

mistic simulation the rollback mechanism is triggered by the arrival of a message
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timestamped in an LP’s past. No such message will arrive in the case of PPNs.
Further, even if messages conveying “I could not use the token you sent me at
time 7”7 could be sent, this would not solve the problem. If no such messages
were sent from any of the receiving LPs, what would this mean? At most one of
them should be allowed to ultimately consume the single token that existed, but

there is no way to coordinate their actions so that this happens.

An alternative mapping of a PPN into a network of LPs is one in which each
LP represents a static conflict set of the net, with channels corresponding to
arcs between conflict sets. (Such arcs will always be directed from a transition
to a place.) This mapping has characteristics that are just the opposite of the
node-based mapping discussed above. In particular, because each LP represents
a potentially large number of nodes, the number of events that occur internally to
an LP per inter-LLP message can be high, minimizing the relative cost of communi-
cation overhead. Also, this conflict set-based decomposition of the net allows the
standard methods of parallel simulation to be used, since there is no interaction
among conflict sets other than the depositing of tokens as a result of transition
firings. On the other hand, the potential parallelism of this decomposition is
poor, as the number of LPs scales with the number of conflict sets rather than
with the number of nodes, and there is no direct relationship between the size
of a PPN and the number of conflict sets it contains. (The entire net, or nearly
the entire net, can be a single conflict set, for instance. In fact, the five-granule
version of the PPN in Figure 2.16 has two conflict sets, one containing two nodes

and the other containing thirty-five nodes.)

In the end, the most appropriate decomposition of a PPN into a network
of LPs is probably some combination of these two approaches. In those cases
where a conflict set-based decomposition yields parallelism commensurate with
the number of physical processors available to run the simulation, its low overhead
makes it an attractive alternative. However, for PPNs with only a very few
conflict sets or in situations where the simulation will be run on a massively
parallel machine, the node-based decomposition described above must be adopted

for at least part of the network.
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With this understanding, in the remainder of this thesis we concentrate on
the node-based decomposition, since it presents new challenges for parallel simu-
lation. We first consider the problem of simply correctly simulating a PPN using
this decomposition. Subsequently, we examine its performance using a prototype
implementation. It should be kept in mind, though, that while for simplicity of
exposition we assume that the entire PPN is decomposed as an LP per node, in a
practical situation a more sophisticated combination of node-based and conflict

set-based decompositions is probably the best choice.



Chapter 4

The Transition Firing
Protocol

A protocol for the conservative parallel simulation of PPNs, which we call the
Transition Firing Protocol (TFP),is presented in this chapter. We chose to follow
a conservative approach because we expected its performance characteristics to
be more stable (and often better) than those of an optimistic approach. The
basic reason for this is the behavior of decision places in the net. As explained in
the remainder of this chapter, it is the problems caused by decision places that

render invalid standard conservative parallel simulation.

Recall from Section 3.3 our chosen decomposition: each place and each tran-
sition is represented by an LP, and each arc in the net is represented by a channel.
We augment this simulation model by introducing additional channels: there is
a channel from LP ¢; to LP p; if there is an arc from place p; to transition ¢; in
the PPN. To distinguish these additional channels from the “ordinary” channels

(along which tokens may flow) we refer to them as control channels.

The graphical representation of the simulation model is identical to that of
the PPN, except that we include control channels (drawn as dashed arcs) when
appropriate. The net fragment in Figure 4.1 contains place LPs pl and p2,
transition LP t1, ordinary channels (p1, t1) and (t1, p2), and control channel

(t1, p1) (as well as additional channels connecting with other, unspecified LPs).
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Figure 4.1: Overview of TFP.

TFP is basically a double handshake between transitions and their input
places, as indicated in Figure 4.1. The notation Message(n)@Ti means Message,
passing parameter n, is sent at simulation time T:. T is the timestamp of

Message; every message has a timestamp.

TFP’s double handshake is motivated by decision places.! When a decision
place receives tokens, it may cause many transitions to become enabled simul-
taneously. Because the decision place cannot know which transitions are now
enabled without interacting with them, it cannot make an immediate decision
about which transition should be sent tokens. The first of the two handshakes
determines which transitions are enabled. A decision about which transitions
this decision place would like to fire is then made, and in the first portion of
the second handshake those transitions are offered tokens. Because each of these
transitions may have other decision places as input places, and under the conflict
resolution scheme we use (see Chapter 6) those places may make different firing
decisions, in the final portion of the second handshake the transitions inform

their input places whether or not they have actually fired.

IThere are several cases in which TFP can be streamlined. For example, a
place with a single noninhibitor output arc can send a Grant as soon as it has
tokens. Additional special case optimizations are possible to further reduce the
number of messages that need to be exchanged.
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In what follows, we describe the four steps in the handshake without explicitly
considering how they are integrated with the messages corresponding to the token

deposits due to transition firing. This integration is provided in Chapter 5.

For the sake of simplicity in the following discussion we assume regular (i.e.,
noninhibitor) arcs of multiplicity one. TFP handles the general case—regular

and inhibitor arcs of any multiplicity.

o Activate(n)@QT0

The first handshake starts when place pl receives a deposit of n tokens
at time T0,? causing it to send an Activate(n)@TO0 message to each of its

output transitions, indicating that it has n tokens available at time TO.

o Request(m)@QT1

Once t1 has received an Activate from each of its input places it calculates
T1 > TO0, the latest timestamp of any of the Activate messages it has
received, and m < n, the smallest of the Activate parameters. t1 then
updates its (local) simulation clock to T'1 and responds to each input place
with a Request(m)@T1 message. t1 thereby asserts that it is ready to fire
m times at time T1 if all of its input places (still) contain sufficient tokens

at that time. This completes the first handshake.

o Grant(k)QT2

pl waits to receive a Request from each output transition it has sent an
Activate.> Let T2 < T1 be the earliest timestamp among these Requests.
(In Figure 4.1, T2 = T1.) When p1 has received all Requests timestamped
T2, it executes a conflict resolution algorithm (explained in Chapter 6) to
choose among competing earliest Requests, and then replies to each such

Request with a Grant(k)@T2 message, indicating that & < m tokens are

2In general, a deposit is not needed to initiate the sequence—tokens already
residing at p1, perhaps in the initial marking, can initiate it. We present it this
way because it is the easiest situation to understand.

