
Lecture Notes on

Probabilistic Algorithms and

Pseudorandom Generators

1

Martin Tompa

Technical Report #91{07{05

July 15, 1991

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, Washington, U.S.A. 98195

c

 Martin Tompa, 1991

1

This material is based upon work supported in part by the National Science Foundation under Grant

CCR-9002891, and in part by IBM under Research Contract 16980043.

Contents

Preface v

1 Introduction to Probabilistic Algorithms 1

1.1 Responsibilities : 1

1.2 Prerequisites : 1

1.3 Course Outline : 1

1.4 Review of Order Notation : 2

1.5 An Example { Matrix Multiplication : 2

1.6 De�nitions : 3

2 How to Improve 2-Sided Error Algorithms 5

2.1 Introduction : 5

2.2 Decreasing the Error Probability by Repeated Trials : : : : : : : : : : : : : : : : : : 5

3 From Expected Time to Worst Case Time 7

3.1 Error Bounds Not Bounded Away From 1/2 : 7

3.2 Turning Expected Time into Worst Case Time : 7

3.3 Polynomial Time Complexity Classes : 9

3.4 Some History : 10

4 Verifying Identities 11

5 Traversal of Undirected Graphs 14

5.1 Verifying Identities (conclusion) : 14

5.2 Introduction to Traversal of Undirected Graphs : 14

5.3 Log Space Complexity Classes : 15

5.4 Random Walks on Graphs : 16

i

CONTENTS ii

6 Random Commutes on Graphs 17

6.1 Commutes : 17

6.2 Relevant Measures in Random Commutes : 17

6.3 Independence of �

ijuv

from u and v : 18

7 Random Commutes on Graphs, continued 19

8 General Random Walks on Graphs 22

8.1 From Commutes to General Random Walks : 22

8.2 Using a Random Number Generator : 23

9 Introduction to Boolean Circuits 25

9.1 Random Walks (conclusion) : 25

9.2 Boolean Circuits : 25

9.3 Families of Boolean Circuits : 26

9.4 Complexity of Circuits : 26

10 Circuits and Uniformity 28

10.1 Intuition Behind the Power of Nonuniform Circuits : : : : : : : : : : : : : : : : : : : 28

10.2 Algorithms + Circuits = Uniform Circuits : 28

10.3 Relating Circuit Size to Algorithm Time : 29

10.3.1 Circuits, Algorithms, and Obliviousness : 29

10.3.2 What Constitutes an Algorithm? : 30

10.3.3 A Partial Converse : 30

11 BPP � PSIZE; Pseudorandom Generators 31

11.1 Relating Circuits and Probabilistic Complexity Classes : : : : : : : : : : : : : : : : : 31

11.2 Pseudorandom Generators : 32

12 Quicksort with Linear Congruential Generators 34

13 Quicksort with Linear Congruential Generators, cont. 36

14 Quicksort with the 5-Way Generator 39

15 Quicksort with the 5-Way Generator, continued 41

CONTENTS iii

16 Quicksort with the 5-Way Generator, continued 44

16.1 How to Choose Among Markov's, Chebyshev's, and Cherno�'s Inequalities : : : : : 44

16.2 t-Way Independence of the t-Way Generator : 44

17 Quicksort with the 5-Way Generator, continued 47

18 Quicksort with the 5-Way Generator, continued 50

18.1 Cost of the ith Partition in P1 : 50

18.2 Cost of All Partitions in P2 : 52

19 Space-Bounded Randomness 54

19.1 Pseudorandomness for Space-Bounded Algorithms : : : : : : : : : : : : : : : : : : : 54

19.2 Universal Hash Functions : 54

20 Properties of Universal Hash Functions 56

21 Universal Hash Functions and Nisan's Generator 59

21.1 Conclusion of the Proof of Theorem 20.2 : 59

21.2 Nisan's Generator : 60

21.3 Modeling Space-Bounded Probabilistic Algorithms : : : : : : : : : : : : : : : : : : : 61

22 Automata Under Various Distributions 62

22.1 Modeling Space-Bounded Algorithms (conclusion) : : : : : : : : : : : : : : : : : : : 62

22.2 Behavior of Finite State Automata Under Various Distributions : : : : : : : : : : : : 62

23 Proof of Nisan's Main Lemma 64

24 Nisan's Lemmas, Concluded 67

24.1 Conclusion of the Proof of Lemma 22.4 : 67

24.2 Bounding Q's Probability of Accepting : 68

25 Space-Bounded Randomness, Concluded 70

25.1 Nisan's Pseudorandomness Theorem : 70

26 Deterministic Ampli�cation 72

A Assignment #1 73

CONTENTS iv

B Assignment #2 75

Bibliography 77

Preface

These are the lecture notes from CSE 522, a graduate algorithms course I taught at the University

of Washington in Winter 1991. The topic of the course was Probabilistic Algorithms and Pseudo-

random Generators. These notes are not intended to be a survey of that area, however, as there

are numerous important results that I would have liked to cover but did not have time.

I am grateful to Eric Bach, Don Coppersmith, Michael Rabin, Prabhakar Raghavan, Larry

Ruzzo, Victor Shoup, Avi Wigderson, and David Zuckerman, all of whom helped me with technical

points in the proofs. I am particularly thankful for the many talented students who attended faith-

fully, served as notetakers, asked embarassing questions, made perceptive comments, and generally

make teaching exciting and rewarding.

| Martin Tompa

v

Lecture 1

Introduction to Probabilistic Algorithms

January 7, 1991

Notes: Ashok Immaneni

1.1. Responsibilities

1. Rotating notetaking: Notes are to be written up in L

a

T

E

X, and sent to tompa@june. See

the instructions in june:~tompa/522/DIRECTIONS. Notes are due 10 a.m. the day following

lecture, except Friday's lecture notes, which are due 9 a.m. the following Monday, so that

they may be distributed at the next lecture. The instructor will insert any citations for

bibliography entries that don't already appear in the bibliography �le.

2. Assignments (open ended)

3. Class participation

1.2. Prerequisites

1. Analysis of Algorithms (CSE 521)

2. Basic probability theory (expectation, conditional probability and expectation, independent

and mutually exclusive events)

1.3. Course Outline

1. Probabilistic algorithms: Can random numbers possibly be of use in improving the e�-

ciency of deterministic algorithms? One familiar example is Quicksort, but is this an anomoly?

In fact, other examples have arisen in areas such as number theory, cryptography, distributed

computation, and graph theory. Welsh [41] has written a survey on probabilistic algorithms.

2. Pseudorandom generators and their interaction with probabilistic algorithms: In

practice, how would you get the random numbers needed by some probabilistic algorithm?

You would probably use a pseudorandom number generator, but this has two problems:

(a) you still need a small amount of true randomness for the initial seed, and

1

LECTURE 1. INTRODUCTION TO PROBABILISTIC ALGORITHMS 2

(b) the analysis of the probabilistic algorithm as though it had access to a true source of

independent random numbers may no longer be valid.

How can one guarantee that the pseudorandom number generator will not interact badly with

the probabilistic algorithm?

1.4. Review of Order Notation

� f(n) = O(g(n)) if and only if (9c)(9n

0

)(8n � n

0

) jf(n)j � cg(n)

� f(n) =
(g(n)) if and only if (9c)(9n

0

)(8n � n

0

) f(n) � cg(n)

� f(n) = �(g(n)) if and only if (9c)(9c

0

)(9n

0

)(8n � n

0

) cg(n) � f(n) � c

0

g(n)

� f(n) = o(g(n)) if and only if lim

n!1

f(n)

g(n)

= 0

� f(n) = !(g(n)) if and only if lim

n!1

f(n)

g(n)

=1

1.5. An Example { Matrix Multiplication

Any deterministic algorithm produces the same output for a given input every time it executes. In

contrast, a probabilistic algorithm makes use of a random number generator to produce the output,

and hence the output is a random function of the input. Surprisingly, such random numbers are

sometimes useful for improving the e�ciency of deterministic algorithms. A familiar example is

Quicksort: If the splitting element is chosen carelessly, its running time is �(n

2

). If it is chosen

randomly, the expected running time is O(n logn). Thus, this probabilistic algorithm usually

executes faster than its deterministic counterpart.

Of course, the deterministic algorithms Mergesort and Heapsort have comparable worst case

running times, so Quicksort isn't a very convincing example. This section presents one of the

simplest examples of a problem for which we know a more e�cient probabilistic solution than any

deterministic solution known.

The problem is to determine, given n � n matrices A, B, and C, whether AB = C. The best

known deterministic solution is to multiply A and B, and check if the result equals C. This runs

in time O(n

2:376

), which is the best known upper bound for matrix multiplication (Coppersmith

and Winograd [15]).

In contrast, there is a probabilistic solution due to Freivalds [16] that runs in O(n

2

) time:

Choose x 2 f0; 1g

n

randomly and uniformly;

if ABx 6= Cx

then return (\AB 6= C")

else return (\AB = C probably").

LECTURE 1. INTRODUCTION TO PROBABILISTIC ALGORITHMS 3

Analysis: By associativity, ABx can be computed as A(Bx). Since the product of an n � n

matrix with an n-vector can be computed in O(n

2

) time, this is the running time of the entire

algorithm.

Correctness:

Case 1: If AB = C then ABx = Cx for all x, so Pr(ABx = Cx) = 1.

Case 2: If AB 6= C then ABx may still be equal to Cx. The following lemma shows that this

doesn't happen too often.

Lemma 1.1: Assume AB 6= C and x is chosen randomly and uniformly from f0; 1g

n

. Then

Pr(ABx = Cx) �

1

2

.

Proof: Since AB 6= C, (AB � C) 6= 0, so there exist i and j such that (AB � C)

ij

6= 0. Let

(a

1

; a

2

; : : : ; a

n

) be the i

th

row of AB � C, and consider

P

n

k=1

a

k

x

k

.

Pr((AB � C)x = 0) � Pr(

n

X

k=1

a

k

x

k

= 0)

= Pr(x

j

=

�1

a

j

X

k 6=j

a

k

x

k

)

�

1

2

;

since a

j

6= 0 and x

j

2 f0; 1g equiprobably. 2

This is a rather peculiar notion of \correctness": on some inputs, the algorithm may give the

wrong answer half the time. However, this error probability can be decreased to 2

�k

at the expense

of increasing the time to O(kn

2

), for any k, by the following simple device. Run the algorithm for

k independent trials (i.e., choosing k independent vectors x), and return \AB 6= C" if at least one

of these trials returns that answer and \AB = C probably" if none of them do.

Open Problem 1: Can this problem be solved deterministically in O(n

2

) time? Note that

this may be an easier problem than determining if two matrices can be multiplied in O(n

2

) time.

1.6. De�nitions

There is a fundamental di�erence between the way Quicksort behaves and the way Freivald's

algorithm behaves: Quicksort is always correct, but with small probability runs slowly, whereas

Freivald's algorithm always runs fast, but with small probability makes an error in its output. The

following de�nition captures this distinction in types of probabilistic algorithms.

LECTURE 1. INTRODUCTION TO PROBABILISTIC ALGORITHMS 4

De�nition: A probabilistic algorithm M accepts a language L with

� 0-sided error if and only if Pr(M accepts x j x 2 L) = 1 and Pr(M accepts x j x =2 L) = 0.

� 1-sided error if and only if Pr(M accepts x j x 2 L) �

1

2

and Pr(M accepts x j x =2 L) = 0.

� 2-sided error if and only if Pr(M accepts x j x 2 L) �

2

3

and Pr(M accepts x j x =2 L) �

1

3

.

De�nition: The error bound of a 1-sided error algorithm is

1� glb

x

fPr(M accepts x j x 2 L)g;

where glb denotes the greatest lower bound.

De�nition: The error bound of a 2-sided error algorithm is

maxf1� glb

x

fPr(M accepts x j x 2 L)g; lub

x

fPr(M accepts x j x =2 L)gg;

where glb denotes the greatest lower bound and lub the least upper bound.

Note that the matrix multiplication algorithm of Section 1.5 is a 1-sided error algorithm for

the language f(A;B; C) j AB 6= Cg with an error bound of

1

2

. Quicksort cannot technically be

classi�ed as a 0-sided error algorithm, since sorting is not a language recognition problem.

Lecture 2

How to Improve 2-Sided Error Algorithms

January 9, 1991

Notes: Jo~ao Setubal

2.1. Introduction

In the previous lecture we saw how to decrease the error probability of a 1-sided error algorithm by

the method of repeated trials. By that strategy, if the algorithm accepts its input in at least one

trial, we know for certain that the input is in the language being recognized. On the other hand,

if the input is not accepted in any trial, the probability that the algorithm is wrong in all of them

is exponentially small.

This method at �rst does not seem to apply to 2-sided error algorithms, since in this case even

if the algorithm accepts its input in a trial, it may be giving the wrong answer. We will see in this

lecture that repeated trials can in fact be used to decrease the error probability just as we did for

1-sided error algorithms.

2.2. Decreasing the Error Probability by Repeated Trials

First we state the following theorem, due to Cherno� [13]:

Theorem 2.1: Let 0 < p < 1=2, q = 1� p, and k be an even integer. Then

k

X

i=k=2

�

k

i

�

p

i

q

k�i

� (4pq)

k=2

The interpretation of the theorem is as follows. Suppose p < 1=2 is the probability of success of

a certain event, and q the probability of failure. If we perform k independent trials, the left-hand

side of the inequality above represents the probability that at least half of them are successes, and

the theorem asserts that this probability decreases exponentially with the number of trials (since

4pq < 1).

Given this theorem, we can now show that by running a 2-sided error algorithm multiple times

we can in fact decrease its error bound exponentially.

5

LECTURE 2. HOW TO IMPROVE 2-SIDED ERROR ALGORITHMS 6

Corollary 2.2: If a probabilistic algorithmM accepts language L using 2-sided error, time T ,

and error bound � � 1=3, then for all k there is a probabilistic algorithmM

0

that accepts L in time

O(kT) and with error bound 2

�
(k)

.

Proof: Since the bounds are asymptotic, we can assume without loss of generality that k is

even. Given an input x, M

0

runs k independent trials of M on x and accepts x if and only if the

majority of these trials accept x. This gives the desired time bound. We prove the error bound as

follows.

Let �(x) = Pr(M is wrong on input x). Since �(x) � � � 1=3 (by the de�nition of error bound),

�(x)(1� �(x)) � (1=3) � (2=3). Note that if M

0

gives the wrong answer on input x, then in at least

half of the trialsM

0

got wrong answers from M . That is,

Pr(M

0

is wrong on input x) �

k

X

i=k=2

�

k

i

�

(�(x))

i

(1� �(x))

k�i

� (4�(x)(1� �(x)))

k=2

(Theorem 2.1)

�

�

4 �

1

3

�

2

3

�

k=2

=

�

8

9

�

k=2

= 2

�
(k)

2

The proof of Corollary 2.2 shows that there is nothing magical about using 1/3 in the de�nition

of 2-sided error: any constant less than 1/2 would do. We note that if � were not bounded away from

1=2 by a constant, a constant number of trials would not be enough to decrease the error bound by

as much as we wish. For example, if � = 1=2�1=n

2

, we would have to runM a polynomial number

of times simply to get the error probability bounded away from 1/2 by a constant. If � = 1=2�1=2

n

we would have to run M an exponential number of times.

Lecture 3

From Expected Time to Worst Case Time

January 11, 1991

Notes: Donald Chinn

3.1. Error Bounds Not Bounded Away From 1/2

Last lecture we showed a way to reduce the error in a 2-sided error algorithm by repeatedly running

the algorithm. But if the error is not bounded away from 1/2 by a constant, then the number of

times we would have to repeat the algorithm to bound the error away from 1/2 depends on how

close � is to 1/2. For example, if � =

1

2

�

1

n

2

, then it takes n

4

trials to bound the error away from

1/2.

To see this, note that the Cherno� bound (Theorem 2.1) says that the probability that the

wrong answer is given in the majority of k trials is less than (4�(1� �))

k=2

. But

(4�(1� �))

k=2

=

�

4

�

1

2

�

1

n

2

��

1

2

+

1

n

2

��

k=2

=

�

1�

4

n

4

�

k=2

�

1

e

when k � n

4

=2

since lim

x!1

(1� 1=x)

x

= 1=e.

Another question that arose concerning error bounds not bounded away from 1/2 by a constant

is where these bounds arise in practice. A possible example is if the algorithm needs an n-bit prime

number. The most straightforward way to do this is to choose a random n-bit integer x, because the

primes are reasonably densely distributed: by the prime number theorem, Pr(x is prime) � 1=n.

This could conceivably lead to an algorithm whose error is bounded away from 1/2 by only 1=n.

3.2. Turning Expected Time into Worst Case Time

We now turn to the following question: is there a way, given a probabilistic algorithm with 0-sided

error and expected time T (n), to construct an algorithm that runs in worst case running time not

much greater than T (n)? First, we need to de�ne what expected and worst case times are.

7

LECTURE 3. FROM EXPECTED TIME TO WORST CASE TIME 8

De�nition: A probabilistic algorithm M runs in expected time T (n) if and only if, for all x,

the expected running time of M on input x is T (jxj).

Notice that the expectation in this de�nition is over the outputs of the random number gener-

ator, not over the inputs to M .

De�nition: A probabilistic algorithm M runs in worst case time T (n) if and only if, for all x,

the worst case running time of M on input x is T (jxj).

As we shall see, the answer to the question above is `yes', but we introduce a small error into the

output (that is, we produce an algorithm with 1-sided error). Before we get to the proof, however,

we need the following lemma, which bounds the probability that a random variable greatly exceeds

its expected value.

Lemma 3.1 (Markov's inequality): Let X be a discrete nonnegative random variable with

expectation (that is, there is an expected value E(X) of X). Then, for all positive k,

Pr(X � kE(X))�

1

k

:

Proof: Suppose Pr(X � kE(X)) >

1

k

. Then

E(X) =

X

i

i � Pr(X = i)

=

X

i<kE(X)

i � Pr(X = i) +

X

i�kE(X)

i � Pr(X = i)

� 0 +

X

i�kE(X)

kE(X)Pr(X = i)

= kE(X)

X

i�kE(X)

Pr(X = i)

= kE(X) Pr(X � kE(X))

> E(X): (by assumption Pr(X � kE(X)) >

1

k

)

This contradiction establishes the lemma. 2

An immediate consequence of Markov's inequality is the answer to our original question.

Corollary 3.2: If L is accepted by a probabilistic algorithmM with 0-sided error and expected

time T (n), then L is accepted by a probabilistic algorithm M

0

with 1-sided error and worst case

time O(T (n)), assuming T (n) is time-constructible.

