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Abstract

Retargetable Instruction Scheduling for Pipelined Processors

by David Gordon Bradlee

Chairperson of the Supervisory Committee: Professor Susan J. Eggers

Department of Computer Science and Engineering

Retargetable code generators for complex instruction set computers (CISCs) have focused on

sophisticated pattern matching code selection, because CISCs provide many machine instruction se-

quence choices. Recent pipelined processors, known as reduced instruction set computers (RISCs),

provide fewer instruction sequence choices, but expose pipeline and functional unit costs to the

compiler. For RISCs the compiler's emphasis must be shifted from code selection to instruction

scheduling, resulting in code generation issues that are di�erent than those for CISCs. In partic-

ular, the machine description language for a retargetable RISC compiler must contain scheduling

requirements. Also, the interaction between register allocation and instruction scheduling is signif-

icant.

This dissertation comprises three components. The �rst component discusses the Marion re-

targetable code generator system, which includes a machine description language that contains

instruction scheduling requirements, along with other code generation information. Using Marion,

code generators have been constructed for the MIPS R2000, Motorola 88000, Intel i860. The second

component compares three code generation strategies for handling the interaction between instruc-

tion scheduling and register allocation, including one that I developed, RASE, that integrates the

two phases. On a computation-intensive workload for three RISCs, RASE produces signi�cantly

better code than the Postpass strategy, which does not integrate the two phases, and slightly better

code than IPS, which integrates the two phases to a lesser degree than RASE. The third component

investigates the interaction between code generation strategies and architectural features, includ-

ing register set size and structure, and operation and load latencies. On a computation-intensive

workload, 64 registers yields a signi�cant improvement over 32 registers for Postpass, but little

improvement for IPS or RASE. This study also shows that, on architectures with long latencies

or small register sets, or on programs with large basic blocks, RASE produces signi�cantly better

code than IPS.





Table of Contents

List of Figures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : vii

List of Tables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ix

Chapter 1: Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.1 Retargetable Instruction Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

1.2 Code Generation Strategies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1.3 Architecture Investigations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.4 Dissertation Organization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

Chapter 2: Pipelined Architectures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

2.1 MIPS R2000 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2.2 Motorola 88000 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

2.3 Intel i860 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

Chapter 3: Marion Code Generation Construction System : : : : : : : : : : : : : : : : : : : : 13

3.1 Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

3.2 Front End and Intermediate Language : : : : : : : : : : : : : : : : : : : : : : : : : : 16

3.3 Marion Machine Description Language : : : : : : : : : : : : : : : : : : : : : : : : : : 17

3.3.1 Declarations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

3.3.2 Runtime Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

3.3.3 Instructions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

3.3.4 Mapping the IL : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

3.4 Code Generator Generator : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

3.5 Code Selection : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

3.6 Code Generator Structure : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

3.7 Register Allocation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

3.7.1 Chaitin-style Register Allocation : : : : : : : : : : : : : : : : : : : : : : : : : 29

3.7.2 Chow-style Register Allocation : : : : : : : : : : : : : : : : : : : : : : : : : : 32

3.8 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

Chapter 4: Instruction Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

4.1 Code DAG : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

4.2 Scheduling Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

4.3 Structural Hazards : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38

4.4 Control Hazards : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

4.5 Classes and Clocks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

4.6 Temporal Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41



4.7 Temporal Scheduling with Chaining : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

4.8 Scheduling for the i860 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

4.9 Evaluation of Temporal Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56

4.10 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

Chapter 5: Methodology : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

5.1 Workload : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

5.2 Measurement Criteria : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62

Chapter 6: Integrating Register Allocation and Instruction Scheduling : : : : : : : : : : : : : 63

6.1 The Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 64

6.2 Code Generation Strategies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

6.2.1 Postpass Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67

6.2.2 Integrated Prepass Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : 68

6.2.3 RASE Code Generation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 70

6.3 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 77

6.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82

Chapter 7: Register Sets and Latency Versus Code Generation Strategy : : : : : : : : : : : : 85

7.1 Methodology : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 85

7.2 Experiments and Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 87

7.2.1 Register Set Size : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 87

7.2.2 Register Set Organization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 89

7.2.3 Operation Latency : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 91

7.2.4 Load Latency : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92

7.2.5 Code Generation Strategy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 94

7.2.6 E�ect of Loop Optimizations : : : : : : : : : : : : : : : : : : : : : : : : : : : 96

7.3 Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 96

7.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 99

Chapter 8: Evaluation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 115

8.1 Machine Descriptions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 115

8.2 System Size and Performance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 116

8.3 Support for RISC Architectures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 120

Chapter 9: Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 123

9.1 A Production System : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 124

9.2 Future Directions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 124

Bibliography : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 127

Appendix A: MIPS R2000 Machine Description : : : : : : : : : : : : : : : : : : : : : : : : : : 133

Appendix B: MIPS R2000 Machine Description to Interface with the MIPS Assembler : : : : 147

Appendix C: Motorola 88000 Machine Description : : : : : : : : : : : : : : : : : : : : : : : : 161

iv



Appendix D: Intel i860 Machine Description : : : : : : : : : : : : : : : : : : : : : : : : : : : : 175

Appendix E: Sample Output : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 199

E.1 R2000 Output : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 200

E.2 88000 Output : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 201

E.3 i860 Output : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 202

Appendix F: Raw Data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 205

v



vi



List of Figures

3.1 Marion structure : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

3.2 TOYP declarations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

3.3 TOYP Compiler Writer's Virtual Machine : : : : : : : : : : : : : : : : : : : : : : : 19

3.4 TOYP instructions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

3.5 Example escape function : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

3.6 Glue transformations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24

3.7 Sample TOYP code : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24

3.8 Algorithm for matching the IL : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

3.9 Example IL subject tree : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

3.10 Tree patterns : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

3.11 Pattern matcher tables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

3.12 Code generator structure : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30

4.1 Example DAG : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

4.2 Maril directives for i860 integer add and oating point move instructions : : : : : : 39

4.3 Maril description for i860 oating point multiply : : : : : : : : : : : : : : : : : : : : 41

4.4 Scheduling deadlock : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43

4.5 Algorithm protect temporal sequence : : : : : : : : : : : : : : : : : : : : : : : : : : 45

4.6 Alternate entries into temporal sequences : : : : : : : : : : : : : : : : : : : : : : : : 46

4.7 Lemma 2 example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

4.8 Instructions for the i860 add pipeline : : : : : : : : : : : : : : : : : : : : : : : : : : 49

4.9 Example temporal tree : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50

4.10 Modi�ed algorithm protect temporal sequence : : : : : : : : : : : : : : : : : : : : : 52

4.11 Marion's view of the i860 FPU data path : : : : : : : : : : : : : : : : : : : : : : : : 55

4.12 Element and class declarations for the i860 : : : : : : : : : : : : : : : : : : : : : : : 57

4.13 Code produced by the Marion i860 Postpass compiler : : : : : : : : : : : : : : : : : 58

6.1 Example: register allocation precedes instruction scheduling : : : : : : : : : : : : : 65

6.2 Two schedules for independent loads and adds : : : : : : : : : : : : : : : : : : : : : 66

6.3 RASE structure : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 71

6.4 Example schedule cost function : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72

6.5 Interference graphs for a basic block in Chaitin-style and RASE register allocators : 74

6.6 Algorithm for the RASE scheduler SCHED : : : : : : : : : : : : : : : : : : : : : : : 76

7.1 Summary of the e�ect of register set size (Postpass) : : : : : : : : : : : : : : : : : : 101

7.2 Summary of the e�ect of register set size (IPS) : : : : : : : : : : : : : : : : : : : : : 102

7.3 Summary of the e�ect of register set size (RASE) : : : : : : : : : : : : : : : : : : : 103

7.4 Summary of the e�ect of register set organization (Postpass) : : : : : : : : : : : : : 104

vii



7.5 Summary of the e�ect of register set organization (IPS) : : : : : : : : : : : : : : : : 105

7.6 Summary of the e�ect of register set organization (RASE) : : : : : : : : : : : : : : 106

7.7 Summary of the e�ect of operation latency (Postpass) : : : : : : : : : : : : : : : : : 107

7.8 Summary of the e�ect of operation latency (IPS) : : : : : : : : : : : : : : : : : : : : 108

7.9 Summary of the e�ect of operation latency (RASE) : : : : : : : : : : : : : : : : : : 109

7.10 Summary of the e�ect of register set size with long load latency (Postpass) : : : : : 110

7.11 Summary of the e�ect of register set size with long load latency (IPS) : : : : : : : : 111

7.12 Summary of the e�ect of register set size with long load latency (RASE) : : : : : : 112

7.13 Summary of the performance increase of IPS over Postpass : : : : : : : : : : : : : : 113

7.14 Summary of the performance increase of RASE over Postpass : : : : : : : : : : : : 114

viii



List of Tables

2.1 R2000 latencies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

2.2 88000 latencies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

2.3 i860 latencies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

6.1 Comparison of register coloring policies : : : : : : : : : : : : : : : : : : : : : : : : : 68

6.2 Speedup of IPS and RASE over Postpass for the Livermore group : : : : : : : : : : 78

6.3 Speedup of IPS and RASE over Postpass for the Nasker group : : : : : : : : : : : : 80

6.4 Speedup of IPS and RASE over Postpass for the Perfect group : : : : : : : : : : : : 81

6.5 Speedup of IPS and RASE over Postpass for the Misc group : : : : : : : : : : : : : 81

6.6 Speedup of IPS and RASE over Postpass for the Int group : : : : : : : : : : : : : : 81

6.7 Average speedup over the four oating point program groups of IPS and RASE over

Postpass : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82

7.1 Longerop and Shorterop operation latencies : : : : : : : : : : : : : : : : : : : : : : : 86

7.2 Longload and Shortload load latencies : : : : : : : : : : : : : : : : : : : : : : : : : : 86

7.3 E�ect of register set size across three machine organizations (Postpass and IPS) : : 88

7.4 E�ect of register set size across three machine organizations (RASE) : : : : : : : : 89

7.5 E�ect of register set organization across register set sizes : : : : : : : : : : : : : : : 90

7.6 E�ect of operation latencies across register set sizes : : : : : : : : : : : : : : : : : : 92

7.7 E�ect of register set size across two machine organizations, each with long load

latencies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 93

7.8 E�ect of code generation strategy across machine organizations and register set sizes 94

7.9 E�ect of code generation strategy across machine organizations, with long load la-

tencies, and register set sizes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 95

7.10 E�ect of register set size across machine organizations and code generation strategies

for the unoptimized and hand-optimized Nasker group : : : : : : : : : : : : : : : : : 97

7.11 E�ect of loop optimizations on the Nasker group : : : : : : : : : : : : : : : : : : : : 98

7.12 E�ect of machine organization across register set sizes and code generation strategies

for the unoptimized and hand-optimized Nasker group : : : : : : : : : : : : : : : : : 99

8.1 Maril machine description statistics : : : : : : : : : : : : : : : : : : : : : : : : : : : 116

8.2 Marion system source code size. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 117

8.3 Marion compile-time performance : : : : : : : : : : : : : : : : : : : : : : : : : : : : 118

8.4 Marion code generator pro�le : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 118

8.5 Actual execution time and ratio of actual to estimated execution time of Marion-

generated R2000 code : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 119

F.1 R2000 raw data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 206

ix



F.2 88000 raw data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 207

F.3 i860 raw data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 208

F.4 A88sh Postpass raw data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 209

F.5 A88sh IPS raw data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 210

F.6 A88sh RASE raw data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 211

F.7 Ar2sh Postpass raw data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 212

F.8 Ar2sh IPS raw data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 213

F.9 Ar2sh RASE raw data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 214

F.10 Ar2shb Postpass raw data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 215

F.11 Ar2shb IPS raw data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 216

F.12 Ar2shb RASE raw data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 217

F.13 Ar2sp Postpass raw data for the Livermore and Nasker groups : : : : : : : : : : : : 218

F.14 Ar2sp Postpass raw data for the Perfect, Misc and Int groups : : : : : : : : : : : : 219

F.15 Ar2sp IPS raw data for the Livermore and Nasker groups : : : : : : : : : : : : : : : 220

F.16 Ar2sp IPS raw data for the Perfect, Misc and Int groups : : : : : : : : : : : : : : : 221

F.17 Ar2sp RASE raw data for the Livermore and Nasker groups : : : : : : : : : : : : : 222

F.18 Ar2sp RASE raw data for the Perfect, Misc and Int groups : : : : : : : : : : : : : : 223

F.19 Ar2spf Postpass raw data for the Livermore and Nasker groups : : : : : : : : : : : : 224

F.20 Ar2spf Postpass raw data for the Perfect, Misc and Int groups : : : : : : : : : : : : 225

F.21 Ar2spf IPS raw data for the Livermore and Nasker groups : : : : : : : : : : : : : : 226

F.22 Ar2spf IPS raw data for the Perfect, Misc and Int groups : : : : : : : : : : : : : : : 227

F.23 Ar2spf RASE raw data for the Livermore and Nasker groups : : : : : : : : : : : : : 228

F.24 Ar2spf RASE raw data for the Perfect, Misc and Int groups : : : : : : : : : : : : : 229

F.25 A88shL Postpass raw data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 230

F.26 A88shL IPS raw data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 231

F.27 A88shL RASE raw data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 232

F.28 Ar2spL Postpass raw data for the Livermore and Nasker groups : : : : : : : : : : : 233

F.29 Ar2spL Postpass raw data for the Perfect, Misc and Int groups : : : : : : : : : : : : 234

F.30 Ar2spL IPS raw data for the Livermore and Nasker groups : : : : : : : : : : : : : : 235

F.31 Ar2spL IPS raw data for the Perfect, Misc and Int groups : : : : : : : : : : : : : : 236

F.32 Ar2spL RASE raw data for the Livermore and Nasker groups : : : : : : : : : : : : : 237

F.33 Ar2spL RASE raw data for the Perfect, Misc and Int groups : : : : : : : : : : : : : 238

x



ACKNOWLEDGEMENTS

My co-advisors, Robert Henry and Susan Eggers, have formed a capable, energetic team. Robert

has been my advisor for �ve and a half years. He has prompted me to examine diverse perspectives

and has helped shape this research through his insight, exibility and encouragement. Susan has

been my advisor for only a year; in this short time she has helped me de�ne speci�c goals and

achieve them.

Larry Snyder read this dissertation and provided helpful comments. Hank Levy and Werner

Stuetzle rounded out my committee.

Jean-Loup Baer, the chairperson of the Department of Computer Science and Engineering, has

provided a exible, open environment that fosters communication among professors and students,

and participation by computer scientists outside of the department.

MyWoodberry Forest School mentor, Harrison W. \Chuck" Straley, saw my budding interest in

mathematics and inspired me to pursue it to the fullest. Under his tutelage I accelerated my study

of mathematics, began exploring computer science and gave my �rst public scienti�c presentation.