3This is why our approach is conservative.
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available to the sender of the Request for firing. (Note that k& could be

zero.)

o Confirm(j)QT2

t1 collects a Grant message from each of its input places. Let j be the
minimum parameter of these Grants. (Thus, j could be zero.) t1 ends
the second handshake by sending a Confirm(j)@T2 to each input place,
indicating that t1 has fired j times (and so has consumed a corresponding

number of tokens from each input place).

If appropriate, t1 schedules one or more Deposit(h)@QT3 messages, where
0 < h < jand T3 > T2, to be sent (when the corresponding firing delays

have elapsed) to one or more of its output places.

The receipt of a Confirm(j) from t1 by p1 completes the second handshake
between pl and t1. pl subtracts the j tokens from its marking that were con-

sumed by the firing of t1 and begins the next cycle of the protocol.



Chapter 5

Selective Receive and TFP

The development of TFP led us to introduce a new technique, Selective Receive,
which relaxes one of the fundamental restrictions imposed by the standard con-
servative approach to parallel simulation. In this chapter we describe Selective
Receive, discuss its integration into TFP, and present the finite automata that

implement the place and transition LPs.

A basic tenet of the conservative approach to parallel simulation is that mes-
sages on each channel must be sent in nondecreasing timestamp order. It is this

property that distinguishes conservative from optimistic simulation.

The standard conservative algorithm achieves this output ordering goal by
imposing an input ordering restriction. Associated with a channel from LP; to
LP; is a channel clock value, c;;, which is equal to the earliest timestamp of any
undelivered message pending on that channel, if one exists, or else the time of
the last message sent on it. LP; is prevented from receiving a message m having
timestamp 7, unless 7,,, is equal to H;, the message acceptance horizon of LP;,
where H; = miin Cij-

This input ordering restriction is a major source of performance problems for
conservative simulations, including the possibility of deadlock. Consequently, a

great deal of work has focused on minimizing its impact (e.g., [Reed et al. 88,

Nicol 88, Wagner & Lazowska 89, Fujimoto 90]).
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The problem of deadlock is particularly extreme for TFP. Because transitions
send messages along their control channels only in response to messages received
from the input place connected there, no messages can be received by places at
the beginning of a TFP cycle. For instance, imagine that a place has no tokens
in its current marking and so has not sent out any Activates. At this point it
would like to receive any Deposit messages that its input transitions might send
it. However, the semantics of the message receive operation under conservative
simulation prevents it from doing so, even if there is a pending Deposit message
from each of its input transitions, because its message acceptance horizon cannot
proceed beyond the time of the last TFP cycle (which is the channel clock value

on the channels from its output transitions).

Our solution to this problem is to change the rules governing the receipt of
messages by LPs. In particular, we allow each LP to specify that certain channels
should be ignored in computing that LP’s message acceptance horizon, thus
allowing the receipt of messages that would otherwise have to remain pending.

We call this feature Selective Receive.

Selective Receive can be applied when an LP can deduce that the next mes-
sage it will receive (in simulation timestamp order) cannot arrive on one or more
of its input channels. Under TFP in particular, a place LP knows statically that
any output transition not sent an Activate message by it will not send it any mes-
sages. Thus, the LP is free to receive the earliest message from the remaining

channels.

Note that Selective Receive is distinct from approaches based on null mes-
sages, lookahead, and futures. Unlike null messages, Selective Receive does not
involve the transmission of any extra control messages. Unlike lookahead and
futures, Selective Receive can be used to avoid performance problems involving
message channel loops even when the lower bound on the message propagation
delay around the loop is zero. In fact, our use of Selective Receive in TFP serves

exactly this purpose.

Under TFP, a place LP never ignores a channel from an input transition LP.
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receive Request receive Confirm/Cancel

all Requests received

SN

all Confirms/Cancels received

Figure 5.1: State diagram for place LP.

It ignores a channel from output transition LP; except between the time at which
it sends an Activate to LP; and the time at which it receives the corresponding
Confirm. A transition LP ignores a channel from input place LP; after it receives
an Activate from LP; until it sends Requests, and after it receives a Grant from

LP; until it sends Confirms.

To better understand the use of Selective Receive in TFP, and the integration
of Deposit messages into TFP, we now summarize the activity of the place and

transition LPs. For simplicity, we again assume regular arcs of multiplicity one.

5.1 Place LP

An LP that represents a place may be thought of as a finite automaton. A state
diagram for this automaton appears in Figure 5.1. In the discussion below, MRT

is the minimum Request time—the timestamp of the earliest Request received.

A place LP, P, starts out in state 0, a transient boot state. It sends Activates

to its output transitions as warranted by its initial marking, then goes to state 1.

While in state 1, P collects Request responses to previously sent Activates
and accepts new Deposits, sending out any new Activates that they may allow.
To do this, P uses Selective Receive, allowing input only on channels from its
input transitions (messages received will be Deposits) and from any Activated
output transitions—channels from non- Activated output transitions are ignored.

If such a channel from an output transition 7 is not ignored, the progress of P
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is impeded because no messages can arrive along this channel until after P sends

T an Activate and so the message acceptance horizon cannot advance.