(A function T (n) is time-constructible if and only if there is an algorithm that, given an input

of length n, outputs the value T (n) within O(T (n)) steps. In practice, all time bounds that one

encounters are time-constructible. For example, n

3

and logn are time-constructible.)

LECTURE 3. FROM EXPECTED TIME TO WORST CASE TIME 9

Proof: Construct M

0

as follows. M

0

runs M for 2T (n) steps (which M

0

can compute since

T (n) is time-constructible) and accepts if and only if M accepts within that time.

Correctness:

Case 1:

Pr(M

0

accepts x j x 62 L) = Pr(M accepts x within 2T (n) steps j x 62 L)

= 0:

Case 2:

Pr(M

0

rejects x j x 2 L) = Pr(M rejects x within 2T (n) steps j x 2 L)

+Pr(M runs for > 2T (n) steps on x j x 2 L)

� 0 +

1

2

;

by Lemma 3.1. 2

If one wanted to reduce the error bound in Corollary 3.2, M

0

could of course be run multiple

times. Another way to reduce the error would be to run M directly for a longer period of time

than just 2T (n) (say, 100T (n)). The natural question to ask, then, is which is better: repeating the

2T (n) version ofM

k

2

times or running M for kT (n) steps? The answer is that the error will decay

exponentially with k for the �rst case, whereas Markov's inequality can only guarantee a decay of

1

k

in the second case (as in case 2 of Corollary 3.2).

3.3. Polynomial Time Complexity Classes

In this section we introduce the probabilistic analogues of the complexity class P. It is convenient to

classify the various kinds of probabilistic algorithms (depending on the level of error and whether

we are looking at worst case or expected time). There are six classes when we vary these two

orthogonal concepts.

De�nition:

� ZPP = fL j L is accepted by some probabilistic algorithm with 0-sided error and polynomial

expected timeg. (ZPP stands for \Zero-sided Probabilistic Polynomial time".)

� RP = fL j L is accepted by some probabilistic algorithm with 1-sided error and polynomial

worst case timeg. (RP stands for \Randomized Polynomial time".)

� BPP = fL j L is accepted by some probabilistic algorithm with 2-sided error and polynomial

worst case timeg. (BPP stands for \Bounded error Probabilistic Polynomial time".)

The other three classes already have names.

LECTURE 3. FROM EXPECTED TIME TO WORST CASE TIME 10

1. fL j L is accepted by some probabilistic algorithm with 0-sided error and polynomial worst

case timeg is just P since, for any machine M that accepts any language in the former set,

there is a deterministic machine M

0

that accepts the same language by simulating M as

though all the random bits were 1. Containment in the other direction is obvious.

2. fL j L is accepted by some probabilistic algorithm with 1-sided error and polynomial expected

timeg is just RP , since we can just cut o� the computation and reject after 3T (n) steps and

use repeated trials to correct the error bound, invoking Lemma 3.1.

3. Similar comments hold for fL j L is accepted by some probabilistic algorithm with 2-sided

error and polynomial expected timeg, which is just BPP .

The next natural question to ask is what the relationships are among these complexity classes.

Theorem 3.3: P � ZPP � RP � NP , and RP � BPP .

Proof: P � ZPP : The machines that accept languages in P are restrictions of machines that

accept languages in ZPP (both in the random number generator and the running time).

ZPP � RP : Corollary 3.2.

RP � NP : Given a probabilistic algorithm whose language is in RP , we can convert it into a

nondeterministic algorithm by guessing a sequence of random bits that lead to acceptance. Imagine

a computation tree (left unde�ned formally here) on an input x, where at each step of the com-

putation, we ip a coin and have two branches in the tree corresponding to heads and tails. If

x 2 L, then at least half the leaves accept, and thus the NP algorithm will accept (it only needs

one accepting leaf to accept). If x 62 L, then the RP algorithm will not accept, meaning all the

leaves of the computation tree are rejecting branches, and thus our NP algorithm will reject.

RP � BPP : Run the RP algorithm twice in order to increase the probability of accepting

x 2 L from

1

2

to

3

4

(which is is greater than

2

3

). 2

3.4. Some History

Now that we know some of the relationships among these classes, it would be nice to know if any

of these classes were actually di�erent from each other. For example, it would be nice to know if

there are languages in ZPP that are not in P .

Solovay and Strassen [38] proved that the set of composite integers is in RP. It was this startling

result that drew many algorithms researchers into studying probabilistic algorithms. On hearing

of Solovay and Strassen's result, Rabin [32] provided an entirely di�erent proof. A decade later,

Adleman and Huang [2] proved that the composites are in ZPP .

Lecture 4

Verifying Identities

January 14, 1991

Notes: George Forman

The examples given so far of probabilistic algorithms are not very dramatic: in both quicksort

and matrix multiplication, the advantage gained by using randomization is only a small polynomial

speedup. In this lecture we will see an example of a problem for which randomization seems to

make the di�erence between polynomial and superpolynomial time.

Schwartz [36] discovered a general method for using randomization to verify large identities,

similar to Freivalds' probabilistic algorithm for verifying the matrix identity AB = C from Lec-

ture 1. In this lecture we will give one concrete example of Schwartz's method, namely verifying

purported counterexamples to Fermat's Last Theorem. The analysis in this lecture follows that

of Karp and Rabin [24]. The current version is a simpli�cation and strengthening of the original

lecture, due to Chinn, Thrash, and Walkup [personal communication].

Suppose you were given a counterexample to Fermat's Last \Theorem", which maintains that

there are no positive integers a; b; c; k such that a

k

+ b

k

= c

k

for k > 2. How could you verify this

counterexample if each number had 500 digits? More generally, given n-bit numbers a, b, c and k,

check whether a

k

+b

k

= c

k

. It is not at all clear how to do this deterministically in time polynomial

in n, because for example c

k

has exponentially many bits. But we can solve this probabilistically

in polynomial time:

Theorem 4.1: f(a; b; c; k) j a

k

+ b

k

6= c

k

g 2 RP .

Proof:

Construction: Let L = max(dk log

2

(a+ b+ c)e ; 89). Choose a random positive integer m �

L

2

and accept if and only if a

k

+ b

k

6� c

k

(mod m).

Analysis: This algorithm runs in polynomial time by Lemma 4.2 below, since m has O(n) bits.

Correctness:

1. It is easy to see that Pr(a

k

+ b

k

6� c

k

(mod m) j a

k

+ b

k

= c

k

) = 0.

2. The remaining part, that Pr(a

k

+ b

k

� c

k

(mod m) j a

k

+ b

k

6= c

k

) <

1

2

, will be proved

in Lemma 5.1 of next lecture, with the help of the lemmas proved in the remainder of this

lecture.

2

11

LECTURE 4. VERIFYING IDENTITIES 12

Lemma 4.2: If a, k, and m are n-bit integers, then a

k

mod m can be computed deterministi-

cally in polynomial time (in fact, in polynomially many operations on individual bits).

Proof: Left as an exercise. Hint: beginning with a, alternately square and reduce modulo m.

2

For the proof of correctness of Theorem 4.1, we will need the following three facts about prime

numbers, all of which can be found in Rosser and Schoenfeld [34].

Theorem 4.3 (Prime Number Theorem): Let �(x) denote the number of primes not ex-

ceeding x. Then for all x � 17,

x

lnx

� �(x) � 1:25506

x

lnx

:

Theorem 4.4 (Mertens): There exists a constant B such that, for all positive integers x,

ln lnx+ B �

1

2 ln

2

x

<

X

p�x

p prime

1

p

< ln lnx+ B +

1

ln

2

x

:

Theorem 4.5: For all x � 41,

X

p�x

p prime

ln p > x(1�

1

lnx

):

Corollary 4.6: For all x � 41,

Y

p�x

p prime

p > 2

x

:

Proof: x(1� 1= lnx) > x ln 2, provided x � 27. The corollary then follows from Theorem 4.5

by exponentiating both sides of the inequality. 2

De�nition: An integer x is called M -fat if and only if 1 � x � M and x has a prime factor

exceeding

p

M . Let F (M) be the number of M -fat integers.

Lemma 4.7: For all L � 89, F (L

2

) >

1

2

L

2

.

Proof: If x is L

2

-fat, then exactly one prime p > L divides x. Hence,

F (L

2

) =

X

L<p�L

2

p prime

$

L

2

p

%

�

X

L<p�L

2

p prime

L

2

p

� 1

!

=

0

B

B

@

L

2

X

L<p�L

2

p prime

1

p

1

C

C

A

�

0

B

B

@

X

L<p�L

2

p prime

1

1

C

C

A

:

LECTURE 4. VERIFYING IDENTITIES 13

Applying Theorems 4.3 and 4.4,

F (L

2

) > L

2

��

ln lnL

2

+B �

1

2 ln

2

L

2

�

�

�

ln lnL+ B +

1

ln

2

L

��

�

1:25506

L

2

lnL

2

�

L

lnL

!

= L

2

�

ln(2 lnL)� ln lnL�

1:25506

2 lnL

�

1

8 ln

2

L

�

1

ln

2

L

�

+

L

lnL

= L

2

�

ln 2�

0:62753

lnL

�

9

8 ln

2

L

�

+

L

lnL

>

1

2

L

2

:

The last inequality holds for all L � 89 since it holds for L = 89, and the di�erence between the

last two lines is an increasing function of L for L � 89. 2

Lemma 4.8: For all L � 89, the following holds: if you choose any set T of at least

1

2

L

2

integers from f1; 2; 3; :::; L

2

g, their least common multiple l exceeds 2

L

.

Proof: Without loss of generality, assume that T minimizes l among all sets of at least

1

2

L

2

integers from f1; 2; 3; : : : ; L

2

g. By Lemma 4.7, T contains some L

2

-fat integer. That is, some

prime r > L divides l. But then every prime q � r must also divide l: if not, then each factor

of r in T could be decreased to q, contradicting the minimality of l. The result then follows from

Corollary 4.6, since

l �

Y

p�r

p prime

p > 2

r

> 2

L

:

2

The constant 89 in Lemma 4.8 is overly conservative. By using a combination of other clever

techniques and some computer assistance, Thrash [personal communication] proved that Lemma 4.8

holds for all L � 3, which is best possible.

Lecture 5

Traversal of Undirected Graphs

January 16, 1991

Notes: Tracy Kimbrel

5.1. Verifying Identities (conclusion)

All that remains to prove from the previous lecture is that the algorithm accepts any input in

f(a; b; c; k) j a

k

+ b

k

6= c

k

g with probability greater than 1/2.

Lemma 5.1: Assume that a

k

+ b

k

6= c

k

, and let L = max(dk log

2

(a+ b+ c)e ; 89). Suppose m

is chosen randomly and uniformly from f1; 2; : : : ; L

2

g. Then Pr(a

k

+ b

k

� c

k

(mod m)) <

1

2

.

Proof: Suppose that at least

1

2

L

2

values of m satisfy a

k

+ b

k

� c

k

(mod m), and let l be their

least common multiple. Since each m divides a

k

+ b

k

� c

k

, so does their least common multiple;

that is, a

k

+ b

k

� c

k

(mod l). By Lemma 4.8, l > 2

L

� 2

dk log

2

(a+b+c)e

� (a + b + c)

k

. Since l is

greater than either side of the equivalence a

k

+ b

k

� c

k

(mod l), a

k

+ b

k

= c

k

, a contradiction. 2

Open Problem 2: Is f(a; b; c; k) j a

k

+ b

k

6= c

k

g in P? Perhaps there is a clever way of

deterministically choosing polynomially many moduli m so that it su�ces to check the equivalence

modulo each of them. Failing this, is this problem in ZPP?

5.2. Introduction to Traversal of Undirected Graphs

The next topic is another probabilistic algorithm, one that solves a problem in graph theory,

namely, the traversal of undirected graphs. The problem is to determine, given an undirected

graph G = (V;E) and a pair of distinguished vertices s; t 2 V , whether there exists a path from s

to t in G. (This problem is known as USTCON, for Undirected s� t-Connectivity.)

There are well known deterministic algorithms that solve this problem in time O(n+ e), where

n = jV j and e = jEj, namely breadth-�rst search and depth-�rst search. Since this time is optimal,

why do we need a probabilistic algorithm? Breadth-�rst search and depth-�rst search each require

(n) space (at least one bit for each vertex, to record whether or not the vertex has been visited);

perhaps a probabilistic algorithm can use less space.

How can an algorithm run in sublinear space, when representing the input itself requires
(n)

bits? Our model of computation assumes that the input is read-only, and that the space it occupies

is not counted in the space bound. Some justi�cations for this model include the following:

14

LECTURE 5. TRAVERSAL OF UNDIRECTED GRAPHS 15

� The input may be stored elsewhere on a real machine, e.g. in someone else's �le directory or

on some other �le system.

� Subroutine parameters that are not copied by the subroutine are counted only once if they

are not charged to the subroutine.

� Computations using external storage devices, such as database search problems, �t this model.

� Traversal of implicitly de�ned graphs, such as AI search-space problems, �t this model.

� From a theoretical point of view, sublinear space bounds have very interesting properties,

which it would be impossible to study otherwise. For instance, there is a close relationship

between space bounds and parallel time bounds. (See, for instance, Chandra and Stock-

meyer [12].) By studying sublinear space bounds, we learn about the corresponding sublinear

parallel time bounds.

The workspace bounds will be measured in bits (rather than, say, registers each capable of

containing an integer). Returning to the question of whether USTCON can be solved in sublinear

space, in a result that was very surprising 20 years ago, Savitch [35] showed that it can be solved

in O(log

2

n) space; in fact, the directed version can be solved in this space bound. There is a

drawback to this algorithm, however: it uses superpolynomial time.

Open Problem 3: Can USTCON be solved in O(logn) space? Can it be solved in O(log

1+�

n)

space for � < 1? Can it be solved in O(log

2

n) space and polynomial time simultaneously?

5.3. Log Space Complexity Classes

De�nition:

� ZPLP = fL j L is accepted by some probabilistic algorithm with 0-sided error, polynomial

expected time, and O(logn) spaceg.

(ZPLP stands for \Zero-sided Probabilistic Log space and Polynomial time".)

� RLP = fL j L is accepted by some probabilistic algorithm with 1-sided error, polynomial

worst case time, and O(logn) spaceg.

(RLP stands for \Randomized Log space and Polynomial time".)

� BPLP = fL j L is accepted by some probabilistic algorithm with 2-sided error, polynomial

worst case time, and O(logn) spaceg.

(BPLP stands for \Bounded error Probabilistic Log space and Polynomial time".)

The goal for the next few lectures will be to show a 1-sided error, O(logn) space, O(ne) time

probabilistic algorithm for USTCON:

Theorem 5.2 (Aleliunas, Karp, Lipton, Lov�asz, Racko� [4]): USTCON 2 RLP.

LECTURE 5. TRAVERSAL OF UNDIRECTED GRAPHS 16

Unlike earlier algorithms for graph traversal, this result seems to di�erentiate between the

complexities of the undirected and directed cases, since we don't know how to prove the analogous

result for directed s� t-connectivity, nor do many researchers believe it possible.

Open Problem 4: Is directed s� t-connectivity in BPLP?

5.4. Random Walks on Graphs

Aleliunas et al.'s probabilistic algorithm for USTCON takes a \random walk" on G, starting at s

and looking for t. Informally, a random walk is simply a random path in which the next vertex is

chosen equiprobably among all neighbors of the current vertex.

De�nition: A random walk on a graph G = (V;E) starting at s is a random sequence

v

0

; v

1

; v

2

; : : : of vertices such that v

0

= s and, for all i � 0,

Pr(v

i+1

= w j v

i

= u) =

(

1

deg(u)

if fu; wg 2 E

0 otherwise

:

The algorithm for USTCON is as follows: Take a random walk on G starting at s for time

O(ne). If vertex t is reached, accept; if not, reject (possibly incorrectly).

As an example, consider a graph consisting of an

n

2

-clique (i.e.,

n

2

vertices with each possible

edge present) connected at one of its vertices v to one end of an

n

2

-chain, with s in the clique, and

t at the opposite end of the chain from v. Note that, even when the walk reaches v, the probability

that the walk escapes the clique and enters the chain is only 2=n. Even if the walk does escape the

clique and move a few vertices toward t, it is much more likely to fall back into the clique than it

is to reach t. Incredibly, even in this pathological case, the algorithm works.

Exercise: What is the expected time for a random walk to reach t from s if the graph is an

n-clique? An n-chain with s and t at opposite ends?

Lecture 6

Random Commutes on Graphs

January 18, 1991

Notes: Joan Lawry

6.1. Commutes

Recall that our goal from the previous lecture is to show a 1-sided error, O(logn) space, O(ne) time

probabilistic algorithm for USTCON. We �rst need some preliminary results on random walks.

De�nition: A commute from i to j is a path that starts at i and ends the �rst time it returns

to i after having visited j. A random commute is a random walk that forms a commute.

987654321

Figure 6.1: Chain of 9 Vertices

Example 6.1: A commute from 2 to 3 on the chain in Figure 6.1 might look like 2, 1, 2, 1,

2, 3, 4, 5, 4, 5, 4, 3, 2. Note that it may visit i multiple times before encountering j, and then j

multiple times before its return to i.

6.2. Relevant Measures in Random Commutes

De�nition: For all i; j; u; v; with fu; vg 2 E, let c

ijuv

be a random variable that is the number

of times a random commute from i to j crosses the edge fu; vg in the direction from u to v. Let

�

ijuv

= E(c

ijuv

).

Example 6.2: For the graph in Figure 6.1, �

2323

= 1, and �

2343

= 1. The former is straight-

forward from the de�nition, and the latter can be seen as follows:

Pr(f3; 4g is crossed) = 1=2

E(c

2343

j f3; 4g is crossed) = 2

�

2343

= E(c

2343

) = E(c

2343

j f3; 4g is crossed) Pr(f3; 4g is crossed) = 1:

17

LECTURE 6. RANDOM COMMUTES ON GRAPHS 18

Although one might expect �

2389

to be much less, it turns out that it is also 1. Intuitively, though it

is unlikely that the random commute would reach f8; 9g, once there the commute would probably

traverse f8; 9g several times before returning to 2.

6.3. Independence of �

ijuv

from u and v

Example 6.2 suggests that, in a random commute between neighboring chain vertices, the expected

number of times any edge is crossed in either direction is 1. Not only is this true, but in fact a

surprising generalization holds for all graphs: For any connected, undirected graph G = (V;E), and

for any two vertices i; j 2 V; �

ijuv

is independent of u and v (i.e., it is the same for all edges fu; vg).

This result was originally proved by G�obel and Jagers [18], using fundamental theorems from the

theory of Markov chains. The proof we will present is due to Zuckerman, and is elementary and

self-contained.

First, we need some preliminary lemmas.

Lemma 6.3: For any vertices i, j, and u, �

ijuv

is independent of v (i.e., it is the same for all

neighbors v of u).