I would like to acknowledge my Union College professors, Bill Zwicker, for putting up with me

in his advanced mathematics classes, and Ted Schwartz, for his excellent computer science teaching

and all-round contagious enthusiasm.

A number of fellow students deserve acknowledgement. Rakesh Kumar Sinha andWendy Thrash

reviewed parts of this dissertation. David \Pardo" Keppell discussed many ideas with me and was

interested in everything. David \Pablo" Cohn has managed to share both the same o�ce and

the same house with me for over three years. Gail Harrison Alverson, Rick Zucker, Dave Socha,

Calvin Lin, Charles Loop, Bill Griswold, Rajendra Raj, Kevin Sullivan, Radhika Thekkath, Chandu

Thekkath, Rob Bedichek, Elizabeth Walkup, Peter Damron, Bill Mershon, Craig Anderson and

Alex Klaiber all have made the graduate program interesting, exciting and, most of all, fun. Calvin

and Charles made sure I got enough exercise. Craig and Alex fed Black Nose the cat. Bill Mershon

helped build my deck.

Bob Scheulen, Trapper Je� Robbins, Roxanne Everett, Scott Wittet, Roberta Riley and Susan

Schwartz have all been tremendous friends, willing to listen to my complaints and encouraging me

to participate in non-computer science activities.

Mark Roberts was a supportive friend and supervisor at Microsoft over numerous leaves of

absence and levels of part-time work. David Jones initiated my exible work schedule at Microsoft.

Bob Scheulen discussed countless code generation and optimization issues with me, and gave me

much moral support.

My great aunt, Marion Lovat Fraser, was a wonderful, positive presence in my life from the

time I was a small child until she passed away a few years ago. After I began working with

computers, Aunt Marion would always introduce me to her friends, \This is my nephew David.

He's a computer." The code generator system that is central to this dissertation is named after

Aunt Marion. Now I can say that she is a computer system.

xi



My parents, Adele and Merrill Bradlee, instilled in me a positive attitude and a desire to

learn. They have always provided a stable emotional base and encouraged me to pursue my own

intellectual directions. My brothers, Jay and Rick Sprague, provided a learning environment in

which to grow.

My wife's parents, Ernie and Marge Gardow, have been very encouraging and understanding.

Kathryn Gardow, my wife, has been invaluable. Kathryn was willing to move across the country

so that I could attend graduate school. She has earned the money to pay the mortgage and to enable

us to travel. She has dragged me into the mountains for much-needed exercise and interruption. She

has created gourmet delights for the palette of this famished graduate student. She has provided

social diversion. She has even proofread this dissertation. Most of all she has been strong, loving

and completely supportive. Although she would have liked me to �nish faster, she never suggested

that I quit. To Kathryn I give my endless thanks.

xii



Chapter 1

Introduction

A compiler inputs a high-level language program, transforms it into an intermediate language (IL),

and then performs code generation, which outputs a semantically equivalent program in a target

language, the target machine's instruction set. Code generation includes code selection, the process

of mapping the IL onto the target language. Code generation may also include global register

allocation, which maps user variables and compiler-generated temporaries to machine registers

over an entire procedure, and instruction scheduling, which rearranges machine instructions to

avoid pipeline delays, thereby producing code that more e�ciently uses the target's pipelines and

functional units.

A retargetable code generator is one that can be changed automatically, by giving it a description

of a new target machine, so that it generates code for that new target. Retargetable code generators

are important for several reasons. First, processor performance continues to improve, inducing

users to upgrade their systems. Second, the volume of software that must be ported to a new

architecture is large enough to prohibit the extensive use of assembly language code to achieve high

performance. Therefore, for a new architecture to compete, its compiler must generate quality code.

Third, even within a processor family there can be signi�cant architectural distinctions; between

families the di�erences are magni�ed. Together, these factors imply that processor manufacturers

need to be able to construct high quality code generators quickly. A retargetable system can make

this possible, if it enables good code to be produced with a minimum of e�ort and, therefore,

frees human resources for other tasks, such as architectural feature evaluation, target-independent

compiler optimizations or other software projects.

Retargetable code generators developed in the last decade have focused on code selection for

complex instruction set computer (CISC) architectures, such as the DEC VAX [Dig81], the IBM

360 [ABB64] and the Intel 8086 [Int83]. Since CISCs implement the most common operations many

di�erent ways and hide pipelining details and other feature costs, their companion code generators

used machine speci�cations that facilitated sophisticated pattern matching code selection. These

code generators could ignore instruction scheduling and, in some cases, did not perform global

(procedure-wide) register allocation.

Recent pipelined processors, commonly known as reduced instruction set computers (RISCs),

implement most operations only one way and expose pipeline and functional unit costs to the

compiler. Therefore, the compiler's emphasis must be shifted from code selection to instruction

scheduling. In addition, because computation must be done in registers and because the ratio of

memory access time to cycle time is high, some form of global register allocation is necessary to

e�ectively use the larger register sets found on most RISCs.

Because of the shift in functional emphasis, the code generation issues for RISCs are di�erent
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than those for CISCs. First, for a retargetable RISC compiler, the machine speci�cation must

capture most scheduling information, including operation latencies and resource conicts. Second,

since RISC code selection is relatively simple, the interaction between code selection and register

allocation is less important. Instead, the interaction between register allocation and instruction

scheduling is signi�cant, because the scheduler needs registers to overlap the execution of indepen-

dent operations.

The goal of this dissertation is to investigate the following aspects of RISC code generation:

(1) Is retargetable RISC code generation feasible and pro�table?

(2) Can the important aspects of code generation be speci�ed in a practical form?

(3) Can that speci�cation be transformed into an e�ective code generator and does it

provide any bene�t over hand-written code generation?

(4) In a RISC code generator, to what degree is communication necessary between

register allocation and instruction scheduling?

My thesis is that the answer to all of these questions is \Yes." My approach to retargetable RISC

code generation is to blend the experience of retargetable CISC code generators with techniques

from instruction scheduling and register allocation to create the Marion retargetable code genera-

tion system. To demonstrate feasibility, I have constructed code generators for three commercially

available RISC architectures and over thirty-�ve variations of these architectures. To examine

the interaction between register allocation and instruction scheduling, I have compared three code

generation strategies, each of which represents a di�erent degree of communication between the

two phases. I have also used Marion to investigate the e�ect of architectural variations on perfor-

mance. The facility of building new code generators, which enabled the strategy comparisons and

architectural experiments, exhibits the pro�tability of a retargetable system.

1.1 Retargetable Instruction Scheduling

There are several approaches to including scheduling information in a retargetable code generator.

A simple method is to use an existing retargetable code generator to perform code selection and

then add a table to drive instruction scheduling by associating operation latency and resource use

information with each instruction. After code selection, the table is used to build a directed acyclic

graph (DAG), from which instructions are scheduled. Retargeting involves replacing the table, in

addition to providing a new code selector speci�cation to the retargetable code generator. The

advantage of this approach is that changing the table is straight-forward. For a simple RISC this is

su�cient. The disadvantage is that information is kept in multiple formats. To retarget the code

generator, both the code selector speci�cation and scheduling information must be modi�ed. In

addition, many RISCs have some complicated features, such as latencies that are dependent on the

consumer and producer instructions together, non-orthogonal bypasses, or the need to access parts

of registers. These features complicate the basic scheme, requiring additional tables or procedures

that must be modi�ed when retargeting.

At the other end of the spectrum is a low-level model of the target machine that includes all

stages, latches, buses, bypasses and multiplexers. This model could capture all useful scheduling
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information, but the code generator would have to include all of that detail, complicating imple-

mentation and maintenance. In addition, since the machine speci�cation is detailed, it would be

di�cult to write, except by the architects themselves.

The Marion retargetable code generator system lies in between these two extremes. With

Marion, the compiler writer constructs a machine description that lists each instruction along with

the operation it performs and its scheduling requirements. The description language is easy to use,

yet provides enough constructs to support a broad range of RISCs. It can model many complicated

machine features, including pipelines that do not advance on every cycle or those that can be fed

directly from other pipelines. From this description Marion builds a code generator that includes

code selection, instruction scheduling and global register allocation.

Marion was designed speci�cally for uniprocessor RISCs that contain multiple functional units

and multi-cycle operations. It has been used successfully to produce code generators for the Mo-

torola 88000 [Mot88], the MIPS R2000 [Kan87] and the Intel i860 [Int89]. The 88000 and the

R2000 are \traditional" RISC machines that are more similar than di�erent; in contrast, the i860

can issue two instructions per cycle and has explicitly advanced oating point pipelines, making

it an extremely challenging target. Marion is the �rst retargetable code generator system that

includes a quality instruction scheduler and can handle machines in the i860's class.

1.2 Code Generation Strategies

RISC processors rely on compilers to perform register allocation to reduce memory references and

instruction scheduling to avoid pipeline hazards. A compiler that e�ectively manages register use

by these two phases gives computer architects greater exibility in making architectural design

decisions, and enables users to realize a RISC's high performance potential.

Many compilers for uniprocessor RISC systems perform global register allocation and instruction

scheduling separately, with each phase ignorant of the requirements of the other. Instruction

scheduling uses registers to exploit instruction-level parallelism;

1

register allocation uses registers

to reduce memory references. Because the goals of the two phases often conict, whichever phase

is �rst imposes constraints on the other, sometimes producing ine�cient code. For example, if

register allocation is performed �rst, it may limit the instruction scheduler's rearrangement choices

by assigning the same physical register to independent expression temporaries, which prevents the

expressions from being overlapped. When scheduling precedes register allocation, the number of

simultaneously live values, or register pressure, may be increased, causing many of these values to

be spilled to memory.

To determine the extent of communication needed between the two phases, I compare the per-

formance of three code generation strategies. The code generation strategy refers to the invocation

order of and degree of communication between register allocation and instruction scheduling. The

strategies include the following:

(1) a simple strategy called Postpass, in which global register allocation is performed

prior to instruction scheduling, with no communication between the phases;

1

Instruction-level parallelism at a point in the program refers to the number of instructions that could

legally be executing concurrently. On uniprocessors, realized instruction-level parallelism is the number of

operations executing concurrently in the various pipeline stages and functional units.
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(2) a strategy with an intermediate degree of communication, called IPS, in which the

scheduler is invoked before register allocation and must schedule within a local register

limit; and

(3) a tightly integrated strategy that I developed, called RASE, in which the instruction

scheduler communicates with the register allocator by giving the allocator cost estimates

that quantify the e�ect of its allocation choices on the subsequently generated schedule.

The results show that some level of communication is necessary to generate code that e�ciently

uses the registers. The intermediate strategy is su�cient for most programs on most architec-

tures. Nevertheless, on architectures with a small number of registers or long latencies, the tightly

integrated strategy is superior for larger programs.

1.3 Architecture Investigations

One of the bene�ts of a retargetable compiler system, when used with pro�ling and analysis tools,

is that it can allow designers to experiment with architectural variations in an e�ort to produce a

superior compiler/architecture partnership.

I have used Marion to examine the e�ect on RISC performance of code generation strategy,

register set size and organization, and operation and load latencies. The experiments vary the

number of registers from 16 to 128, in both split and shared register organizations and examine

two sets of oating point operation latencies and two sets of load latencies, all in the context of the

three di�erent code generation strategies. The results show that the sophisticated code generation

strategies produce superior schedules over all architectural variations and can signi�cantly reduce

the number of registers needed to achieve good performance.

1.4 Dissertation Organization

The �rst part of this dissertation discusses retargetable instruction scheduling issues and describes

the Marion system. Chapter 2 outlines the salient RISC architectural features that a�ect code

generation. These include register set size and structure, operation latencies, pipeline structures

and individual machine idiosyncrasies. Chapter 3 describes the major components of the Marion

system: the code generator generator, the front end and intermediate language, the code selector

and the register allocator. This chapter also outlines Marion's machine description language, along

with previous retargetable compiler research. Chapter 4 describes the data structures and methods

employed by the Marion instruction schedulers. It introduces temporal scheduling, which schedules

for explicitly advanced pipelines (pipelines that do not advance on every clock cycle), and presents

the temporal scheduling algorithms and proofs of correctness. Previous instruction scheduling

research is also discussed here.

The second part of this dissertation discusses the experiments that have been performed with

Marion. Chapter 5 gives the methodology used by the experiments, including the workload and

measurement criteria. Chapter 6 compares the three code generation strategies. It outlines

the problem with compilers that lack communication between register allocation and instruction

scheduling, describes each of the strategies, and presents the results of the comparison. Chapter 7
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assesses the e�ect on performance of register set size and structure versus code generation strategy.

Other architectural aspects, including operation and load latencies, are examined as well.

The third part of this dissertation includes Chapter 8, which evaluates Marion. It presents data

on the size and speed of the system, and size and composition of the machine descriptions. It also

examines how Marion handles various RISC features. Chapter 9 concludes with a discussion of

future directions.
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Chapter 2

Pipelined Architectures

The focus of this research is on computer architectures commonly known as RISCs [PS82], in

which pipelines and functional units are exposed to the compiler. This chapter outlines typical

RISC features, particularly those that a�ect code generation, and discusses notable features of

speci�c architectures, including the MIPS R2000, Motorola 88000 and Intel i860.

Several properties are typical among RISC architectures [HP90]:

(1) Integer and addressing operations use general purpose registers; oating point oper-

ations use either the same register set or a separate general purpose register set. General

purpose registers are interchangeable; no instruction requires a speci�c one.

(2) ALU and oating point instruction operands are registers; only load and store

instructions access memory.

(3) Each instruction's resource requirements, including pipeline stages and functional

units, are known at compile-time.

The �rst two properties taken together allow register allocation to be separated from code selection

without any negative impact on the generated code; this is because the instruction sequence to

compute an expression is independent of which registers are used as operands and independent

of whether intermediate results are placed in memory. The third property allows the compiler to

perform instruction scheduling to avoid pipeline hazards; pipeline hazards waste machine cycles,

decreasing performance.

There are three types of pipeline hazards:

(1) a data hazard occurs when an instruction's input operand is not yet available, because

either the load of the operand or the computation of the operand has not completed;

(2) a structural hazard occurs when two instructions need the same resource on the same

cycle;

(3) a control hazard is caused by a branch instruction, if the branch target address is

not known when the CPU is ready to fetch the target instruction.

A data hazard example is a oating point add followed by a store of the result. If the add latency

is 3 cycles, then the processor will stall for 2 cycles, while the add completes, before executing the

store. A structural hazard can occur on a shared register �le architecture, for example, if a oating

point operation and an integer operation both require the write-back bus on the same cycle. Most

RISC architectures attempt to avoid control hazards via delayed branches. A delayed branch is a

branch instruction that has one or more delay slots following the branch. Instructions in delay slots
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are issued after the branch but before the branch target. The compiler must �ll these slots with

no-ops, if no useful instructions can be scheduled there.

