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Abstract

The s-t connectivity problem for undirected graphs is to decide

whether two designated vertices, s and t, are in the same connected

component. This paper presents the �rst known deterministic algo-

rithms solving undirected s-t connectivity using sublinear space and

polynomial time. There is some evidence that such algorithms are im-

possible for the analogous problem on directed graphs. Our algorithms

provide a nearly smooth time-space tradeo� between depth-�rst search

and Savitch's algorithm. For n vertex, m edge graphs, the simplest

of our algorithms uses space s, O(n

1=2

logn) � s � O(n logn), and

time O(((m+ n)n

2

log

2

n)=s). We give a variant of this method that

is faster at the higher end of the space spectrum. For example, with

space �(n logn), its time bound is O((m+ n) logn), close to the op-

timal time for the problem. Another generalization uses less space,

but more time: space O((n

�

logn)=�), for 1= logn � � � 1=2, and time

n

O(1=�)

. For constant � the time remains polynomial.

�
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1 Introduction

The s-t connectivity problem is a fundamental one, since it is the natural

abstraction of many computational search processes, and a basic building

block for more complex graph algorithms. In computational complexity the-

ory, it has an additional signi�cance: understanding its complexity is a key to

understanding the relationships among deterministic, nondeterministic, and

probabilistic space bounded complexity classes. In particular, the s-t con-

nectivity problem for directed graphs (stcon) is the prototypical complete

problem for nondeterministic logarithmic space [22]. The problem for undi-

rected graphs (ustcon) is complete for the seemingly weaker \symmetric"

variant of nondeterministic space bounded machines [18], and is known to

be solvable by logarithmic space and polynomial time bounded randomized

algorithms, even errorless ones [1, 7]. Any problem solvable deterministically

in logarithmic space can be reduced to either stcon or ustcon| i.e., both

are DLOG-hard [18, 22].

The fundamental open problem in this area remains whether determin-

istic, nondeterministic, and probabilistic space bounded complexity classes

are equal or distinct. The complexity of ustcon sits squarely in the middle

of this question. For example, if deterministic and nondeterministic space

bounded classes are equal, then ustcon is solvable by a deterministic loga-

rithmic space algorithm, and perhaps showing this would be an easier �rst

step towards the main goal. In fact, considerable e�ort has been expended

on this step, for example in studying and attempting to constructively gen-

erate universal traversal sequences [1, 2, 3, 4, 8, 9, 12, 13, 14, 15, 19, 25].

Alternatively, if deterministic and nondeterministic classes are distinct, then

ustcon is a likely candidate for a problem that will separate the classes. In

either case, its complexity is of interest.

Settling the deterministic space complexity of ustcon is a very di�cult

open problem. A fruitful intermediate step is to explore time-space tradeo�s

for the problem: the simultaneous time and space requirements of algorithms

for ustcon. Even for this simpler intermediate problem, no nontrivial lower

bounds are known for general models of computation (such as Turing ma-

chines), although Cook and Racko� [11] and Beame, et al. [6] have obtained

lower bounds for restricted models. This paper presents new upper bounds
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for the problem.

For probabilistic algorithms, much is known about the simultaneous time

and space requirements for ustcon. The random walk result of Aleliunas,

Karp, Lipton, Lov�asz, and Racko� [1] provides a space-optimal, but some-

what slow algorithm for ustcon. At the other extreme, well-known deter-

ministic methods like depth- and breadth-�rst search provide time-optimal,

but space-intensive solutions. Both extremes exhibit a time-space product of

O(mn log n). The probabilistic algorithm of Broder, Karlin, Raghavan, and

Upfal [10] provides a spectrum of compromises roughly between these two

extremes: time O(m

2

log

5

n=s) with space s.

For deterministic algorithms, less is known. For directed graphs, depth-

and breadth-�rst search are still applicable, still time-optimal, and still re-

quire space �(n log n) in the worst case. Savitch's Theorem [22] provides a

deterministic �(log

2

n) space algorithm for stcon, but it requires time ex-

ponential in its space bound: n

�(logn)

. A similar but more subtle algorithm

by Cook and Racko� [11] for their more restricted \JAG" model has essen-

tially the same performance. No sublinear space, polynomial time algorithm

is known for stcon, and there is evidence suggesting that none is possible.

Speci�cally, Tompa [24] has shown that certain natural approaches to solving

stcon admit no such solution. Indeed, he shows that for these approaches,

performance degrades sharply with decreasing space: space o(n) implies time

n


(logn)

, essentially as slow as Savitch's algorithm. Proving a nonpolynomial

time bound in general would, of course, prove that stcon is not solvable

deterministically in logarithmic space, separating the deterministic and non-

deterministic space classes.

For undirected s-t connectivity, all of the algorithms cited in the previ-

ous paragraph apply as well, with the same complexity bounds. In addi-

tion, there is one sublinear space deterministic algorithm for ustcon that

does not also solve stcon. Nisan [19], improving on results of Babai, Nisan

and Szegedy [3], has shown how to \derandomize" the probabilistic algo-

rithm of Aleliunas, et al. [1] to obtain a small-space deterministic algo-

rithm for ustcon. It again has essentially the same performance as Sav-

itch's: very small space, namely �(log

2

n), but superpolynomial time, namely

n

�(logn)

. Also, there is one algorithm solving a restricted case of ustcon in

O(log

2

n= log log n) space, namely the case of undirected graphs of (log n)-
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bounded genus, solved by Kriegel [17]. None of these results provides the sort

of spectrum of compromises between time and space that Broder, et al. [10]

give.