Lecture 7

Random Commutes on Graphs, continued

January 23, 1991

Notes: Elizabeth Walkup

Proof of Lemma 6.3: We begin by extending a random commute into an in�nite process. Let

y

0

; y

1

; y

2

; : : : be an in�nite sequence of random vertices, whose pre�x y

0

; y

1

; : : : ; y

m

is a random

commute from i to j and for which y

k

= i for all k > m.

For all k 2 N (the nonnegative integers) and for all fu; vg 2 E, de�ne the random variable

X

kuv

as

X

kuv

=

(

1 if y

k

= u & y

k+1

= v

0 otherwise

:

Then

�

ijuv

= E(c

ijuv

)

= E

1

X

k=0

X

kuv

!

=

1

X

k=0

E(X

kuv

) (Chow and Teicher [14, page 89, Corollary 2])

=

1

X

k=0

(1 � Pr (X

kuv

= 1) + 0 � Pr (X

kuv

= 0))

=

1

X

k=0

Pr (y

k

= u & y

k+1

= v)

=

1

X

k=0

Pr (y

k

= u & y

k+1

6= u & y

k+1

= v)

=

1

X

k=0

Pr (y

k+1

= v j y

k

= u & y

k+1

6= u) �Pr (y

k

= u & y

k+1

6= u)

=

1

X

k=0

1

deg(u)

� Pr (y

k

= u & y

k+1

6= u)

which leaves us with an expression independent of v. 2

19

LECTURE 7. RANDOM COMMUTES ON GRAPHS, CONTINUED 20

As a general rule, if you are trying to get a bound on the expected number of times some

event happens (in this case it was the number of times fu; vg is crossed), an approach that is often

successful is to introduce a binary valued random variable for each time step, replace the expected

sum of these variables by the sum of their expectations, and then simplify. The reason this approach

is successful is that it allows you to treat the expectations of the binary valued random variables

individually, even though they may not be independent (as was certainly the case in this proof).

Exercise: Prove that E(X+Y) = E(X)+E(Y), where X and Y are discrete random variables

that are not necessarily independent.

From this, it follows by induction that the expectation of a �nite sum equals the sum of the

expectations. The proof needed for an in�nite sum, as in the proof of Lemma 6.3, is subtler.

Lemma 7.1 (Zuckerman): For any vertices i, j, u, and v, �

ijuv

= �

ijvu

.

Proof: For any commute from i to j

C =

�

i; w

1

; : : : ; w

a

;i; x

1

; : : : ; x

b

; j; y

1

; : : : ; y

c

;j; z

1

; : : : ; z

d

; i

�

where, for all k, x

k

6= i, y

k

6= i, and z

k

6= i, and w

k

6= j, x

k

6= j, and z

k

6= j, de�ne the reversal C

R

of C as

C

R

=

�

i; w

a

; : : : ; w

1

;i; z

d

; : : : ; z

1

; j; y

c

; : : : ; y

1

;j; x

b

; : : : ; x

1

; i

�

:

(It is possible that either or both of the underlined sequences are missing from C, in which case the

corresponding underlined sequence(s) are deleted from C

R

.) Then C

R

has the following properties:

1. C

R

is a commute from i to j.

2. (C

R

)

R

= C, so that there is a one-to-one correspondence between commutes and their rever-

sals.

3. Let �

ij

be a random commute from i to j. Then Pr (�

ij

= C) = Pr(�

ij

= C

R

). This is

because the probability of a given commute C occurring is the product of the reciprocals of

the degrees of all the vertices in the commute, excluding the last vertex. C and C

R

both end

at i and both contain the same vertices (with the same multiplicity of each), so the products

are identical.

4. Let N (C; u; v) be the number of times C crosses the edge fu; vg in the direction from u to v.

Then N (C; u; v) = N(C

R

; v; u).

From these four facts, if �

ij

is a random commute from i to j,

�

ijuv

=

X

commutes C

Pr (�

ij

= C)N(C; u; v)

=

X

commutes C

Pr(�

ij

= C

R

)N(C

R

; v; u)

=

X

commutes C

R

Pr(�

ij

= C

R

)N(C

R

; v; u)

= �

ijvu

:

LECTURE 7. RANDOM COMMUTES ON GRAPHS, CONTINUED 21

2

Theorem 7.2 (G�obel and Jagers [18]): For any connected, undirected graph G = (V;E),

and for any two vertices i; j 2 V , �

ijuv

is independent of u and v (i.e., it is the same for all edges

fu; vg and each of the two directions fu; vg could be crossed).

Proof: Let fu; vg and fu

0

; v

0

g be two edges, and let P = (u; v; w; : : : ; u

0

; v

0

) be a path containing

both. (Such a path exists because G is connected.) Applying Lemmas 6.3 and 7.1 to P alternately,

we have the following:

�

ijuv

= �

ijvu

= �

ijvw

= �

ijwv

= � � � = �

iju

0

v

0
:

2

Lecture 8

General Random Walks on Graphs

January 25, 1991

Notes: Wendy Thrash

8.1. From Commutes to General Random Walks

Following a two-lecture tour of random commutes, we complete our own commute by returning to

the topic of general random walks on graphs, introduced three lectures ago. The following result

of Aleliunas et al. is a rather surprising application of random commutes.

Theorem 8.1 (Aleliunas, Karp, Lipton, Lov�asz, Racko� [4]): Let G = (V;E) be a con-

nected, undirected graph with n = jV j and e = jEj. For any starting vertex, the expected number

of steps that a random walk needs in order to visit every vertex in V is at most 4ne.

Proof: Consider an in�x traversal of any spanning tree of G. (Such a spanning tree exists

because G is connected.) We shall show that the expected time to visit the vertices of G in the

order given by this traversal is no more than 4ne.

Let T

ij

be the expected number of steps for a random walk to get from vertex i to vertex j,

where i and j are adjacent in the spanning tree. Certainly T

ij

is no greater than the expected

number of steps in a random commute from i to j, which is equal to the expected total number of

crossings (in both directions) of all edges in a random commute from i to j. That is,

T

ij

�

X

(u;v)2V�V

fu;vg2E

�

ijuv

=

X

(u;v)2V�V

fu;vg2E

�

ijij

(Theorem 7.2)

�

X

(u;v)2V�V

fu;vg2E

1

= 2e: (each edge is counted twice)

There are n�1 edges in a spanning tree, and each is traversed twice in an in�x walk, so the expected

number of steps in the entire walk is at most 2(n� 1) � 2e � 4ne. 2

22

LECTURE 8. GENERAL RANDOM WALKS ON GRAPHS 23

Exercise: The analogous result for directed graphs does not hold. Show this by �nding a

strongly connected directed graph and two vertices s and t such that a random walk from s requires

exponential expected time to reach t.

The long-awaited proof of Theorem 5.2 (USTCON 2 RLP) follows easily from Theorem 8.1:

Proof of Theorem 5.2 [4]: Start at vertex s and take a random walk of 8ne steps, accepting if

and only if t has been reached in that time. Clearly Pr((G; s; t) is accepted j G has no s� t path)

= 0, so it remains to show that Pr((G; s; t) is rejected j G has an s � t path) � 1=2.

Suppose that the graph has an s � t path, and let X be a random variable representing the

number of steps a random walk requires to reach t from s. Theorem 8.1 applied to the connected

component containing s and t shows that E(X) � 4ne, so

Pr((G; s; t) is rejected) = Pr(X > 8ne)

� Pr(X > 2E(X))

� 1=2 (Lemma 3.1)

Since the algorithm need only record a constant number of vertex names and a step counter

that does not exceed 8ne, O(logn) space su�ces, and the proof is complete. 2

Having �nally established that USTCON 2 RLP, we close this section with a subsuming result

that demonstrates 0-sided rather than 1-sided error:

Theorem 8.2 (Borodin, Cook, Dymond, Ruzzo, Tompa [8]): USTCON 2 ZPLP.

One interesting point about the proof of this theorem is that it combines Warshall's al-

gorithm [40], the random walk of Aleliunas et al. (Theorem 8.1), and the Immerman [20]{

Szelepcs�enyi [39] method of inductive counting, thus bringing to bear material from both algorithms

and complexity.

8.2. Using a Random Number Generator

We have assumed so far that we can get uniformly distributed random integers in any desired range,

for example, that we would be able to choose with equal probability the neighbors of a vertex of

degree d. Begging the question of whether we can generate random numbers at all, how might we

use a random number generator to make this equiprobable selection?

1. Get someone else to solve the problem: Perhaps the random number generator takes

an integer d, and returns a uniformly chosen integer between 0 and d� 1.

2. Generate random oating-point numbers: Divide the interval [0,1] into d equal subin-

tervals, generate a random number between 0 and 1, and choose a vertex accordingly. Because

of �nite precision, it is not possible to do this exactly, so the resulting assignments are not

quite equiprobable. It might be possible to bound the deviations from equiprobable assign-

ment and rework the probability statements in our theorems accordingly, but there is an

easier solution.

LECTURE 8. GENERAL RANDOM WALKS ON GRAPHS 24

3. Throw away some random numbers: Suppose we want random integers between 0 and

d � 1, but our random number generator gives us only a random and uniform bit. Let D

be the next power of 2 that is at least d, and by log

2

D calls on the random bit generator

construct a random and uniform integer x between 0 and D � 1. If 0 � x � d� 1, use x; if

not, discard x and repeat until x is between 0 and d� 1. Since D < 2d, the expected number

of repetitions is less than 2. If, for example, we were counting calls to the random number

generator as the measure of time in Theorem 8.1, this process would raise the expected time

bound from 4ne to 8ne log

2

n.

Lecture 9

Introduction to Boolean Circuits

January 30, 1991

Notes: Tor Jeremiassen

9.1. Random Walks (conclusion)

The question arose as to whether the bound of Theorem 8.1 is tight, in light of the fact that the

analysis seems to be rather sloppy. It is not hard, however, to construct graphs for which the bound

is asymptotically tight. As an example, consider any graph H with n=2 vertices and �(e) edges,

connected at one of its vertices v to one end of an

n

2

-chain, with s in H , and t at the opposite end

of the chain from v.

On the other hand, there are graphs for which this bound is not tight. A tighter upper bound

in many cases is given by the following fascinating theorem:

Theorem 9.1 (Chandra, Raghavan, Ruzzo, Smolensky, Tiwari [11]): Let the electri-

cal resistance R of a connected, undirected graph be the maximum e�ective resistance between

any pair of vertices when a one ohm resistor is substituted for each edge. Then for any starting

vertex, the expected number of steps that a random walk needs in order to visit every vertex is

O(eR logn):

This bound is quite tight for all graphs, since for some starting vertex the expected number of

steps must be at least eR [11].

9.2. Boolean Circuits

The last topic needed in order to understand the literature on pseudorandom generators is Boolean

circuit complexity.

De�nition: A (Boolean or combinational) circuit is an acyclic, oriented, directed graph with

two distinguished subsets of vertices, called inputs and outputs . (\Oriented" means that the edges

directed into any particular vertex are ordered.) The vertices have indegrees and labels as follows:

� Inputs have indegree 0 and are labeled consecutively from fx

1

; x

2

; : : : ; x

n

g.

� All noninput vertices are called gates . A gate with indegree d is labeled by any function

f : f0; 1g

d

! f0; 1g:

25

LECTURE 9. INTRODUCTION TO BOOLEAN CIRCUITS 26

In what follows, unless speci�ed otherwise it is assumed that the maximum indegree d is a

constant with respect to the number n of input labels. Such circuits are said to have bounded

fanin.

De�nition: The value val(u) 2 f0; 1g of vertex u in a circuit on input (b

1

; b

2

; : : : ; b

n

) 2 f0; 1g

n

is de�ned as follows:

� If u is an input with label x

i

then val(u) = b

i

.

� If u is a gate with label f : f0; 1g

d

! f0; 1g, and the d vertices adjacent to u are u

1

; u

2

; : : : ; u

d

,

then val(u) = f(val(u

1

); val(u

2

); : : : ; val(u

d

)).

A circuit with 1 output vertex u is said to output b on input (b

1

; b

2

; : : : ; b

n

) if the value of u on

(b

1

; b

2

; : : : ; b

n

) is equal to b.

9.3. Families of Boolean Circuits

We would like to think about Boolean circuits as computing devices, but individual circuits can

only take �xed size inputs. Thus we need to introduce the notion of a family of Boolean circuits.

De�nition: An in�nite vector C = (c

0

; c

1

; : : : ; c

n

; : : :) is called a family of circuits if and only

if, for all n 2 N , c

n

is a circuit with n uniquely labeled inputs.

De�nition: A family C = (c

0

; c

1

; : : : ; c

n

; : : :) of one-output circuits recognizes the language

L � f0; 1g

�

if, and only if, for each n, on input x 2 f0; 1g

n

, c

n

outputs

(

1 if x 2 L

0 if x 62 L

:

9.4. Complexity of Circuits

De�nition: The size of a circuit is the number of gates in the circuit. The depth of a circuit is

the length of a longest path from any input to any output.

The notion of size can be thought of as a measure of sequential time, provided the circuit is

looked upon as a sequential computing device. Depth can be considered a measure of parallel time,

provided the circuit is looked upon as a parallel computing device, in which case size becomes a

measure of the hardware requirement.

De�nition: SIZE(S(n)) is the set of all languages L recognized by some family C =

(c

0

; c

1

; : : : ; c

n

; : : :) of circuits such that for all n 2 N , the size of c

n

is O(S(n)). PSIZE =

[

k>0

SIZE(n

k

)

Thinking of circuits as sequential computing devices, PSIZE is the circuit analog of P. However,

families of circuits have an unrealistic power compared to algorithms: the structure of c

n+1

need

bear no resemblance to that of c

n

. This property is called \nonuniformity", and leads to anomolies

such as the following simple fact:

Proposition 9.2: There is an uncomputable language in SIZE(1).

LECTURE 9. INTRODUCTION TO BOOLEAN CIRCUITS 27

Proof: Let L � f0; 1g

�

be any uncomputable language. Consider L

0

= fx j bin(jxj) 2 Lg,

where bin(n) is the binary encoding of n. L

0

cannot be computable, since if it were then, given y,

one could test if y 2 L by asking if 0

y

2 L

0

. Note that L

0

\ f0; 1g

n

can be computed by the single

constant gate

(

1 if bin(n) 2 L

0 otherwise

: 2

Lecture 10

Circuits and Uniformity

February 4, 1991

Notes: Juan Alemany

10.1. Intuition Behind the Power of Nonuniform Circuits

In Proposition 9.2 we saw an example demonstrating the unrealistic capabilities of nonuniform

circuits. In particular we saw how nonuniform circuits of constant size can decide uncomputable

languages. What follows is some intuition as to why these circuits are so powerful.

Recall that the power of nonuniformity is that circuits for a given input size need not resemble

circuits of any other size. When we think of a family of circuits that computes a simple function

(say, the sum of its inputs) we think of circuits with similar structure. For example, circuits for this

sum might look like balanced trees that di�er only in their size. Nonuniform families of circuits,

on the other hand, may have di�erent built{in (\hardwired") information in each circuit.

In Proposition 9.2, nonuniformity allowed us to hide the complexity of deciding whether a

string is in the language in the construction of the nth circuit, rather than in its size or depth. In

particular, we could hardwire all the membership information for strings of a given length n (in

this case, a single bit) into the nth circuit.

10.2. Algorithms + Circuits = Uniform Circuits

In some sense using nonuniform circuits amounts to cheating. In real life we must describe a single

procedure that will work for every input length. For example, a graph search algorithm does the

\same thing" on every graph regardless of its size. We do not have a di�erent algorithm for graphs

of size 10, 17, and so on. An intuitive de�nition of a \uniform" family of circuits is one in which

any member can be generated by a single algorithm running in a reasonable amount of time that

depends on the size of the circuit that is generated. We now formalize this intuition.

De�nition: A family C = (c

0

; c

1

; : : : ; c

n

; : : :) of circuits is (P{) uniform if and only if there is

an algorithm that outputs c

n

in time polynomial in n + jc

n

j, where jc

n

j denotes the size of c

n

.

De�nition: (P{) uniform PSIZE is the subset of PSIZE restricted to uniform families of

circuits. In other words it is the set of languages accepted by some P{uniform family of circuits

C = (c

0

; c

1

; : : : ; c

n

; : : :), where jc

n

j = n

O(1)

.

28

LECTURE 10. CIRCUITS AND UNIFORMITY 29

Beware not to confuse the two polynomials in this de�nition. One polynomial corresponds to

the size of the nth circuit. The other polynomial is the time to compute the nth circuit.

10.3. Relating Circuit Size to Algorithm Time

Now that we have de�ned uniform circuits several questions come to mind. How do these uniform

circuits relate to problems known to be in P? Can we simulate algorithms by circuits and circuits by

algorithms? We know that nonuniform circuits are unreasonably powerful, so we cannot simulate

them with (uniform) algorithms. It seems it should be possible to simulate algorithms by circuits.

In the next theorem we show that not only is it possible, but the circuit need not be very large

relative to the running time of the algorithm.

Theorem 10.1: P � PSIZE.

We will omit the proof of the theorem. A careful proof requires de�ning what a polynomial

time algorithm is, which we have studiously avoided. A clean way to do the proof carefully would

be by simulating deterministic Turing machines by circuits. The best such simulation is given by

Pippenger and Fischer [31]. In its place, we will give a sketch of the proof, highlighting the relevant

issues.

10.3.1. Circuits, Algorithms, and Obliviousness

In one sense circuits are weaker than algorithms: algorithms can adapt their behavior according to

the particular values of their inputs. For instance, an algorithm can do something like \if the �rst

input is 3 then jump to label l", whereas circuits have a prescribed computation once the input size

is �xed. We refer to this characteristic as the obliviousness of a circuit, the idea being that circuits

carry on a �xed computation, oblivious to their input values. (Sometimes oblivious programs are

referred to as \nonadaptive" or \straight-line".)

It is possible, however, to simulate any algorithm by an algorithm that is \oblivious", in the

sense that the operation the algorithm performs at step t, and the memory locations holding its ar-

guments, are independent of the particular value of the input. Furthermore, this oblivious algorithm

will have a computation time polynomial in the computation time of the original algorithm.

Once we have an oblivious algorithm we need only show how to simulate it by a circuit of size

approximately equal to its running time. The idea is to compute the result of the instruction at

step t by a small subcircuit C

t

. The inputs to C

t

are themselves the results of the last instructions

that modi�ed the arguments of the current instruction. For example, if the step t operation is \add

the contents of register 5 to register 7", we will construct a subcircuit C

t

that performs an addition

of two inputs. Now, what should the inputs to this subcircuit be? By obliviousness, we know the

last time t

1

that register 5 was modi�ed, and the last time t

2

that register 7 was modi�ed. Then

the two inputs to C

t

will be the outputs of subcircuits C

t

1

and C

t

2

.