The code generator's view of the target machine comprises the instruction set, the register �le

and, for RISCs, the pipelines and functional units. The following are some relevant attributes that

must be considered by a retargetable RISC code generator system and the e�ects they have on

code generator design:

(1) a register �le split into integer and oating point partitions versus a shared register

�le. The register allocator must handle multiple register sets and register pairs.

(2) pipelined versus non-pipelined oating point execution units. The instruction sched-

uler must keep track of resource use to avoid structural hazards.

(3) the number of instructions issued per cycle. The scheduler must consider this to

determine where data and structural hazards could occur.

The next three sections discuss the architectures that are models for those used in the studies in

this dissertation. All perform 32-bit integer operations and 32- and 64-bit oating point operations.

2.1 MIPS R2000

The MIPS R2000 architecture [Kan87] has a split register �le that consists of 32 integer registers and

sixteen 64-bit oating point registers. The integer register r0 is hardwired to 0. Integer multiply

and divide place their results in the special registers called HI and LO; instructions are provided

to move from HI and LO to the integer registers.

The R2000 CPU contains a 5-stage instruction pipeline; one instruction is issued per cycle. All

integer operations, except multiply and divide, use the ALU stage for one cycle. A non-pipelined

functional unit performs integer multiply and divide. All integer ALU instructions have either two

register operands and one immediate operand or three register operands. Multiply and divide each

take two input register operands and send the result to the HI and LO registers.

Floating point instructions are recognized and handled by the oating point coprocessor. All

oating point operations use the oating point ALU for two or more cycles. Multiply and divide

each use separate non-pipelined units for additional cycles.

The CPU performs all load and store instructions. The only addressing mode is register +

displacement. The load is followed by one delay slot, which must be �lled by the compiler. Double

precision oating point values require two instructions to load or store. Instructions to move

between the CPU and FPU register sets are also provided.

The R2000 has no condition codes. The beq and bne compare and branch instructions take two

register operands; other compare and branch instructions compare a register against zero. Thus,

(a < b) requires two instructions: a subtract followed by a compare and branch if less than zero.

The oating point compare instructions take two register operands. The boolean result is sent to

the CPU; after a 2-cycle latency, a conditional branch may test the result. All branches and jumps

have one delay slot that must be �lled by the compiler; the instruction in the delay slot is always

executed. The R2000 also has conditional call instructions and set-on-condition instructions. The

set-on-condition compares two values and sets the result register to 1, if the condition is true, or 0,

if false.
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Table 2.1: R2000 latencies. Operations not shown have a latency of 1. Both integer multiply

and divide require an additional instruction to move the result back to the integer registers.

Instruction Latency (cycles)

load (int) 2

load (oat) 2

compare (oat) 2

mul (int) 11

div (int) 36

add (oat) 2

mul (oat) 4

mul (double) 5

div (oat) 12

div (double) 19

The FPU supports single and double precision oating point operations, including multiply and

divide. Conversions between integer and oats are also handled by the FPU. Latencies are shown

in Table 2.1.

2.2 Motorola 88000

The Motorola 88000 architecture [Mot88] has 32 general purpose registers that are used for both

integer and oating point values. Double precision oats use register pairs. Register r0 is hard-

wired to 0.

The CPU has a 4-stage instruction pipeline. All integer operations, except multiply and divide,

use the ALU stage for one cycle. All ALU operations take three operands. Integer multiply and

divide use the FPU. A 3-stage data unit pipeline performs address calculations and accesses the

memory hierarchy.

The FPU is split into two pipelines: a 4-stage multiply pipeline, which performs oating point

and integer multiply, and a 3-stage add pipeline, which handles integer divide and all other oating

point operations. The two pipelines share additional initial and �nal stages. Divide iterates within

the �rst add pipestage; all other operations are completely pipelined. All oating point instructions,

except unary operations, take three register operands.

Three operations can contend for the �nal FPU stage: a multiply, an add and an integer multiply

that exits the multiply pipeline early. A priority scheme gives integer multiply the highest priority

and then oating point multiply the next highest priority. Additionally, contention for the register

write-back bus can occur between the FPU, the integer ALU and the data unit. The ALU is given

the highest priority and data unit the lowest.

The 88000 has three addressing modes, register + displacement, register + register and scaled

index register (register + register * scale). The 16-bit displacement is zero-extended. For scaled

index register mode the scale is the size of the object referenced (either 1, 2, 4 or 8 bytes).

Bit �eld instructions set, clear, extract and rotate bit �elds within a register. Shift instructions

are default cases of these operations.
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Table 2.2: 88000 latencies. Operations not shown have a latency of 1.

Instruction Latency (cycles)

load (int) 3

load (oat) 3

load (oat) 4

compare (oat) 5

add (oat) 5

mul (int) 4

mul (oat) 6

mul (double) 9

div (int) 38

div (oat) 30

div (double) 60

To conditionally branch, the compare instruction sets condition bits in the destination general

purpose register. Then a branch-on-condition instruction tests the condition bits and branches if

appropriate. Branches have both delayed and non-delayed forms. Delayed branches have one delay

slot; the instruction in the slot is always executed.

Table 2.2 gives the 88000 operation and load latencies. In some cases, the latency depends on

the instruction that consumes a value. For example, if the result of a double precision oating

point add is stored to memory, then the add latency is 6 instead of 5.

2.3 Intel i860

The Intel i860 [Int89] has 32 integer registers and thirty-two 32-bit oating point registers. The

oating point registers can be accessed in 64-bit even/odd pairs for double precision. The integer

register r0 and the oating point registers f0 and f1 are hard-wired to 0.

The i860 has a 4-stage instruction pipeline. The integer ALU performs all integer operations in

one cycle, except multiply and divide. All ALU operations take three operands. The FPU performs

all oating point operations and integer multiply. There is no divide instruction; a reciprocal and

a sequence of subtracts and multiplies performs the operation. An FPU instruction can be issued

together with an ALU or memory instruction on each cycle.

The CPU unit performs loads and stores for both integer and oating point registers. Addressing

modes include register + displacement and register + register. However, an integer store may use

only the former. In addition, oating point loads and stores may use auto-increment versions of

both modes. The i860 also supports a pipelined oating point load that bypasses the cache and

uses a load pipeline; the load pipeline is not used by other load or store instructions.

Most conditional branches use the condition code bit, which is set by integer ALU operations

and by oating point compare operations. Conditional branches come in two forms: without a

delay slot and with a delay slot that is executed only if the branch is taken. An instruction that

immediately follows a branch without a delay slot is executed only if the branch is not taken. If the

branch is taken, the pipeline stalls until the branch target instruction is fetched. The unconditional
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branch has a delay slot that is always executed. Other conditional branches perform compare and

branch on equal or not equal; these have no delay slots. Finally, the bla instruction decrements

an integer register (a loop counter) and sets the loop condition code bit LCC to 0 when the loop

counter reaches 0. The bla instruction branches if the previous value of LCC is 1. The delay slot

instruction is always executed.

The FPU contains a 3-stage oating point adder, a 3-stage oating point multiplier, a oating

point load pipeline and a graphics unit pipeline. The load pipeline is used only by the pipelined

loads that bypass the cache (mentioned above). The graphics pipeline supports various graphics

instructions, but is not considered in this research.

FPU instructions come in two varieties: scalar and pipelined. Scalar instructions require exclu-

sive use of the entire FPU, except for the register write-back hardware. Each pipelined instruction

explicitly advances a particular pipeline (or pipelines), leaving other pipelines unchanged. All four

pipelines are explicitly advanced.

Some scalar instructions have no pipelined equivalent. These include reciprocal, reciprocal

square root and the fmlow instruction, which is used to perform integer multiply.

A pipelined instruction takes three register operands: two sources and one result. When the

instruction is executed, the source registers are fed into the appropriate pipeline. The result register

gets whatever is coming out of the pipeline on the cycle that the instruction is issued; this is the

result of a previous operation, not the result of the operation that is launched by the instruction.

For example, the following sequence performs f7 f5 + f6:

pfadd f5; f6; f0 ; stage1  f5 � f6

pfadd f0; f0; f0 ; stage2  stage1

pfadd f0; f0; f0 ; stage3  stage2

pfadd f0; f0; f7 ; f7 stage3

The �rst pfadd launches the add, the second and third advance the pipeline and the fourth catches

the result.

Most pipelined instructions advance only one pipeline. However, the i860 has a set of in-

structions that advance the multiply and add pipelines together. These instructions take only

three register operands. Therefore, two additional source operands and one additional destination

operand are needed. These are provided by special registers KI, KR and T or by chaining, feeding

the output of the adder directly to the multiplier or vice versa. Some instructions set one or more

of the special registers; others leave them alone. The T register is fed only by the multiplier and

feeds the adder; KI and KR are loaded from general purpose registers and feed the multiplier.

Table 2.3 shows the i860 operation and load latencies. Like the 88000, there are cases where

the latency depends on the interaction between two instructions, particularly oating point stores

and oating point operation write-backs.
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Table 2.3: i860 latencies. Operations not shown have a latency of 1.

Instruction Latency (cycles)

load (int) 2

load (oat) 3

load (double) 3

compare (oat) 2

add (oat) 3

add (double) 3

mul (int) 3

mul (oat) 3

mul (double) 4



Chapter 3

Marion Code Generation Construction

System

The Marion Code Generator Construction System is a retargetable code generator system designed

speci�cally for uniprocessor RISCs that contain multiple functional units and multi-cycle opera-

tions. Each code generator is constructed from a natural machine description and performs code

selection, instruction scheduling and global register allocation. The description language is easy to

use, yet provides enough constructs to support a broad range of RISCs.

Marion comprises three major components (see Figure 3.1): the code generator generator, the

compiler front end and the compiler back end. The input to the code generator generator is a

machine description that describes the target's registers, functional units, pipeline stages and in-

structions, including scheduling properties; the output is a set of automatically generated tables and

routines. The Lcc front end [FH90] consumes ANSI C and generates an intermediate language (IL)

of directed acyclic graphs (DAGs) built from typed low-level operators. The back end transforms

the IL, according to transformations speci�ed in the machine description, performs code selection

by pattern matching and then gives control to the code generation strategy.

The code generation strategy directs the invocation of and degree of communication between in-

struction scheduling and global (procedure-wide) register allocation. It also includes the scheduling

algorithm. The register allocator and scheduling support (which handles the low-level scheduling

details) are independent of both the code generation strategy and the target machine. In addi-

tion, the strategy module accesses target-dependent data only through the target- and strategy-

independent routines. The separation of the strategy module from the rest of the code generator

allows a strategy to be replaced quickly, without changing the other components or the interface

between the target-dependent and target-independent portions of the code generator.

Marion makes several assumptions about the target architecture. First, the architecture must

have general purpose register sets for integer, addressing and oating point operations. Second, the

scheduling requirements for each instruction, including which functional units and pipeline stages

are used on each cycle, must be known at compile time. Third, only load and store operations may

access memory. RISCs generally comply with these assumptions. Machines with hidden pipelines,

such as the VAX, could be modeled using Marion by supplying null scheduling information and

using a null scheduler.

This chapter �rst examines related work in modeling instruction scheduling and retargetable

code generators. It then describes the Marion's machine description language, Maril, and system

components, including the front end, the IL, the code generator generator, the code selector and

the register allocator. Chapter 4 describes Marion's instruction scheduling and some additional

scheduling-related Maril constructs.
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Figure 3.1: Marion structure. The code generator generator is invoked once per target. The

tables it produces are linked in with the compiler.

3.1 Related Work

I implemented yet another retargetable code generator, because no existing system has a machine

description language that incorporates scheduling constraints or builds an instruction scheduler

from the description.

The ISP (instruction set processor) description language [BN71] was not appropriate for Marion,

because it contains more detail than necessary in some areas, but not enough in others. For example,

the code generator does not need a detailed program status word format description, but it does

need to know the scheduling properties of each instruction.

Tree and string grammars have been used by retargetable compilers for complex instruction

set computers (CISCs) to describe target machines. Various systems produce sophisticated code

selectors for CISCs, but none incorporate global register allocation or instruction scheduling. Four

system families are outlined below.

Glanville and Graham [GG78, GHS82] built one of the �rst retargetable code generator systems.

Their system takes a machine description grammar as input and produces a code generator that

employs LR parsing techniques to perform pattern matching on the IL. Grammar productions

comprise patterns, which contain terminal and non-terminal symbols, and replacements, which are

single non-terminals. Actions associated with productions cause machine code to be generated.

Henry's CODEGEN [AGH

+

84, Hen87, HD89a, HD89b] is a successor of the Graham-Glanville

system. It takes PPRACs (pattern, predicate, replacement, action, cost) as input and produces
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a tree pattern matcher. PPRACs are similar to the productions in the Graham-Glanville system,

but have predicates and costs to direct the matching. The matcher can employ a number of

techniques, including LR parsing, recursive descent parsing, top-down matching and bottom-up

matching. The techniques di�er in generated code e�ciency, compiler construction time, compiler

speed and code/table size. The compiler writer can choose the technique appropriate for his system.

CODEGEN also includes a compiler writer directed tree transformer that aids in mapping the IL

to the target machine. CODEGEN's primary advantage is that virtually all aspects of the target

machine can be captured in a single framework: the grammar syntax. The disadvantage is that

it is di�cult to capture some side e�ects, such as auto-increment addressing. In addition, the

tables that drive matching and reduction can be large; however, Fraser and Henry have successfully

minimized this problem [FH91].

The second family, by Ganapathi and Fischer, used an attribute grammar to produce a code

generator [GF82, GF85]. Attributes and predicates associated with grammar productions help de-

scribe architectural restrictions. This approach puts less emphasis on the syntax than the Graham-

Glanville systems. The advantage is that the parse table size is smaller and side e�ects can be more

easily captured. The disadvantage is that the compiler writer must use two models: the grammar

syntax and the attribute rules. A descendant of this system [AGT89] uses a dynamic programming

tree rewriting algorithm to generate code.

The third family, Davidson and Fraser's PO (and successors) [DF80, DF84a, DF84b, FW86],

takes a di�erent approach to CISC code generation. Naive machine code is generated and then

optimized, using a peephole optimizer produced from a machine description. PO's machine descrip-

tions are simpler than the descriptions for the Graham-Glanville family, allowing easier retargeting,

but no there is exibility in choosing between compiler speed and code/table size. R. R. Kessler's

Peep [Kes84] and P. B. Kessler's system [Kes86] are similar.

Davidson has extended PO to perform instruction reorganization, including targeting and eval-

uation order determination, to reduce register use [Dav86]. The system is primarily for CISCs,

but for one RISC target the reorganization also considered pipeline delays. However, the func-

tion to check for delays is hand-written; no scheduling information is derived from the machine

speci�cation.