P remains in state 1 until all earliest timestamped Requests are received
and it knows its marking at MRT.! It then applies a conflict resolution scheme
(explained in Chapter 6) to decide which of the earliest Requests to grant, and
sends out an appropriate Grant in response to each earliest Request. P now moves
to state 2, where it receives information about which transitions eventually do

fire. Note that Requests timestamped later than MRT remain pending.

P remains in state 2 until it receives a Confirm in response to each Grant(k),
k > 0, it sent. (The response to a Grant(0) will be a Confirm(0), and thus
will not affect the marking of P, so P need not wait for responses to Grant(0)
messages before returning to state 1.2) P ignores the input channel from output
transition T after P receives a Confirm from T. Once again, if the channel is
not ignored, the progress of P is impeded because no further message can arrive

from T until after P sends an Activate to T.

When all required Confirms are received, P updates its marking, subtracting
tokens for each transition that fired. If tokens remain after this update, P sends
an Activate to each inactive output transition if allowed by the updated marking.

Finally, P returns to state 1.

5.2 Transition LP

A state diagram for the transition LP automaton appears in Figure 5.2. In the
discussion below, MAT is the maximum Activate time—the timestamp of the

latest Activate received.

IThis involves sophisticated lookahead functions. Details are given in Sec-
tion 7.3.2.

2Transitions that were sent (rant(0) messages are of secondary importance
at this point in the protocol, and failure to receive Confirms from them will not
prevent P from returning to state 1. Thus, a Confirm(0) from some LP T may
be received while in state 1. When this happens, an Activate is immediately sent
to T if allowed by the current marking.
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receive Activate receive Grant/Deny

all Activates received

\—/

Deny received, or all Grants

Figure 5.2: State diagram for transition LP.

A transition LP, T, starts out in state 0 and remains there until it has received
an Activate(n;) from each input place P;. It then sends a Request(minn;)@MAT
to each input place and goes to state 1. Between the time T receive; an Activate
from P; and the time it sends Requests, T ignores P; because P; cannot send

another message to 7" until after 7" sends a Request to P;.

T remains in state 1 until it receives a Grant(j;)@MAT from each input place
P;. Tt then sends a Confirm(min j;)@MAT to each input place, possibly schedules
one or more Deposits to be sént to its output places after suitable firing delays
have elapsed, and returns to state 0. Between the time T receives a Grant from
P; and when T sends Confirms, T ignores P; because P; cannot send another

message to T until after T sends a Confirm to P;.



Chapter 6

Conflict Resolution

In this chapter we discuss different methods for resolving conflicts in PPN,
including our method, which was designed to exploit the properties of parallel

simulation.

When one or more decision places in a conflict set contain tokens, a decision
must be made about which set of transitions to fire. As mentioned in Section 2.2,
a number of proposals have been made for this decision procedure, and there is
no standard agreement on this aspect of PPNs. However, one of the more flexible
approaches is offered by [Holliday & Vernon 87]. They allow the user to specify
weights that are the basic parameters of a function that assigns probabilities to
each maximal set. (Recall that a maximal set is a firable set of transitions that
is not a subset of any other firable set.) A single maximal set is then chosen for

firing according to this probability distribution.

While Holliday and Vernon proposed this scheme for use in analytic ap-
proaches to PPN analysis, their technique is easily applied in a sequential simula-
tion: after an event is processed the new PPN marking is examined, the maximal
sets are enumerated and assigned probabilities, one is selected, and a new set of
(transition firing) events are scheduled. This is a relatively straightforward pro-

cedure in a sequential simulation.

In a parallel simulation, however, applying this technique is much more com-

plicated. The reason for this is that determining maximal sets requires a global
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view of the net at a particular simulation time. Since in a parallel simulation
each LP may have a different simulation time, determining the global state at a
particular simulation time is not a simple matter. Further, because each LP has
information about only its local state, no LP is naturally in a position to compute
maximal sets. To do so requires the creation of a new LP for this purpose, and
cooperation from place and transition LPs in registering state information with
this LP. Needless to say, this is a complicated protocol to implement, and tends

to serialize execution of the simulation.!

When constructing a parallel simulation of PPNs, a decentralized approach
is more natural. The one we use is based on “trial-and-error”: each decision
place p selects at random according to the user supplied arc weights one or
more transitions in Org(p) that it would like to fire, and offers them tokens
via a Grant message. Additionally, all transitions ¢ for which t € O7;(p) and
M(p) < U((p,t)) are sent Grants.? If a transition ¢ is lucky enough to receive
Grants from all p € Ip(t), it then fires. Otherwise, it replies that it cannot use

any of the tokens and its input places try again.

This procedure, which is incorporated in TFP, is completely decentralized:
each place makes decisions based solely on information available to it either
locally or through communication with its own output transitions only. Thus,
we might expect the decentralized approach to have better performance than the

more serial maximal set-based approach.

While this reduction in serialization may have important performance im-
plications, experience with our simulator shows that an even more important
effect is the change in computational complexity that results from the decen-

tralized approach. FEnumerating maximal sets is of exponential complexity

!Note, however, that with such an implementation the Confirm messages of
TFP could be eliminated since it would be guaranteed that the firing decisions
of all decision places would be in agreement.

2Since the semantics of inhibitor arcs differ from those of regular arcs, and
the firing of ¢ € Or(p) does not consume any tokens from p, p always sends a
Grant to t if permitted by M(p). This is why inhibitor arcs do not have weights.
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[Holliday & Vernon 87], both in terms of time and space. Thus, if conflicts in-
volving a large number of transitions or tokens occur with any frequency, conflict

resolution by this approach can be extremely slow.?