LECTURE 10. CIRCUITS AND UNIFORMITY 30

10.3.2. What Constitutes an Algorithm?

Having digressed to the level of registers and instructions, it is reasonable to pause to ask what a

reasonable instruction set for polynomial time algorithms might be. If you had to de�ne such a

set, you might well include the instructions load, store, add, subtract, multiply, indirect addressing,

and conditional branching. You might also charge one time unit per instruction executed.

However, if we charge one time unit for each multiplication regardless of the length of the

operands, we quickly run into trouble. Each multiplication of binary numbers can double the length

of the operands. Thus in polynomial time we can have numbers that are exponentially long, which

cannot be handled by polynomial size circuits. Although this only suggests that the simulation

by circuits might need to be improved, in fact there are more inherent problems associated with

charging unit time to the multiplication of large numbers [19].

One possible solution is to charge time logn for each operation, where n is the length of the

greatest operand for that operation. A second solution is simply to restrict each register to hold

only polynomially many bits.

10.3.3. A Partial Converse

Although Proposition 9.2 shows that one cannot hope for a converse of Theorem 10.1, the proof of

Theorem 10.1 does in fact support the converse if the circuits are forced to be uniform:

Theorem 10.2: P = uniform PSIZE.

Lecture 11

BPP � PSIZE; Pseudorandom Generators

February 6, 1991

Notes: Rakesh Kumar Sinha

11.1. Relating Circuits and Probabilistic Complexity Classes

Theorem 10.1 showed that the class P is contained in PSIZE | the class of languages accepted

by polynomial size circuits. Adleman [1] extended this result by showing that the class RP , which

is a superset of P, is also contained in PSIZE . Since we have natural examples of problems in RP

not known to be in P (for example, the set of composite integers [38]), Adleman's result was very

surprising: it says such problems can be solved deterministically (though nonuniformly). Bennett

and Gill [6] further strengthened this result by showing that the class BPP is also contained in

PSIZE .

Both these results exploit the nonuniformity of the circuit model in a strong way. The general

idea is to start with a probabilistic algorithm and reduce its error exponentially, after which a

simple counting argument guarantees the existence of a nonuniform algorithm that never makes a

mistake.

Theorem 11.1 (Bennett and Gill [6]): BPP � PSIZE .

Proof: Let L 2 BPP be recognized by a probabilistic algorithm in time T (n) = n

O(1)

. By

Corollary 2.2, there is a probabilistic algorithm A that recognizes L in time O(nT (n)) and with

error probability strictly less than 2

�n

. (The signi�cance of 2

�n

will be clear shortly.)

For any n, we want to compute the expected number of inputs of length n on which A makes

a mistake. For each input x, we de�ne a random variable

C

x

=

(

1 if A errs on input x

0 otherwise

:

Then

E(number of inputs of length n on which A errs) = E

0

@

X

x2f0;1g

n

C

x

1

A

=

X

x2f0;1g

n

E(C

x

)

31

LECTURE 11. BPP � PSIZE; PSEUDORANDOM GENERATORS 32

=

X

x2f0;1g

n

Pr(C

x

= 1)

=

X

x2f0;1g

n

Pr(A errs on input x)

<

X

x2f0;1g

n

2

�n

= 1:

This says that the expected number of inputs of length n on which A makes a mistake is

strictly less than 1. So, there must be at least one output g 2 f0; 1g

O(nT(n))

of the random number

generator such that, if A uses g in place of random bits, then A makes a mistake on strictly less

than 1 input of length n, since otherwise the average over all such g couldn't possibly be strictly

less than 1. In other words, if A uses g in place of random bits then A is correct on all inputs of

length n. To construct the nth circuit C

n

that simulates A on inputs of length n, build g into C

n

,

and then simulate A as in Theorem 10.1, since A behaves deterministically once g is �xed. 2

Notice that this family of circuits is nonuniform, as we do not know of any way to compute g

from n in polynomial time. It is possible to compute g in exponential time, though, so the circuit

family is not totally nonuniform.

This brings to an end the �rst half of the course. So far, we have always assumed that we

have an unlimited source of perfect random numbers at our disposal. This assumption may be

unreasonable in practice. In the remainder of this course, we will see how the performance of our

algorithms is a�ected if we have less than perfect random numbers.

11.2. Pseudorandom Generators

Anyone who considers arithmetical methods for producing random digits is, of

course, in a state of sin.

{ von Neumann

A pseudorandom generator is a deterministic algorithm that take as input a \small" number k of

truly random bits (called the seed) and outputs a \large" number m of bits (called pseudorandom

bits). The string of m pseudorandom bits is, of course, a random variable (in the sense that it

takes on various values with certain probabilities), but it is by no means uniformly distributed over

f0; 1g

m

, since it assumes at most 2

k

distinct values with nonzero probability.

The hope is to generate bits e�ciently which may be used in place of random numbers without

signi�cantly degrading the performance of the algorithm. For example, g in our last proof can be

thought of as the output of a degenerate pseudorandom generator that takes no seed at all and

does not a�ect the performance of the algorithm. The catch, of course, is that we do not know of

any e�cient way to generate g.

LECTURE 11. BPP � PSIZE; PSEUDORANDOM GENERATORS 33

Bach [5] was the �rst person to consider the e�ect of having pseudorandom generators on the per-

formance of probabilistic algorithms. He con�ned himself to algorithms for number-theoretic prob-

lems such as compositeness testing. We will discuss subsequent results of Karlo� and Raghavan [23],

who studied the e�ect of pseudorandom generators on more familiar algorithms such as Quicksort.

We need the following de�nition before we can describe their �rst result.

De�nition: A linear congruential generator has three parameters m, a, and c. It takes a

random seed X

0

2 Z

m

and outputs the pseudorandom sequence X

0

; X

1

; : : : ; X

i

; : : : , where X

i

=

(aX

i�1

+ c) mod m for i � 1.

Linear congruential generators have been quite e�ective in practice, and are advocated by

Knuth [27]. If one were implementing Quicksort, it would be most natural to use a linear congru-

ential generator as the source of randomness, with m = �(n) and a and c chosen so as to make the

period of the linear congruential generator as close tom as possible. Therefore, it came as a surprise

when Karlo� and Raghavan proved that a natural way of using such a linear congruential genera-

tor to implement Quicksort results in quadratic expected running time (where the expectation, as

usual, is taken over the random seed, not over the input to be sorted).

For concreteness and ease of analysis, they make the following assumptions about the imple-

mentation of Quicksort:

(Q1) Whenever we have two recursive subproblems, we solve the smaller one �rst.

(Q2) The partition subprocedure is stable (that is, the order of inputs within a subproblem resulting

from a partition is the same as the order within the original problem).

(Q3) Every subproblem of size at least one calls the random partition subprocedure. That is, a

subproblem of size L consumes exactly L pseudorandom numbers.

Q1 is a popular heuristic to minimize the height of the stack. Q2 and Q3 simplify the analysis.

Although the usual in-place partitioning procedure is not stable (Q2), stability in sorting is a

desirable feature that other sorting algorithms strive to achieve [26]. Although it is not particularly

realistic to use a pseudorandom number on subproblems of size 1 (Q3), their result even with

this assumption must make one suspicious of the combination of Quicksort and linear congruential

generators. More generally, we will see that their result does not rule out an O(n logn) expected

time implementation of Quicksort using linear congruential generators; it says rather that one must

be very careful in order to achieve such an implementation.

Lecture 12

Quicksort with Linear Congruential

Generators

February 8, 1991

Notes: George Forman

Last lecture we listed the assumptions about the implementation of Quicksort addressed in

the upcoming theorem of Karlo� and Raghavan. Next we list the assumptions about the linear

congruential generator used. (Recall that a, c, and m are the parameters of the generator, and n

is the number of items to sort.)

(L1) m > n.

(L2) gcd(a;m) = 1.

(L3) c = 0.

(L4) minft > 0 j a

t

� 1 (mod m)g > n=4.

L1 { L4 are all intended to ensure that the \period" of the generator (that is, the number

of pseudorandom numbers generated before the sequence begins to repeat itself) is
(n). Since

Quicksort consumes n pseudorandom numbers (Q3), this seems desirable. Certainly the period

cannot exceedm, so that L1 is necessary. A period ofm is achieved only if gcd(a;m) = gcd(c;m) = 1

[27, Theorem A, page 16]; if instead c = 0 is chosen, gcd(a;m) = 1 is still necessary to maximize the

period [27, Theorem B, page 19]. Although assumption L3 is chosen to make the analysis simpler,

Karlo� and Raghavan claim that the analysis when gcd(c;m) = 1 is similar.

Assumption L4 says that the period of the generator is reasonably large. In L4, the minimum t

can be interpreted as the period when the initial seed X

0

is 1; the period is the same for any other

value of X

0

such that gcd(X

0

; m) = 1, since the sequence of pseudorandom numbers is then

X

0

; aX

0

mod m; a

2

X

0

mod m; a

3

X

0

mod m; : : : ; a

t�1

X

0

mod m; a

t

X

0

mod m = X

0

;

and a

i

X

0

� a

j

X

0

(mod m) for 0 � i < j < t would imply that a

i

(a

j�i

� 1)X

0

� 0 (mod m),

which in turn implies that a

j�i

� 1 (mod m) (since gcd(X

0

; m) = gcd(a;m) = 1), contradicting

the minimality of t.

A question was raised about whether assumptions L2 { L4 can ever be satis�ed simultaneously.

One way to show that they can is to selectm to be prime, in which case �(m�1) values of a achieve

34

LECTURE 12. QUICKSORT WITH LINEAR CONGRUENTIAL GENERATORS 35

period m� 1 for all m� 1 seeds X

0

6= 0, where � is Euler's totient function [29, page 305]. This is

a large enough number of values of a that choosing a at random has a good chance of working.

Next we need to consider how the pseudorandom numbers from Z

m

are to be used by Quicksort

in selecting an arbitrary pivot for a subproblem that has only L values.

(H1) Let hash(y; L) =

�

L �

y

m

�

, where y 2 Z

m

. Partition the L elements by the pivot element in

cell hash(y; L), where y is the next pseudorandom number.

This is the method advocated by Knuth [27] for converting a pseudorandom number in Z

m

to

one in Z

L

.

Theorem 12.1 (Karlo� and Raghavan [23]): For implementations of Quicksort using a

linear congruential generator satisfying Q1 { Q3, L1 { L4, and H1, there is an input permuta-

tion requiring

�

n

4

m

2

+ n logn

�

expected time (averaged over all seeds X

0

).

Consequence: If m = O(n), the expected time is
(n

2

), which is asymptotically as slow as

Quicksort can run.

Open Problem 5: Prove that, for some su�ciently large m that is still polynomial in n (say

m = n

2

), Quicksort with a linear congruential generator runs in O(n logn) expected time.

Open Problem 6: Prove that Quicksort with the usual unstable partition procedure (rather

than Q2) still satis�es Theorem 12.1.

Note that if we were to assume a random distribution on the ordering of the input values, we

would not even need a random number generator to achieve O(n logn) expected running time: sim-

ply selecting the �rst element as the pivot value would be a su�ciently random pivot. This explains

why Theorem 12.1 addresses the behavior of Quicksort when given the worst case permutation. In

fact, though, the proof will demonstrate that there are many input permutations that lead to the

same bad expected running time.

The proof Theorem 12.1 will be presented next lecture. We conclude the remainder of this

lecture with an overview of the proof.

It is easy to �nd a permutation such that there is one seed X

0

(say X

0

= 1) that forces

Quicksort to use
(n

2

) time: simply order the inputs so that the predetermined sequence of pivots

encountered by the generator with this seed are in sorted order. However, this would only yield

expected time

�

n

2

m

+ n logn

�

, since we have to average over all m seeds. We will show instead

that there is a permutation for which

n

2

16m

seeds each reach the same subproblem of size

n

4

, each

doing so exactly at the point when the linear congruential generator is about to output the value

1. Furthermore, this subproblem will then take time
(n

2

), by the construction outlined at the

beginning of this paragraph. This yields the following lower bound on expected time:

n

2

16m

�
(n

2

) +

�

m�

n

2

16m

�

�
(n logn)

m

=

n

4

m

2

+ n logn

!

;

using L1 and the fact that
(n logn) is the best running time that Quicksort can achieve for any

sequence of pivots.

Lecture 13

Quicksort with Linear Congruential

Generators, cont.

February 11, 1991

Notes: Denise Draper

Proof of Theorem 12.1:

Case 1: m > n

2

=32. Then n

4

=m

2

= O(1), and the best time that Quicksort can achieve for

any set of pivots is
(n logn) =

�

n

4

=m

2

+ n logn

�

.

Case 2: m � n

2

=32. Let A[0 :: n� 1] be the input vector to Quicksort. We will construct A to

be a permutation of the integers f0; 1; : : : ; n�1g such that its expected time is
(n

2

) for n

2

=(16m)

distinct seeds.

Let x satisfy a

bn=4c

x � 1 (mod m). Such an x exists, because L2 speci�es that gcd(a;m) = 1,

which guarantees that a (and hence any power of a) is invertible modulo m. Furthermore, note

that x is also invertible modulo m (its inverse being a

bn=4c

), so that gcd(x;m) = 1.

Let y

i

= a

i

x mod m for all 0 � i � bn=4c. Note that the y

i

's are distinct: since gcd(x;m) = 1,

the analysis on page 34 (which depends on L4) holds.

Let k =

�

n

2

=(8m)

�

� 1. Let K = fhash(y

0

; n); hash(y

1

; n); : : : ; hash(y

bn=4c

; n)g � f0g. jKj may

be less than bn=4c, since distinct values of y

i

may hash to the same value. We will show, however,

that jKj � k. By the de�nition of the hash function (H1), at most dm=ne distinct values in Z

m

hash into a single value in Z

n

. Therefore,

jKj �

bn=4c+ 1

dm=ne

� 1

>

n=4

(m+ n)=n

� 1

=

n

2

4(m+ n)

� 1

�

n

2

8m

� 1 (L1)

� k:

Thus, there are k values y

i

1

; y

i

2

; : : : ; y

i

k

2 fy

0

; y

1

; : : : ; y

bn=4c�1

g such that the k hashed values

hash(y

i

j

; n) are distinct and nonzero.

36

LECTURE 13. QUICKSORT WITH LINEAR CONGRUENTIAL GENERATORS, CONT. 37

Now construct the input permutation A as follows:

1. Let A[hash(y

i

j

; n)] = n� (bn=4c � i

j

), for all 1 � j � k.

2. Let � be a permutation of f0; 1; : : : ; bn=4c�1g requiring
(n

2

) time when the pseudorandom

sequence is a; a

2

mod m; a

3

mod m; : : : ; a

bn=4c

mod m. (The existence of such a permutation

was shown last lecture.) Let A[0] = bn=4c. Assign �(0); �(1); : : : ; �(bn=4c � 1) in this order

to the bn=4c leftmost available cells of A.

Note that the values placed are distinct, since those in item (1) are at least 3n=4 and those in

item (2) are at most n=4. Note also that the locations in A in which they are placed are distinct.

At this point the number of locations �lled is at most k + bn=4c + 1 � n=8 + n=4 (L1); complete

A to a permutation of f0; 1; : : : ; n � 1g arbitrarily. (Note that the indeterminacy here implies

that Quicksort will run slowly not just on one input permutation, but in fact on at least b5n=8c!

permutations.)

Now consider what happens when the seed X

0

is y

i

j

, for any 1 � j � k. Quicksort �rst

partitions A on A[hash(y

i

j

; n)] = n � (bn=4c � i

j

), consuming one pseudorandom number. Note

again that this value is at least 3n=4, which means that the smaller subproblem will be to sort those

numbers greater than n� (bn=4c� i

j

). Q1 requires that we sort this smaller subproblem �rst, and

Q3 states that doing so will consume exactly as many pseudorandom numbers as it has elements,

namely (n� 1)� (n� (bn=4c� i

j

)) = �1+ bn=4c� i

j

. Thus, after completing this subproblem the

pseudorandom generator is in the state in which its next output will be

X

bn=4c�i

j

= y

i

j

a

bn=4c�i

j

mod m

= a

i

j

xa

bn=4c�i

j

mod m

= a

bn=4c

x mod m

= 1:

Let L = n� (bn=4c� i

j

) be the size of the remaining subproblem. Quicksort partitions next on

A[hash(X

bn=4c�i

j

; L)] = A[hash(1; L)]

= A[bL=mc] (H1)

= A[0]: (L1)

By Q2, the contents of A[0] will not have changed since Quicksort started, namely A[0] = bn=4c.

After partitioning on bn=4c we will have A[bn=4c] = bn=4c, and A[i] = �(i), for all 0 � i < bn=4c

(again by Q2). This smaller subproblem is sorted next (Q1), and requires
(n

2

) time, by the

construction of �, since the next pseudorandom numbers generated will be a; a

2

mod m; a

3

mod

m; : : : ; a

bn=4c

mod m.

In summary, for each of the k =

�

n

2

=(8m)

�

� 1 seeds y

i

j

, Quicksort requires time
(n

2

). Since,

by the assumption of case 2, m � n

2

=32, it follows that k � n

2

=(16m). Averaging over all m seeds

yields a lower bound on expected time of
(n

4

=m

2

+ n logn), as shown at the end of the previous

lecture. 2

LECTURE 13. QUICKSORT WITH LINEAR CONGRUENTIAL GENERATORS, CONT. 38

Open Problem 7: Improve the lower bound on jKj from
(n

2

=m) to
(n), using the idea

that y

0

; y

1

; : : : ; y

bn=4c

will hash quite uniformly into the n cells, since they form a geometric series

modulo m. This would improve Theorem 12.1 to
(n

3

=m+ n logn).

Lecture 14

Quicksort with the 5-Way Generator

February 13, 1991

Notes: Ashok Immaneni

The standard probabilistic Quicksort algorithm uses O(n logn) bits of randomness, and runs

in O(n logn) expected time. Theorem 12.1 shows that Quicksort with common linear congruen-

tial generators (that use only O(logn) bits of randomness) requires
(n

4

=m

2

) expected time. In

contrast, Karlo� and Raghavan [23] also showed that Quicksort can be implemented to run in

O(n logn) expected time, using only O(logn) bits of randomness, by introducing a novel pseudo-

random generator called the \5-way generator". In this lecture we will see what a 5-way generator

is, and the assumptions Karlo� and Raghavan make about the implementation of Quicksort.

De�nition: A 5-way generator has one parameter p, a prime. It takes a random seed

(a; b; c; d; e) 2 Z

5

p

and outputs the pseudorandom sequence X

0

; X

1

; : : : ; X

i

; : : :, where X

i

=

(a+ bi+ ci

2

+ di

3

+ ei

4

) mod p, for i � 0.