The main results of our paper are three new deterministic algorithms

for undirected s-t connectivity that achieve sublinear space and polynomial

time simultaneously. The algorithms provide a nearly smooth tradeo� for

ustcon between time-e�cient, space-intensive algorithms, such as depth-

and breadth-�rst, and time-intensive, space-e�cient algorithms such as Sav-

itch's, Cook and Racko�'s, and Nisan's. The �rst algorithm, called the simple

algorithm below, uses space s, O(n

1=2

log n) � s � O(n log n), and runs in

time O(((m+n)n

2

log

2

n)=s). The second (the recursive algorithm) is a gen-

eralization of the �rst, using space O((n

�

log n)=�), for 1= log n � � � 1=2,

and time n

O(1=�)

. It can use as little as �(log

2

n) space, but its running

time becomes superpolynomial whenever its space is constrained to n

o(1)

.

The third algorithm (the batched algorithm) is a more time-e�cient vari-

ant of the �rst: for space s, O(n

1=2

log n) � s � O(n log n), it uses time

O((m + n)((n=s)

2

log

3

n)(log((n log n)=s))). When s = �(n log n), the time

bound is O((m+n) log n), only a factor of log n worse than the time-optimal

bound of depth- and breadth-�rst search. As noted in Bar Noy, et al. [4],

no previously known deterministic algorithm for ustcon simultaneously

achieves polynomial time and sublinear space.

Returning to the motivating questions about the relationships among the

various space bounded complexity classes, note that if ustcon is solvable

deterministically in logarithmic space, then, of course, it is solvable in loga-

rithmic space and polynomial time simultaneously. Thus our sublinear space,

polynomial time algorithm might be seen as a small step towards an a�r-

mative answer to this question. On the other hand, our method runs into

the same log

2

n space barrier as all previous methods, so a negative answer

is still a distinct possibility.

The remainder of the paper is organized as follows. Sections 2, 3 and 4

present the simple, recursive, and batched algorithms, respectively. Section 5

presents some notes and concluding remarks.

For simplicity, when discussing the space used by our algorithms below,

we will often give the space used in terms of registers, where each register

holds O(log n) bits, enough to specify the name of a vertex, for example.
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2 The Simple Algorithm

The �rst algorithm depends upon a space-bounded breadth-�rst search sub-

routine (bbfs) to �nd small sets of connected vertices. Such a routine is easy

to implement; basically, it is a standard breadth-�rst search routine modi�ed

to quit as soon as a certain number of vertices, b, have been found, or the

component in which it is started is exhausted. Using this routine, a single

vertex v can be used to implicitly mark a neighborhood of up to b vertices,

namely, the vertices, including v itself, found by starting the bbfs routine at

v. Let bbfs(v; b) denote this set, and de�ne a full neighborhood to be one

that contains b vertices. All our algorithms depend on repeatedly recom-

puting the neighborhoods of vertices; such recomputation is common when

attempting to use a limited amount of space. (See [21], for example).

Using the bbfs routine, a few special cases can be eliminated with a little

initial work. Begin by generating the neighborhoods of s and t. If they

intersect, we are �nished: s and t are connected. Next, check that both

neighborhoods are full. If bbfs fails to �nd b vertices connected to a given

vertex, the vertex must belong to a small connected component, i.e. one

with fewer than b vertices. Thus, assuming s's and t's neighborhoods are

disjoint, if either neighborhood is not full, the two vertices are not connected.

Furthermore, if both neighborhoods are full, then any other vertex whose

neighborhood is not full cannot be connected to s or t, and can safely be

ignored.

If the neighborhoods of s and t are full and disjoint, the algorithm identi-

�es and stores the names of a certain set L of vertices called landmarks. One

goal of the algorithm is to �nd enough landmarks l so that their associated

neighborhoods, bbfs(l; b), nearly cover the graph, and so �nding connected

components will be quick. On the other hand, the landmark set must be

small enough that the space constraint is not violated. To achieve these

goals the algorithm constructs L satisfying the following three conditions:

� s and t are both members of L.

� The neighborhoods of the landmarks in L are full and pairwise disjoint.

That is,

8 l 2 L; jbbfs(l; b)j = b; and

5



8 l

1

; l

2

2 L; (l

1

6= l

2

)) bbfs(l

1

; b) \ bbfs(l

2

; b) = ;:

This insures that there can be no more than n=b landmarks.

� L is a maximal set satisfying the above properties. Thus the neighbor-

hood of any vertex not in L either is not full, or has at least one vertex

in common with the neighborhood of some landmark. That is,

8 v 62 L (jbbfs(v; b)j < b) _ (9 l 2 L s.t. bbfs(v; b) \ bbfs(l; b) 6= ;):

The set L can be built in one pass through all the vertices. Begin by

adding s and t to L. For every other vertex, v, generate the neighborhood

of v; if it is of size b and disjoint from the neighborhoods of all previous

landmarks, then add v to L.

Once the set of landmarks is constructed, we determine which landmarks

are in the same connected component. De�ne a function cl(v) on the vertices

to denote the \closest" landmark to a given vertex. If the vertex is in a small

component cl simply returns a special value \small" indicating that fact.

Otherwise, it returns the lowest numbered landmark whose neighborhood

intersects the neighborhood of the vertex:

cl(v) =

(

\small" if jbbfs(v; b)j < b;

min I otherwise, where

I = fl 2 L j bbfs(l; b) \ bbfs(v; b) 6= ;g:

By the de�nition of L, I 6= ; if jbbfs(v; b)j = b. Note that if v is a landmark,

then cl(v) = v.