We note that the decentralized conflict resolution scheme has slightly different
semantics than the maximal set-based approach, reflecting the difference between
the “repeated trials” approach of the former and the one-time enumeration of
the latter. In general, neither scheme is able to simulate the other, i.e., no choice
of weights for the decentralized scheme results in a distribution identical to that
of the maximal set scheme and vice versa. However, this is not considered a
significant problem since there is no standard for conflict resolution semantics
and neither scheme provides a significantly more convenient way for the user to

express the desired behavior of the model.

We also note that while the decentralized scheme employed in TFP could be
emulated in a sequential simulation, resulting in performance gains comparable to
those we observed in the parallel simulations, this would be somewhat unnatural.
It therefore seems unlikely that the new scheme would have been developed in a

sequential environment.

In Chapter 8, which concentrates on the speedup characteristics of our parallel
simulation and its performance relative to the analytic techniques, we also provide
some empirical information about the performance advantages of decentralized

over maximal set-based conflict resolution.

30mn the other hand, the time requirement of the decentralized scheme depends
on the arc weights. Since each decision place selects transitions independently,
an unfortunate set of arc weights could lead to a very large expected time to
determine a firing. Thus, while the decentralized approach has better average
time characteristics in our experience, it is easy to generate artificial models
for which the expected conflict resolution time exceeds any bound. This rather
disconcerting aspect of this approach is the topic of current work.



Chapter 7

Implementation

The subject of this chapter is Persephone, a prototype implementation of TFP.
After describing the hardware and software comprising the environment in which
Persephone runs, we give a high level sketch of the execution of Persephone,

followed by a compendium of selected issues involved in the implementation.

7.1 Environment

Our hardware platform is a Sequent Symmetry S81 shared-memory multiproces-
sor, configured with 32 Mbytes of primary memory and 20 16-MHz Intel 80386
32-bit CPUs. The CPUs are connected to the primary memory by a 64-bit system
bus with a maximum sustainable data transfer rate of 53.3 Mbytes per second.

Each CPU has a 64 Kbyte two-way set associative copy-back cache.

The Symmetry runs the DyNIx operating system, Sequent’s multiprocessor

version of UNIX.

The bulk of Persephone is written in C++ [Stroustrup 86]. (Part of the front
end, because it uses a scanner and a parser generated by the Un1x tools lex and

yacc, respectively, is written in C [Kernighan & Ritchie 78].)

Persephone is built on top of a modified version of Synapse [Wagner 89], a
library of C++ classes for conservative parallel simulation. Synapse exports a

basic LP class that provides the message delivery mechanism and ensures that
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messages are received in nondecreasing timestamp order, and a scheduler that
handles the scheduling of LP objects. Synapse exploits the shared memory of the

Symmetry in an attempt to achieve good performance [Wagner & Lazowska 89)].

The implementation of TFP required several modifications to Synapse, pri-
marily to its lookahead, deadlock detection and recovery, and message deliv-
ery mechanisms. Selective Receive—the major enhancement made to Synapse—
violates the normal message delivery semantics of conservative simulation (and

thus of Synapse), so many of the changes are directly related to Selective Receive.

As Dvyn1x provides only standard heavyweight UnNix processes, applications
seeking to exploit medium- or fine-grained parallelism require some kind of sup-
port for lightweight processes (also called threads). PRESTO [Bershad et al. 88]
is a user-level threads package, written in C++, which provides such support.

Synapse runs on top of PRESTO.

The layering of these systems is beneficial because it separates concerns and
abstracts away details, but it makes determining where the bottlenecks are in
a Persephone simulation a significant challenge. This is the focus of continuing

work.!

7.2 Execution

Persephone is an application-level program that takes a description of a PPN as
input, performs a parallel simulation of the given PPN, and produces statistics

from the simulation as output, as illustrated by Figure 7.1.

A PPN is described by a text file in which nodes, arcs, and various attributes
(e.g., the initial marking) are specified. A modeler may create this text file
by using either a standard text editor or zsim [Thomas 90|, an interactive X
Window System-based graph editor/compiler that can be configured to generate
input suitable for Persephone from a PPN drawn by the modeler.

!The three systems—Persephone, Synapse, and PRESTO—together comprise
40,000 lines of C++ code.
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xsim

Petri net description

Persephone

Synapse

PRESTO

kﬁ Simulation output statistics

Figure 7.1: Use of Persephone.

Persephone reads the input file, creates an internal representation of the input
PPN, constructs the network of LPs to which the PPN maps, and spawns one
thread per LP. The simulation is performed by the threads executing TFP on
a number of processors specified by the user. When the simulation completes,
statistics collected during the simulation are processed. Examples of statistics
computed are the resource-time product [Murata 89] for each place and the firing

rate for each transition. After the statistics are reported, Persephone halts.

Details of interest to a user of Persephone—the format of a PPN description,

the command line interface, and output statistics—appear in [Thomas 91].
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7.3 Issues
7.3.1 Firing Delay Distributions

While Definition 2.1 does not restrict the distributions from which transition
firing delays are drawn, an implementation can support only some specific set of

distributions. Persephone supports the following distributions:

constant(c¢)

exponential(/3)
e geometric(p)

e uniform(a,b)

Definitions of these distributions appear in [Law & Kelton 82]. As mentioned
in Section 2.3, arbitrary distributions are acceptable; the four listed above were

chosen because it was felt they would be the ones most often used in models.

7.3.2 Lookahead

Lookahead refers to the ability of an LP to guarantee that it will not send a mes-
sage before a certain time in the future. This is crucial for good performance of a
conservative parallel simulation because an LP blocks, unable to process pending
messages, unless it can determine that no messages with earlier timestamps can

arrive later [Fujimoto 90].