De�nition: A set fx

1

; x

2

; : : : ; x

n

g of random variables is mutually independent if and only if

Pr

n

^

i=1

x

i

= a

i;j

!

=

n

Y

i=1

Pr (x

i

= a

i;j

) ;

for all a

i;j

.

De�nition: A set S of random variables is t-way independent if and only if every t elements

of S are mutually independent.

As we will prove later, the set of pseudorandom numbers generated by a 5-way generator is

5-way independent. This is the key property of this generator that enables the proof that it causes

Quicksort to behave well.

We now list the assumptions about Quicksort:

� Without loss of generality, assume that we are sorting a permutation of f0; 1; :::; n� 1g, and

that n is prime. (If n is not prime, pick the least prime greater than n, and pad the remaining

elements of the array with large numbers. For any n, there is always a prime between n and

2n.)

� The parameters and seed for the 5-way generator are selected as follows: p = n, and a, b, c,

d, and e are chosen randomly, uniformly, and independently from Z

p

. Note that this is only

O(logn) bits of randomness.

39

LECTURE 14. QUICKSORT WITH THE 5-WAY GENERATOR 40

� A[0 :: n � 1] is the input permutation, which is read-only, for reasons that will become clear

later. B[0 :: n� 1] is an auxiliary array in which the sorting is actually done.

� The version of Quicksort is nonrecursive (for simplicity of the proof). Because of this, we

need to de�ne what it means to partition on a pivot element.

De�nition: To partition on z means the following: If Quicksort has partitioned previously on

z, then do nothing. Otherwise, suppose z = B[t]. Find the greatest t

1

< t, and the least t

2

> t such

that Quicksort has partitioned previously on B[t

1

] and B[t

2

]. (If no such t

1

exists, let t

1

= �1. If

no such t

2

exists, let t

2

= n.) Permute B[t

1

+ 1 :: t

2

� 1] in any way that satis�es the following

condition: if z ends at B[s] = z, then B[j] < z for all t

1

< j < s, and B[j] > z for all s < j < t

2

.

The cost of this partition is t

2

� t

1

.

For this result, it will not matter whether the partition algorithm is stable. Note that the time

used by any e�cient partition algorithm is proportional to this de�nition of cost.

Lecture 15

Quicksort with the 5-Way Generator,

continued

February 15, 1991

Notes: Jo~ao Setubal

Theorem 15.1 (Karlo� and Raghavan [23]): There is an implementation of Quicksort

that, on every permutation of n distinct keys, uses O(logn) random bits and runs in O(n logn)

expected time.

Construction:

algorithm 5-Way Quicksort (A[0 :: n� 1])

comment: assumes the elements of A are distinct and n is prime;

begin

choose a; b; c; d; e 2 Z

n

, randomly, uniformly, and independently;

B A;

for i from 0 to n � 1 do

begin

X

i

 (a+ bi+ ci

2

+ di

3

+ ei

4

) mod n;

P1: partition B on A[X

i

]

end ;

P2: partition B on each number not previously used as a pivot, in any

order;

return B

end 5-Way Quicksort.

Note that some of the X

i

's produced by the generator may previously have been produced and

used as pivots. In that case, according to the de�nition of partition, nothing happens in statement

P1. By the pigeonhole principle, in that case some of the keys in A will not be used as pivots in

P1, which explains the need for the \cleanup" phase (statement P2).

Correctness:

Because of P2, when 5-Way Quicksort terminates it has partitioned on every input key. We

still have to show that all these partitions produce a sorted output. By induction on the number

i of times the algorithm has partitioned in P1 and P2, it will be shown that every element that

has been used as a pivot is in its correct sorted position in B, with all lesser elements at lesser

41

LECTURE 15. QUICKSORT WITH THE 5-WAY GENERATOR, CONTINUED 42

indexed positions in B and all greater elements at greater indexed positions in B. (Note that, by

the de�nition of partition, this condition never changes as a result of subsequent partitions.)

Basis (i = 0): Since there have been no partitions, the conditions are vacuously satis�ed.

Induction (i � 0): Suppose that the pivot chosen in the (i+1)st partition is z. If the algorithm

has partitioned on z before then, by the de�nition of partition, z is not moved, and by the induction

hypothesis the conditions on its position are already satis�ed. Otherwise assume that z is in the

subarray B[t

1

+ 1 :: t

2

� 1], where t

1

and t

2

are the closest indices previously used as pivots, as

speci�ed in the de�nition of partition. Suppose that z ends at index s of B after partitioning

on z. Consider �rst the elements that are in positions with indices less than s in B. By the

de�nition of partition, for all t

1

< j < s, B[j] < z. By the induction hypothesis, for all 0 � j � t

1

,

B[j] � B[t

1

] < z. Hence, for all 0 � j < s, B[j] < z, which is what we wanted to prove for this

half of the array. The other half is analogous.

Analysis:

We will need a few lectures to cover this part of the proof. We start with an outline.

1. The expected cost of the ith execution of statement P1 will be shown to be O(n=i), for i � 1,

so the total expected cost of all executions of P1 is

(n+ 1) +

n�1

X

i=1

O

�

n

i

�

= O(n+ n

n�1

X

i=1

1

i

)

= O(n logn):

The last line follows because the Harmonic series up to n is bounded by lnn + O(1) (see

Knuth [25, page 74]).

2. The total expected cost of all executions of P2 will be shown to be O(n).

The remainder of the algorithm beyond P1 and P2 also runs in time O(n logn), so that this

is the total running time. (This assumes that each of the O(n) arithmetic operations on logn

bit numbers required to generate the n pseudorandom numbers can be accomplished in O(logn)

time. Whether this is true or not depends on the model of computation. However, note that,

as is common in algorithm analysis, there is an implicit assumption that each of the O(n logn)

expected comparisons in the partitioning steps can be done in O(1) time, which is also unrealistic

if bit operations are counted. The technically accurate statement is that the expected number of

comparisons and arithmetic operations is O(n logn).)

Next we present a lemma that strengthens both Markov's and Chebyshev's inequalities.

Lemma 15.2: Let k be a positive even integer. Let U be a discrete random variable such that

� = E(U) and E((U � �)

k

) both exist. Let �

k

> 0 be the positive real kth root of E((U � �)

k

).

Then, for any t > 0,

Pr(jU � �j � t�

k

) �

1

t

k

:

LECTURE 15. QUICKSORT WITH THE 5-WAY GENERATOR, CONTINUED 43

Remark: E((U � �)

k

) is called the kth central moment of U . For the special case k = 2, this

moment is also known as the variance of U , and �

2

is thus its standard deviation. Chebyshev's

inequality is the special case k = 2 of Lemma 15.2. Note also the similarity to Markov's inequality,

Lemma 3.1.

Proof:

Pr(jU � �j � t�

k

) = Pr((U � �)

k

� t

k

�

k

k

) (k is even)

�

1

t

k

:

The last line follows from Markov's inequality (Lemma 3.1), since �

k

k

= E((U��)

k

), again using

the fact that k is even so that Markov's inequality is applicable. 2

Lecture 16

Quicksort with the 5-Way Generator,

continued

February 20, 1991

Notes: Simon Kahan

16.1. How to Choose Among Markov's, Chebyshev's, and

Cherno�'s Inequalities

Lemma 15.2 provides an upper bound on the probability that a random variable is far from its

mean. This bound is often tighter than those provided by Markov's and Chebyshev's inequalities:

the bound decreases in proportion to the kth power of the distance from the mean. A drawback is

that the lemma requires knowledge of the kth central moment of the variable's distribution, which

may not always be readily available. Furthermore, the constant of proportionality in this bound is

the kth central moment itself, so that if this moment is large the bound may be weaker than that

given by the lower order inequalities.

In contrast, Markov's inequality (Lemma 3.1) depends only on knowledge of the mean, but yields

a bound that decreases only in proportion to the distance from the mean; Chebyshev's inequality

(the case k = 2 of Lemma 15.2) depends on both the mean and variance, and yields a bound that

decreases in proportion to the square of the distance from the mean. Because the constants of

proportionality in all of these bounds depend upon the particular distribution, we cannot generally

predict which inequality, or which k, will produce the most useful bound.

Finally there is Cherno�'s inequality (Theorem 2.1), which usually gives the tightest bound. It

does so because it applies only to the binomial distribution, so that all moments are known. (For

a more generally applicable form of Cherno�'s inequality, see Raghavan [33, Theorems 1 and 2].)

16.2. t-Way Independence of the t-Way Generator

In Lecture 14 we de�ned both mutual and t-way independence. An illustration of the di�erence

between these concepts is given by the following example:

Example 16.1: Let X

1

and X

2

be random bits chosen uniformly and independently from the

set f0; 1g. Let X

3

= X

1

� X

2

. The set fX

1

; X

2

; X

3

g of random variables is 2-way independent:

44

LECTURE 16. QUICKSORT WITH THE 5-WAY GENERATOR, CONTINUED 45

for all i 6= j and all x and y, Pr(X

i

= x j X

j

= y) = Pr(X

i

= x) = 1=2. Yet the same set is not

mutually independent: for example,

Pr(X

1

= 0 ^X

2

= 0 ^X

3

= 0) =

1

4

6=

1

8

=

3

Y

i=1

Pr(X

i

= 0):

De�nition: The Vandermonde matrix V = V (�

0

; �

1

; : : : ; �

t�1

) is the t�t matrix whose entries

are V

ij

= �

j�1

i�1

, for 1 � i; j � t (where 0

0

is de�ned to be 1).

Lemma 16.2: For any integral domain D, if �

0

; �

1

; : : : ; �

t�1

2 D are distinct, then V =

V (�

0

; �

1

; : : : ; �

t�1

) is invertible.

Proof: Let ~a = (a

0

; a

1

; : : : ; a

t�1

)

T

2 D

t

be any column vector satisfying V~a = 0. Let a(x) =

a

0

+ a

1

x+ a

2

x

2

+ � � �+ a

t�1

x

t�1

. Let V

i

denote the ith row of V . For each i 2 f0; 1; : : : ; t� 1g,

a(�

i

) = a

0

+ a

1

�

i

+ � � �+ a

t�1

�

t�1

i

= V

i

~a = 0:

Since a(x) has t distinct zeros �

i

, yet a(x) has degree at most t � 1, a(x) must be the zero

polynomial [29, IV.3.3, Theorem 2]. Summarizing this argument, V~a = 0 implies ~a = 0. Hence V

is invertible. 2

Lemma 16.3: Let F be �nite �eld with n elements. Let t be any integer with 2 � t � n.

Choose a

0

; a

1

; : : : ; a

t�1

2 F randomly, uniformly, and independently. For i 2 F , let

X

i

=

t�1

X

r=0

a

r

i

r

:

Then, for all i 2 F ,

1. X

i

is uniformly distributed in F .

2. fX

i

j i 2 Fg is t-way independent.

3. Given that X

i

= z, X

j

remains uniformly distributed in F , for all j 6= i.

4. Given that X

i

= z, fX

j

j j 2 F and j 6= ig is (t� 1)-way independent.

Proof: Let i

0

; i

1

; : : : ; i

t�1

be any t distinct elements of F . Let V denote the Vandermonde

matrix V (i

0

; i

1

; : : : ; i

t�1

), ~a = (a

0

; a

1

; : : : ; a

t�1

)

T

, and ~y = (y

0

; y

1

; : : : ; y

t�1

)

T

, where each y

j

is an

arbitrary element of F .

1. To show that X

i

is uniformly distributed in F , it su�ces to show that, for all y 2 F ,

Pr(X

i

= y) = 1=n.

Pr(X

i

= y) = Pr

t�1

X

r=0

a

r

i

r

= y

!

= Pr

a

0

= y �

t�1

X

r=1

a

r

i

r

!

=

1

n

;

LECTURE 16. QUICKSORT WITH THE 5-WAY GENERATOR, CONTINUED 46

since a

0

is uniformly distributed in F .

2.

Pr

0

@

t�1

^

j=0

(X

i

j

= y

j

)

1

A

= Pr

0

@

t�1

^

j=0

t�1

X

r=0

a

r

i

r

j

= y

j

!

1

A

= Pr(V~a = ~y)

= Pr(~a = V

�1

~y) (Lemma 16.2)

=

1

n

t

(~a is uniform in F

t

)

=

t�1

Y

j=0

Pr(X

i

j

= y

j

): (From part (1))

3. For any y 2 F ,

Pr(X

j

= y j X

i

= z) = Pr(X

j

= y) (From part (2))

=

1

n

(From part (1))

4. Suppose i; i

0

; i

1

; : : : ; i

t�2

are t distinct elements of F .

Pr

0

@

t�2

^

j=0

X

i

j

= y

j

j X

i

= z

1

A

=

Pr

��

V

t�2

j=0

X

i

j

= y

j

�

^ (X

i

= z)

�

Pr(X

i

= z)

=

�

Q

t�2

j=0

Pr(X

i

j

= y

j

)

�

Pr(X

i

= z)

Pr(X

i

= z)

(From part (2))

=

t�2

Y

j=0

Pr(X

i

j

= y

j

)

=

t�2

Y

j=0

Pr(X

i

j

= y

j

j X

i

= z) (From part (2))

2

Lecture 17

Quicksort with the 5-Way Generator,

continued

February 22, 1991

Notes: Denise Draper

We are now in a position to prove the main technical lemma:

Lemma 17.1: Let X

0

; X

1

; : : : ; X

n�1

be a pseudorandom sequence output by the 5-way gen-

erator. Let S be an arbitrary nonempty subset of Z

n

and let r = jSj. Fix any z 2 Z

n

and

i 2 f1; 2; : : : ; n� 1g. Then

Pr

0

@

i�1

^

j=0

(A[X

j

] 62 S) j A[X

i

] = z

1

A

�

4n

2

i

2

r

2

: (17:1)

(Note that if the X

j

were truly random, uniform, and independent, the probability above would

be ((n� r)=n)

i

, which is generally much smaller than the bound in this lemma. This is the price

we pay for pseudorandomness.)

Proof: When ir � n, the lemma is vacuously true, since the right hand side of inequality (17.1)

is then at least 4. Therefore, assume ir > n.

For j 2 f0; 1; : : : ; i� 1g, let

Y

j

=

(

1 if A[X

j

] 2 S

0 otherwise

:

Let p = E(Y

j

j A[X

i

] = z) = Pr(A[X

j

] 2 S j A[X

i

] = z) = r=n since, by Lemma 16.3, part (3), X

j

is uniformly distributed and independent of X

i

.

Let U =

P

i�1

j=0

Y

j

. (Thus, the left hand side of inequality (17.1) can be expressed as

Pr (U = 0 j A[X

i

] = z).) Let

� = E (U j A[X

i

] = z)

= E

0

@

i�1

X

j=0

Y

j

j A[X

i

] = z

1

A

=

i�1

X

j=0

E (Y

j

j A[X

i

] = z)

= ip:

47

LECTURE 17. QUICKSORT WITH THE 5-WAY GENERATOR, CONTINUED 48

Let � be the positive real fourth root of the fourth central moment E

�

(U � �)

4

j A[X

i

] = z

�

:

Then we have the following:

Pr (U = 0 j A[X

i

] = z)

� Pr (jU � �j � � j A[X

i

] = z) (Note 1)

= Pr

�

jU � �j �

�

�

� � j A[X

i

] = z

�

�

�

4

�

4

(Lemma 15.2)

=

1

�

4

E

�

(U � �)

4

j A[X

i

] = z

�

=

1

�

4

E

0

B

@

0

@

i�1

X

j=0

(Y

j

� p)

1

A

4

j A[X

i

] = z

1

C

A

=

1

�

4

2

4

i�1

X

j=0

E

�

(Y

j

� p)

4

j A[X

i

] = z

�

+

�

4

2

�

X

0�j<k<i

E

�

(Y

j

� p)

2

(Y

k

� p)

2

j A[X

i

] = z

�

3

5

(Note 2)

=

1

i

4

p

4

�

i

�

p(1� p)

4

+ (1� p)(�p)

4

�

+ 6

�

i

2

�

�

p(1� p)

2

+ (1� p)(�p)

2

�

2

�

(Note 3)

=

ip(1� p)

�

(1� p)

3

+ p

3

�

+ 6

�

i

2

�

p

2

(1� p)

2

i

4

p

4

�

ip+ 3i

2

p

2

i

4

p

4

(Note 4)

<

4i

2

p

2

i

4

p

4

(Note 5)

=

4

i

2

p

2

=

4n

2

i

2

r

2

:

Note 1. Since U is nonnegative, jU � �j � � is satis�ed under two conditions: when U = 0

and when U � 2�. Thus this probability is no less than the probability of U = 0 alone.

LECTURE 17. QUICKSORT WITH THE 5-WAY GENERATOR, CONTINUED 49

Note 2. The expansion of

�

P

j

(Y

j

� p)

�

4

will yield terms of the form

((Y

a

� p)(Y

b

� p)(Y

c

� p)(Y

d

� p)). If a 6= b, then Y

a

is independent of Y

b

, since the Y

j

are functions of the X

j

, which are 4-way independent, by Lemma 16.3, part (4). Because of this

independence, if there is one subscript, say a, in the term above that is di�erent from the other

three, then the expectation of the product can be written as a product of expectations:

E ((Y

a

� p)(Y

b

� p)(Y

c

� p)(Y

d

� p) j A[X

i

] = z)

= E((Y

a

� p) j A[X

i

] = z) � E((Y

b

� p)(Y

c

� p)(Y

d

� p) j A[X

i

] = z)

= 0 � E ((Y

b

� p)(Y

c

� p)(Y

d

� p) j A[X

i

] = z)

= 0:

Thus the only terms that are nonzero are those in which each subscript is present at least twice |

exactly the terms appearing in this formula.

Note 3. Since j 6= k in the second term, we can again replace the expectation of the product with

the product of the expectations: E((Y

j

�p)

2

(Y

k

�p)

2

) = E((Y

j

�p)

2

) �E((Y

k

�p)

2

) = E((Y

j

�p)

2

)

2

.

Then the expectations are replaced with their values and summed over all terms.

Note 4. Several quantities are replaced by greater or equal values: (1� p)

3

+ p

3

and 1� p are

replaced by 1, and

�

i

2

�

is replaced by

i

2

2

.

Note 5. By supposition ir > n, which implies that ip > 1, which in turn implies that i

2

p

2

> ip.