The function cl induces a partition on the vertices, with one block per

landmark, plus one for all vertices in small components, which necessarily are

not connected to either s or t. Furthermore, we know for each landmark l,

all vertices in the block fv j cl(v) = lg are connected. We can use this infor-

mation to discover which landmarks are in the same connected component:

if there is an edge fu; vg such that u is in one block, and v is in another,

then we know that the landmarks corresponding to these two blocks are con-

nected. By considering each edge in turn, the algorithm is able to determine

the connectivity information for all landmarks.
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Connectivity is encoded by constructing sets of landmarks, where two

landmarks are members of the same set only if they are known to be in

the same connected component. The sets can be manipulated e�ciently us-

ing Union-Find subroutines with weighted union and path compression [23].

We will call these sets union-�nd sets. Begin by constructing a singleton

set containing each landmark, plus an extra set containing the special value

\small". For all the edges e = fu; vg, perform a Union on Find(cl(u))

and Find(cl(v)). Using the reasoning in the previous paragraph, if the two

vertices are in separate blocks before the Union, we now know that the cor-

responding landmarks are connected, and hence these sets should be joined.

The following lemma asserts that this process is su�cient to determine the

connectivity between the landmarks:

Lemma 2.1 After following the above procedure, any two landmarks, in

particular s and t, will end in the same union-�nd set if and only if they are

in the same connected component.

Proof: First, we will show by induction on k that for any path

v

1

; v

2

; : : : ; v

k

, after processing the k�1 edges fv

1

; v

2

g; fv

2

; v

3

g; : : : ; fv

k�1

; v

k

g

the landmarks cl(v

1

); cl(v

2

); : : : ; cl(v

k

) will all be in the same union-�nd set.

This is trivially true when k = 1. For k > 1, consider the last edge fv

i

; v

i+1

g

processed. By the induction hypothesis, just before edge fv

i

; v

i+1

g is pro-

cessed, cl(v

1

); : : : ; cl(v

i

) are all in one union-�nd set, as are cl(v

i+1

); : : : ; cl(v

k

).

Then Union(Find(cl(v

i

)),Find(cl(v

i+1

))) will join these two sets (if necessary).

Thus, any two connected landmarks will end in the same set.

For the other direction, we show by induction on the number k of edges

processed that for all vertices u; v, if Find(cl(u)) = Find(cl(v)) then either

u and v are connected, or both are in small components. When k = 0

this easily follows from the de�nition of cl and the initial construction of

the union-�nd sets. For k > 0, let fx; yg be the k

th

edge processed. If

Find(cl(u)) = Find(cl(v)) holds after fx; yg is processed, but not before, then

it must be that Find(cl(u)) and Find(cl(v)) were the two (distinct) sets joined

when processing fx; yg. Without loss of generality, suppose Find(cl(u)) =

Find(cl(x)) and Find(cl(v)) = Find(cl(y)). Then by induction u and x are

connected, as are v and y, hence u and v are connected through edge fx; yg.

2
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A detailed \pseudocode" version of the algorithm is presented in Figure 1.

Next, we turn to the analysis of the simple algorithm. The bounded

breadth-�rst search routine must check whether the endpoint of each edge

explored has been visited or not. Standard breadth-�rst search routines

do this in constant time using a ag for each vertex, but this requires too

much space. Instead, our bounded breadth-�rst search routine looks up

the endpoint of the edge in the list of vertices already known to be in the

neighborhood. Lookup and insertion in a list can be accomplished in time

O(log b) by using a balanced search tree [16]. Thus, overall, bbfs uses time

O(b

2

log b) with O(b) registers | it can explore only b vertices, which can

have only O(b

2

) edges among them.

Constructing the intersection between two neighborhoods of size b can

be done in time O(b) using O(b) registers since the vertices are sorted. If l

is de�ned to be the number of landmarks, then the cl routine runs in time

O(b

2

l log b) using O(b) registers.

The loop to �nd the landmarks takes time O(b

2

ln log b), using O(b + l)

registers. The Union-Find operations take time O(m�(m)) [23] and use O(l)

registers. The cl routine is called 2m times, each call taking time O(b

2

l log b),

so, assuming m = 
(n), connecting the union-�nd sets dominates the algo-

rithm's running time, taking time O(b

2

lm log b).

Since the bbfs procedure �nds b vertices associated with each land-

mark, at most n=b landmarks can be found, giving a total space bound of

O((b + n=b) log n) and a time bound of O(bnm log b). When b =

p

n, space

is minimized, and the running time is O(mn

1:5

log n). Increasing b from

p

n

increases both the space and time used, so that range is uninteresting. In the

other direction, though, as b is decreased from

p

n, the time of the algorithm

decreases as the space increases. For 1 � b �

p

n, the algorithm uses space

s = O((n log n)=b) and time O(mn

2

log n log b=s), for a time-space product

of O(mn

2

log n log b). This is o� by a factor of at most n log n from the best

known algorithms (depth-�rst or breadth-�rst search, and random walk; see

Broder et al. [10]), and a factor of n when the space approaches its upper

bound (O(n log n)).

In summary, we have shown the following.