The implementations of place and transition LPs in Persephone exploit the
properties of TFP to provide lookahead capability. The reasoning involved is
similar to that used for Selective Receive. The next sections sketch the ideas used
to provide this capability. In what follows, define L, , to be the lookahead from
LP. to LP,, i.e., the maximum simulation time 7 such that LP, can guarantee

that it will not send a message to LP, that is timestamped earlier than 7.
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Transition LP

A transition t in state 0 (refer to Figure 5.2) will not send a Request to any
p € Ip(t) until t has received an Activate from each p € Ip(t), so Ly, is the
latest time at which ¢ could receive such an Activate. Let MDT (minimum
Deposit time) be the earlier of (a) the next completion of a firing already in
progress, and (b) the earliest time at which a firing not yet in progress could
begin and end; t will not send a Deposit to any ¢ € Op(t) before MDT, so Ly,
is equal to MDT.

In state 1, ¢t will send a Confirm to all p € Ip(t) at the current simulation
time 7, so Ly, is equal to 7. ¢ will not send a Deposit to any ¢ € Op(t) before

MDT, where MDT here is computed as in state 0, so L; 4 is again equal to MDT.

Place LP

The lookahead function defined for a place LP is analogous to the one described
above for a transition LP, except that the case analysis for a place LP is more
extensive. In particular, there are 24 cases to consider, according to the state of

the LP, the type of arc, and the point in the protocol the LP has reached.

Probabilistic Minimum

The computation of MDT above depends on the minimum possible firing delay,
¢, of the transition. The value of € is equal to the lower bound of the distribution
from which a transition’s firing delays are selected. Some distributions, e.g., the
exponential, have a lower bound of zero. This adversely affects lookahead because

it reduces MDT and other quantities similar to MDT.

To help alleviate this problem, we use a probabilistic minimum for € rather
than the true lower bound of the distribution. We associate with each transition
arisk r,0 <r < 1. If Fisthe cumulative distribution function of the transition’s
firing delay distribution, we define the probabilistic minimum pmin as pmin(r) =

F~Y(r).
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Intuitively, r is the probability that the distribution returns a sample that
is less than pmin(r), which may result in an eventual out-of-order message and
abortion of the simulation. Larger values of r increase the risk of the simulation
aborting, but they also increase lookahead and thereby (hopefully) improve the

performance of the simulation.

If the simulation does fail, it can be rerun with smaller values of r. In the long
run, this procedure of trying positive values for r and rerunning the simulation

if it fails can be faster than always using r = 0.

7.3.3 Termination

Persephone can produce both transient and steady-state solutions. The type of
solution determines the termination criteria. Specifying a particular simulation
stop time 7 yields a transient solution—when all LPs have simulated up to time

7, the simulation terminates.

Computing a steady-state solution is more difficult, because it must be de-
cided when the estimate for the parameter of interest has reached steady-state or,
in other words, when the simulation has run long enough to derive an estimate

that is “reliable” in some sense.

For computing steady-state solutions we use the sequential stopping proce-
dure of Law and Carson, as described in [Law & Kelton 82],2 to terminate the
simulation when it reaches a 100(1 —a)% confidence interval of relative precision
~ for an estimate of the average time spent by a token at a selected place. The

user may specify o and 7.

2However, in addition to correcting several minor errors in the description, we
modified the procedure to correctly handle the situations in which all samples
are identical or the true value of the parameter being estimated is zero or near
7ero.



Chapter 8

Performance

We have two goals in this chapter. The first is to examine how well a parallel
simulation using a node-based decomposition of a PPN is able to exploit available
processors. We address this by measuring the speedups obtained for simulations
of a number of realistic PPNs. For these measurements we use Persephone, our

prototype implementation of TFP.

Our second goal is to evaluate the growth in the running time of our PPN
simulation as the size of the PPN increases, and to compare these times with
those obtained using analytic approaches to PPN evaluation. In this case, we
take a PPN model and increase its size in a natural way (as explained below),
yielding a series of models. We compare the elapsed time to evaluate each model
using Persephone and GTPNA [Holliday & Vernon 86|, which, as mentioned in
Section 2.6, employs analytic techniques to evaluate PPNs. Qur purpose here
is to determine whether or not simulation can extend the applicability of PPN
modeling to larger systems by facilitating the evaluation of systems larger than

those amenable to analytic techniques.
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Figure 8.1: Instruction pipeline net.

8.1 Speedup Versus Number of Processors

In this section we examine the speedups achieved by Persephone on six distinct
PPN models—the five presented in Section 2.7.2,! plus another one introduced
here. Each of the PPN models represents an interesting computer system, and
while certain aspects of these models have been given less attention here than
would be appropriate if our purpose were in fact to model these computer sys-
tems, their basic structures could be used to answer performance questions about

those systems.

Figure 8.1 shows a new PPN model, called Pipe, and its initial marking. Pipe
represents an instruction pipeline in a CPU. There is a token source, representing
instruction issue, followed by a number of pipeline phases, each represented as
a single place and transition pair. All transition firing times are deterministic
with duration 1.0, reflecting the deterministic nature of pipeline stages. Control
channels are shown explicitly, as dashed arcs, to emphasize the fact that the net

is not truly feed-forward. This is discussed later in this section.

!The PPN models DB All-At-Once and DB One-At-A-Time used in these
measurements are five-granule systems; the PPNs in Figures 2.16 and 2.17 rep-
resent three-granule systems, because the smaller systems are easier to draw.
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Figure 8.2: Measured speedups for Persephone on the PPN models.

The speedup curves for the aforementioned PPNs are given in Figure 8.2.
Following the example of [Reed et al. 88], we define speedup relative to a parallel
simulation on one processor rather than to an equivalent sequential (uniprocessor)
simulation, i.e., the speedup for a Persephone simulation using p processors is the
execution time for Persephone on one processor divided by the execution time for
Persephone on p processors.? Note that the CentralServer and CommChannel
models have fewer than sixteen data points because they have fewer than sixteen

LPs.