The fourth retargetable code generation system for CISCs is the Production-Quality Compiler-

Compiler project [CNL79, Cat80, LCH

+

80, Lev81], which is a descendant of the Bliss-11 compiler

[WJW

+

75]. This project attempted to include a high degree of detail about the target machine, so

that tradeo�s in optimization, code selection and register allocation could be examined. Because

it tried to incorporate too much target machine detail, the system was di�cult to use.

Some previous systems have incorporated instruction scheduling information in some form.

First, the B] system of Bird [Bir87] merges instruction selection and scheduling into an L-attributed

Graham-Glanville style code generator. Bird's model takes only trees and does not take DAGs. It

also requires that the trees have width less than the number of registers, because it cannot handle

spills, and assumes that all instructions use the pipeline identically. Second, Wall and Powell's

Mahler [WP87] uses scheduling information but does not have an explicit machine description

language. Mahler uses an assembly language for a simple virtual machine without a pipeline

and with an in�nite number of registers. The scheduling details are contained within the Mahler

translator; therefore, a change in the target architecture requires changing the translator by hand.

Landskov, Davidson et al. [LDSM80, DLSM81] describe a machine model to support microcode
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compaction. In their model, each micro-operation is described by a 6-tuple indicating the name,

inputs, output, resources needs, clock phase and instruction �elds for the operation. The inputs

and output can be registers, buses or latches. Resource needs are functional units or pipestages.

The clock phase supports micro-operations that use only a portion of the machine's cycle. The

model is exible enough to handle a number of compaction problems, but it contains more detail

than is needed for RISCS; for example, the clock phase and instruction �elds are not necessary. In

addition, the 6-tuple lacks the instruction's operation, which is needed for code selection.

The GNU C compiler [Sta89] is a successful retargetable compiler that uses interpreted ma-

chine descriptions resembling Davidson and Fraser's PO. Although GNU C has been targeted to

many RISCs, the machine description contains no scheduling information. Tiemann has written a

scheduler for GNU C [Tie89]. Target-dependent latency and resource information is encapsulated.

(He does not indicate what the encapsulated form is.)

3.2 Front End and Intermediate Language

Marion uses Lcc, a robust, easily portable, ANSI-C front end written by Fraser and Hanson [FH90].

It performs local optimizations, including common subexpression elimination and constant folding,

but no global or loop optimizations.

The IL consists of basic blocks made up of DAGs of low-level typed operators. A thread

runs through some DAG nodes, mostly statement-level operators, such as assign and branch; this

maintains a legal ordering. The front end transforms all high-level control ow operators, such as

for, while and if, into low-level compare and branch operations. All C Language operators with side

e�ects, such as the assignment operators, the pre- and post-increment and pre- and post-decrement

operators and the conditional operator, are transformed into explicit arithmetic, logical, assignment

and branch operations. All type conversions are explicit.

Marion applies two sets of transformations to the IL and then feeds it to the code selector.

The code selector uses a top-down pattern matching algorithm, which matches subject tree nodes

against pattern tree nodes. Subject trees are subtrees of the IL DAG that is the input to the code

selector. Pattern trees comprise IL operators and are derived from the machine description.

The �rst set of IL transformations performs data allocation, using some machine dependent

information. For each user object, the data allocator allocates one of the following:

(1) a pseudo-register, if the object is a simple automatic variable that may reside in a

register;

(2) a stack o�set from the frame or stack pointer, if the object is automatic, but cannot

reside in a register;

(3) an o�set from the global data pointer, if the machine model supports one and the

object is static; or

(4) a relocatable address.

The second set of transformations puts the IL into a canonical form:

(1) address operators are expanded, (e.g., into frame pointer + o�set), or changed to

pseudo-register references;



17

(2) nodes are inserted to move function arguments and return values into registers or

stack locations; and

(3) the function prologue and epilogue, including trees to save and restore preserved

registers, are made explicit.

Marion employs a simple memory reference disambiguation algorithm that supports local com-

mon subexpression elimination and permits the instruction scheduler to reorder memory references.

Given two address expressions, the algorithm eliminates addends that appear in both; if the re-

maining addends are demonstrably di�erent, such as di�erent constants, then the references are

distinct. This scheme handles array references whose index expressions contain the same set of

variables. Ellis et al. [FERN84, Ell85] developed a more sophisticated algorithm that derives and

compares symbolic expressions for the array addresses, covering a larger number of cases.

3.3 Marion Machine Description Language

Marion's machine description language, Maril, incorporates ideas from ISP, CODEGEN, the PO

derivatives and the microcode work. Maril requires processor attributes to be declared explicitly,

in a manner similar to ISP's. Like PO, each instruction in a machine description is listed along

with the operation it performs, expressed in terms of IL operators; pattern trees derived from these

expressions are used to match the subject IL. Like CODEGEN, Maril includes tree transforma-

tions, which Marion applies to the IL prior to code selection, to facilitate the IL-to-target-machine

mapping. Maril also borrows from the microcode compaction model in its speci�cation of resource

requirements and restrictions on instruction packing.

1

Marion's contribution is the incorporation

of instruction scheduling information into a machine description language that is used for all phases

of code generation.

A Maril machine description comprises three sections: Declare speci�es features of the archi-

tecture, such as the registers, pipeline stages and functional units; CWVM (Compiler Writer's

Virtual Machine) describes a simple runtime model, primarily for parameter binding; Instr lists

each machine instruction, along with its function and scheduling requirements, and includes tree

transformations.

Most aspects of Maril are straight-forward. The information in Declare and CWVM and the

instruction directives all follow directly from an architectural description, such as a programmer's

reference manual. Most scheduling properties can be expressed simply, as operation latencies and

pipeline resource requirements associated with instructions. Maril's innovation is in the handling of

architectural details: the special latency speci�cations, the escape functions, the instruction packing

restrictions and the support for explicitly advanced pipelines. The signi�cance of Maril is that a

user can quickly write a basic machine description that generates correct code for all IL constructs

and then concentrate on tuning the description with Maril's special constructs to produce more

e�cient code.

To illustrate Maril, a toy processor (TOYP) is used. TOYP supports �ve operations: load,

store, add, compare and branch. It has eight 32-bit general purpose registers that can be used

in 64-bit pairs to support double precision oating point. TOYP contains a 5-stage instruction

1

Instruction word packing refers to the process of �tting individual operations into an instruction word.
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declare f

%reg r[0:7] (int ); =* integer regs *=

%reg d[0:3] (double ); =* double oat regs *=

%equiv r[0] d[0]; =* d regs overlay r regs *=

%resource IF; ID; IE; IA; IW; =* fetch; decode; execute; access mem; writeback *=

%resource F1; F2; F3; F4; F5; =* oating point add pipe *=

%def const16 [�32768:32767]; =* signed immediate *=

%def uconst16 [0:65535]; =* unsigned immediate *=

%def nconst16 [�65535:�1]; =* negative immediate *=

%label rlab [�32768:32767] +relative ; =* branch o�set *= 10

%memory m[0:2147483647]; =* memory bank *=

g

Figure 3.2: TOYP declarations. The r registers hold integer values; the d registers hold double

oat values. Resources include the instruction pipeline and oating point add pipeline stages. The

range const16 is used by load, store and add instructions.

pipeline and a 5-stage oating point add pipeline. The source language is assumed to be similarly

limited.

3.3.1 Declarations

The Declare section (Figure 3.2) describes the target machine's registers, memory, and resources,

such as pipeline stages, functional units and buses; it also gives de�nitions for instructions' imme-

diate operands. Items that are referenced in subsequent sections must be declared here.

Each %reg declaration describes an array of registers along with the datatypes that can reside

in them. Maril supports the signed C Language native types. The size of each register is inferred

from the size of the largest type it may hold. The%equiv directive indicates that two register sets

are overlaid. For example, TOYP's d registers overlay the r registers; one d register overlays two r

registers.

A %resource declaration names a processor resource. A resource is a pipeline stage, data bus

or functional unit. A resource name has no implicit meaning or properties associated with it.

A %def declaration speci�es an integer constant range for use as an instruction's immediate

operand. A %label declaration is similar to a %def, but is used for branch o�sets. Optional ags

may appear on both of these declarations. The +relative ag indicates that the label is a relative

branch o�set. The +relocatable ag permits a %def pattern node to match a subject node that

represents a relocatable address. The +halfreloc ag permits a %def to match a subject node

that represents half of a relocatable address.

Memory banks may be declared using the %memory directive. An instruction indicates it

references memory by using the memory object as an array indexed by the e�ective address.

3.3.2 Runtime Model

The CWVM section (Figure 3.3) speci�es the runtime model to which the generated code must

conform. Directives specify which register sets are for general purpose use (%general), which

registers are available for allocation by the global register allocator (%allocable), and which are
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cwvm f

%general (int ) r; =* r gpr for int *=

%general (double ) d; =* d gpr for double *=

%allocable r[1:5]; =* r[1] through r[5] available to register allocator *=

%calleesave r[4:7]; =* r[4] through r[7] saved by callee *=

%sp r[7] +down ; =* stack pointer *=

%fp r[6] +down ; =* frame pointer *=

%retaddr r[1]; =* return address *=

%hard r[0] 0; =* r[0] always 0 *=

%arg (int ) r[2] 1; =* 1st int arg in r[2]*=

%arg (int ) r[3] 2; =* 2nd int arg in r[3] *=

%arg (double ) d[1] 1; =* 1st double arg in d[1] *=

%result r[2] (int ); =* int result in r[2] *=

%result d[1] (double ); =* double result in d[1] *=

g

Figure 3.3: TOYP Compiler Writer's Virtual Machine. The r and d register sets are general

purpose. Either two integer parameters or one double oat parameter may be passed in registers;

the result is returned in r[2], if integer, or d[1], if double. Registers r[1] through r[5] may be

allocated by the global register allocator; r[4] through r[7] are preserved across a call.

preserved across function calls (%calleesave). Registers not speci�ed as%calleesave are assumed

to be saved by the caller. Directives also specify which registers are used for the return address

(%retaddr), the stack pointer (%sp) and the frame pointer (%fp). With %sp the user speci�es

+down or +up to indicate the direction of stack growth. With %fp, +down indicates that

frame o�sets may be positive and negative;+up indicates that they may be only positive. %hard

speci�es that a register is hard-wired to a particular value.

Marion requires the user to specify two registers to be the stack and frame pointers. Optionally,

a third register may be declared as a global data pointer (%gp) to point to static data. This

directive includes the maximum data area size. Marion allocates a module's static objects in the

area until it is �lled, after which objects receive 32-bit relocatable addresses.

The %arg and %result directives specify parameter passing conventions. Each directive gives

a type and a register;%arg also gives a parameter number. For example, the �rst %arg directive

in Figure 3.3 indicates that the �rst integer argument is passed in r[2]; the %result directives

indicate that the result is returned in r[2], if integer, or d[1], if double.

Marion supports only relatively simple CWVMs. Some CWVMs use a virtual frame pointer

relative to the stack pointer. Others have specialized calling conventions; for example, a oating

point argument may be passed in either an integer or oating point register, depending on the

preceding arguments. Still other CWVMs support register windows. More complex CWVMs could

be supported with additional directives (and have been in other systems [Hen87]). For example,

register windows could be supported by extending Maril to allow incoming and outgoing parameters

and calleesave and callersave registers to all be speci�ed separately. The stack model is simple

because this research concentrates on instruction scheduling.
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3.3.3 Instructions

The Instr section (Figure 3.4) lists machine instructions, special instructions and glue transforma-

tions. The description for each instruction indicates its purpose and scheduling requirements. Glue

transformations help complete the mapping between the IL and the target's instruction set.

Each %instr directive describes a single machine instruction in �ve parts. The �rst part is

the instruction mnemonic and operands. An operand may be a generic member of a register set,

a speci�c register, an immediate range that appears in a %def declaration or a speci�c immediate

value. The second part (in parentheses) is an optional type constraint that is used during code

selection. A constraint of the form (type) restricts all register operands to type. A constraint of the

form ($i==type) restricts operand i to type.

The third part (in braces) is a single assignment C expression (excluding side e�ects and con-

ditional operators) that indicates what operation the instruction performs. Expression operands

are integer constants or references to the instruction's operands, e.g., $1. The patterns used by the

matcher are derived from these expressions. If an instruction yields two results (or a side e�ect),

such as a register and a condition code, then Maril semantics require the user to write a separate

instruction directive for each result. This may cause two instructions to be generated where one

would su�ce; it also prevents the use of auto-increment addressing modes. Many RISCs do not

have instruction side e�ects, but both the i860 and the Sun SPARC [Sun87] have condition codes

and the i860 has autoincrement addressing. At the expense of occasional ine�cient code, this

restriction retains simplicity in deriving the patterns from the description and in matching the pat-

terns. Peephole optimization techniques for exploiting instruction side e�ects are well known and

could be incorporated into Marion, but no research has been done on the interaction of peephole

optimizations and instruction scheduling.

The fourth part of a directive (in brackets) speci�es the hardware resources needed by the

instruction on each cycle after the instruction is issued. Semicolons separate cycles; commas sepa-

rate resources within a cycle. For example, in Figure 3.4, the add instruction uses the instruction

pipeline, one stage per cycle; the fadd.d instruction requires the instruction decode stage (ID) and

the �rst oating point adder stage (F1) each for two cycles, using both on the third cycle.

Finally, the instruction directive includes a triple (cost,latency,slots) that speci�es more schedul-

ing information:

(1) Cost is used only to distinguish actual instructions, which cost 1, from zero cost

dummy instructions. Dummy instructions are useful for type conversions in the IL that

require no actual instructions.

(2) Latency is the number of cycles before the instruction's result can be used by an-

other instruction. Usually the latency is the number of cycles an instruction spends in

execution stages, i.e., stages other than fetch, decode or writeback. The presence or

absence of bypass hardware, however, can a�ect this relationship. Therefore, Marion

requires the user to indicate the latency directly, at the risk of some redundancy.

(3) Slots speci�es the number of delay slots following the instruction that must be �lled

by the scheduler. It is typically used for call and branch instructions, but can also be

used for other instructions, such as a delayed load whose delay slot must be �lled. A

positive slots value indicates that instructions in the delay slots are always executed.