Theorem 2.2 For any n

1=2

log n � s � n log n, the simple algorithm,
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Algorithm Ustcon (integer: b);

f1 � b �

p

ng

generate bbfs(s; b) and bbfs(t; b).

if s's neighborhood overlaps t's then return (Connected);

if either neighborhood is not full then return (Not Connected);

Initialize the set of landmarks to fs; tg;

for all vertices, v do begin f�nd the landmarksg

generate bbfs(v; b);

if v's neighborhood is not full then Not a landmark. Go to next vertex.

for all landmarks, l do begin

generate bbfs(l; b);

if v's neighborhood overlaps l's then Not a landmark. Go to next vertex.

end;

Add v to the set of landmarks.

end;

Create a singleton Union-Find set containing each landmark, plus one

containing the special value \small" for small components.

for all edges, e = fu; vg do begin

Union(Find(cl(u)), Find(cl(v)));

end;

if Find(s) = Find(t) then return (Connected);

else return (Not Connected);

end Ustcon.

procedure cl (vertex v): vertex;

fReturn the \closest" landmark to vg

generate bbfs(v; b);

if v's neighborhood is not full then return (\small");

for all landmarks, l, in order do begin

generate bbfs(l; b);

if v's neighborhood overlaps l's then return (l);

end;

end cl.

Figure 1: Details of the simple algorithm
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presented above, solves ustcon for arbitrary n vertex, m edge graphs in

space O(s), and time O(((m + n)n

2

log

2

n)=s).

3 The Recursive Algorithm

The simple algorithm points the way to a more general algorithm that uses

less space. Consider the bounded breadth-�rst search routine: it isn't nec-

essary to use breadth-�rst search at all; any deterministic graph searching

algorithm that can �nd b connected vertices within the same time and space

constraints could be used instead. Suppose the simple algorithm itself is

used as the search routine. Super�cially, the simple algorithm uses b regis-

ters to characterize b

2

vertices. Therefore, it might be possible to use this

algorithm, or one like it, to �nd n

2=3

neighbors of a vertex using only n

1=3

registers. Then only n

1=3

landmarks, each characterizing n

2=3

vertices, would

be needed, and the space bound would be reduced to O(n

1=3

) registers. And,

of course, the technique could be repeated, to ultimately reduce the space

to O(cn

1=c

log n) for any �xed constant c while still maintaining a (possibly

very high) polynomial running time. (The factor of c covers the cost of the

implied c levels of recursion.)

To use the simple algorithm, it needs to be changed from a global search

routine to a local one. That is, instead of �nding any b landmarks, it should

�nd b landmarks in the same connected component. One way to accomplish

this is to add an extra step to the algorithm when it is searching for new

landmarks: a vertex can only be added to the landmark set if its set of

vertices is disjoint from the other landmarks' sets and if it can be shown to

be in the same connected component as one of the other landmarks. We

actually impose a stronger condition, very roughly that the new landmark's

set must be \close enough" to some old landmark's set that they both overlap

the set of some third vertex. Since this test for connectivity is e�cient, this

modi�ed version of the simple algorithm can be called recursively to build

large sets of connected vertices from smaller sets using a small amount of

space and time.

The recursive algorithm is parameterized by �, 1= log

2

n � � � 1=2, an

approximate indication of the amount of space any given routine in the al-

gorithm should use. We will assume � is the reciprocal of a positive integer

10



| if not, the algorithm rounds � down to the nearest integer reciprocal. The

actual bound on space for any given routine (i.e., exclusive of recursive calls)

will be O(b) registers, where b = dn

�

e, and the total space bound for the

algorithm will be O(b=�) registers.

Generalizing the notion of a neighborhood in the simple algorithm, for

each k � 0, each vertex v has a (k)-neighborhood, denoted nv(v; k), of size

at most b

k

. A (k)-neighborhood is full if it is of size exactly b

k

. For k = 0,

we de�ne nv(v; k) = fvg. To represent a (k)-neighborhood succinctly for

k � 1, the (k)-neighborhood of v has associated with it a (k)-landmark set,

a set of at most b vertices, denoted L

v;k

; the (k)-neighborhood of v is the

union of the (k � 1)-neighborhoods of the members of L

v;k

. Informally, the

(k)-landmark set for v is bbfs(v; b) when k = 1, and when k > 1, it is a

maximal set of landmarks of full, disjoint (k � 1)-neighborhoods connected

to v, where connectivity is tested based on the following property. We say u

is (k)-adjacent to v if there is an edge fu;wg such that w's (k)-neighborhood

overlaps v's (k)-neighborhood.

More formally, the (k)-landmark set for v has the following properties,

similar to the properties of L in the simple algorithm (Section 2, page 5).

In the base case, when k = 1, L

v;k

= bbfs(v; b). When k > 1,

L

v;k

= fl

1

= v; l

2

; : : : ; l

j

g is an ordered set of vertices containing v that is

maximal in that it satis�es the following properties, but no vertex l

j+1

can

be added without violating one of these properties:

� L

v;k

contains at most b landmarks, i.e.

jL

v;k

j � b:

� The (k � 1)-neighborhoods of the vertices in L

v;k

are pairwise disjoint.

That is,

8l

i

; l

i

0

2 L

v;k

; (l

i

6= l

i

0

)) nv(l

i

; k � 1) \ nv(l

i

0

; k � 1) = ;

� The (k � 1)-neighborhoods of the vertices in L

v;k

are full, with the

possible exception of v's (k � 1)-neighborhood when jL

v;k

j = 1.

� Every landmark l

i

in L

v;k

(except v) is (k � 1)-adjacent to an earlier

landmark l

i

0

; i

0

< i.
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This property guarantees that the landmarks are all in the same con-

nected component.

