
A Probabilistic Algorithm for Verifying

Matrix Products Using

O(n

2

) Time and log

2

n+O(1) Random

Bits.

Tracy Kimbrel

�

Rakesh Kumar Sinha

y

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, Washington, U.S.A. 98195

August 8; 1991

Abstract

A one-sided error probabilistic algorithm is given that deter-

mines, for n� n input matrices A, B, and C, whether AB 6= C,

using O(n

2

) multiplications and additions and dlog

2

ne + 1 ran-

dom bits. We further show how to reduce the error probability

to � with only an additional dlog

2

(

1

�

)e random bits.

�

This material is based upon work supported under a National Science Foundation

Graduate Fellowship.

y

This material is based upon work supported by the National Science Foundation under

grants CCR{8858799 and CCR{8907960.

1

1. Introduction

Given two n � n matrices A and B, computing their product is a classic

problem. We consider a related decision problem: given three n�n matrices

A,B, and C, how di�cult is it to verify whetherAB = C? Freivalds [2] gave a

probabilistic algorithm to verify matrix products using O(n

2

) multiplications

and additions, and n bits of randomness. The algorithm accepts the set

fhA;B;Ci j AB 6= Cg with one-sided error. That is, the algorithm always

rejects if AB = C, and accepts with probability at least

1

2

if AB 6= C.

Freivalds' algorithm selects a vector ~v at random from f�1; 1g

n

. It then

computes the products A(B~v) and C~v, and accepts (reports that AB 6= C)

if and only if AB~v 6= C~v. A similar method is used here, but the vector ~v is

chosen from a set of less than 4n vectors, requiring only dlog

2

ne+1 random

bits.

Naor and Naor [6], and Alon, Goldreich, H�astad, and Peralta [1] give con-

structions of polynomial size (polynomial in n) sample spaces of n-bit vec-

tors, yielding O(log n) randomness solutions to this problem. Our method

is similar to the constructions of Alon et al., particularly their powering

construction. The constructions of Alon et al. can be used to implement

Freivalds' algorithm using 2 log

2

n + O(1) random bits. In the case of ma-

trices over GF(2), the construction of Naor and Naor based on linear codes

requires only log

2

n+O(1) random bits; in the general case of matrices over

an arbitrary ring, their method uses 2 log

2

n+O(log log n) bits. While Naor

and Naor and Alon et al. have solved a more general problem, our algorithm

yields a slightly better constant (in terms of the random bit requirement) in

the general case. More importantly, our algorithm is much simpler and more

direct, and it can easily be extended to make the probability of error less

than any � with only dlog

2

(

1

�

)e additional random bits.

In section 2, we present the simplest version of the algorithm for integer

matrices. Section 3 shows how to improve the bit complexity, section 4

extends the algorithm to matrices over �nite �elds, and section 5 shows how

to reduce the error probability.

2

2. The Algorithm

In order to carry out Step 1 below using exactly log

2

(2n) random bits, assume

that n is a power of 2 (otherwise, modify Step 1 below to choose x between

1 and m, where m is the smallest power of 2 which is larger than 2n). Also

assume that the input matrices are over the integers; we will later modify the

algorithm for matrices over other algebraic structures. The one-sided error

algorithm is as follows:

Algorithm 1

Step 1 choose a random integer x uniformly between 1 and 2n.

Step 2 ~v � [x

0

; : : : ; x

n�1

]

T

:

Step 3 if AB~v 6= C~v then accept else reject.

We will need the following de�nition to prove the correctness of Algorithm

1.

De�nition: The Vandermonde matrix V = V (x

1

; : : : ; x

n

) of n distinct

elements x

1

; : : : ; x

n

is formed by letting the j

th

column (for 1 � j � n) be

composed of the �rst n powers of x

j

; that is, V

ij

= x

i�1

j

.

The following lemma is easily proved using the interpolation theorem.

Lemma 1: Over any integral domain, every Vandermonde matrix of n

distinct non-zero elements is nonsingular.

(See Proposition 1, page 300 of Lipson [5] for a proof.)

We are now ready to state our �rst result.

Theorem 2: Algorithm 1 accepts the triple of matrices hA;B;Ci with

probability greater than

1

2

if AB 6= C, and rejects if AB = C. The algorithm

uses 3n

2

+O(n) multiplications, 3n

2

+O(n) additions, and dlog

2

ne+1 random

bits.

Proof:

Time complexity: By associativity, AB~v can be computed as A(B~v). C~v

and B~v can each be computed using n

2

multiplications and n

2

�n additions.

3

AB~v can then be computed using another n

2

multiplications and n

2

� n

additions.

Randomness: dlog

2

ne + 1 random bits are su�cient to choose x 2

f1; : : : ; 2 � 2

dlog

2

ne

g.