A negative value indicates that they are executed only if the branch is taken. A zero
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%instr add r, r, r (int ) =* integer add *=

f$1 = $2 + $3;g

[IF; ID; IE; IA; IW;] (1,1,0)

%instr addu r, r[0], #uconst16 ($1==int ) =* manifest constant *=

f$1 = $3;g

[IF; ID; IE; IA; IW;] (1,1,0)

%instr fadd.d d, d, d =* double oat add *=

f$1 = $2 + $3;g

[IF; ID; F1,ID; F1;F2;F3;F4;F5; IW,F5; IW;] (1,6,0)

%instr ld r, r, #const16 =* load *=

f$1 = m[$2+$3];g

[IF; ID; IE; IA; IW;] (1,3,0)

%instr ld.d d, d, #const16 =* double oat load *=

f$1 = m[$2+$3];g

[IF; ID; IE; IA; IW,IA; IW;] (1,4,0)

%instr st r, r, #const16 =* store *=

fm[$2+$3] = $1;g

[IF; ID; IE; IA;] (1,1,0)

%instr st.d d, d, #const16 =* double oat store *=

fm[$2+$3] = $1;g

[IF; ID; IE; IA; IA;] (1,1,0)

%aux fadd.d : st.d (1.$1==2.$1) (7) =* auxiliary latency for instruction pair *=

%move [s movs] add r, r, r[0] =* single reg move, referenced by movd *=

f$1 = $2;g

[IF; ID; IE; IA; IW;] (1,1,0)

%move *movd d, d =* *func escape: double move (2�instrs) *=

f$1 = $2;g

[ ] (0,0,0)

%instr cmp r, r, r (int ) =* compare *=

f$1 = $2 :: $3;g

[IF; ID; IE; IA; IW;] (1,1,0)

%instr beq0 r, #rlab =* branch if equal *=

fif ($1 == 0) goto $2;g

[IF; ID; IE;] (1,2,1)

%glue r, r =* glue transformation for compare *=

f($1 == $2) ==> (($1 :: $2) == 0);g

Figure 3.4: TOYP instructions. The (int) is a type constraint on the register operands. The

expression (in braces) indicates the operation the instruction performs. The resource vector (in

brackets) speci�es the resources required by the instruction on each cycle. The triple (in paren-

theses) gives the cost, latency and number of delay slots. The auxiliary latency directive (%aux)

overrides the normal latency label of a code DAG edge between two instructions, if the constraint

is met. The %move directives indicate how to move between registers in the same set. A glue

transformation expands the left-hand-side subtree into the right-hand-side subtree.
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value means that they are executed only if the branch is not taken, which is the same

as having no slots at all.

Sometimes operation latency depends on the interaction between two instructions. For these

situations the user employs an auxiliary latency directive (%aux), which overrides the normal

latency associated with the �rst instruction in the pair. For example, on TOYP, the fadd.d instruc-

tion usually has a 6-cycle latency. However, if the result is stored to memory then the latency is 7

cycles. The auxiliary latency directive (shown in Figure 3.4) speci�es that, if the �rst operand of

the �rst instruction (1:$1) is the same as the �rst operand in the second instruction (2:$1), then

the latency label on the code DAG edge between an fadd.d and a st.d is 7.

The user must give the properties of a no-op instruction and, for each general purpose register

set, a%move directive to indicate how to move between registers of that set. If a%instr directive

had an expression f$1 = $2;g, then Marion's pattern matcher could loop, continuing to match

this pattern. Marion could recognize such patterns and treat them specially; the %move directive

simply puts this burden on the user. Alternatives for avoiding looping in the pattern matcher have

been developed by Glanville [Gla77] and Henry [Hen84].

3.3.4 Mapping the IL

A target independent IL rarely maps directly onto a machine's instruction set. Marion supports two

mechanisms that enable the user to complete this mapping. The �rst is the glue transformation.

Each glue transformation comprises a pattern tree and a replacement tree. In a separate pass prior

to code selection, the glue transformer applies each transformation to the IL in a top-down manner;

if a subject IL subtree matches a pattern tree, it is replaced by the replacement tree. The glue

transformation handles most cases where an IL operator does not map directly onto the target

machine. It is generally employed when an IL operator can be mapped to two or three machine

instructions without the complication of half-register references. Typical uses are for comparisons,

conversions or loading 32-bit immediate values.

For example, on TOYP to compare and branch requires the generic compare cmp that puts

a condition code into a general purpose register and the branch beq0 that checks the condition in

the register and branches accordingly. (See Figure 3.4.) To map the \==" IL operator onto this

two-instruction sequence, a glue transformation expands the subtree ($1 == $2) into the subtree

(($1 :: $2) == 0). The new operator \::" (supported by Marion's IL) will match the cmp instruction

and \==" will match the beq0 instruction.

The glue transformation, however, is inappropriate for two more complicated mapping situ-

ations: transformations that must manipulate register halves and transformations that contain

common subexpressions. This is because glue transformations are applied before pseudo-registers

are created and because they are tree-to-tree, not tree-to-DAG transformations.

The second mechanism, the *func escape, handles these cases and, in general, allows the user to

e�ect a complicated IL-to-target mapping without sacri�cing opportunities for e�cient generated

code. The escape mechanism allows the user to write a C function to produce a sequence of

individually schedulable instructions. A user-written function can and should comprise only calls

to primitives exported by Marion; these primitives create and manipulate operands and generate

instructions. A user-written function is called by Marion when the code selector matches an escape

function. On TOYP, for example, a move between d registers maps into two moves between r
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void movd (sopnds, resopnd) movd

SOPNDS sopnds; =* operands: dest, src *=

int resopnd; =* which operand is dest *=

f

SOPNDS low opnds; =* temporaries *=

SOPNDS high opnds;

opnd low(&low opnds[1], &sopnds[1]); =* lowhalf(dest) *=

opnd low(&low opnds[2], &sopnds[2]); =* lowhalf(src) *=

gen instr(s movs, 2, &low opnds[1], &low opnds[2]); =* move low half *=

opnd high(&high opnds[1], &sopnds[1]); =* highhalf(dest) *=

opnd high(&high opnds[2], &sopnds[2]); =* highhalf(src) *=

gen instr(s movs, 2, &high opnds[1], &high opnds[2]); =* move high half *=

g

Figure 3.5: Example escape function. User-written code for the *movd escape function. Each

opnd low or opnd high creates an operand that represents the low or high half of a d register. Each

gen instr references the r register move via the label s movs and generates a move instruction.

registers. The user-written function for *movd, shown in Figure 3.5, creates operands to represent

the two halves of each d register and generates two move instructions between r registers; after

code selection, each move instruction can be scheduled individually. The move between r registers

is referenced by the optional label [s movs] that appears in the directive. (See Figure 3.4).

Maril includes several built-in functions for use in instruction expressions and transformations.

The built-in functions high and low are typically used to split a 32-bit immediate into 16-bit halves.

The built-in eval evaluates a constant expression, typically to negate or decrement an immediate

value; it may appear only within glue transformations. Datatypes are used as built-ins to match

type conversions in the IL.

Marion supports two additional IL operators. First, the generic compare special operator \::",

which is useful for machines that separate compare and branch into two instructions, can be in-

troduced by a glue transformation. Second, the explicit arithmetic right shift \>>>" matches the

corresponding IL operator unambiguously. Figure 3.6 shows glue transformations that use some of

these built-in functions.

Figure 3.7 presents a sample code fragment for TOYP.

3.4 Code Generator Generator

Marion's code generator generator takes a machine description as input and produces a set of target-

dependent tables and routines that is used by the code generator for code selection, instruction

scheduling and register allocation. The most important table is an array that contains instruction

information. Each array element corresponds to an instruction directive given in the description

and contains the following: a pattern tree and a replacement symbol derived from the expression

given in the directive; an array that indicates, for each instruction, its operand kinds (e.g.register)

and their locations within the pattern and subject trees; an index into an array of resource vectors;

and cost, latency and delay slot data. Other data structures hold declarations, CWVM information,
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%instr oru r, r, #uconst16 (char jshort jint )

f$1 = $2 j ($3 << 16);g =* load constant upper *=

[IF; ID; IE; IA; IW;] (1,1,0)

=* for loading 32�bit constant *=

%glue #const32 (int )

f$1 ==> (low($1) j (high($1) << 16));g

=* for adding negative constant *=

%glue r, #nconst16 (char jshort jint )

f($1 + $2) ==> ($1 � eval(�$2));g

Figure 3.6: Glue transformations. An instruction directive and two glue transformations. The

�rst transformation splits a 32-bit constant into halves; it is needed for most RISCs, which do not

have 32-bit immediates. The low and high built-ins take the low and high halves of the constant,

respectively. The oru instruction matches the subtree created by the transformation that represents

the high half. The second transformation is useful for loading a negative constant in one instruc-

tion on a machine that zero-extends immediate operands. The built-in eval evaluates a constant

expression.

C code fragment

register double x;

double y;

int a;

a = 0xFFFFF;

x = y;

(a)

TOYP assembler fragment

; x is allocated register d1

addu r4,r0,0xFFFF ; low half manifest constant

oru r5,r4,0xF ; high half manifest constant

st r5,8(fp) ; store a

ld.d d2,16(fp) ; load y

add r2,r4,r0 ; high(d1) gets high(d2)

add r1,r3,r0 ; low(d1) gets low(d2)

(b)

Figure 3.7: Sample TOYP code. Given the C fragment in (a), the unscheduled TOYP code is

shown in (b). The 32-bit constant takes two instructions to manifest. The double move also takes

two instructions.
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classes and elements (described in Chapter 4), auxiliary latencies, escape function addresses and

glue transformation patterns. The instruction and glue transformation pattern trees are created at

compile time by a target-dependent initialization routine.

The two most signi�cant target-dependent routines are maptype decl, which returns the general

purpose register set for the given type, and reg overlap, which returns register overlapping infor-

mation derived from %equiv directives and register sizes. These are used during pseudo-register

creation and register allocation.

The code generator generator uses a recursive descent parser to build lists of information that

directly correspond to the major Maril constructs, such as declarations and instructions; the lists

are then processed and output as initialized data.

Since most instructions use machine resources in the same manner, resource use vectors are

shared among instructions. The code generator generator enters each unique vector it encounters

in a resource vector table that is output with the other information lists.

Because pattern trees are allowed to match subject trees of various datatypes, the pattern trees

are typed bottom-up with a union of types called a multitype. The multitype indicates all possible

types that a pattern node may match. Since the IL trees presented to the matcher are guaranteed

to be correctly typed, the multitype cannot cause an illegal match.

3.5 Code Selection

Marion performs code selection before control is given to the code generation strategy. The selector

matches the input program's IL using a recursive-descent brute-force tree pattern matcher. Patterns

are derived from the machine description by the code generator generator. The matcher examines

the patterns in the order given, greedily selecting the �rst one that matches, and then attempts to

match the subtrees. If unsuccessful, it proceeds to the next pattern. If successful, the pattern is

attached to the IL node. Figure 3.8 gives the basic matching algorithm. After matching, Marion

does a left-to-right bottom-up walk of the IL, generating the code stream according to the patterns

attached to the IL nodes.

For example, to match the subject tree shown in Figure 3.9, given the set of patterns in Fig-

ure 3.10, the top-down matcher begins with the start symbol \STMT" and examines the pattern

\= Addr REG." Since the top-level operator in the subject matches the \=" operator in the pat-

tern, the matcher examines the children, beginning with the left child. The pattern tree's left

child \Addr" matches the subject tree's left child \Addr a." The pattern tree's right child is the

non-terminal \REG," so the matcher recurses and examines patterns whose replacement symbols

are \REG" against the new subject tree rooted at the \+" node. The �rst symbol in the pattern

\+ REG REG" matches the new subject tree's top-level operator, so the matcher examines the

children. Since the pattern tree's left child is \REG," the matcher again recurses. The �rst pat-

tern it examines fails because the operators do not match. The �rst symbol in the next pattern

\" Addr" matches the subject tree's top-level operator and the children match as well. At this

point the matcher returns success and then attempts to match the other subtree. This subtree

matches in similar fashion; therefore the entire tree matches.

Two tables are created by the code generator generator to e�ect more e�cient matching. The

�rst, the NTindex table, contains triples (nt,�rst,last); each maps a replacement symbol nt into a
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Algorithm 1: match

Input: threaded IL DAG

Output: attributed threaded IL DAG

De�ne: foreach IL subject or pattern node s

s:op = IL operator; s:types = set of allowable types (multitype)

s:pat = pattern matched by a subject node

De�ne:

NT = the set of non-terminal replacement symbols

N:pat = the set of patterns associated with a non-terminal symbol N

Method:

/*** Match all statements in procedure ***/

foreach node s 2 IL thread

if matchNT(STMT,s) = true then

success

else

error

endif

endfor

matchNT(N; s)

/*** Match a non-terminal ***/

foreach pattern p 2 N:pat

if matchpat(p; s) = true then

return true

endif

endfor

return false

matchpat(p; s)

/*** Match a pattern ***/

if p:op = s:op and s:types � p:types then

foreach p.child

if matchpat(p:child; s:child) = false then

return false

endif

endfor

s:pat = p

return true

elseif p:op matches some symbol N then

if matchNT(N; s) = true then

return true

endif

endif

return false

Figure 3.8: Algorithm for matching the IL. STMT is the non-terminal start symbol in the

grammar derived from the machine description.
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Figure 3.9: Example IL subject tree for the statement a = b+c. \"" is an operator that extracts

the value at an address.

Replacement Pattern Instruction

STMT = Addr REG st addr,r

REG + REG REG add r1,r2,r3

REG " Addr ld addr,r

Figure 3.10: Tree patterns. Table of tree patterns (in pre�x form), replacement symbols and

corresponding instructions. STMT is the non-terminal start symbol. REG is a non-terminal that

represents a register. \"" is an operator that extracts the value at an address. Addr is a terminal

symbol (leaf) that represents an address.

range in the second table, the OPindex table. The OPindex table contains triples (op,�rst,last);

each maps an IL operator op into a range in the instruction pattern array. At any point during

matching, the top-down matcher has a replacement symbol (from the containing pattern) and a

subject tree. The matcher uses the replacement symbol to index into the NTindex table, yielding

a range in the OPindex table. The matcher uses the top-level operator of the subject tree to index

into this range, yielding a range of instructions to examine. All instructions in this range have the

replacement symbol nt and a pattern tree whose top-level operator is op. Figure 3.11 shows an

example.

During code selection pseudo-registers are created for all expression temporaries. Local common

subexpressions and user variables that may reside in registers are also represented by pseudo-

registers. Pseudo-registers are later mapped to physical registers by the register allocator. Local
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Subject tree: ADD REG REG

Replacement symbol: REG

NTindex

REG

MUL

SUB

OPindex

ADD

Instruction patterns

add

add

add

add

Figure 3.11: Pattern matcher tables. An example use of the NTindex and OPindex tables by

the pattern matcher. Assume the current replacement symbol is REG and the subject tree is \ADD

REG REG" (pre�x notation). The replacement symbol REG indexes into NTindex, which gives

a range into OPindex. The top-level subject tree operator ADD indexes into the OPindex range,

which yields a range of instruction patterns. The pattern matcher examines the patterns in order,

attempting to match the subject tree.

pseudo-registers refer to registers that are live in only one basic block. Registers that are live in

more than one block are known as global pseudo-registers.

A simple code selector that is separate from other code generation phases can yield ine�cient

code for CISCs. This is because most operations may be performed directly on memory operands

and because many IL constructs can be mapped to more than one instruction sequence. On RISCs,

however, operands may not reside in memory and most IL constructs can be mapped to only one

instruction sequence. Therefore, since the code selector's choices are limited, a simple scheme that

is separate from register allocation causes few ine�ciences.