If L

v;k

satis�es the above properties, and if the size of L

v;k

is b, then

since the (k � 1)-neighborhoods of the members of L

v;k

are of size b

k�1

, we

have encoded a full (k)-neighborhood using the desired amount of space.

Constructing L

v;k

is a simple task: cycle through the edges, searching for

one with an endpoint that satis�es the above properties for L

v;k

(i.e., an

edge fu;wg such that u's neighborhood is full and disjoint from the previ-

ously chosen landmarks' neighborhoods, and w's neighborhood overlaps one

of them). When such an edge is found, add u to L

v;k

and repeat the process

until either enough landmarks have been discovered or another cannot be

found.

To understand the discussion below, it will be helpful to remember that

the v's (k)-neighborhood is always a subset of v's (k + 1)-neighborhood. Fur-

thermore, if v's (k + 1)-neighborhood is full, so is its (k)-neighborhood.

At the topmost level, the algorithm proceeds much like the simple algo-

rithm: after eliminating certain special cases, it constructs a maximal set

of (not necessarily connected) global landmarks having full, pairwise disjoint

(1=�� 1)-neighborhoods, then examines the edges of the graph to discover

which landmarks are in the same connected component. Initially, s and t

are in this landmark set; every other vertex is tested in turn, and added to

the landmark set if its (1=�� 1)-neighborhood is full and disjoint from the

previous landmarks' sets. There can be at most b such global landmarks.

The main di�erence between this and the simple algorithm is that instead

of using bbfs to �nd the neighborhoods, the algorithm uses nv( � ; 1=� � 1).

Note that we could simplify the algorithm conceptually by using nv at the

topmost level to �nd a global landmark set that is guaranteed to be con-

nected, e.g. nv(s; 1=�). However, guaranteeing connectivity turns out to be

relatively expensive computationally, so the faster method of building union-

�nd sets is used at the top level. This also insures that the simple algorithm

is essentially a special case of this algorithm, i.e., the case � = 1=2.

The search procedure, nv, raises a problem that was not present with a

simple breadth-�rst search: what if the search at a vertex fails to �nd enough

(b

k

) vertices? All our algorithms dismiss a vertex whose search is unsuccess-

ful, because a lower bound on the size of the landmarks' neighborhoods is

12
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Figure 2: A graph where the search might fail.

necessary to insure an upper bound on the number of global landmarks. As

mentioned in Section 2 (page 5), when using breadth-�rst search, it is clear

that any vertex whose bbfs set is too small belongs to a small component,

and is therefore not connected to s or t. With this more complex search

procedure, however, we cannot be certain that the failure of the search rou-

tine for a given vertex, v, implies that v belongs to a small component and

can therefore be disregarded. In fact, it seems likely that, for any given k,

a certain number of vertices in v's component will never be part of the (k)-

neighborhood of v, and also that searches begun at di�erent vertices could

have wildly varying results.

Consider Figure 2 depicting a connected graph, with S

v

the (k � 1)-

neighborhood of v, S

1

a set of size less than b

k�1

, and S

2

the rest of the

graph, not directly connected to S

1

. Suppose the algorithm is trying to �nd

the (k)-neighborhood of v, has generated S

v

, and is now looking for b � 1

other (k � 1)-neighborhoods. It will not �nd a large enough set in S

1

, and

may never be able to use these vertices, which may in the end cause the

search at v to fail. Intuitively, though, a search for a (k)-neighborhood be-

gun at another vertex \closer to" or \farther from" S

1

might succeed because

it is able to use some or all of S

1

's vertices. It seems that the search at v,

then, might be unsuccessful, while the search at a nearby vertex could have

the opposite result. If v is dismissed as irrelevant by the algorithm, how can

we be sure this is correct?

13



To solve this problem, we prove the following lemma, which shows that

the process of building L

v;k

does not fail prematurely. Intuitively, the lemma

says that if a vertex v's connected component isn't \big" enough to allow

v a full (k + 1)-neighborhood, then it isn't big enough to contain even a

(k)-neighborhood, full or not, disjoint from v's (k + 1)-neighborhood. This

lemma can be used to show that vertices at which a search fails are not

actually a problem.

Lemma 3.1 For any vertex v, if v's (k + 1)-neighborhood is not full, then

it overlaps the (k)-neighborhood of every vertex in v's connected component.

Proof: The proof proceeds by induction on k. Let C be the connected

component containing v. For the basis, k = 0, observe that if v's (1)-

neighborhood isn't full, then by the properties of bbfs, v's (1)-neighborhood

contains all of C. For the induction step, k > 0, for the sake of contradic-

tion suppose there are vertices in C whose (k)-neighborhoods are disjoint

from v's (k + 1)-neighborhood. Among all such vertices there must be a

vertex w whose distance, d, from v is minimal. First, note that v's (k)-

neighborhood must be full, for otherwise by induction it would overlap w's

(k � 1)-neighborhood, contradicting disjointness. By a similar argument w's

(k)-neighborhood is also full. Now, consider a path of length d between

v and w. By the minimality of d, w's predecessor on the path has a (k)-

neighborhood that overlaps v's (k + 1)-neighborhood, so w is (k)-adjacent to

some member of L

v;k+1

, the (k + 1)-landmark set of v. But this contradicts

the maximality of L

v;k+1

. 2

Given this lemma, we can show that at the topmost level, the algorithm

works as desired. As in the simple algorithm, we �rst generate the (1=�� 1)-

neighborhoods for s and t, returning Connected if the sets overlap, and

Not Connected if they do not overlap and one or both is too small. Next,

we cycle through the vertices, building the global landmark set. Finally, we

examine all the edges as in the simple algorithm to determine which land-

marks are in the same connected component. If the (1=�� 1)-neighborhoods

of s and t are disjoint, we must be assured of two facts:

� If either is not full, then s and t are not connected. Proof: If s and t were

connected, then by Lemma 3.1 their neighborhoods would intersect.