Correctness: If AB = C, then AB~v = C~v for all ~v, so Pr(AB~v = C~v) = 1,

and the algorithm (correctly) rejects.

If AB 6= C, then AB~v = C~v for at most n�1 of the 2n or more choices of

x in Step 1. To see this, notice that any such choice of x produces a column

vector ~v such that AB~v = C~v. If there were n distinct such choices x

1

; : : : ; x

n

of x, this would produce a matrix V = V (x

1

; : : : ; x

n

) which is nonsingular

(by Lemma 1) and which satis�es ABV = CV , contradicting the hypothesis

that AB 6= C. Thus, if AB 6= C, the algorithm accepts with probability

greater than

1

2

. 2

3. Improving Bit Complexity

The algorithm as outlined above su�ers from several shortcomings. The test

vector ~v may have very large entries (as large as (2n)

n�1

). If the input ma-

trices A, B, and C all have small entries, this will lead to a running time

(counting bit operations rather than integer multiplications and additions)

no better than even the simplest deterministic algorithm for matrix multi-

plication. We �x this problem by modifying step 2 of Algorithm 1.

Algorithm 2

Step 1 choose a random integer x uniformly between 1 and 2n.

Step 2 let p be any prime between 2n and 4n.

~v � [x

0

mod p; : : : ; x

n�1

mod p]

T

.

Step 3 if AB~v 6= C~v then accept else reject.

The correctness of the modi�ed algorithm follows from the fact that

Lemma 1 applies to GF (p). If we consider the set of vectors (x

0

j

; : : : ; x

n�1

j

) for

1 � j � 2n with the entries reduced modulo p, any n choices form a Vander-

monde matrix which is nonsingular over GF (p), and therefore nonsingular

over the integers. The rest of the proof of correctness remains unchanged.

4

For every k � 1, there is a prime between k and 2k (Theorem 418 of

Hardy and Wright [3]); thus, there is some prime p, 2n � p � 4n. Let m be

the maximum of 4n and the largest absolute value in A, B, and C, and let

b = dlog

2

me. We can use the sieve method to �nd p. It is straightforward

to see that this requires O(n

3=2

) additions of O(log n)-bit integers. (One can

use Merten's lemma (Theorem 427 of Hardy and Wright [3]) to argue that

the number of additions is only O(n log log n).) The overall running time of

the algorithm is O(n

2

b

2

) (counting bit operations) using simple algorithms

for integer multiplication and addition.

Theorem 3: Algorithm 2 accepts the triple of matrices hA;B;Ci with

probability greater than

1

2

if AB 6= C, and rejects if AB = C. Let m be

the maximum of 4n and the largest absolute value in A, B, and C, and let

b = dlog

2

me. The algorithm uses O(n

2

b

2

) bit operations and dlog

2

ne + 1

random bits.

4. Matrices over Finite Fields

Notice that Algorithm 1 will work as long as the entries of the input matrices

come from an integral domain. However, a far more severe restriction is

the implicit assumption that the domain contains at least 2n elements so

that Step 1 can be carried out. In particular, Algorithm 1 will fail for the

important case of testing matrix products over GF (p) where p < 2n. Here

we suggest a modi�cation of Algorithm 1 to deal with this case.

Let p

�

be the smallest integral power of p which is larger than 2n. In fact

p

�

= O(pn) su�ces.

Fact: If A;B; and C are matrices over GF (p), then AB = C in GF (p),

AB = C in GF (p

�

).

Since GF (p

�

) contains more than 2n elements, we can use the method

of Algorithm 1 to test matrix products in GF (p

�

). Computing the �rst n

powers of x requiresO(n�

2

)GF (p){operations. Since the entries of A;B; and

C come fromGF (p), computingA(B~v) and C~v requires only O(n

2

�) GF (p){

operations. The only complication is that an irreducible monic polynomial of

degree � over GF (p) is needed to do GF (p

�

) arithmetic. Such a polynomial

5

can be found within the overall time bound of O(n

2

�); for instance, the

method of Shoup [8] can be used. However, a much more naive and simple

algorithm will su�ce for our purposes. Consider the two cases p �

p

2n and

p >

p

2n separately.

Suppose p >

p

2n. In this case, � = 2. If we can �nd a quadratic

nonresidue y in GF (p), then x

2

� y is an irreducible monic polynomial over

GF (p). Finding a quadratic nonresidue by squaring each element in GF (p)

requires only O(n) GF (p){operations.

Now suppose p �

p

2n. In this case, we can enumerate all the monic

polynomials of degree at most � and �nd an irreducible polynomial using

trial division. This requires O(p

�+b

�

2

c

�

2

) GF (p){operations. The claim is

that this number is at most O(n

2

). To see this consider the three cases

p � (2n)

1

4

, (2n)

1

4

< p � (2n)

1

3

, and (2n)

1

3

< p �

p

2n. In the �rst case, the

number of GF (p){operations is O(n

15

8

�

2

) = O(n

2

). In the next two cases,

� is respectively 4 and 3. Again, it is easy to verify the claim in both these

cases.