2

Addressing expressions do require the

selector to make choices, but the choices are simple enough to be managed with a hand-ordered

2

On some RISCs, notably the i860, there is a greater potential for ine�ciency, because the code selector

has more instruction sequence choices. Nevertheless, there are still signi�cantly fewer than on most CISCs.
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pattern list, using the greedy heuristic.

The input to the code selector is an IL DAG. To accommodate DAGs within a naive tree pattern

matcher, an IL node with more than one parent is forced into a register, unless it is a constant that

can be subsumed by an addressing mode or an immediate operand.

3.6 Code Generator Structure

Marion's modular structure allows it to support di�erent code generation strategies. The strategy

module directs post-selection code generation, as shown in Figure 3.12. It is invoked once per source

procedure and calls the strategy-independent routines as appropriate. The strategy-independent

portion of the back end has three logical components: (1) the code DAG builder constructs a

DAG of machine instructions for each basic block (see Section 4.1); (2) the global register allocator

determines how physical registers are used; and (3) scheduling support handles low-level scheduling

details, such as checking for resource conicts and maintaining the list of instructions that can

be scheduled without causing a delay. The scheduling algorithm is strategy-dependent. Because

the strategy is isolated from the rest of the code generator, the strategy can be replaced with a

minimum of e�ort. Quick recon�guration is useful both to determine the best strategy for a target

architecture and to experiment with new strategies. The strategies are discussed in Chapter 6.

3.7 Register Allocation

Marion uses a graph coloring global register allocator based on the work of Chaitin [Cha82] and

Briggs et al. [BCKT89]. Graph coloring models the register allocation problem as an interference

graph in which nodes represent pseudo-registers and edges represent interference between them.

Two pseudo-registers interfere if there is some point in the program at which they are both live. Two

pseudo-registers interfere if their lifetimes overlap, meaning they cannot share the same register. By

assigning di�erent colors to interfering nodes, coloring the graph is analogous to assigning physical

registers to pseudo-registers. The register allocator determines interference using the instruction

order that is presented to it.

Chaitin's approach is widely used, produces good results and is general enough to support

di�erent code generation strategies. Its disadvantage is that a pseudo-register is either assigned a

physical register or is spilled for its entire lifetime. Chow and Hennessy's method [CH84], which

\splits" a pseudo-register's lifetime, may be a pro�table alternative. The next two sections describe

Chaitin-style and Chow-style register allocation in more detail.

3.7.1 Chaitin-style Register Allocation

In a Chaitin-style register allocator [CAC

+

81, Cha82], all expression temporaries, common subex-

pressions and user variables that may legally reside in registers are given pseudo-registers during

code selection. The register allocator considers all pseudo-registers, both global and local; it allo-

cates physical registers to some of them and spills the rest to memory, inserting spill code (load

and store instructions) where appropriate. In Chaitin's allocator as well as with the modi�cations

of Briggs et al. [BCKT89] and Bernstein et al. [BGM

+

89], a pseudo-register either gets a physical

register or is spilled to memory for its entire lifetime.
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Figure 3.12: Code generator structure. (The symbol ! means \calls" or \accesses.")
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The register allocator comprises four phases: interference graph building, coalescing (or sub-

sumption), coloring and spilling. Chaitin's method iterates over the graph building, coalescing

and spilling phases until it determines that the graph is colorable. Briggs's method, which Marion

employs, also attempts to color the graph on each iteration.

The coalescing phase combines two pseudo-registers if all of the following are true: (1) there is

a move between the last use of one and the de�nition of the other; (2) the two do not interfere; and

(3) the combined pseudo-register node is unconstrained. A pseudo-register node is unconstrained

if it has fewer neighbors in the interference graph than allocable physical registers. Unconstrained

nodes can always be colored.

Constrained nodes are colored in decreasing order of priority; then unconstrained nodes are

colored. For each node p,

priority

p

=

regcost

p

degree

p

: (3.1)

Degree

p

is the number of neighbors of p in the interference graph. Regcost

p

is the cost (in machine

cycles) of forcing p into memory. Generally, this is the sum of the cost of each memory reference

weighted according to the frequency of use of the reference's block. Speci�cally, let p be a pseudo-

register; then

regcost

p

=

X

r2refs

p

opcost

r

� freq

b

; (3.2)

where

(1) opcost

r

is the number of instructions needed to do a load or store operation;

3

(2) b is the basic block containing the reference r;

(3) freq

b

is the number of times b is executed (as calculated by a pro�ling tool) and

(4) refs

p

is the set of all references to p.

Regcost

p

is divided by degree

p

(Equation 3.1) to reect the fact that if p is assigned a physical

register, then that physical register cannot be assigned to any of p's neighbors.

If a pseudo-register cannot be colored, then it is spilled. Each use of the register is preceded by a

load and each de�nition is followed by a store, except that multiple uses of a global pseudo-register

within a block are bracketed by only one load and one store. New short-lived pseudo-registers are

created to hold the values between loads and uses and between stores and de�nitions. Therefore, if

any spilling occurs, a new interference graph must be constructed; coalescing and coloring are then

repeated.

Marion Register Allocation

Marion register allocation uses Chaitin's method [Cha82] with the modi�cations of Briggs et al.

[BCKT89], except that the code generation strategy determines how the register allocator is applied

3

Opcost

r

is 2 for double precision pseudo-registers and 1 for all others. It does not consider load latency,

but could be modi�ed to do so.
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to local and global pseudo-registers; they may be considered together, which is the standard method,

or separately.

Chaitin does not speci�cally discuss register pairs. In Marion's register allocator nodes in the

interference graph that represent register pairs must be colored with two adjacent colors (which

correspond to adjacent physical registers); the coloring phase enforces this using a �rst-�t policy.

(It currently assumes even/odd pairs.) The presence of register pairs changes the de�nition of an

unconstrained node. A node p is unconstrained, if degree

p

�need

p

is less than the number of allocable

registers. Need

p

is the number of physical registers required by pseudo-register p (2 for a register

pair). The new de�nition of degree

p

is as follows:

degree

p

=

X

q2neighbors

p

need

q

: (3.3)

Thus, the degree of a node is the sum of the physical register requirements of its neighbors. The

new de�nition of unconstrained considers the case where a register pair cannot be colored because

of physical register set fragmentation. Marion's coloring policies reduce fragmentation by packing

together pseudo-registers that need single physical registers, but fragmentation can still occur.

Register calling conventions indicate which physical registers are calleesave (preserved by the

called procedure), which are callersave (not preserved by the called procedure) and which are used

to pass parameters. Marion includes callersave physical registers in the interference graph and

makes them interfere with pseudo-registers that are live across a procedure call. This prevents

callersave registers from being assigned to those pseudo-registers, as Chaitin recommends.

For each calleesave register, Marion inserts a move instruction in the procedure's prolog

4

from

the calleesave register to a new pseudo-register; a move from the pseudo-register back to the

calleesave register is inserted in the epilog. The register allocator treats this pseudo-register as

it treats all other pseudo-registers. If possible, it is coalesced with the calleesave physical register,

thereby eliminating the moves. If the pseudo-register cannot be colored, it is spilled, which in e�ect

saves the calleesave register on the stack. Chow's shrink-wrapping [Cho88] may be a useful addition

to this scheme.

At a call site, an argument that is passed in a register is moved explicitly into that physical

register. Again, the register allocator relies on coalescing to eliminate unnecessary moves.

3.7.2 Chow-style Register Allocation

Chow and Hennessy's method [CH84, CH90] di�ers from Chaitin's in that the register allocator can

split a candidate's lifetime. In Chow's original method, global register allocation is performed on a

subset of the available physical registers before code selection. The remaining registers are used for

local expression temporaries. Larus and Hil�nger's variation [LH86] performs register allocation

after code selection. This section discusses the original method, Larus and Hil�nger's variation and

describes how a Chow-style allocator could be �t into Marion.

4

The prolog is the sequence of instructions at the beginning of a procedure that precedes the user's

code. The epilog is the sequence at the end of a procedure that follows the user's code. The prolog and

epilog contain code to allocate and deallocate the procedure's activation record and to enforce the calling

conventions.
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To perform register allocation before code selection, Chow's allocator divides the register set

into two �xed-size partitions, one for global register allocation and one for expression temporaries

created by the code selector. Each register allocation candidate, including user variables and

optimizer-generated temporaries, has a \home" stack location, where it will reside if does not get

a physical register. The interference graph is constructed using the basic block as the grain-size.

This means that two candidates interfere if there is some block in which both are live, even though

one may be live only at the beginning of the block and the other live only at the end. In contrast,

Chaitin-style allocators use a �ner grain-size, the machine instruction. Coalescing is not applicable

in a Chow-style allocator, because machine instructions have not yet been generated.

Like Chaitin-style allocators, Chow's allocator computes a priority for each candidate node;

constrained and unconstrained nodes are also distinguished. The colorer iterates until no more

nodes can be colored. On each iteration, the highest priority constrained node is colored, each of

its neighbors is checked to see if the neighbor should be split, and uncolorable nodes are removed

from the interference graph. If splitting occurs, the graph is updated and the constrained and

unconstrained sets are recalculated. After coloring, the IL is modi�ed to reect the locations of the

candidates that were colored.

Lifetime splitting is one of the main advantages of Chow's allocator; it allows the allocator the

freedom to assign a register to an important part of a candidate's lifetime, instead of all or none

of it. A second advantage is compile-time e�ciency: Chow's allocators consider fewer candidates,

because local expression temporaries are left to the the code selector, and the coloring process occurs

only once with incremental updates of the interference graph; Chaitin-style allocators iterate over

the graph construction and coloring phases.

The primary disadvantage of Chow's allocator is that it partitions the register set, which elim-

inates the possibility of using registers for global candidates sometimes and for locals other times.

Another disadvantage is the larger grain-size, which increases the number of global pseudo-registers

that interfere.

Larus and Hil�nger's register allocator [LH86] eliminates register set partitioning by allocating

registers after code selection. It is more like Chaitin's allocator, in that all allocation candidates

are represented in the code by pseudo-registers. Also, all pseudo-registers (global and local) are

placed into the interference graph together. Like Chow's method, however, the grain-size is a basic

block. Chow's coloring algorithm, including lifetime splitting, is used to color the graph. Spill code

is inserted for candidates that must reside in memory or whose lifetimes are split. Two registers

are reserved for use in spill code; this avoids the need for repeating the coloring.

Because Marion allows the code generation strategy to direct register allocation and instruction

scheduling, Chow's original method, which performs allocation before code selection, is inappro-

priate. Larus and Hil�nger's method is compatible with Marion, but the basic block grain-size for

interference would be too coarse for workloads that contain large basic blocks.

3.8 Summary

This chapter has discussed the machine description language Maril, along with the major com-

ponents of the Marion System, including register allocation, code selection and the intermediate

language. Maril's innovation is the incorporation of instruction scheduling information in a ma-
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chine description language for code generation. Maril has constructs, such as auxiliary latencies

and escape functions, to handle idiosyncrasies that are found even on RISCs. The next chapter

continues with an examination of Marion's instruction scheduling.



Chapter 4

Instruction Scheduling

Many basic block instruction scheduling algorithms have been used for speci�c RISCs and mi-

crocoded processors. Marion's instruction scheduling infrastructure supports many of the algo-

rithms, which are themselves target-independent. In addition, the data structures that Marion

employs are target-independent, but contain target speci�c information that is derived from the

machine description.

Recall that the code generation strategy directs the invocation of and degree of communication

between instruction scheduling and register allocation. The strategy also includes the scheduling

algorithm, so that the algorithm can be easily replaced. This permits the compiler writer to

experiment with di�erent strategies and scheduling algorithms to �nd the appropriate ones for the

target machine and expected workload.

This chapter �rst describes the primary scheduling data structure, the scheduling algorithms

that are supported and Marion's structural hazard checking. Then it describes algorithms to

schedule explicitly advanced pipelines and proves them correct. Finally, it discusses scheduling for

the Intel i860, which has explicitly advanced pipelines.

4.1 Code DAG

The primary data structure that supports basic block instruction scheduling is the code DAG,

in which nodes represent instructions and directed labeled edges represent dependences between

instructions. The label represents the latency between the edge's source and destination nodes.

The DAG is threaded by a code thread, which forms a topological sort and represents the initial

order of the basic block's instructions. A root of the DAG is a node that depends on no others

(i.e., it has no predecessors). A leaf is a node on which no other nodes depend (i.e., it has no

successors). An edge (x; y) with label l means that y cannot be scheduled fewer than l cycles after

x without either violating the program's semantics or causing a data hazard, a pipeline delay that

occurs when data is not yet available. Edges are of three types.

1

A type 1 edge (x; y) represents

a true dependence

2

and is introduced if one of y's source operands is x's result. The edge label is

x's latency. Type 2 edges ensure that memory references are ordered properly; they can be true,

anti- or output dependences. A type 2 edge is introduced between two memory references, one of

which is a store, that may reference the same location. (Section 3.2 discusses Marion's memory

reference disambiguation algorithm.) Type 3 edges, which are anti-dependences, are used by some

1

Edge types are distinguished only in the way they are created, not by the schedulers.

2

A true dependence (also called a ow dependence) is an edge from a de�nition to a use. An anti-

dependence is an edge from a use to a de�nition. An output dependence is an edge between two de�nitions.
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code generation strategies to ensure that separate uses of the same physical register do not overlap.

A type 3 edge is introduced between uses and a subsequent de�nition of a physical register. Type 2

and type 3 edges are given latency labels of 1. The label's value is actually target-dependent, but

a value of 1 is su�cient to generate correct schedules for all the architectures considered in this

research.

The strategy module controls the inclusion of each edge type, permitting Marion to support

strategies that do not require all types; for example, Hennessy and Gross's method [HG83] does

not require type 3 edges.

The IL DAG, which is output by the front end, provides an initial template for the code DAG.

The code selector matches the IL and creates a corresponding sequence of machine instructions,

but does not create the code DAG. Marion separates code DAG construction from code selection,

because (1) only type 1 edges correspond to edges in the IL DAG and (2) the code DAG is di�cult

to keep up-to-date when spill code is inserted by the register allocator.

4.2 Scheduling Algorithms

Many processors, such as the CDC 6600 and the IBM 360/90, have performed instruction scheduling

dynamically in the hardware [Tom67, Tho70]. For microcoded processors, microcode programmers

have employed both hand-coded and compiler-based scheduling (or compaction) techniques. More

recently, RISC compilers have used instruction scheduling techniques on machine code.