2

Lecture 18

Quicksort with the 5-Way Generator,

continued

February 22, 1991

Notes: Tracy Kimbrel

18.1. Cost of the ith Partition in P1

De�nition: Let Q

i

be the cost of the ith iteration of step P1 of 5-Way Quicksort . For any

i 2 f1; 2; : : : ; n� 1g and y 2 Z

n

, let

R

i;y

= min(fA[X

j

]� y j 0 � j < i & A[X

j

] � yg [fn� yg); and

L

i;y

= min(fy �A[X

j

] j 0 � j < i & A[X

j

] � yg [fy + 1g):

(Just prior to the ith pivot, R

i;y

is the distance from y to the closest previous pivot to the right

of y or, if none, to the right end of A; L

i;y

is the analogous distance to the left.)

Notice that, if A[X

i

] = z, then Q

i

= R

i;z

+ L

i;z

. Recall from the outline on page 42 that one of

our two subgoals is to show that E(Q

i

) = O(n=i). Toward this end, the next two lemmas bound

the expectations of R

i;z

and L

i;z

.

Lemma 18.1: For any i 2 f1; 2; : : : ; n� 1g, any positive integer r, and any y; z 2 Z

n

,

Pr (R

i;y

> r j A[X

i

] = z) � 4n

2

=(i

2

r

2

); and (18.1)

Pr (L

i;y

> r j A[X

i

] = z) � 4n

2

=(i

2

r

2

): (18.2)

Proof: For (18.1), assume r < n � y since otherwise, by the de�nition of R

i;y

,

Pr (R

i;y

> n� y) = 0, and the statement is vacuously true. Let S = fy + 1; y + 2; : : : ; y + rg.

Note that S � Z

n

, since r < n � y. Then

Pr (R

i;y

> r j A[X

i

] = z) = Pr

0

@

i�1

^

j=0

(A[X

j

] 62 S) j A[X

i

] = z

1

A

� 4n

2

=(i

2

r

2

);

by Lemma 17.1. The proof of (18.2) is similar. 2

50

LECTURE 18. QUICKSORT WITH THE 5-WAY GENERATOR, CONTINUED 51

Lemma 18.2: For any i 2 f1; 2; : : : ; n� 1g and any y; z 2 Z

n

,

E(R

i;y

j A[X

i

] = z) = O(n=i); and (18.3)

E(L

i;y

j A[X

i

] = z) = O(n=i): (18.4)

Proof: For (18.3),

E(R

i;y

j A[X

i

] = z) =

n

X

s=0

s �Pr (R

i;y

= s j A[X

i

] = z)

=

n

X

s=0

s�1

X

r=0

Pr (R

i;y

= s j A[X

i

] = z)

=

n

X

r=0

n

X

s=r+1

Pr (R

i;y

= s j A[X

i

] = z)

=

n

X

r=0

Pr (R

i;y

> r j A[X

i

] = z)

� 1 + dn=ie+

n

X

r=dn=ie+1

4n

2

i

2

r

2

(Lemma 18.1)

� 1 + dn=ie+

Z

n

dn=ie

4n

2

i

2

r

2

dr (See Figure 18.1)

= 1 + dn=ie+

�4n

2

i

2

r

!

�

�

�

n

r=dn=ie

� 1 + dn=ie+ 4n=i� 4n=i

2

= O(n=i):

The proof of (18.4) is similar. 2

The following lemma completes the �rst of our two subgoals.

Lemma 18.3: For any i 2 f1; 2; : : : ; n� 1g, E(Q

i

) = O(n=i).

Proof:

E(Q

i

) =

n�1

X

z=0

E(Q

i

j A[X

i

] = z) � Pr (A[X

i

] = z)

=

n�1

X

z=0

E(R

i;z

+ L

i;z

j A[X

i

] = z) �Pr (A[X

i

] = z)

= O(n=i)

n�1

X

z=0

Pr (A[X

i

] = z) (Lemma 18.2)

LECTURE 18. QUICKSORT WITH THE 5-WAY GENERATOR, CONTINUED 52

= O(n=i):

2

...
..
..
...
..
..
...
...
..
...
..
..
...
..
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..
..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

...
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
..
..
.
.
.
.
..
.
.
.
.
...
.
..
..
.
..
.
...
.
..
.
..
...
.
..
..
..
..
..
..
.
..
...
..
.
..
...
..
.
..
..
..
..
..
.
..
...
.
..
.
...
.
..
.
..
..
.
..
.
..
..
..
.
..
.
...
.
..
.
..
...
.
..
..
.
...
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
...
..
..
.
...
..
..
...
.
..
...
..
.
..
...
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.

ndn=ie

4n

2

=i

2

r

2

r

Figure 18.1: Bounding a sum by an integral

18.2. Cost of All Partitions in P2

The second of our two subgoals in the outline on page 42 is achieved in the following lemma.

Lemma 18.4: The total expected cost of all P2 partitions is O(n).

Proof: Let D

y

= L

n�1;y

+ R

n�1;y

. (The reason to choose n � 1 rather than n is so that

Lemma 18.2 still applies.) The total cost of all P2 partitions is at most

P

n�1

y=0

D

y

.

E

0

@

n�1

X

y=0

D

y

1

A

=

n�1

X

y=0

E(D

y

)

=

n�1

X

y=0

E(L

n�1;y

+R

n�1;y

)

=

n�1

X

y=0

(E(L

n�1;y

) + E(R

n�1;y

))

LECTURE 18. QUICKSORT WITH THE 5-WAY GENERATOR, CONTINUED 53

=

n�1

X

y=0

n�1

X

z=0

(E(L

n�1;y

j A[X

n�1

] = z) � Pr (A[X

n�1

] = z)

+ E(R

n�1;y

j A[X

n�1

] = z) �Pr (A[X

n�1

] = z))

=

n�1

X

y=0

n�1

X

z=0

O

�

n

n � 1

�

� Pr (A[X

n�1

] = z) (Lemma 18.2)

=

n�1

X

y=0

O(1)

n�1

X

z=0

Pr (A[X

n�1

] = z)

=

n�1

X

y=0

O(1)

= O(n):

2

Notice from the penultimate line of this derivation that E(D

y

) = O(1). That is, any particular

subproblem during the cleanup step P2 is expected to have constant size.

Theorem 15.1 follows from Lemmas 18.3 and 18.4 as described in the outline on page 42.

Lecture 19

Space-Bounded Randomness

February 27, 1991

Notes: Tor Jeremiassen

19.1. Pseudorandomness for Space-Bounded Algorithms

The series of lectures on Quicksort with the 5-way pseudorandom generator showed that only a

small number of truly random seed bits is needed to obtain O(n logn) expected running time. In

one sense this is not terribly surprising, since we know how to sort in O(n logn) time without any

randomness at all. A more dramatic and general result, due to Nisan [30], shows that there is a

pseudorandom generator that can be used to decrease the randomness needed by any space-bounded

probabilistic algorithm.

More speci�cally, Nisan showed that, for any R and S, there is a pseudorandom generator G

that takes O(S logR) random seed bits and outputs R pseudorandom bits that \look" truly random

to any space S probabilistic algorithm A. That is, if A accepts a language L with 2-sided error,

space S, and R random bits, then running A with the pseudorandom generator in place of truly

random bits accepts L with only O(S logR) random bits (and O(S logR) space).

For instance, if L 2 BPLP then L is accepted by a probabilistic algorithm that uses O(log

2

n)

space, polynomial time, and only O(log

2

n) random bits. In particular, a pseudorandom walk

according to this generator solves USTCON with only O(log

2

n) random bits instead of
(ne).

19.2. Universal Hash Functions

Nisan's generator is built from universal hash functions, which were introduced by Carter and

Wegman [9, 10].

Notation: Pr

x2X

(:::) and E

x2X

(:::) denote probability and expectation, respectively, when x

is chosen randomly and uniformly from X . This notation will be useful, as the expressions that

arise will often involve more variables than just x, and there would otherwise be confusion about

which random variable is being quanti�ed.

De�nition: Let E and F be �nite sets with jEj > 1. A set H of functions h : E ! F is

called a universal family of hash functions if and only if, for any two distinct x

1

; x

2

2 E, and any

y

1

; y

2

2 F ,

Pr

h2H

(h(x

1

) = y

1

^ h(x

2

) = y

2

) =

1

jF j

2

:

54

LECTURE 19. SPACE-BOUNDED RANDOMNESS 55

Example 19.1: Let E = F be a �eld and let H = fh

a;b

j a; b 2 Fg, where h

a;b

(x) = ax + b.

H is a universal family of hash functions, as follows. Lemma 16.3 says that if a and b are chosen

randomly, uniformly, and independently from F , then ax+ b is uniformly distributed in F for any

x 2 F , and fax+ b j x 2 Fg is pairwise (i.e., 2-way) independent. Using these two facts,

Pr

h

a;b

2H

(h

a;b

(x

1

) = y

1

^ h

a;b

(x

2

) = y

2

) = Pr

a;b2F

(ax

1

+ b = y

1

^ ax

2

+ b = y

2

)

= Pr

a;b2F

(ax

1

+ b = y

1

) Pr

a;b2F

(ax

2

+ b = y

2

)

=

1

jF j

2

:

Lecture 20

Properties of Universal Hash Functions

March 1, 1991

Notes: Donald Chinn

Next we prove two properties of universal families of hash functions needed for our goal of

constructing Nisan's pseudorandom generator. The �rst says that a randomly chosen hash function

distributes any input from the domain uniformly over the codomain.

Lemma 20.1: If H is a universal family of hash functions h : E ! F , and x

1

2 E and y

1

2 F ,

then

Pr

h2H

(h(x

1

) = y

1

) =

1

jF j

:

Proof: Let x

2

2 E � fx

1

g.

Pr

h2H

(h(x

1

) = y

1

) = Pr

h2H

0

@

_

y

2

2F

(h(x

1

) = y

1

& h(x

2

) = y

2

)

1

A

=

X

y

2

2F

Pr

h2H

(h(x

1

) = y

1

& h(x

2

) = y

2

)

(the disjuncts are mutually exclusive events)

=

X

y

2

2F

1

jF j

2

(de�nition of universal hash function)

=

1

jF j

:

2

De�nition: Let h : E ! F;A � E;B � F; and � > 0. We say h is �-random on (A;B) if and

only if

�

�

�

�

Pr

x2E

(x 2 A & h(x) 2 B)� p(A)p(B)

�

�

�

�

� �;

where p(A) = jAj=jEj and p(B) = jBj=jF j.

The idea behind this de�nition is that, if we choose x 2 E and y 2 F randomly, uniformly, and

independently, then Pr(x 2 A & y 2 B) = p(A)p(B). Thus, if � is small and h is �-random on (A;B),

then if we choose only x randomly and uniformly, h(x) \looks like" a random, independent element

56

LECTURE 20. PROPERTIES OF UNIVERSAL HASH FUNCTIONS 57

of F , at least with respect to membership in B. One can see a foreshadowing of pseudorandomness

in this de�nition and the following theorem: given a random seed x, h(x) can be used in place of

a random y.

Theorem 20.2 (Nisan [30]): Let H be a universal family of hash functions h : E ! F . Let

A � E, B � F , and � > 0. Then

Pr

h2H

(h is not �-random on (A;B)) �

p(A)p(B)(1� p(B))

�

2

jEj

:

Proof: Let M be a jEj � jH j matrix such that

M

x;h

=

(

1 if h(x) 2 B

0 otherwise

:

Since H is universal, for any x 2 E,

E

h2H

(M

x;h

) = Pr

h2H

(h(x) 2 B)

= jBj �

1

jF j

(Lemma 20.1)

= p(B) : (20.1)

In words, this says that the average value in any row of M is p(B).

Now let U = E

x2A

(M

x;h

). U is the average value, over rows in A, of the column of M labeled

h. We will calculate the variance (that is, the second central moment) of U as a function of the

random variable h. (Note that x is bound in the de�nition of U , so that U is not a function of the

random variable x.)

Before calculating the variance of U , we must calculate its mean:

E

h2H

(U) = E

h2H

�

E

x2A

(M

x;h

)

�

= E

x2A

�

E

h2H

(M

x;h

)

�

= E

x2A

(p(B)) (Equation 20.1)

= p(B) :

The variance of U is

E

h2H

((U � p(B))

2

)

= E

h2H

�

E

x2A

(M

x;h

)� p(B)

�

2

!

LECTURE 20. PROPERTIES OF UNIVERSAL HASH FUNCTIONS 58

= E

h2H

��

E

x

1

2A

(M

x

1

;h

)� p(B)

��

E

x

2

2A

(M

x

2

;h

)� p(B)

��

= E

h2H

�

E

x

1

2A

(M

x

1

;h

� p(B)) E

x

2

2A

(M

x

2

;h

� p(B))

�

= E

h2H

�

E

x

1

;x

2

2A

((M

x

1

;h

� p(B))(M

x

2

;h

� p(B)))

�

= E

x

1

;x

2

2A

�

E

h2H

((M

x

1

;h

� p(B))(M

x

2

;h

� p(B)))

�

= E

x

1

;x

2

2A

�

E

h2H

((M

x

1

;h

� p(B))(M

x

2

;h

� p(B)))

�

�

�

�

x

1

6= x

2

�

Pr

x

1

;x

2

2A

(x

1

6= x

2

)

+ E

x

1

;x

2

2A

�

E

h2H

((M

x

1

;h

� p(B))(M

x

2

;h

� p(B)))

�

�

�

�

x

1

= x

2

�

Pr

x

1

;x

2

2A

(x

1

= x

2

)

= E

x

1

;x

2

2A

�

E

h2H

(M

x

1

;h

� p(B)) E

h2H

(M

x

2

;h

� p(B))

�

�

�

�

x

1

6= x

2

�

Pr

x

1

;x

2

2A

(x

1

6= x

2

)

+ E

x

1

2A

�

E

h2H

((M

x

1

;h

� p(B))

2

)

�

�

1

jAj

(h(x

1

) and h(x

2

) are independent if x

1

6= x

2

)

= 0 +

p(B)(1� p(B))

2

+ (1� p(B))(�p(B))

2

jAj

(Equation 20.1)

=

p(B)(1� p(B))

jAj

:

The proof will be completed next lecture.

Lecture 21

Universal Hash Functions and Nisan's

Generator

March 4, 1991

Notes: Elizabeth Walkup

21.1. Conclusion of the Proof of Theorem 20.2

Recall the following quantities:

� U = E

x2A

(M

x;h

) = Pr

x2A

(h(x) 2 B) is a function of the random variable h.

� The mean of U is p(B).

� The variance of U is p(B)(1� p(B))=jAj.

Let � denote the positive real square root of the variance of U . Then the proof of Theorem 20.2

is completed as follows:

Pr

h2H

(h is not �-random on (A;B))

= Pr

h2H

�

�

�

�

�

Pr

x2E

(x 2 A & h(x) 2 B)� p(A)p(B)

�

�

�

�

> �

�

= Pr

h2H

�

�

�

�

�

Pr

x2E

(x 2 A) � Pr

x2E

(h(x) 2 B j x 2 A)� p(A)p(B)

�

�

�

�

> �

�

= Pr

h2H

�

�

�

�

�

p(A) � Pr

x2A

(h(x) 2 B)� p(A)p(B)

�

�

�

�

> �

�

= Pr

h2H

�

jU � p(B)j >

�

p(A)

�

= Pr

h2H

�

jU � p(B)j >

�

p(A) �

� �

�

�

(p(A))

2

�

2

�

2

(Lemma 15.2)

=

(p(A))

2

p(B) (1� p(B))

�

2

jAj

59

LECTURE 21. UNIVERSAL HASH FUNCTIONS AND NISAN'S GENERATOR 60

=

p(A)p(B) (1� p(B))

�

2

jEj

:

2

21.2. Nisan's Generator

De�nition: Let t be a positive integer, and let H be a universal family of hash

functions h : f0; 1g

t

! f0; 1g

t

: For every k 2 N , de�ne the pseudorandom generator

G

k

: f0; 1g

t

�H

k

! f0; 1g

t�2

k

recursively as follows:

G

0

(x) = x ; and

G

k

(x; h

1

; h

2

; : : : ; h

k

) = G

k�1

(x; h

1

; h

2

; : : : ; h

k�1

) �G

k�1

(h

k

(x); h

1

; h

2

; : : : ; h

k�1

)

for all positive integers k, where � denotes concatenation.

For example,

G

1

(x; h

1

) = x � h

1

(x) ;

G

2

(x; h

1

; h

2

) = x � h

1

(x) � h

2

(x) � h

1

(h

2

(x)) ; and

G

3

(x; h

1

; h

2

; h

3

) = x � h

1

(x) � h

2

(x) � h

1

(h

2

(x)) � h

3

(x) � h

1

(h

3

(x)) � h

2

(h

3

(x)) � h

1

(h

2

(h

3

(x))):

Note that G

k

takes as its random seed a t-bit string and k hash functions, and produces a t � 2

k

bit pseudorandom string. In order to be useful, we need to understand how many random seed bits

are required to specify one of these hash function.

Example 21.1: As in Example 19.1, takeH to be the set of all linear functions on F = GF(2

t

),

the �nite (Galois) �eld with 2

t

elements. The elements of this �eld are all polynomials of degree at

most t� 1 with coe�cients from Z

2

, and the �eld operations are the usual polynomial operations,

but reduced modulo some �xed degree t polynomial. (For more detail see, for example, Lipson [29,

Chapter VI].) Thus, every a 2 F can be speci�ed by t bits (the t coe�cients) in such a way that the

�eld operations are e�ciently computable from this representation. Each hash function h

a;b

2 H

in turn can be speci�ed by a pair (a; b) 2 F � F , where h

a;b

(x) = ax + b. That is, each of the k

hash functions can be represented using 2t bits. In summary, G

k

requires t(2k + 1) random seed

bits, and outputs t � 2

k

pseudorandom bits.

This is a great expansion if t is not too large compared to k. This suggests choosing t to

be a constant, in which case we would obtain exponential expansion of randomness. However,

in order for this pseudorandom generator to be able to \fool" any space S bounded probabilistic

algorithm A, we will ultimately be forced to choose t to be somewhat greater than S. The reason

for this is so that A has insu�cient space to retain even a single previously encountered element

of F . If this is the case, it will turn out, for example, that the element h

1

(h

2

(h

3

(x))) 2 F \looks"

completely random and independent to A, even though A has already encountered (but necessarily

\forgotten") the 7 elements x, h

1

(x), h

2

(x), h

1

(h

2

(x)), h

3

(x), h

1

(h

3

(x)), and h

2

(h

3

(x)). (Note that,

if t were much less than S, then A would have the space to solve these 7 equations in 7 variables |

LECTURE 21. UNIVERSAL HASH FUNCTIONS AND NISAN'S GENERATOR 61

2 coe�cients for each of the 3 hash functions, plus 1 for x | and then predict h

1

(h

2

(h

3

(x))) with

complete accuracy, rendering it anything but independent. Thus, the pseudorandom sequence of

elements of F output by Nisan's generator is not even 8-way independent. Nevertheless, it \looks"

mutually independent to any space-bounded algorithm, as we will prove.)