14



� If both are full, then for all vertices v, it must be true that v is in

the global landmark set, or that v's (1=� � 1)-neighborhood overlaps

a global landmark's (1=� � 1)-neighborhood, or that v is connected to

neither s nor t. Proof: If v's neighborhood is full, then by construction

it must either be a global landmark or its neighborhood must overlap

the neighborhood of one of the global landmarks. If v's neighborhood

is not full, then by Lemma 3.1 it cannot be connected to s or t without

overlapping their neighborhoods.

Finally, we sketch how the algorithm, in the proper amount of space, de-

termines whether two (k)-neighborhoods intersect. The nv routine generates

the lists of landmarks for a neighborhood, not the vertices themselves, so the

intersection routine receives two sets of size at most b. Given two such sets,

S

1

and S

2

, and an integer k, for each possible pair fv;wg, v 2 S

1

, w 2 S

2

,

the intersection routine generates the (k)-landmark sets of v and w, and calls

itself recursively, with these two sets and the integer k � 1 as parameters.

For the base case, k = 0, the sets are just arbitrary sets of vertices, and can

be compared directly.

The code for the nv and recursive intersection (ri) routines is given in

Figure 3. The code for the main routine of the recursive algorithm is nearly

identical to the code for the simple algorithm (see Figure 1), and is omitted

here. The only changes are as follows:

� The algorithm is parameterized by � instead of b, where 0 < � � 1.

The constants

^

k and b are de�ned, where

^

k = d1=�e and b =

l

n

1=

^

k

m

.

� All references to bbfs(x; b) are replaced by nv(x;

^

k � 1). Similarly, all

references to the intersection routine should be calls to ri(�; �;

^

k � 2).

Analysis of the space complexity of the algorithm is easy: exclusive of

recursive calls, each routine uses O(n

�

) registers, and the maximum recursion

depth is O(1=�), hence at most O(n

�

=�) registers are needed.

The following time analysis is based on the code for the recursive algo-

rithm given in Figure 3. R(�) is an expression bounding the running time of

the algorithm for parameter �, and N(k) is a recurrence relation bounding

the running time of nv(�; k). Because the sizes of the set parameters to ri can

15



procedure ri (set of vertices S

1

; S

2

; integer k;): boolean;

ftest if the (k)-neighborhoods of a vertex in S

1

and a vertex in S

2

intersectg

if k = 0 then fBase caseg

return (S

1

\ S

2

6= ;);

for all pairs of vertices, v 2 S

1

; w 2 S

2

do begin

if ri(nv(v; k); nv(w; k); k � 1) then

return (true);

end;

return (false);

end ri.

procedure nv (vertex v; integer k): set of vertices;

fFind the (k)-landmark set of vg

if k = 1 then fBase case. Use bbfsg

return (bbfs(v; b));

if jnv(v; k � 1)j < b then fnv(v; k � 1) not fullg

return (fvg);

L

v;k

= fvg;

for i = 2 to b do begin fFind landmarksg

for all vertices, u do begin

if ri(fug; L

v;k

; k � 1)) then

Not a landmark. Go to next vertex.

for all neighbors, w, of u do begin

if ri(fwg; L

v;k

; k � 1) then fu is a landmarkg

L

v;k

= L

v;k

[ fug. Find next landmark;

end;

end;

return (L

v;k

); fNot full, but no other landmarksg

end;

return (L

v;k

); fFullg

end nv.

Figure 3: Details of the recursive algorithm.
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vary, two recurrence relations, I(k) and I

1

(k) are de�ned, where I(k) bounds

the running time of ri(�; �; k) when the sets are of size at most b, and I

1

(k)

bounds the special case where the �rst set is of size 1, and the second of size

at most b. For suitable c

i

; 0 � i � 11, we have:

I(j) =

(

O(b log b) if j = 0

b

2

(I(j � 1) + c

1

) + b(b+ 1)(N(j) + c

2

) + c

3

if j > 0

I

1

(j) = b (I(j � 1) + c

1

) + (b+ 1)(N(j) + c

2

) + c

3

j > 0

N(k) =

8

>

<

>

:

O(b

2

log b) if k = 1

N(k � 1) + (b� 1)(n(I

1

(k � 1) + c

4

) +

2m(I

1

(k � 1) + c

5

) + c

6

) + c

7

if k > 1

Let c = n=m. Then, for j > 0; k > 1, we have:

N(k) � N(k � 1) + (b� 1)(2 + c)m(I

1

(k � 1) + c

8

)

� N(k � 1) + (b� 1)(2 + c)m(b(I(k� 2) + c

1

)

+(b+ 1)(N(k � 1) + c

2

) + c

3

+ c

8

)

N(k) � b

2

(2 + c)m(I(k � 2) +N(k � 1) + c

9

)

I(j) � (b

2

+ b)(I(j � 1) +N(j) + c

10

)

Let NI (k) = N(k) + I(k � 1) for k > 1. Then,

NI (k) � (b

2

(2 + c)m+ b

2

+ b)(NI (k � 1) + c

11

)