Except in limited cases, optimal instruction scheduling, even without resource or register con-

straints, is NP-complete. Consequently, heuristics are typically employed. Lawler et al. [LLM

+

87]

give a survey of theoretical results. Bernstein and Gertner present a polynomial-time algorithm for

the case where a single pipeline has a maximal delay of one cycle [BG89]. Proebsting and Fischer

present a linear-time algorithm that minimizes execution time and local register use, given an ex-

pression tree and assuming a machine with a 2-cycle load latency and no other latencies greater

than 1 [PF91].

The most common approach to instruction scheduling is list scheduling [Tho67, LDSM80, Fis81,

HG83, FERN84, GM86, GH88, War90]. Given a code DAG, the scheduler keeps a list of instructions

that are ready to be scheduled without causing a delay. On each iteration it uses a heuristic to

choose a ready instruction to schedule and then updates the list. In the general case, this approach

has worst-case running time of O(e), where e is the number of edges in the DAG, but the heuristic

can increase the complexity.

A list scheduler typically selects the highest priority node in the ready list. A common heuristic

for assigning priority is maximum distance, the length of the longest path through the code DAG

from the instruction node to a leaf node. The length of a path is the sum of all edge labels along the

path.

3

The reasoning is that the node farthest from completion is the most critical; less important

nodes can be scheduled later. Maximum distance is a good initial heuristic, but there are cases

where additional or alternative heuristics are pro�table.

For example, given the DAG in Figure 4.1, the schedule \b; a; c;d; e;" is optimal. However, using

only the maximum distance heuristic, the inferior schedule \a; c; b; ; d; e;" is equally likely, because

a, b and c have the same priority. The delay \ ;" occurs because b has a latency of 2. A second-level

3

The maximum distance is sometimes called the height of the node within the DAG.
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Figure 4.1: Example DAG. Nodes represent instructions. Edges represent dependence. Edges

are labeled with latencies. The scheduler can schedule either a, b or c �rst; b is the correct choice,

because both d and e depend on b.

heuristic that gives higher priority to nodes with more successors would choose correctly in this

case. The idea behind this heuristic is that scheduling a node with more successors creates more

choices for the scheduler on subsequent cycles and allows more nodes to become ready sooner.

Another heuristic, used by Gibbons and Muchnick [GM86], gives a higher priority to a node that

has a greater operation latency with one of its successors. By scheduling such a node �rst, there will

be more opportunities to hide the latency with other instructions. Gibbons and Muchnick use the

number of successors and the maximum distance as second- and third-level heuristics, respectively.

An alternative to having a second-level priority is Palem and Simons's Rank algorithm [PS90].

This algorithm incorporates maximum distance and the number of successors into a single \rank."

First, the algorithm sets the rank of all leaves to some large number (e.g., size of the code DAG

plus total of all edge labels). Decreasing ranks are assigned from leaves to roots. To assign node i's

rank, each successor is �t into a tentative schedule based on its rank; then, i is given a rank that

reects its position in the schedule relative to its successors. For example, consider the DAG in

Figure 4.1. The algorithm would assign d and e a rank of 13. Node a gets a rank of 11, since d's

rank is 13 and the latency between a and d is 2. Node c also gets a rank of 11. To assign b's rank,

the algorithm creates a schedule containing d and e: d at cycle 13 and e at cycle 12. Now, b gets a

rank of 10, since it must be scheduled at least 2 cycles before e. Thus, b has a higher rank than a

or c and, therefore, is scheduled �rst.

Some list schedulers update priorities during the scheduling process. For example, Warren's

scheduler for the IBM RS/6000 [War90] runs before register allocation. To restrain register needs,

the scheduler reduces the priorities of load instructions as the number of live registers needed by

the schedule increases.

Algorithms other than list scheduling have been used as well. The critical path algorithm,

described by Landskov et al. [LDSM80], schedules all nodes along the longest path from a root of the

code DAG to a leaf. Then, other paths are �t around that schedule, stretching it if necessary. The

branch and bound algorithm, also described by Landskov et al., builds a tree of possible schedules.

Each leaf is a complete schedule for the code DAG. An exhaustive search of the tree will �nd the

optimal schedule, but takes exponential time. The search is heuristically bounded by noting the

length of the best incomplete path so far and pruning the tree of branches that represent apparently

worse incomplete paths. The Bulldog compiler [FERN84] also uses a branch and bound algorithm

as an alternative to list scheduling.

A radically di�erent approach by Arya [Ary85] uses integer programming to produce optimal
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schedules for the Cray-1, albeit exponentially in the number of nodes. Scheduling constraints,

including operation latencies and resource requirements, are modeled as inequalities. These are fed

to an integer programming package, which �nds the lowest cost solution.

All of Marion's code generation strategies use list scheduling algorithms with the maximum

distance as the primary heuristic. With minor additions to the scheduling support routines, other

scheduling algorithms, such as critical path and branch and bound could be employed.

There may be some interaction between the architecture and scheduling algorithms. For exam-

ple, for one architecture a particular algorithm may produce the best schedules, whereas a di�erent

algorithm is the best for another architecture. Also, a sophisticated algorithm may yield a high

bene�t on one architecture, but little on another. To date, I have not explored these possibilities

beyond contemplating them.

4.3 Structural Hazards

A structural hazard occurs when two instructions need the same resource on the same cycle. For

example, two instructions executing in separate functional units may require a register write-back

bus on the same cycle, or an instruction may need a pipeline stage for more than one cycle,

preventing its use by a subsequent instruction. Avoiding these hazards can yield better code.

As discussed in Section 3.3.3, the machine description indicates each instruction's resource needs.

From this information Marion constructs a resource vector for each instruction. Each element of

the resource vector contains all resources needed on a particular cycle. To avoid structural hazards,

the scheduler compares a candidate instruction's resource vector with a resource vector that is the

composite of the resources required by all currently executing instructions; if the intersection is

non-empty, the candidate is not scheduled.

This method is computationally simple and easy to implement, but it restricts the scheduler's

knowledge of structural hazards to the current cycle. Information is available to check future

hazards; one possibility involves adding special edges to the code DAG to indicate where hazards

would result. However, the additional processing time would be high and the likely bene�t low.

Marion's structural hazard detection method cannot handle some complicated hazards. For

example, the 88000 employs a priority scheme to regulate the use of its register write-back bus. (See

Section 2.2.) Integer instructions have the highest priority, followed by oating point instructions

and then loads. To accommodate this feature I considered the following:

(1) Allow a priority range to be associated with a resource declaration in the machine

description.

(2) Allow an element of a resource vector associated with an instruction to indicate its

priority.

(3) Examine priorities when checking for structural hazards and allow schedules to

contain structural hazards, if they are caused by prioritized resources.

The main problem is that the cycle on which an instruction uses a resource can shift, causing other

resource uses to shift as well. One solution is to have Marion keep individual resource vectors for

all currently executing instructions, instead of a composite resource vector. However, checking for

structural hazards, which is already time-consuming, would become considerably more expensive.
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%instr adds r, r, r

f$3 = $1 + $2;g

[ALU; WB] (1,1,0)

%move fmov.s f, f (oat )

f$2 = $1;g

[FALU; FWB] (1,1,0)

Figure 4.2: Maril directives for i860 integer add and oating point move instructions.

Since Marion cannot predict when a load request will actually be serviced by the memory system,

I concluded that the potential bene�t would not justify the expense. Instead, Marion's view is that

the �rst instruction scheduled gets the resource. This sometimes yields less e�cient code, but not

incorrect code.

Resources can be used to control multiple instruction issue for some superscalars. The scheduler

will schedule as many instructions on a cycle as possible as long as they cause no structural hazards.

For example, the i860 allows an integer and a oating point instruction to be issued simultaneously.

By using a di�erent set of resources for each of the two instruction types, the user can model two

instructions per cycle. Figure 4.2 shows integer add and oating point move instruction directives.

4

Since the resources they use di�er, one of each can be scheduled per cycle.

4.4 Control Hazards

A control hazard is a pipeline delay caused by a branch instruction if the branch target address is

not known when the target instruction needs to be fetched. Most RISCs attempt to avoid these

hazards by using a branch delay mechanism. (See Chapter 2.) In Maril, the number of delay slots

is speci�ed in the instruction directive. Currently, Marion always �lls branch delay slots with no-

ops. Gross and Hennessy's algorithm for �lling these slots [GH82, Gro83] could easily be included

in Marion. This algorithm runs as a separate intra-procedural pass after instruction scheduling.

It attempts to �ll delay slots with instructions that are before the branch, with instructions that

follow the branch target, and with instructions that follow the branch. Gross and Hennessy found

that, on a machine whose branches have one delay slot that is always executed, their algorithm

�lled 90% of the delay slots (counted statically). The e�ect on overall performance of �lling branch

delay slots varies with the workload; it will be lower for computation-intensive programs than for

decision-intensive programs.

4.5 Classes and Clocks

The code DAG and resource vectors provide enough information to schedule instructions for many

RISCs, including the R2000 and 88000. In addition, multiple instruction issue can be modeled using

machine resources. Some architectures, however, restrict multiple instruction issue or instruction

4

The actual resources used in the i860 description di�er from what is shown, because of explicitly advanced

pipelines, discussed in Section 4.5.
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word packing,

5

or have features that cannot be expressed using the Maril constructs introduced so

far.

The i860 has several such features. First, it supports instructions to perform oating point

multiply and add together, but the restrictions on packing these operations together are irregular;

not all combinations are legal. Second, it has chaining options that feed the results of one oating

point pipeline into another. Third, the oating point add and multiply pipelines must be explicitly

advanced. An explicitly advanced pipeline (EAP) is a pipeline that retains its state until one of a

particular set of instructions is executed. An example is a multiply pipeline that advances only

when a multiply instruction is issued; after a multiply has been \launched," the pipeline remains

in a suspended state until the next multiply is issued.

To model the i860 oating point unit, Marion views it as a \long instruction word" in which

each �eld corresponds to one of the following: three multiplier stages called M1, M2 and M3, three

adder stages called A1, A2 and A3, and the oating point write-back bus FWB. The individual

pipestage sub-operations that compose a full operation are declared as instructions, as shown in

Figure 4.3(b). For example, to perform d6 d4 � d5, the code selector produces the sequence,

M1 d4; d5; M2; M3; FWB d6.

M1 launches the multiply, M2 and M3 advance the pipeline and FWB catches the result. These sub-

operations need not be scheduled on consecutive cycles, because the pipeline is explicitly advanced.

In addition, since each sub-operation uses only the resource corresponding to one �eld, it may be

packed with others to form a long instruction word.

Two Maril features support the scheduling of sub-operations. First, to handle irregular packing

restrictions, the user associates a class with a sub-operation. The class is the set of all long

instruction words in which that sub-operation may appear. The long instruction words are class

elements. Two sub-operations may be packed if the intersection of their associated classes is non-

empty. The scheduler checks for legality as each sub-operation is packed. For example, the i860

oating point multiply instruction pfmul is a class element. Classes associated with M1, M2, M3

and FWB all contain pfmul . Therefore, M1 and M3, for example, may be packed together, yielding

a pfmul instruction.

Second, to allow EAP sub-operations to be separated in the schedule, the user de�nes a clock

to keep track of time in a particular EAP. A temporal register based on clock k is a register

whose value changes when clock k ticks. Temporal registers are typically latches between EAP

pipestages. Instructions that advance an EAP, and therefore change the values in its latches, are

declared to a�ect the EAP's clock. As shown in Figure 4.3, the i860 multiply pipeline has three

temporal registers, m1, m2 and m3, based on clock clk m; each multiply sub-operation a�ects

clk m. Section 4.8 discusses scheduling for the i860 in more detail.

Pipelines that advance on every cycle need not be modeled at the latch level, because the sub-

operations performed in the stages may not be temporally separated. Within an EAP, however,

the sub-operations may be separated. Doing so sometimes enables an operation to begin earlier

than would otherwise be possible; it also facilitates the packing of instructions from more than

one pipeline. Separating sub-operations requires the scheduler to keep track of the sub-operation

results in temporal registers, a process that is called temporal scheduling.

5

Recall that instruction word packing refers to the process of �tting individual operations into a long

instruction word.



41

%clock clk m; =* multiple pipeline clock *=

%reg m1 (double ; clk m) +temporal ; =* stage 1 exit latch *=

%reg m2 (double ; clk m) +temporal ; =* stage 2 exit latch *=

%reg m3 (double ; clk m) +temporal ; =* stage 3 exit latch *=

(a)

%instr M1 d, d (double ; clk m) =* launch multiply *=

fm1 = $1 * $2;g

[M1] (1,1,0)

%instr M2 (double ; clk m) =* advance through stage 2 *=

fm2 = m1;g

[M2] (1,1,0)

%instr M3 (double ; clk m) =* advance through stage 3 *=

fm3 = m2;g

[M3] (1,1,0)

%instr FWB d (double ; clk m) =* catch result *=

f$1 = m3;g

[FWB] (1,1,0)

(b)

Figure 4.3: Maril description for i860 oating point multiply. (a) Declarations for a multiply

clock clk m and its associated temporal registers. Temporal registers represent latches in the

multiply pipeline. (b) Instruction directives for i860 oating point multiply. Each multiply sub-

operation a�ects clk m.

A condition code register is, in e�ect, a temporal register. Like an EAP latch, it is set by some

instructions, but unmodi�ed by others. The compiler writer declares the condition code register to

be a temporal register and indicates which instructions a�ect the condition code. Marion schedulers

then ensure that the condition code is set and referenced properly.

4.6 Temporal Scheduling

Separating pipeline sub-operations can cause a non-backtracking scheduler to deadlock. To avoid

this, Marion modi�es the code DAG before scheduling. This section describes how Marion repre-

sents temporal information in the code DAG and shows how deadlock can occur. It also presents

an algorithm to prevent deadlock, given that no chaining (i.e., EAP results fed directly into an-

other EAP) is allowed and proves the algorithm correct. The next section relaxes the restriction

on chaining, gives a modi�ed algorithm and proves the modi�ed algorithm correct.

If a code DAG edge represents a true dependence via a temporal register based on clock k, then

Marion marks it as a temporal edge based on k. A sequence of nodes connected by temporal edges

is called a temporal sequence. Each sequence is restricted to have only one head, seqhead, and one

tail, seqtail. In addition, a given node cannot be a member of more than one sequence. These

restrictions are discussed in more detail later in this section.

Intuitively, a temporal sequence is a sequence of EAP sub-operations required to perform one
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operation. The seqhead launches the operation; the seqtail catches the result. More formally, let

G = (N;E) be a code DAG, where N is the set of nodes and E is the set of edges between nodes.

De�nition: Let k be a clock. Let x 2 N such that there is an outgoing temporal edge

(x; y) 2 E that is based on k and there is no incoming a temporal edge (z; x) 2 E that

is based on k. Recursively de�ne T to be a temporal sequence based on k:

T =

(

fxg;

T [ fyg; if 9 z 2 T such that (z; y) is a temporal edge based on k

De�nition: Let T be a temporal sequence based on k.

seqhead(T) = x such that x 2 T and there is no z such that (z; x) is a temporal edge

based on k.

seqtail(T ) = x such that x 2 T and there is no z such that (x; z) is a temporal edge

based on k.