The linear speedup exhibited by Pipe would not ordinarily be surprising, since
the net is largely feed-forward. The presence of the control channels, however,
introduces a large amount of feedback into the topology of the simulation model,
which makes the linear speedup somewhat unexpected. We hypothesize that the

feedback due to the control channels is what prevents the speedup from being

2Unlike [Reed et al. 88], however, the speedups we present are not upper
bounds. Persephone on one processor can be faster than an equivalent sequential
simulation, as shown in Section 8.2. In these cases, speedups reported relative
to Persephone on one processor are smaller than speedups reported relative to
an equivalent sequential simulation.
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Table 8.1: Number of conflict sets and maximum speedups of PPN models.

‘ Model ‘ Conflict Sets ‘ Speedup ‘
Pipe 8 9.8
CommChannel 3 3.8
Multiprocessor 6 3.6
DB One-At-A-Time 6 2.9
DB All-At-Once 2 2.8
CentralServer 5 2.1

perfectly linear, i.e., of slope one.

The remaining models each exhibit speedups flattening out at between four
and eight processors and, not coincidentally, contain large amounts of feedback
in the PPN itself. There are several factors limiting these speedups. First, a
model may have poor speedup potential regardless of the degree of concurrency
in the system being modeled [Wagner 89]. As an example, Wagner shows that
the queueing network model from which CentralServer is derived has a theoretical
limit of 3.67 on its achievable speedup despite the fact that the queueing network
simulation contains five LPs. Thus, for some models the limit on speedups is

intrinsic to the problem and cannot be fixed by tuning.

Second, there are theoretical limits on the performance of conservative parallel
simulation that are related to the topology of the simulation model [Lin 90]. Lin
shows, for example, that under certain conditions the speedup of a conservative
parallel simulation cannot exceed the number of strongly connected components
in the simulation model. In the TFP simulation model used by Persephone, the
strongly connected components are precisely the static conflict sets of the PPN.
Table 8.1 gives the number of static conflict sets in each of the models and the
maximum speedup achieved by Persephone on the model. Since Persephone does
not meet Lin’s criteria exactly,® in some cases it does achieve speedup greater
than the number of strongly connected components, but overall these results can

be viewed as experimental evidence that supports Lin’s work.

3In particular, Persephone is not a system without lookahead.
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We hypothesize that another factor limiting speedup is serialization due to
critical sections in the underlying software systems on which Persephone is built,
i.e., Synapse and PRESTO. For example, Synapse’s scheduling of LPs on pro-
cessors, which happens in concert with PRESTO, requires a queue of ready LPs.
Access to this queue must be serialized to ensure correct execution. While we
have been unable to verify directly (because of lack of appropriate measurement
tools) that contention for this queue is limiting speedup, this hypothesis is con-
sistent with our experience with other applications using the PRESTO system.
If our hypothesis is correct, this limit on speedup could be addressed by tuning

of the run time systems.

8.2 Execution Time Versus Model Size

For these measurements we compare the execution times of Persephone and
GTPNA on four different series of PPN models. Each series is obtained by
starting with an initial version of either CentralServer or Multiprocessor and in-
creasing its size in two ways: first, by increasing the number of tokens in the
initial marking, then by adding nodes and arcs (and possibly tokens) to the net.
Specifically:

1. In a CentralServer with two disks, vary the number of jobs from 1 to 32

(by varying the initial marking of place CPUP).

2. In a CentralServer with eight jobs, vary the number of disks from 1 to 8

(by adding the necessary nodes and arcs to the net).

3. In a Multiprocessor with four memory modules, vary the number of proces-

sors from 1 to 32 (by varying the initial marking of place BusyProcessors).

4. In a Multiprocessor with three processors, vary the number of memory

modules from 1 to 8 (by adding the necessary nodes and arcs to the net).

Analyzing our other benchmark nets with GTPNA is infeasible. GTPNA

requires bounded nets, as do most of the stochastic analysis methods, and neither
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Figure 8.3: Normalized execution time on CentralServer, varying jobs.

CommChannel nor the DB PPNs are bounded. Furthermore, aside from being
too large for GTPNA, the DB PPNs use exponential and uniform firing delay
distributions, neither of which is supported by GTPNA.

All measurements reported here are for Persephone running on eight phys-
ical processors of the Sequent Symmetry described in Section 7.1 and GTPNA
running on a DEC VAXstation 3500 with 16 Mbytes of memory. The execution
times from the different systems cannot meaningfully be compared directly, so
the metric we use is normalized execution time—the time for model size s divided

by the time for model size 1.

Each Persephone run was terminated when it achieved a 99% confidence
interval of relative precision 0.2 for an estimate of the average time spent by a

token at a selected place, using the procedure discussed in Section 7.3.3.

The normalized execution times for Persephone and GTPNA on the four
series of models described above are plotted in Figures 8.3, 8.4, 8.5, and 8.6.

These figures illustrate several interesting phenomena.

e The exponential time complexity from which the analytic techniques all

suffer is evident in the curves for GTPNA. In Figure 8.5, for example,
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Figure 8.4: Normalized execution time on CentralServer, varying disks.

44
40
36
32
—=—GTPNA

28 —e—Persephone

24

20

SO ——~C O®X[Mm OON——®3 =02

©3 -~

0 4 8 12 16 20 24 28 32

Model Size (Processors)

Figure 8.5: Normalized execution time on Multiprocessor, varying processors.

we see that GTPNA requires over 42 times as long to evaluate the three-

processor model as it does the one-processor model.

e The exponential space complexity that plagues the analytic techniques is

also shown by the GTPNA curves: three of them are missing data points
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Figure 8.6: Normalized execution time on Multiprocessor, varying memories.

for the larger model sizes because GTPNA exhausts its available memory
for these models and terminates abnormally.* The remaining curve (Fig-
ure 8.5) is missing data points because we manually aborted GTPNA when

it seemed unlikely that it would terminate.’