21.3. Modeling Space-Bounded Probabilistic Algorithms

Let S be the space bound of a probabilistic algorithm A on input w. We will model A on input

w as a �nite state automaton Q with 2

S

states and alphabet f0; 1g

t

. Q has a state for every

con�guration of A, and a transition from state u to state v on symbol � 2 f0; 1g

t

if and only if A,

on input w in con�guration u, when given � as the next t random bits, would be in con�guration

v after consuming �.

Lecture 22

Automata Under Various Distributions

March 6, 1991

Notes: Simon Kahan

22.1. Modeling Space-Bounded Algorithms (conclusion)

In the �nite state model, each state of the automaton corresponds to a con�guration of the algo-

rithm. Note that the input to the algorithm is not part of this con�guration, as the space bound

may be quite a bit less than the input length. Indeed, the input is implicit in the structure of

the �nite state automaton itself. As a result, the model is extremely nonuniform: the �nite state

automaton may be di�erent not only for every input size, but also for every input.

Because Nisan's proof will rely only on the fact that these �nite state automata have 2

S

states,

his result is actually stronger than previously suggested. If the string of random bits is partitioned

into blocks of t consecutive bits, then Nisan's generator can be used for probabilistic algorithms

having unlimited space, as long as the space is restricted to S at those points of time at which the

�rst bit of any block of t random bits is about to be consumed.

The basic idea behind Nisan's result is that any information encoded into S bits about previously

generated sequences of t pseudorandom bits is insu�cient to predict the next t bits generated with

any accuracy.

22.2. Behavior of Finite State Automata Under Various Distri-

butions

De�nition: For b 2 N let U

b

denote the uniform distribution on f0; 1g

b

.

De�nition: For �xed h

1

; h

2

; : : : ; h

k

2 H , let G

k

(�; h

1

; h

2

; : : : ; h

k

) denote the distribution of

G

k

(x; h

1

; h

2

; : : : ; h

k

) 2 f0; 1g

t�2

k

induced by choosing x from the distribution U

t

.

De�nition: Let Q be a �nite state automaton with 2

S

states and alphabet f0; 1g

t

, and let

D be a distribution on f0; 1g

tb

. Then Q(D) denotes the 2

S

� 2

S

matrix whose (i; j) entry is the

probability that, for y 2 f0; 1g

tb

chosen randomly according to distribution D, Q moves from state

i to state j when given the random string y.

Example 22.1: Let b = 1 and D = U

t

. Suppose �

1

; �

2

; : : : ; �

d

2 f0; 1g

t

are the only symbols

causing a transition in one step from state i to state j. Then (Q(D))

ij

= d=(2

t

). For b > 1,

62

LECTURE 22. AUTOMATA UNDER VARIOUS DISTRIBUTIONS 63

Q(U

tb

) = (Q(U

t

))

b

.

Example 22.2: Let D = G

k

(�; h

1

; h

2

; : : : ; h

k

). Q(D) is the probability transition matrix for

t � 2

k

\random" steps of Q, when the randomness comes from G

k

(�; h

1

; h

2

; : : : ; h

k

).

We will be interested in comparingQ(G

k

(�; h

1

; h

2

; : : : ; h

k

)) to Q(U

t2

k

). If these two matrices are

similar, then the behavior of Q will be similar under both distributions. We could then conclude

that the algorithm underlying Q behaves similarly whether its source of randomness is Nisan's

pseudorandom generator or true randomness. We will show that the two matrices are similar by

demonstrating that a certain norm of Q(G

k

(�; h

1

; h

2

; : : : ; h

k

))�Q(U

t2

k

) is very small.

De�nition: Let < denote the real numbers, and let m be a positive integer. For x 2 <

m

, de�ne

kxk =

P

m

i=1

jx

i

j. For an m�m matrix M , de�ne

kMk = max

x2<

m

kMxk

kxk

:

The following lemma, whose proof is left to the reader, provides some standard properties of

this norm that will be needed.

Lemma 22.3: Let M and N be m�m real matrices. Then

1. kM +Nk � kMk+ kNk.

2. kMNk � kMk � kNk.

3. If M has only nonnegative entries, and the sum of each row of M is 1, then kMk = 1.

4. If each entry in M has absolute value at most B, then kMk � mB.

Lemma 22.4: Let H be a universal family of hash functions h : f0; 1g

t

! f0; 1g

t

. Let Q be a

�nite state automaton with 2

S

states and alphabet f0; 1g

t

. Let � > 0 and k 2 N . Then

Pr

h

1

;:::;h

k

2H

�

kQ(G

k

(�; h

1

; h

2

; : : : ; h

k

))�Q(U

t2

k

)k > (2

k

� 1)�

�

�

2

6S

k

�

2

2

t

:

Note that when we eventually apply Lemma 22.4 we will want this probability to be much less than

one, and so will choose t somewhat greater than S, as suggested earlier.

Proof: The proof is by induction on k.

Basis (k = 0): G

k

(�; h

1

; h

2

; : : : ; h

k

) = G

0

(�) = U

t

= U

t2

k

. Substituting into the statement of

the lemma yields Pr(0 > 0) � 0, which is true.

The induction step will be covered next lecture.

Lecture 23

Proof of Nisan's Main Lemma

March 8, 1991

Notes: Juan Alemany

Induction (k > 0): For any h

1

; h

2

; : : : ; h

k�1

2 H and any states i and j of Q, let

B

h

1

;:::;h

k�1

i;j

= fx j G

k�1

(x; h

1

; h

2

; : : : ; h

k�1

) takes Q from i to jg:

Note in this de�nition that the hash functions h

1

; h

2

; : : : ; h

k�1

are �xed, and only the t-bit string

x varies. In words, B

h

1

;:::;h

k�1

i;j

is the set of such strings x that cause Q to move from state i to state

j in t � 2

k�1

random steps, where the random bits are produced by G

k�1

(x; h

1

; h

2

; : : : ; h

k�1

).

Consider the following two events:

E1. kQ(G

k�1

(�; h

1

; h

2

; : : : ; h

k�1

))�Q(U

t2

k�1

)k � (2

k�1

� 1)�.

E2. For all triples (i; l; j) of states, h

k

is (2

�2S

�)-random on

�

B

h

1

;:::;h

k�1

i;l

; B

h

1

;:::;h

k�1

l;j

�

.

(See page 56 to review the de�nition of \�-random on (A;B)".)

We now make the following two claims about E1 and E2. The induction step and the lemma

will follow from these claims.

Claim 1:

Pr

h

1

;:::;h

k

2H

(:E1 _ :E2) �

2

6S

k

�

2

2

t

:

Claim 2: If E1 and E2 are true, then kQ(G

k

(�; h

1

; h

2

; : : : ; h

k

))� Q(U

t2

k

)k � (2

k

� 1)�.

The two claims imply Lemma 22.4 because

Pr

h

1

;:::;h

k

2H

�

kQ(G

k

(�; h

1

; h

2

; : : : ; h

k

))� Q(U

t2

k

)k > (2

k

� 1)�

�

� Pr

h

1

;:::;h

k

2H

(:E1 _ :E2)

�

2

6S

k

�

2

2

t

:

Proof of Claim 1: We need to bound the probability that at least one of events :E1 or

:E2 occurs. We examine the separate probabilities that either :E1 or :E2 occurs. The combined

probability is bounded by the sum of the separate probabilities.

64

LECTURE 23. PROOF OF NISAN'S MAIN LEMMA 65

Bounding the probability of :E1 is simple since, by the induction hypothesis,

Pr

h

1

;:::;h

k�1

2H

(:E1) �

2

6S

(k � 1)

�

2

2

t

:

To bound the probability of :E2, note that :E2 means that there exists a triple (i; l; j) such

that h

k

is not (2

�2S

�)-random on

�

B

h

1

;:::;h

k�1

i;l

; B

h

1

;:::;h

k�1

l;j

�

. That is,

Pr

h

1

;:::;h

k

2H

(:E2)

� max

h

1

;:::;h

k�1

2H

Pr

h

k

2H

(:E2)

� max

h

1

;:::;h

k�1

2H

X

i;l;j

Pr

h

k

2H

�

h

k

is not (2

�2S

�)-random on

�

B

h

1

;:::;h

k�1

i;l

; B

h

1

;:::;h

k�1

l;j

��

� max

h

1

;:::;h

k�1

2H

X

i;l;j

2

4S

p

�

B

h

1

;:::;h

k�1

i;l

�

�

2

2

t

(Theorem 20.2)

= max

h

1

;:::;h

k�1

2H

2

4S

�

2

2

t

X

i;j

X

l

p

�

B

h

1

;:::;h

k�1

i;l

�

= max

h

1

;:::;h

k�1

2H

2

4S

�

2

2

t

X

i;j

1

=

2

6S

�

2

2

t

:

Now we combine the separate probabilities of :E1 and :E2 to obtain Claim 1, as follows:

Pr

h

1

;:::;h

k

2H

(:E1 _ :E2) � Pr

h

1

;:::;h

k

2H

(:E1) + Pr

h

1

;:::;h

k

2H

(:E2)

�

2

6S

(k � 1)

�

2

2

t

+

2

6S

�

2

2

t

=

2

6S

k

�

2

2

t

:

Proof of Claim 2: Assume E1 and E2 hold. Let

M = Q(G

k

(�; h

1

; h

2

; : : : ; h

k

)) ;

N = Q(U

t2

k

) ; and

L = Q(G

k�1

(�; h

1

; h

2

; : : : ; h

k�1

)) :

We will need two subclaims to establish Claim 2:

Claim 2.1: kM � L

2

k � � .

LECTURE 23. PROOF OF NISAN'S MAIN LEMMA 66

Claim 2.2: kL

2

�Nk � (2

k

� 2)� .

Note that Claim 2 follows from Claims 2.1 and 2.2, since

kM �Nk � kM � L

2

k+ kL

2

�Nk (Lemma 22.3 (1))

� (2

k

� 1)�

Proof of Claim 2.1: We consider a typical entry of both the matrices M and L

2

. If we can

bound the di�erence of these two entries, then we can apply Lemma 22.3 (4) to bound the norm.

First consider a typical entry of M :

M

ij

=

2

S

X

l=1

Pr

x2f0;1g

t

�

x 2 B

h

1

;:::;h

k�1

i;l

^ h

k

(x) 2 B

h

1

;:::;h

k�1

l;j

�

:

Now consider a typical entry of L

2

:

L

2

ij

=

2

S

X

l=1

L

il

L

lj

=

2

S

X

l=1

Pr

x2f0;1g

t

�

x 2 B

h

1

;:::;h

k�1

i;l

�

Pr

y2f0;1g

t

�

y 2 B

h

1

;:::;h

k�1

l;j

�

=

2

S

X

l=1

p

�

B

h

1

;:::;h

k�1

i;l

�

p

�

B

h

1

;:::;h

k�1

l;j

�

:

Thus, for all i and j,

�

�

�
M

ij

� L

2

ij

�

�

�

�

2

S

X

l=1

�

�

�

�

�

Pr

x2f0;1g

t

�

x 2 B

h

1

;:::;h

k�1

i;l

^ h

k

(x) 2 B

h

1

;:::;h

k�1

l;j

�

� p

�

B

h

1

;:::;h

k�1

i;l

�

p

�

B

h

1

;:::;h

k�1

l;j

�

�

�

�

�

�

�

2

S

X

l=1

2

�2S

� (E2)

= 2

�S

�:

Therefore kM � L

2

k � �, by Lemma 22.3 (4).

Lecture 24

Nisan's Lemmas, Concluded

March 11, 1991

Notes: Wendy Thrash

24.1. Conclusion of the Proof of Lemma 22.4

Proof of Claim 2.2: Let K = Q(U

t2

k�1

), and note that N = K

2

. Then

kL

2

�Nk = kL

2

�K

2

k

= kL

2

�KL+KL�K

2

k

= k(L�K)L+K(L�K)k

� kL�Kk � kLk+ kKk � kL�Kk (Lemma 22.3 (1,2))

= kL�Kk(kLk+ kKk)

� (2

k�1

� 1)� � (kLk+ kKk) (E1)

= (2

k

� 2)� : (Lemma 22.3 (3))

2

The proof of Nisan's main lemma (Lemma 22.4) is now complete. Let us pause for a moment to

glean some intuition from this proof, because it is here that the ingeniousness of Nisan's generator

has been revealed.

Our goal is to show that, using Nisan's generator, the probability that the �nite state automaton

Q accepts a pseudorandom string is close to the probability that it accepts a truly random string.

Towards that goal, we have just shown that the behavior of Q under pseudorandomness is close

to its behavior under randomness, in the sense that kM � Nk is small. We accomplished this

by showing that both M (representing Q under Nisan's generator) and N (representing Q under

randomness) are close to the matrix L

2

, which represents Q under Nisan's generator running for

half the steps, then running again, independently, for the second half. More precisely,M represents

the behavior of Q under

G

k�1

(x; h

1

; h

2

; : : : ; h

k�1

) �G

k�1

(h

k

(x); h

1

; h

2

; : : : ; h

k�1

)

for random x, and L

2

represents the behavior under

G

k�1

(x; h

1

; h

2

; : : : ; h

k�1

) �G

k�1

(y; h

1

; h

2

; : : : ; h

k�1

)

67

LECTURE 24. NISAN'S LEMMAS, CONCLUDED 68

for random and independent x and y: these are close as a result of Theorem 20.2. On the other

hand, N represents the behavior of Q under

U

t2

k�1

� U

t2

k�1

;

which is close to L

2

by the induction hypothesis.

24.2. Bounding Q's Probability of Accepting

We continue our proof that the probability that Q accepts a pseudorandom string is close to the

probability that it accepts a truly random string with two more lemmas. Lemma 24.1 shows how

to go from norm to probability of acceptance, provided the hash functions are chosen so as to make

the norm small. Lemma 22.4 showed that this is likely to be the case for randomly chosen hash

functions, and these two facts are tied together in Lemma 24.2.

Lemma 24.1: Let H be a universal family of hash functions h : f0; 1g

t

! f0; 1g

t

, and let

h

1

; h

2

; : : : ; h

k

2 H . Let Q be a �nite state automaton with 2

S

states and alphabet f0; 1g

t

. Let

� > 0. If h

1

; h

2

; : : : ; h

k

satisfy kQ(G

k

(�; h

1

; h

2

; : : : ; h

k

))� Q(U

t2

k

)k � �, then

�

�

�

�

�

Pr

x2f0;1g

t

(Q accepts G

k

(x; h

1

; h

2

; : : : ; h

k

))� Pr

y2f0;1g

t2

k

(Q accepts y)

�

�

�

�

�

� �:

Proof: Let u; a 2 f0; 1g

2

S

be column vectors de�ned by

u

i

=

(

1 if i is the start state of Q

0 otherwise

; and

a

i

=

(

1 if i is an accepting state of Q

0 otherwise

:

Let hv; wi denote the inner product of real vectors v and w. Then

Pr

y2f0;1g

t2

k

(Q accepts y) = hQ(U

t2

k

)u; ai

and

Pr

x2f0;1g

t

(Q accepts G

k

(x; h

1

; h

2

; : : : ; h

k

)) = hQ(G

k

(�; h

1

; h

2

; : : : ; h

k

))u; ai ;

since Q(�)u picks out the ith row of Q(�), where i is the start state, and hQ(�)u; ai adds up the

probabilities of ending in the various accepting states. Thus,

�

�

�

�

�

Pr

x2f0;1g

t

(Q accepts G

k

(x; h

1

; h

2

; : : : ; h

k

))� Pr

y2f0;1g

t2

k

(Q accepts y)

�

�

�

�

�

= jh(Q(G

k

(�; h

1

; h

2

; : : : ; h

k

))�Q(U

t2

k

))u; aij

� k(Q(G

k

(�; h

1

; h

2

; : : : ; h

k

))� Q(U

t2

k

))uk (De�nition of vector norm)

� kQ(G

k

(�; h

1

; h

2

; : : : ; h

k

))�Q(U

t2

k

)k (De�nition of matrix norm)

� � : (Hypothesis)

LECTURE 24. NISAN'S LEMMAS, CONCLUDED 69

2

Lemma 24.2: Let k, t, and S be positive integers with k � S and t � 14S. Let H be a

universal family of hash functions h : f0; 1g

t

! f0; 1g

t

. Let Q be a �nite state automaton with 2

S

states and alphabet f0; 1g

t

. Then

�

�

�

�

�

�

�

Pr

x2f0;1g

t

h

1

;h

2

;:::;h

k

2H

(Q accepts G

k

(x; h

1

; h

2

; : : : ; h

k

))� Pr

y2f0;1g

t2

k

(Q accepts y)

�

�

�

�

�

�

�

� 2

�S

:

Proof: Let A be the event \Q accepts G

k

(x; h

1

; h

2

; : : : ; h

k

)", B be the event \Q accepts y",

and C be the event \kQ(G

k

(�; h

1

; h

2

; : : : ; h

k

))�Q(U

t2

k

)k > 2

�2S

". Then (omitting subscripts on

probabilities)

jPr(A)� Pr(B)j = jPr(A j :C)(1� Pr(C)) + Pr(A j C) Pr(C)� Pr(B)j

= jPr(A j :C) � Pr(B) + Pr(C)(Pr(A j C)� Pr(A j :C))j

� jPr(A j :C) � Pr(B)j+ Pr(C) jPr(A j C)� Pr(A j :C)j

� 2

�2S

+ Pr(C) � 1 (Lemma 24.1)

� 2

�2S

+

2

6S

� k � 2

2k

(2

�2S

)

2

� 2

t

(Lemma 22.4, � = 2

�2S

=(2

k

� 1))

= 2

�2S

+ k(2

10S+2k�t

)

� 2

�2S

+ S(2

�2S

) (t � 14S, k � S)

= 2

�2S

(1 + S)

� 2

�S

: (S � 1)

2

Lecture 25

Space-Bounded Randomness, Concluded

March 13, 1991

Notes: Tor Jeremiassen

25.1. Nisan's Pseudorandomness Theorem

Theorem 25.1 (Nisan [30]): If L is accepted by a probabilistic algorithm A with 2-sided

(1-sided) error that uses space S, time T , and R random bits, where 2S � R = O(S � 2

S

), then L

is accepted by a probabilistic algorithm B with 2-sided (respectively, 1-sided) error that uses space

O(S log

R

S

) = O(S

2

), time O(ST log

R

S

) = O(S

2

T), and O(S log

R

S

) = O(S

2

) random bits. (R, S,

and T also need to be \constructible", analogous to the discussion in Corollary 3.2.)