= O((b

2

((2 + c)m+ 1) + b)

k�1

(N(1) + I(0)))

= O((b

2

((2 + c)m+ 1) + b)

k�1

b

2

log b)

Recall that

^

k = d1=�e and b =

l

n

1=

^

k

m

. Note that b � n

�

+ 1 = O(n

�

). Since

� � 1= log

2

n, note that

NI (

^

k � 1) = O((n

2�

(n + 2m))

^

k
�2

n

2�

log n

�

):

Thus

R(�) = O((n + 2m)(N(

^

k � 1) + bN(

^

k � 1) + bI(

^

k � 2) + b) +m�(m))
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= O((n + 2m)bNI (

^

k � 1))

= O((n + 2m)n

�

(n

2�

(n+ 2m))

^

k
�2

n

2�

log n

�

)

= O((n + 2m)

^

k
�1

n

2�

^

k��

� log n)

If 1=� is an integer, this gives:

R(�) = O(�(n+ 2m)

1=��1

n

2��

log n)

Summarizing the results of this section, we have shown the following.

Theorem 3.2 The recursive algorithm, described above, solves ustcon

for arbitrary n-vertex, m-edge graphs in space O((n

�

log n)=�) and time

O(�(n + 2m)

1=��1

n

2��

log n) = n

O(1=�)

, for any 1= log

2

n � � � 1=2 with

1=� an integer.

Note that when � = 1=2, this time bound matches that of the simple algo-

rithm.

4 The Batched Algorithm

The batched algorithm is a variant of the simple algorithm that is faster

for space !(n

1=2

log n). Note that as the space bound increases, the simple

algorithm uses more and more space to store landmarks and less and less

to generate and store neighborhoods. The idea of the batched algorithm is

to use as much space for neighborhoods as landmarks, by storing multiple

neighborhoods. In the simple algorithm, most neighborhoods are generated

for one reason only: to test them for intersection with the landmarks' neigh-

borhoods. If we can check a landmark's neighborhood for intersection with

multiple neighborhoods almost as quickly as the simple algorithm takes to

check for intersection with one, then, as the number of landmarks increases,

the batched algorithm's performance compared to the simple algorithm's will

become better and better.

As before, b will be the size of the neighborhoods generated, and l the

number of landmarks. When building the landmark set, and when generating

18



the value of the cl function, the batched algorithm generates the neighbor-

hoods for a batch of l=b vertices, B. The algorithm then sorts all vertices

in the l=b neighborhoods into one list of l vertices. Using this list, it can

e�ciently test which vertices in the list are also in the neighborhood of a

landmark; it performs a binary search in the list for each member of the

landmark's neighborhood, labeling those vertices that match with the name

of the landmark whose neighborhood they are in.

After repeating this step for all landmarks' neighborhoods, the batched

algorithm must construct the intersection information for each member of B.

To generate the value of the cl function, it must �nd the lowest numbered

landmark whose neighborhood intersected a given vertex's neighborhood; to

construct the landmark set, it need only check whether the intersection was

empty. In the latter case, if a neighborhood of a vertex in B does not intersect

any landmarks' neighborhood, the vertex must be added to the landmark set,

and, in addition, the algorithm must mark any vertices in the list that are in

the new landmark's neighborhood.

A special data structure for the sorted list is necessary to insure that all

these operations can be performed e�ciently. The sorted list we use is actu-

ally just a list of pointers to members of the neighborhoods, plus a cl �eld for

each entry, to store the name of a landmark whose neighborhood contains

it. Each member of a neighborhood in turn has a pointer to its entry in the

sorted list. However, the pointers are not in a one-to-one correspondence,

because the sorted list does not contain duplicate entries for a vertex that

appears in multiple neighborhoods. The pointers into the list from the neigh-

borhoods provide e�cient lookup for the vertices, but the pointers back to

the neighborhoods are used only to �nd the vertex name for an entry in the

list.

As a simple example, see Figure 4 (page 20), depicting two neighborhoods

n

u

and n

v

and a list that might be constructed for them. In this example,

b = 5, and the two neighborhoods have two vertices in common, so the sorted

list has only 8 entries. Five entries point to vertices in the �rst neighborhood,

and three to vertices in the second neighborhood. Note that the indices for

the neighborhoods and the list are for reference purposes only, and are not

actually stored in the structure.

Given this data structure, we can perform the needed operations e�-
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n

u

n

v

vertex list ptr vertex list ptr

u

1

11 1 v

1

12 2

u

2

13 3 v

2

13 3

u

3

15 4 v

3

15 4

u

4

17 6 v

4

16 5

u

5

19 8 v

5

18 7

sorted list

neighborhood ptr cl

1 u

1

2 v

1

3 u

2

4 u

3

5 v

4

6 u

4

7 v

5

8 u

5

Figure 4: The batched algorithm's data structure
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ciently. The list is sorted, so lookup of a single vertex will take time O(log l)

using binary search. The pointers to the list from the neighborhoods allow

constant access time per vertex, so discovering which landmarks' neighbor-

hoods overlap a given neighborhood or marking all list entries for a neigh-

borhood requires time O(b).

The code for constructing the landmark set in the batched algorithm is

given in Figure 5 (page 22). To evaluate the cl function for all edges, similar

code is used | the main di�erences between the code in Figure 5 and code

needed to evaluate the cl function are:

� The loop must process all edges, not all vertices, so the index runs

from 1 to 2mb=l, and B is a set of the endpoints of the next l=2b edges.