Using a larger machine (a VAX 8550 with 96 Mbytes of memory) for these
experiments gave qualitatively identical results, both in terms of the shapes

of the curves and the sizes of the models GTPNA could successfully solve.

e In stark contrast to GTPNA, the curves for Persephone are nearly constant
or exhibit very slow linear growth across the entire range of model sizes in

these experiments.

e The Persephone curve in Figure 8.4 actually decreases as model size in-

creases. In this case, this behavior is due to an interesting relationship

1GTPNA uses a set of statically sized tables. We recompiled GTPNA a
number of times to increase these table sizes, but beyond a certain limit the run
time system refused to execute it.

We observed runs that consumed more than 150 CPU hours without fin-
ishing, probably due to enormous paging overheads or numerical convergence
problems.
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between the simulation and the system being simulated.

Consider a physical CentralServer system. The CPU is likely to be much
faster than the disks. If we have only a single disk, the disk is probably
the bottleneck of the system, severely limiting its throughput (the rate at
which jobs flow through the system). As disks are added, offering parallel
I/0 to the CPU, each disk becomes less of a bottleneck, and the system’s

throughput improves.

Now consider the simulation of the CentralServer system. To achieve a
specified confidence level for the estimate of a parameter, a number of
observations of values of the parameter must be collected. For the Cen-
tralServer PPN, an observation is the length of time a token resides at
CPUP; therefore, the greater the rate at which tokens cycle through the
net, the sooner (in simulation time) a given number of observations can be

made.

The single disk in the 1-disk CentralServer PPN is a bottleneck: tokens
arrive from the CPU faster than the disk can route them back to the CPU.
Since there are a fixed number of tokens in the PPN, the CPU is essentially
starved. The simulation must run to a large simulation time to generate
enough observations to achieve a specified confidence level, and simulating

a large period of time can increase the execution time of the simulation.

Increasing the number of disks in the PPN alleviates the bottleneck. The
token throughput is increased, so a given number of observations can be
generated in a smaller amount of simulation time, reducing the execution

time of the simulation.

The Persephone curve in Figure 8.5 also decreases as model size increases.
The explanation is that for some nets, larger numbers of tokens can generate
greater numbers of events in a given period of simulation time, so the
simulation can achieve a specified confidence level in a smaller amount of
simulation time when it has more tokens, and simulating a smaller period

of time can reduce the execution time of the simulation.
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Table 8.2: Execution times (seconds) of Persephone (1 processor) and Seq on DB
models.

‘ Model ‘ Persephone  Seq ‘

DB All-At-Once 61.5 658.2
DB One-At-A-Time 104.4 129.6

Although we cannot claim, based on this small set of examples, that simula-
tion will always dominate the analytic methods so convincingly, we are encour-
aged by these results because they demonstrate that such domination is at least

possible.

One of the advantages Persephone has over GTPNA is its decentralized con-
flict resolution scheme, presented in Chapter 6, which allows it to avoid com-
puting maximal sets. Note, however, that any PPN evaluation technique that
resolves conflicts in the standard centralized way is at a similar disadvantage.
To illustrate this concretely, we constructed a sequential PPN simulator (call it
“Seq”) that provides a subset of the functionality of Persephone but that resolves
conflicts by computing maximal sets. Seq is written in C++ and runs on the
same machine as Persephone, so its execution times are directly comparable. Ta-
ble 8.2 lists the execution time in seconds for Persephone (running on a single
processor) and Seq to simulate two of the PPN models. Persephone running on
one processor is faster than Seq, a simulator that provides less functionality, and

the gap in execution times widens as the sizes of the conflict sets grow.



Chapter 9

Summary

In this concluding chapter we summarize the contributions made by this thesis

and suggest areas for further work.

9.1 Contributions

We have examined the use of parallel simulation for the analysis of performance
Petri nets. Because the actions of the “physical processes” of PPNs require
global information, these networks present new challenges for parallel simulation
methodologies, which have assumed that physical processes interact only through

the explicit exchange of messages.

We have developed a parallel simulation protocol for PPNs, the Transition
Firing Protocol, that copes with the global nature of their actions. This protocol
is based on the conservative approach to parallel simulation. We have introduced
a new technique to conservative simulation, Selective Receive, that relaxes the
traditional message receipt rules by allowing a logical process to sometimes ignore
specific input channels when attempting to receive messages. Using information
about the PPN simulation known statically, we use Selective Receive to allow
receipt of messages that would normally have to remain pending, leading quickly

to deadlock of the simulation.

We have also introduced a new conflict resolution procedure for PPNs that
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was inspired by the parallel simulation approach. This conflict resolution pro-
cedure has been observed to be much faster in practice than the exponential

procedures used previously.

Finally, we have created a prototype implementation of our parallel PPN sim-
ulator and measured its performance. Its speedup characteristics are similar to
those obtained in other applications of parallel simulation, despite the apparently
sequential flavor of PPNs induced by their global decision making procedures.
More importantly, we have demonstrated that simulation can in fact be used to
evaluate PPN models which are too large for the analytic PPN evaluation tech-

niques, thereby extending the applicability of PPN modeling to larger systems.

9.2 Areas for Further Work

This work could be extended in a number of ways.

o Optimize TFP for special cases. By taking advantage of the local topology
of part of a PPN, some steps can be eliminated from TFP for the nodes in
the part, as noted in Chapter 4. In particular, nodes having single inputs

and/or outputs are prime candidates for streamlined protocols.

e Prove the correctness of TFP. A formal proof of correctness would be inter-
esting from a theoretical point of view and desirable from a practical point

of view.

e Improve the implementation of TFP. A simple improvement that could
yield significant performance gains would be to incorporate the future list
technique [Nicol 88] into the lookahead computation employed by Perse-
phone. Opportunities also exist for modifying the data structures and
algorithms used by Persephone or by the run time systems underlying it
to improve performance. Work has already been done on PRESTO toward

this end [Faust & Levy 90].