Algorithm 3

Step 1 choose a random integer i uniformly between 1 and 2n.

let x be the i

th

element (lexicographically) of GF (p

�

).

Step 2 ~v � [x

0

; : : : ; x

n�1

]

T

.

Step 3 if AB~v 6= C~v over GF (p

�

) then accept else reject.

Theorem 4: Algorithm 3 accepts the triple of matrices hA;B;Ci over

GF (p) with probability greater than

1

2

if AB 6= C, and rejects if AB = C.

The algorithm uses O(n

2

log n) GF (p){operations and dlog

2

ne +1 random

bits.

5. Reducing the Probability of Error

Suppose we wish to reduce the probability of error to �. The straightfor-

ward approach involves running Algorithm 1 for k independent trials, where

(

1

2

)

k

< �, or k > log

2

(

1

�

). This strategy requires dlog

2

(

1

�

)edlog

2

(n)e random

bits and
(n

2

log(

1

�

)) operations. Using the techniques of Impagliazzo and

6

Zuckerman [4] we can achieve the same error bound with only O(log(

1

�

)) ad-

ditional random bits. Here we show how our method can easily be extended

to achieve the same error bound with only dlog

2

(

1

�

)e additional random bits

and no increase in the number of integer multiplications and additions.

Algorithm 4

Step 1 Choose a random integer x uniformly between 1 and d

n

�

e.

Step 2 ~v � [x

0

; : : : ; x

n�1

]

T

.

Step 3 if AB~v 6= C~v then accept else reject.

With this modi�cation, the probability of making an error is at most

n�1

n=�

< �.

Theorem 5: Algorithm 4 accepts the triple of integer matrices hA;B;Ci

with probability greater than (1 � �) if AB 6= C, and rejects if AB = C.

The algorithm uses O(n

2

) integer multiplications and additions, and dlog

2

ne

+dlog

2

(

1

�

)e random bits.

This technique can be used in conjunction with that of Section 3 used to

reduce the size of the entries of the test vector modulo a prime in the case

of integer matrices, for � =
(1=n). Finding the �rst prime greater than

n

�

seems to be prohibitive in running time for smaller values of �. Pritchard [7]

shows how to �nd the smallest prime larger than N using O(

N logN

log logN

) bit

operations. Even if we use this result, our algorithm would still run in time

(n

3

) for all � = O(

1

n

2

).

This method extends to the problem of testing matrix products over �nite

�elds provided � is not too small. However, the sophisticated algorithm of

Shoup must be used to �nd an irreducible monic polynomial rather than the

simple method described earlier. It would be nice to �nd a simpler algorithm

to �nd a monic irreducible polynomial without a prohibitive running time.

Acknowledgements

We are grateful to Martin Tompa for many ideas and constant encourage-

ment, to Richard Ladner for the idea of using extension �elds, to Avi Wigder-

7

son for pointing out the results of Naor and Naor and Alon et al. , and to

Paul Beame and Simon Kahan for many helpful discussions.

References

[1] N. Alon, O. Goldreich, J. H�astad, and R. Peralta. Simple constructions of

almost k-wise independent random variables. In 31st Annual Symposium

on Foundations of Computer Science, pages 544{553, St. Louis, MO, Oct.

1990. IEEE.

[2] R. Freivalds. Fast probabilistic algorithms. In Mathematical Foundations

of Computer Science: Proceedings, 8th Symposium, volume 74 of Lecture

Notes in Computer Science, pages 57{69. Springer-Verlag, 1979.

[3] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Num-

bers. Oxford University Press, �fth edition, 1979.

[4] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In 30th

Annual Symposium on Foundations of Computer Science, pages 248{253,

Research Triangle Park, NC, Oct. 1989. IEEE.

[5] J. D. Lipson. Elements of Algebra and Algebraic Computing. Addison-

Wesley, Reading, MA, 1981.

[6] J. Naor and M. Naor. Small-bias probability spaces: e�cient construc-

tions and applications. In Proceedings of the Twenty Second Annual ACM

Symposium on Theory of Computing, pages 213{223, Baltimore, MD,

May 1990.

[7] P. Pritchard. A sublinear additive sieve for �nding prime numbers. Com-

munications of the ACM, 24:18{23, 1981.

[8] V. Shoup. New algorithms for �nding irreducible polynomials over �nite

�elds. In 29th Annual Symposium on Foundations of Computer Science,

pages 283{290, White Plains, NY, Oct. 1988. IEEE.

8