The interior of the loop functions as the cl procedure did in the simple

algorithm.

� Before the loop labeled check intersection, the algorithm checks whether

the vertex had a full neighborhood. If not, the special value small is

stored for this vertex.

� During the loop labeled check intersection, the algorithm determines the

name of the lowest numbered landmark that intersected this vertex's

neighborhood, instead of merely checking for intersection.

� After the loop, the value of the lowest numbered intersecting landmark

is stored for this vertex. All code after the loop (from new landmark

on), is unnecessary when evaluating the cl function.

Next we analyze the batched algorithm. It requires more space than

the simple algorithm to store multiple neighborhoods and the sorted list of

vertices, but these structures only use space �(l log n), asymptotically as

much as the simple algorithm (O((n log n)=b), since l = n=b).

Finding the neighborhood of a vertex requires time O(b

2

log b), so �nding

l=b neighborhoods takes time O(lb log b). The special data structure can be

constructed in time O(l log l), the time required for sorting the l vertices.

After �nding the neighborhood of a landmark, time O(b log l) is needed

to search for its vertices in the sorted list. The total time needed for the

mark overlapping vertices loop is therefore O(l(b

2

log b+ b log l)).
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for i = 0 to dn= bl=bce � 1 do begin

B = f1 + i bl=bc ; 2 + i bl=bc ; : : : ; bl=bc+ i bl=bcg fthe next set of l=b verticesg

for all vertices, v 2 B do begin

generate bbfs(v; b);

end;

Created a sorted list, Q, of all vertices in the bbfs sets of the members of B.

for all landmarks, l do begin fmark overlapping verticesg

for all vertices, w 2 bbfs(l; b) do begin

if w is in Q and the cl �eld is unmarked then w's cl �eld = l.

end;

end;

for all vertices, v 2 B do begin fevaluate vertices in Bg

for all vertices, u 2 bbfs(v; b) do begin fcheck intersectiong

if u's cl �eld is marked in Q then

v is not a landmark. Go to next vertex.

end;

Add v to the landmark set. fnew landmarkg

for all vertices, u 2 bbfs(v; b) do begin

u's cl �eld in Q = v.

end;

end;

end;

Figure 5: Finding landmarks using the batched algorithm.
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Each operation in the check intersection and new landmark loops requires

constant time, so the evaluate vertices in B loop in Figure 5 takes time O(l=b �

b) = O(l). Similar analysis applies to the modi�ed version of the code, used

for evaluating the cl function.

The outermost loop is executed O(n=(l=b)) times to build the landmark

set, and O(m=(l=b)) times to process the edges. The total running time for

the algorithm is:

O((m+ n)b=l)(lb log b+ l log l+ lb

2

log b+ lb log l + l) +m�(m))

= O((m+ n)b(b

2

log b+ b log l) +m�(m))

= O((m+ n)(b

3

log b+ b

2

log n))

When b = n

1=2

, the batched algorithm runs as quickly as the simple

algorithm, but for b = o(n

1=2

), the batched algorithm is asymptotically faster.

When b = 1, the batched algorithm uses time O((m+n) log n), only a factor

of O(log n) slower than the time-optimal depth- or breadth-�rst search.

Thus we have the following.

Theorem 4.1 The batched algorithm, presented above, solves ustcon

for arbitrary n-vertex, m-edge graphs in space O((n log n)=b) and time

O((m+ n)(b

3

log b+ b

2

log n) for any 1 � b �

p

n.

5 Conclusions and Future Work

These algorithms provide a deterministic time-space tradeo� for ustcon.

With space s = �(n log n), the batched algorithm's performance is only

a factor of log n worse than depth- or breadth-�rst search, and for space

s = 
(n

1=2

log n), the algorithms are no more than a factor of n log n worse

than the best-known algorithms, deterministic and probabilistic. However,

as the space is decreased further, things rapidly become worse, with an added

factor of roughly m to the running time of the recursive algorithm every time

1=� is increased by one.

When the recursive algorithm is taken to extremes, its time and space

bounds resemble those for Savitch's result [22]. The lower limit for the space
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used by the algorithm is reached when � = 1= log n. With this low value for

�, the algorithm uses space O(log

2

n) and time n

O(logn)

, similar to Savitch's

space and time bounds [22].

There are three obvious open questions about s-t connectivity. First, for a

given space bound, can our time bound be improved? Second, can the space

bound for undirected s-t connectivity be reduced to o(log

2

n), i.e., can Sav-

itch's Theorem be bettered for undirected graphs? Third, are sublinear space

and polynomial time simultaneously achievable for directed s-t connectivity?

Recent work by Nisan [20] has made surprising progress on the �rst

question. Using an extension of work by Babai, Nisan and Segedy [3] and

Nisan [19] on pseudorandom generators, he shows that polynomial time and

O(log

2

n) space are simultaneously achievable. Note that the space bound

for his algorithm is again �(log

2

n), making the second open question all the

more intriguing.

The third open question is also interesting. Unlike well-known determinis-

tic algorithms for ustcon, our algorithms cannot be immediately generalized

to the directed case. This is because they rely heavily on the symmetry of

the connectivity relation in undirected graphs; all three algorithms use over-

lapping sets of vertices to discover that two non-overlapping sets of vertices

are connected. This method would fail miserably were the graph directed.

However, studying stcon in another context, Ullman and Yannakakis [26]

employed vaguely similar techniques involving multiple small searches, so

generalization of our methods to directed graphs is not out of the question.
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