(Note that, unlike the case of deterministic, nondeterministic, or alternating algorithms, the

constraint R = O(S �2

S

) is not vacuous: Gill [17] gives natural examples of probabilistic algorithms

that run usefully for time double exponential in their space bounds, using that many random bits

as well.)

Proof:

Construction: Let t = 18S. By increasing S and R by constant factors, we can assume

without loss of generality that S is an integral power of 3, and

R

18S

is an integral power of 2, and

that R � 18S � 2

S

. Let k = log

2

R

18S

� S (making Lemma 24.2 applicable). Let H be a universal

family of hash functions h : f0; 1g

t

! f0; 1g

t

. B simulates A step for step, except that, in place

of the R truly random bits that A needs, B uses the string G

k

(x; h

1

; h

2

; : : : ; h

k

) as its source of

t � 2

k

= 18S � 2

log

2

(R=(18S))

= R random bits, where x; h

1

; h

2

; : : : ; h

k

are chosen randomly, uniformly,

and independently, and recorded for use by the generator during the simulation.

Analysis: By Example 21.1 the number of random seed bits that B requires is t(2k + 1) =

O(S log

R

S

).

To compute the next t pseudorandom bits, B must apply at most k hash functions to x. Each

such application is 1 multiplication and 1 addition in the �eld GF(2

t

). Recall from Example 21.1

that the elements of this �eld are polynomials of degree at most t�1 with coe�cients from Z

2

. Each

such �eld operation in turn is a polynomial multiplication or addition followed by a division by some

�xed irreducible (i.e., unfactorable over Z

2

) polynomialm(x) of degree t. By naive algorithms, each

of these can be done in O(t

2

) time and O(t) space. (Because t is twice an integral power of 3, the

polynomialm(x) = x

t

+x

t=2

+1 is irreducible over Z

2

[28, page 146, exercise 3.96]. Shoup [37] gives

a more general deterministic polynomial time algorithm for constructing irreducible polynomials,

but the space required is proportional to t

3

= �(S

3

).)

70

LECTURE 25. SPACE-BOUNDED RANDOMNESS, CONCLUDED 71

Since each �eld operation takes O(t

2

) time, each of the k applications of a hash function takes

O(t

2

) time, since it requires only a constant number of �eld operations. To produce t pseudorandom

bits thus takes time O(kt

2

), so simulating all T steps of A takes time O((T=t)kt

2

) = O(Tkt) =

O(ST log

R

S

)

To record x; h

1

; h

2

; : : : ; h

k

requires t(2k+1) = O(S log

R

S

) bits of space; �eld operations require

O(t) = O(S) bits of space; to simulate A requires O(S) bits of space; to keep track of the position

in the pseudorandom sequence of 2

k

blocks requires O(k) = O(log

R

S

) = O(S) bits of space. Hence,

B runs in space O(S log

R

S

).

Correctness: Model A as a �nite state automaton Q with 2

S

states and alphabet f0; 1g

t

, as

described in Section 21.3.

If A has 2-sided error, then Pr(A accepts x j x 2 L) � 2=3 and Pr(A accepts x j x =2 L) � 1=3.

By Lemma 24.2, it then follows that

Pr(B accepts x j x 2 L) � 2=3� 2

�S

and

Pr(B accepts x j x =2 L) � 1=3 + 2

�S

:

The error bound for B can be decreased by applying Corollary 2.2.

If A has 1-sided error, then Pr(A accepts x j x 2 L) � 1=2 and Pr(A accepts x j x =2 L) = 0.

By Lemma 24.2,

Pr(B accepts x j x 2 L) � 1=2� 2

�S

:

Since B simulates A,

Pr(B accepts x j x =2 L) = 0:

The error bound for B can be decreased by a second repetition. 2

Corollary 25.2: If L 2 BPLP (RLP), then L is accepted by a probabilistic algorithm with

2-sided (respectively, 1-sided) error that uses space O(log

2

n), polynomial time, and only O(log

2

n)

random bits.

In particular, USTCON is so accepted (Theorem 5.2).

Corollary 25.3: If L 2 BPLP , then L is accepted by a deterministic algorithm that uses

space O(log

2

n).

Proof: Use the space to cycle through all possible seeds, keeping statistics on the number of

acceptances. 2

Borodin, Cook, and Pippenger [7] and Jung [22] proved a result that is more general than

Corollary 25.3.

Open Problem 8: Find a generator for BPLP that uses o(log

2

n) seed bits. Note that a de-

crease to O(logn) seed bits and O(logn) space would imply that BPLP is the same as deterministic

O(logn) space. In fact, by a result of Ajtai, Koml�os, and Szemer�edi [3], it su�ces to decrease the

number of random bits to O((log

2

n)= log logn) and the space to O(logn).

Lecture 26

Deterministic Ampli�cation

March 15, 1991

Notes: Ed Felten and Dylan McNamee

Suppose a probabilistic algorithm A uses t random bits and has error bound at most 1/3, but no

restriction on space. By Corollary 2.2, running r repetitions of A uses tr random bits, and has error

bound 2

�
(r)

. Theorem 26.1 below applies Nisan's generator in order to show that this same error

bound can be achieved using fewer random bits. (This is known as \deterministic ampli�cation".)

It is surprising that Nisan's result is useful in this context, since A has no a priori space

restriction. The key to this is a comment from Section 22.1 that you can apply Nisan's technique

even if the space is not always limited, provided that the space is restricted at those times when

the �rst bit in each block of t random bits is about to be consumed.

Theorem 26.1 (Nisan [30]): Suppose a probabilistic algorithm A accepts L using t random

bits and 2-sided (1-sided) error, but with no restriction on space. If r = O(t), then L can be

accepted with 2-sided (respectively, 1-sided) error, error bound 2

�
(r)

, and only O(t log r) random

bits.

Proof:

Construction: Assume without loss of generality that t is twice an integral power of 3, and

let S = t=18. Note that, between repetitions of A, we only need O(log r) = O(log t) = O(logS)

space to record the number of acceptances and rejections so far. Model the r repetitions of A as a

�nite state automaton Q with 2

S

states, alphabet f0; 1g

t

, and input of length r.

Let k = dlog

2

re � log

2

S + O(1) � S. Run the r repetitions of A using G

k

(x; h

1

; h

2

; : : : ; h

k

)

instead of truly random bits, where x; h

1

; h

2

; : : : ; h

k

are chosen randomly, uniformly, and indepen-

dently.

Analysis: The number of random seed bits required is t(2k + 1) = O(t log r).

Correctness: According to Corollary 2.2, this algorithm would have error 2

�
(r)

if we were

using truly random bits. By Lemma 24.2, using Nisan's generator introduces an additional error

of at most 2

�S

. So the error probability of the constructed algorithm is at most 2

�
(r)

+ 2

�S

�

2

�
(r)

+ 2

�
(r)

= 2

�
(r)

because 18S = t =
(r). 2

Using di�erent techniques, Impagliazzo and Zuckerman [21] achieve this error bound using only

O(t+ r) random bits.

72

Appendix A

Assignment #1

Choose as many of the following problems as you care to work on, and take each as far as you can.

There are a couple that I don't know how to solve. I don't expect you to tackle all the problems,

nor even all the problems that I know how to solve. I will get much more excited about promising

partial progress on an open problem than about long solutions to all the routine problems. Keep

your answers clear and concise. If you use references, please include citations.

1. Show that ZPP = RP \ coRP, where coRP is the set of languages whose complements are

in RP.

2. Design, analyze, and prove correct an e�cient probabilistic algorithm that, given degree n

polynomials a(x), b(x), and c(x), determines whether a(x)b(x) = c(x). What assumptions do

you need to make about the coe�cient ring? Contrast this with the most e�cient deterministic

algorithms that you know.

3. We've seen probabilistic identity testing in various guises: Freivalds' algorithm of Section 1.5,

Schwartz's algorithm of Lecture 4, and your algorithm in Problem 2. Find other natural

settings in which some identity or fact can be veri�ed faster by random testing than the

fastest known deterministic veri�er. For each one, present the algorithm, its analysis, its

correctness, and state the best known deterministic solution.

4. After Solovay and Strassen found a 1-sided error algorithm for compositeness, Adleman and

Huang improved it to 0-sided. Similarly, after Aleliunas et al. found a 1-sided error algorithm

for USTCON, Borodin et al. improved it to 0-sided. Can you similarly improve any of the

identity tests of Problem 3 to 0-sided error algorithms whose expected time is less than the

best known deterministic solutions? The ideas in Problem 1 may prove helpful to you.

5. Improve the constant 2006 in Lemma 4.8.

(Note added after the course: the constant 89 given in the current version of Lemma 4.8 is an

improvement over the original version presented in lecture, which had the constant 2006 in

its place. This improvement was a result of the successful solution of this problem by three

of the students in the class. It is still a challenging problem to improve that constant to 3,

as one student did.)

6. If you had been willing to accept the fact that primality testing is in ZPP, and willing to

invest the computation time to test for primality, there is a simpler algorithm and proof

that establishes Theorem 4.1. Instead of testing a

k

+ b

k

� c

k

(mod m) for a random positive

integerm = O(k

2

log

2

(a+b+c)), it su�ces to do it for a random primem = O(k log(a+b+c)).

Give the simpler algorithm and proof.

73

APPENDIX A. ASSIGNMENT #1 74

(Hint: Use Corollary 4.6.)

7. At a party, n guests check their hats. The hat check person gets them all mixed up, and

gives each departing guest a hat chosen randomly and uniformly from those that remain.

Fortunately from the point of job security, by this point the guests are too drunk to notice.

What is the expected number of guests who go home with their own hat?

8. What is the expected time for a random walk to get from one end of an n-vertex chain to the

other? (Hint: There is an elegant proof of a very accurate bound for this problem that uses

Theorem 7.2.)

9. Work on any of the open problems from the lecture notes.

Appendix B

Assignment #2

Choose as many of the following problems as you care to work on, and take each as far as you can.

There are some that I don't know how to solve. I don't expect you to tackle all the problems. Keep

your answers clear and concise. If you use references, please include citations.

1. Investigate the e�ect of either of the following changes on Karlo� and Raghavan's lower bound

for Quicksort with linear congruential generators:

(a) Change Q2 so that Quicksort uses the customary (unstable) partition subprocedure.

(b) Change L1 { L4 so that the linear congruential generator has a small period.

2. Prove that there are values of m, a, and c with m � n

n

such that Quicksort with the linear

congruential generator having these parameters runs in expected time O(n logn) on all input

permutations.

3. Run some experiments to test the idea given in Open Problem 7 (page 38) that bn=4c suc-

cessive powers of y will hash quite uniformly, when n � m � n

2

, assuming of course that L4

holds.

4. What would the e�ect be on the analysis of Theorem 15.1 if the generator used were 3-way

(i.e., a degree 2 polynomial in i with random coe�cients) rather than 5-way? What if it were

7-way?

Here is one program for solving this problem: Generalize Lemma 17.1 to t-way generators

and derive the dependence on t of the right hand side of inequality (17.1). Now carry this

dependence on to Lemmas 18.1 { 18.4.

5. Take one of the probabilistic identity-testing algorithms from Problem 3 of Assignment 1

(e.g., Freivalds' matrix multiplication algorithm), and investigate the e�ect of using some

pseudorandom generator (e.g., linear congruential or t-way) in place of true randomness. Can

you decrease the amount of randomness without a prohibitive increase in the error bound and

running time? Or can you prove that there is an input for which the error bound increases

prohibitively?

(Note added after the course: Kimbrel and Sinha [personal communication] succeeded in

proving that Freivalds' algorithm could be made to work with logn+O(1) random bits. See

also J. Naor and M. Naor, \Small-bias probability spaces: e�cient constructions and applica-

tions", Proceedings of the Twenty Second Annual ACM Symposium on Theory of Computing,

May 1990, 213{223.)

75

APPENDIX B. ASSIGNMENT #2 76

6. Investigate the e�ect of using Karlo� and Raghavan's t-way generator for pseudorandom walks

on graphs, where t is not very great. Here is a concrete place to start: Let p be a prime, and

a(x) be a degree t � 1 polynomial whose t coe�cients are chosen randomly, uniformly, and

independently from the integers modulo p. Investigate the use of a(i) as a generator for a

pseudorandom walk on the complete graph with p+1 vertices; that is, at the ith step you move

to the a(i)th adjacency of the current vertex (where adjacencies are numbered in an arbitrary

order from f0; 1; : : : ; p� 1g). Can you prove a polynomial upper bound on the expected time

to visit each vertex at least once? Instead of the clique, you could try the n vertex cycle,

but then you have the slight extra complication of extracting one bit (say, the high order bit)

from a(i) in order to determine whether the ith step is clockwise or counterclockwise.

7. Work on any of the open problems from the lecture notes or from Assignment 1.

Bibliography

References

[1] L. Adleman. Two theorems on random polynomial time. In 19th Annual Symposium on

Foundations of Computer Science, pages 75{83, Ann Arbor, MI, Oct. 1978. IEEE.

[2] L. M. Adleman and M.-D. A. Huang. Recognizing primes in random polynomial time. In

Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pages 462{

469, New York, NY, May 1987.

[3] M. Ajtai, J. Koml�os, and E. Szemer�edi. Deterministic simulation in LOGSPACE. In Proceed-

ings of the Nineteenth Annual ACM Symposium on Theory of Computing, pages 132{140, New

York, NY, May 1987.

[4] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lov�asz, and C. Racko�. Random walks, universal

traversal sequences, and the complexity of maze problems. In 20th Annual Symposium on

Foundations of Computer Science, pages 218{223, San Juan, Puerto Rico, Oct. 1979. IEEE.

[5] E. Bach. Realistic analysis of some randomized algorithms. In Proceedings of the Nineteenth

Annual ACM Symposium on Theory of Computing, pages 453{461, New York, NY, May 1987.

[6] C. H. Bennett and J. Gill. Relative to a random oracle A, P

A

6= NP

A

6= co � NP

A

with

probability 1. SIAM Journal on Computing, 10(1):96{112, 1981.

[7] A. Borodin, S. Cook, and N. Pippenger. Parallel computation for well-endowed rings and

space-bounded probabilistic machines. Information and Control, 58:113{136, 1983.

[8] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa. Two applications of

inductive counting for complementation problems. SIAM Journal on Computing, 18(3):559{

578, June 1989. See also 18(6): 1283, Dec. 1989.

[9] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer

and System Sciences, 18:143{154, 1979.

[10] J. L. Carter and M. N. Wegman. New hash functions and their use in authentication and set

equality. Journal of Computer and System Sciences, 22(3):265{277, 1981.

[11] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari. The electrical

resistance of a graph captures its commute and cover times. In Proceedings of the Twenty

77

BIBLIOGRAPHY 78

First Annual ACM Symposium on Theory of Computing, pages 574{586, Seattle, WA, May

1989.

[12] A. K. Chandra and L. J. Stockmeyer. Alternation. In 17th Annual Symposium on Foundations

of Computer Science, pages 98{108, Houston, TX, Oct. 1976. IEEE. Preliminary Version.

[13] H. Cherno�. A measure of asymptotic e�ciency for tests of a hypothesis based on the sum of

observations. Annals of Math. Stat., 23:493{509, 1952.

[14] Y. S. Chow and H. Teicher. Probability Theory. Springer-Verlag, 1988.

[15] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. In

Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pages 1{6,

New York, NY, May 1987.

[16] R. Freivalds. Fast probabilistic algorithms. volume 74 of Lecture Notes in Computer Science,

pages 57{69. Springer-Verlag, 1979.

[17] J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on Com-

puting, 6(4):675{695, Dec. 1977.

[18] F. G�obel and A. A. Jagers. Random walks on graphs. Stochastic Processes and their Applica-

tions, 2:311{336, 1974.

[19] J. Hartmanis and J. Simon. On the power of multiplication in random access machines. In

15th Annual Symposium on Switching and Automata Theory, pages 13{23, 1974.

[20] N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal on

Computing, 17(5):935{938, Oct. 1988.

[21] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In 30th Annual Symposium

on Foundations of Computer Science, pages 248{253, Research Triangle Park, NC, Oct. 1989.

IEEE.

[22] H. Jung. Relationships between probabilistic and deterministic tape complexity. In Mathemat-

ical Foundations of Computer Science: Proceedings, 10th Symposium, volume 118 of Lecture

Notes in Computer Science,

�

Strbsk�e Pleso, Czechoslovakia, Aug.-Sept. 1981. Springer-Verlag.

[23] H. J. Karlo� and P. Raghavan. Randomized algorithms and pseudorandom numbers. In

Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pages 310{

321, Chicago, IL, May 1988.

[24] R. M. Karp and M. O. Rabin. E�cient randomized pattern-matching algorithms. IBM Journal

of Research and Development, 31(2):249{260, Mar. 1987.

[25] D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming.

Addison-Wesley, 1969.

[26] D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming. Addison-

Wesley, 1973.

BIBLIOGRAPHY 79

[27] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming.

Addison-Wesley, second edition, 1981.

[28] R. Lidl and H. Niederreiter. Finite Fields. Addison-Wesley, 1983.

[29] J. D. Lipson. Elements of Algebra and Algebraic Computing. Addison-Wesley, Reading, MA,

1981.

[30] N. Nisan. Pseudorandom generators for space-bounded computation. In Proceedings of the

Twenty Second Annual ACM Symposium on Theory of Computing, pages 204{212, Baltimore,

MD, May 1990.

[31] N. Pippenger and M. J. Fischer. Relations among complexity measures. Journal of the ACM,

26(2):361{381, Apr. 1979.

[32] M. O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory, 12:128{

138, 1980.

[33] P. Raghavan. Probabilistic construction of deterministic algorithms: Approximating packing

integer programs. In 27th Annual Symposium on Foundations of Computer Science, pages

10{18, Toronto, Ontario, Oct. 1986. IEEE.

[34] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers.

Illinois Journal of Mathematics, 6:64{94, 1962.

[35] W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities.

Journal of Computer and System Sciences, 4(2):177{192, 1970.

[36] J. T. Schwartz. Probabilistic algorithms for veri�cation of polynomial identities. Journal of

the ACM, pages 701{717, 1980.

[37] V. Shoup. New algorithms for �nding irreducible polynomials over �nite �elds. In 29th Annual

Symposium on Foundations of Computer Science, pages 283{290, White Plains, NY, Oct. 1988.

IEEE.

[38] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM Journal on Com-

puting, 6(1):84{85, Mar. 1977.

[39] R. Szelepcs�enyi. The method of forcing for nondeterministic automata. Acta Informatica,

26:279{284, 1988.

[40] S. Warshall. A theorem on Boolean matrices. Journal of the ACM, 9:11{12, 1962.

[41] D. J. A. Welsh. Randomised algorithms. Discrete Applied Mathematics, 5:133{145, 1983.