69

o Fxperiment with different conflict resolution strategies. We have not quan-
tified the effect of our “repeated trials” conflict resolution strategy, i.e., we
have not studied how the number of trials necessary to resolve a conflict
is related to the topology of the PPN. If such a study were performed, it
might suggest how to redefine the conflict resolution strategy to amelio-
rate performance degradation in the presence of pathological topologies.
Static or dynamic analysis of the PPN might be required to identify such

topologies.

o Fxperiment with different partitionings. As noted in Section 3.3, the opti-
mal decomposition of a PPN into LPs is probably a combination of node-
and conflict set-based decompositions. Determining a good combination

will require study of various combinations.

o Investigate NUMA parallel simulation.  Non-uniform memory access
(NUMA) platforms present new challenges for parallel simulation. Re-
cent work has addressed parallel programming [Chase et al. 89] and the
reimplementation of Synapse [Brown 90] on a network of shared-memory
multiprocessors. Achieving performance on a NUMA platform similar to
or better than the performance currently achieved by Persephone on a Se-
quent Symmetry (a uniform memory access platform) will probably require
a different PPN decomposition, as well as heuristics for determining how

to distribute LPs among processors.

o Investigate optimistic parallel simulation of PPNs. We suspect that, at
least for certain PPN topologies, an optimistic parallel simulation would
suffer greatly from excessive rollback. It would be interesting to characterize
topologies for which excessive rollback does and does not occur, and to

assess the overall performance of optimistic parallel simulation.



Glossary

It is not our intent to provide precise definitions of the terms listed herein, but

rather to give intuitive explanations as a convenience for the reader.

arc multiplicity An integer associated with an arc. If the arc is from a place
p to a transition ¢, the multiplicity specifies the number of tokens required
at p to enable ¢ (if the arc is a regular arc) or to inhibit ¢ (if the arc is an
inhibitor arc). In the former case, it also is the number of tokens removed
from p each time t fires. If the arc is from ¢ to p, the multiplicity specifies

the number of tokens deposited at p each time ¢ fires.

arc weight A real number associated with an arc that is used in conflict resolu-
tion (if the arc’s source is a place) or deposit branching (if the arc’s source

is a transition).
channel A communication path in a parallel simulation from one LP to another.

classical Petri net A Petri net of the “original” variety, without added fea-
tures. In particular, classical Petri nets do not incorporate time or branch-

ing probabilities.

conservative parallel simulation A type of parallel simulation in which an
LP does not process a message timestamped 7 until it is certain that no

messages timestamped earlier than 7 will arrive.

control channel A channel introduced by TFP that does not correspond to an

arc in the PPN.
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CPU Central processing unit.
decision place A place that has more than one regular output arc.

deposit branching A mechanism whereby a transition randomly chooses a
place to deposit tokens at, instead of depositing tokens at each of its output

places.

enable A transition is enabled when all of its input places have appropriate

markings.

generalized inhibitor arc An inhibitor arc with an associated multiplicity. A
generalized inhibitor arc of multiplicity m from a place p to a transition ¢

inhibits ¢ from firing if there are m or more tokens at p.

Generalized Timed Petri Net Analyzer A software tool that performs a

stochastic analysis of a Generalized Timed Petri Net (a type of PPN).
GTPNA Generalized Timed Petri Net Analyzer.

inhibitor arc An inhibitor arc from a place p to a transition ¢ inhibits ¢ from
firing if there are any tokens at p. Equivalent to a generalized inhibitor arc

of multiplicity 1.
logical process An entity in a logical system. It represents a physical process.

logical system A network of LPs representing a physical system in a parallel

simulation.

lookahead The length of simulation time (starting from the current simulation

time) during which an LP can guarantee that it will send no message.
LP Logical process.

marking The number of tokens at a place. Also, the marking of a net is the

vector of markings of its places.
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optimistic parallel simulation A type of parallel simulation in which an LP
processes messages as soon as they arrive. If a message timestamped 7
is processed and later a message timestamped earlier than 7 arrives, a

“rollback” of the simulation occurs.
parallel simulation A single simulation employing multiple processors.

performance Petri net A Petri net augmented with time (firing delays) and

branching probabilities.

Persephone Our prototype implementation of TFP: a conservative parallel sim-

ulator for PPNs.

Petri net A modeling tool that is both graphical and mathematical. Named

after C. A. Petri, whose dissertation was the seminal work in the field.
physical process An entity in a physical system.
physical system A system being simulated.
place One of the two types of nodes in a Petri net. Drawn as a circle.
PPN Performance Petri net.
PRESTO A user-level threads package used by Synapse.
regular arc An arc that is not an inhibitor arc. See “arc multiplicity.”

Selective Receive Our extension to conservative parallel simulation whereby
an LP can at times ignore certain of its input channels when determining

how far it may progress.
Synapse A conservative parallel simulation toolkit used by Persephone.
TFP Transition Firing Protocol.
thread A lightweight process.

timestamp The simulation time associated with a message.
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token Tokens reside at places, and are consumed and produced by transition

firings.
transition One of the two types of nodes in a Petri net. Drawn as a bar.

transition firing A firing of transition ¢ removes tokens from the input places

of t and deposits tokens at the output places of t.

transition firing delay The length of time between the start of a transition

firing (when tokens are consumed) and its end (when tokens are deposited).

Transition Firing Protocol Our conservative parallel simulation protocol for

PPNs.

untimed Petri net See “classical Petri net.”
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