De�nition: Let x 2 N .

seqhead(x) =

(

seqhead(T ); if x 2 a temporal sequence T

x, otherwise

seqtail(x) =

(

seqtail(T ); if x 2 a temporal sequence T

x, otherwise

When the source of a temporal edge has been scheduled, but the destination has not, the

scheduler is said to be scheduling across a temporal edge. The temporal edge indicates that the

value it represents is held in a temporal register and therefore is ephemeral; to prevent the loss of

that value the scheduler adheres to the following rule:

Rule 1: If there is a temporal edge (x; y) based on clock k, and x has been scheduled,

then an instruction z 6= y that a�ects k may not be scheduled before y, but may be

packed with y.

If z were scheduled before y, the value held in the temporal register would be lost, because z a�ects

clock k. For example,

M1 d4; d5; M2; M3; FWB d6

forms a temporal sequence based on clk m. After \M1 d4; d5" is scheduled, the initial sub-operation

in a similar sequence (e.g., \M1 d7; d8") may not be scheduled before M2, but may be packed with

it, since their resources do not overlap.

After the two sub-operations are packed together and scheduled, the scheduler will be scheduling

across two temporal edges. To avoid violating Rule 1, all sub-operations that are destinations of

temporal edges based on the same clock are bundled into a temporal group. Each temporal group

is treated as a single instruction to be scheduled. In e�ect, temporal grouping pre-packs all sub-

operations thatmust be packed together. Other sub-operations may then be packed with a temporal

group.

Without any code DAG modi�cation, Rule 1 can cause the scheduler to deadlock. Figure 4.4

gives an example. The edge (M2,M3) is a temporal edge based on clock m. The edge (FWB,M3) is

not a temporal edge. If M2 is scheduled before FWB, the scheduler will deadlock. This is because

FWB must precede M3 in the schedule, but FWB a�ects clock m. Scheduling FWB would violate

Rule 1, since it would cause M2's result value to be lost. To force a schedule that avoids deadlock,
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Figure 4.4: Scheduling deadlock. Without the dashed edge (FWB,M2), M2 may be scheduled

before FWB, causing deadlock.

Marion adds the extra code DAG edge (FWB,M2). (This example has been simpli�ed from actual

i860 examples.)

The algorithm to add these edges is driven by alternate entries into temporal sequences. In the

previous example, (FWB,M3) is an alternate entry.

De�nition: Let T be a temporal sequence based on k. Let y 2 T such that y 6=

seqhead(T ). (x; y) 2 E is an alternate entry into T i� x 62 T .

An alternate entry edge is sometimes caused by an anti-dependence between a previous use and

subsequent de�nition of a physical register.

Because of alternate entries, temporal sequences must be protected to avoid scheduling deadlock.

Intuitively, to protect a temporal sequence T based on clock k, whenever an alternate entry into

T is found, Marion searches each path backward from the alternate entry. If an instruction that

a�ects k is found, an edge is added from that instruction (or a member of its temporal sequence) to

the seqhead of T . This ensures that all ancestors of any node in a temporal sequence are scheduled

before the head of the sequence. Given a topological sort of the input DAG, these edges are always

forward edges or cross edges, never back edges. Therefore, they cannot cause a cycle in the graph.

The actual algorithm di�ers somewhat.

The remainder of this section describes the algorithm to protect temporal sequences and proves

that it avoids scheduling deadlock. This algorithm prohibits chaining between EAPs, which greatly

simpli�es the process of preventing deadlock. The next section relaxes this restriction, gives a

modi�ed algorithm and proves that it avoids deadlock.

Marion places some restrictions on the target machine. The restrictions either reect the actual

hardware or should have little a�ect on the generated code. The four restrictions are listed, followed

by a discussion:

(1) Although a node may a�ect more than one clock, each temporal edge is based on

only one clock. This means that only a single clock may control the latches in an EAP.

(2) No node may be a member of more than one temporal sequence. This implies

that no chaining is allowed and both the number of incoming temporal edges (temporal

fanin) and outgoing temporal edges (temporal fanout) are at most one.
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(3) The packing restrictions prohibit two nodes from di�erent temporal sequences from

being scheduled together only if both are the ith nodes in their respective sequences.

(4) No deadlock can occur due to general purpose register usage.

These are not overly restrictive. One clock is su�cient to model EAP control. Restriction 2

prohibits a common subexpression temporary from being a temporal register; although this is

possible on some architectures, its prohibition should have only minor e�ect on the generated code.

Restriction 2 also prohibits chaining, but this is relaxed in the next section. In practice, on the

i860, Restriction 3 has been liberalized and no di�culty was observed. However, this could be a

problem for other targets. Restriction 4 is met by requiring anti-dependence edges to be added

to the code DAG for independent uses of the same physical register [GM86] or by a scheduling

algorithm that speci�cally avoids this kind of deadlock [HG83].

The following de�nitions are used in Algorithm 2:

De�nition: Let x 2 N . clks(x) = fk j k is a clock and x a�ects kg.

De�nition: Let x; y 2 N . If x

�

! y,

6

then dist(x; y) = the number of edges on the

path.

De�nition: Let x; y 2 N . Let k be a clock. If x

�

! y such that all edges are temporal

based on k, then dist

k

(x; y) = the number of edges on the shortest such path.

De�nition: Let x 2 N . sched

k

(x) is the schedule time of x according to clock k.

sched(x) is the schedule time of x according to primary system clock (which de�nes the

processor's cycles).

Algorithm 2, shown in Figure 4.5, walks the code DAG in reverse topological order. Whenever

it �nds an alternate entry (y; x) into a temporal sequence T based on k, it adds x to a list associated

with y. The lists are propagated backwards through the DAG until a node z is found that a�ects

some clock. Then, an edge is added from z (or a member of z's temporal sequence) to seqhead(T ).

The algorithm uses temporal sequence distances to determine where to add edges. For example,

in Figure 4.6(a), the temporal sequence A is longer than the sequence B; both are based on clock

a and all instructions a�ect a. The algorithm adds the dotted edge (A2,B1). If the edge (A1,B1)

were added instead, deadlock could occur as follows: A2 and B1 are scheduled together; then, A3

and B2 must be scheduled together; but then, A4 cannot be scheduled without losing B3's operand.

If the source of an alternate entry (y; x) into a sequence S a�ects a di�erent clock than the S's

clock, then the algorithm adds an edge from y, instead of seqhead(y), as shown in Figure 4.6(b).

This avoids another pitfall. For example, given the four sequences in Figure 4.6, if sequence B were

based on clock b and neither dotted edge were present, then B2 and D2 could be scheduled before

either A4 or C4, causing deadlock.

The algorithm has a worst case behavior of O(ne), where n = jN j and e = jEj. Each list x:list

is kept in order (according to code thread order) and no duplicates are allowed; therefore, a list

has at most n items. This implies that adding a list item takes O(n), but so does merging two

lists. Therefore, the total propagation time over a given DAG is O(ne). Since the propagation time

dominates, the worst case behavior is O(ne).

6

Notation: x

�

! y means that there is a path in the code DAG of length zero or more from x to y. x

+

! y

means that there is a path of length one or more.
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Algorithm 2: protect temporal sequence

Input: code DAG G = (N;E)

Output: modi�ed code DAG

De�ne foreach x 2 N :

x:list = an initially empty list of pairs (y; d), such that y 2 N and d is a distance

Method:

foreach x 2 N (in reverse code thread order)

if j clks(x) j> 0

foreach (y; d) 2 x:list

let k = the clock on which y's temporal sequence is based

if 9 j 2 clks(x) such that j 6= k then

add edge (x,seqhead(y)) to E

elseif dist

k

(seqhead(x); x) � d then

add edge (seqhead(x),seqhead(y)) to E

else

let w = (dist

k

(seqhead(x); x) � d+ 1)th node in x's temporal sequence

add edge (w,seqhead(y)) to E

endif

remove (y; d) from x:list

endfor

endif

foreach y 2 predecessors(x)

if (y; x) is an alternate entry into a temporal sequence T then

add (x; dist

k

(seqhead(x); x)) to y:list

else

foreach (z; d) 2 x:list

add (z; d) to y:list

endfor

endif

endfor

endfor

Figure 4.5: Algorithm protect temporal sequence to add code DAG edges to protect temporal

sequences. The algorithm �nds alternate entries and propagates their locations backwards through

the DAG until the appropriate node is found to become the source of a new edge.

Now I show that the code DAG output by Algorithm 2 avoids deadlock. During scheduling, a

node is either scheduled or unscheduled. An unscheduled node with no unscheduled predecessors

is considered to be ready. Operation latency is not considered here, since no-ops can always be

scheduled until any ready node can be scheduled without causing a delay.

Since all nodes in a temporal sequence are consecutive in the code thread and since for every

edge (x; y) added by the algorithm, x precedes y in the code thread, the algorithm creates no cycles

in the output graph G. Therefore, until every node is scheduled, there must be some ready node.

The proof shows that, assuming some DAG node has not been scheduled, the scheduler can always

proceed by �nding a node to schedule. The focus is on the set P of temporal edges across which

the scheduler is scheduling:
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Figure 4.6: Alternate entries into temporal sequences. (a) A long temporal sequence A has

an alternate entry into a short temporal sequence B. (b) Temporal sequence D is based on clock a.

The source of the alternate entry into D is based on a di�erent clock, clock b. Algorithm 2 adds

the dotted edges to avoid deadlock.

P = f(x; y) j (x; y) 2 E is a temporal edge and x is scheduled and y is unscheduledg.

Lemma 1 states that if the destination of every temporal edge in P is ready, then some or all of

the nodes can be grouped and scheduled.

Lemma 1: If 8 (x; y) 2 P , y is ready, then the scheduler can proceed.

Proof: If jP j= 0 then any ready node can be scheduled.

Let jP j > 0. Since 8 (x; y) 2 P , y is ready, all such nodes can be grouped together and

the group can be scheduled. 2

Lemma 2 states that if the destination of a temporal edge (x; y) 2 P is not ready, then some ancestor

of y can be scheduled. In this case y must be an alternate entry point. The proof partitions all

ready ancestors of the alternate entry into two sets: those that a�ect some clock and those that

a�ect none. Then, it proves by contradiction that the former set is empty; if node u a�ects some

clock, then either it must be an ancestor of seqhead(x), which leads to a contradiction, or it must
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Figure 4.7: Lemma 2 example. If u a�ects some clock, then Algorithm 2 adds the dashed edge

(w; seqhead(y)). Since seqhead(y) and x are scheduled, u is also scheduled. The symbol \*" means

there are zero or more edges along this path.

be part of another temporal sequence T . In the latter case, w 2 T such that w

�

! seqhead(y),

which also leads to a contradiction, because nodes between w and u must be scheduled in lock step

with nodes between seqhead(y) and y and the distance between w and u must be less than or equal

to the distance between seqhead(y) and y. (See Figure 4.7.)

Lemma 2: If 9 (x; y) 2 P such that y is not ready and 9 (z; y) 2 E such that (z; y) is

not a temporal edge and z is unscheduled, then 9 u 2 N such that u

�

! z and u can be

scheduled.

Proof: Let T be the temporal sequence such that y 2 T .

Let A = fu j u

�

! z and u is ready and j clks(u) j = 0g. Let B = fu j u

�

! z and u is

ready and j clks(u) j > 0g. Clearly A [ B 6= ;.

Show A 6= ; by contradiction. Assume A = ;. This implies B 6= ;. Let u 2 B. Let

v 2 N be the last node that a�ects some clock on the path u

�

! v

�

! z. Since (z; y) is an

alternate entry into T , then from Algorithm 2, there is an edge (w;seqhead(y)) 2 E such
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that seqhead(v)

�

! w

�

! v. Since seqhead(y)

�

! x ! y and x is scheduled, seqhead(y)

is scheduled. Therefore w is scheduled. If for all temporal sequences S, v 62 S, then

v = w. But, since v is unscheduled, v 6= w. Therefore, there is a temporal sequence S

such that v; w 2 S. Now, if T and S are based on di�erent clocks, then v = w (from

Algorithm 2). Therefore, T and S are based on the same clock k. This implies that

after seqhead(y) is scheduled, nodes from T and S are scheduled in lock step according

to clock k. Now, from Algorithm 2,

dist

k

(w; v) � dist

k

(w; z) � dist

k

(seqhead(y); y):

Therefore,

sched

k

(x) = sched

k

(seqhead(y)) + dist

k

(seqhead(y); y)� 1

� sched

k

(seqhead(y)) + dist

k

(w; v)� 1

� sched

k

(w) + 1 + dist

k

(w; v)� 1

� sched

k

(w) + dist

k

(w; v)

� sched

k

(v)

This implies that sched(x) � sched(v). Since x is scheduled, then v is scheduled.

N

7

Therefore A 6= ;. Since u 2 A implies that u a�ects no clocks, u can be scheduled. 2

Theorem 1 uses the two lemmas to show that the scheduler avoids deadlock.

Theorem 1: Given the output of Algorithm 2, the scheduler will not deadlock.

Proof: Assume 8 (x; y) 2 P; y is ready. By Lemma 1 the scheduler can proceed.

Assume 9 (x; y) 2 P such that y is not ready. This implies 9 (z; y) 2 E such that z is

unscheduled. Since temporal fanin � 1; (z; y) is not temporal. Therefore, by Lemma 2,

the scheduler can proceed.

Therefore, the scheduler will not deadlock. 2

4.7 Temporal Scheduling with Chaining

Chaining occurs when a pipeline sends its result directly to its own input or to another pipeline's

input without using a general purpose register to hold the intermediate value. This section discusses

chaining, presents a modi�ed algorithm to protect temporal sequences and proves that the modi�ed

algorithm avoids deadlock.

Marion models chaining by introducing sub-operations that explicitly feed values from one

pipeline to another. The code selector produces these sub-operations by matching patterns in the

order speci�ed by the compiler writer. For example, Figure 4.8 shows a speci�cation of several add

pipeline instructions for the i860. The A1m instruction takes one operand from the register set

and one from the multiply pipeline latch m3. (The multiply instructions are shown in Figure 4.3.)

Thus, the expression \d9 = d6 � d7 + d8" yields the following code sequence:

M1 d6; d7; M2; M3; A1m d8; A2; A3; FWBa d9.

The sub-operation names and resource names have no implicit meaning. All of the inter-pipestage

movement is captured by the temporal registers.

7

The

N

symbol represents contradiction.
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%instr Aam d (double ; clk a, clk m) =* Launch add *=

fa1 = a3 + m3;g =* operands: from adder,multiplier *=

[A1] (1,1,0)

%instr A1m d (double ; clk a, clk m) =* Launch add *=

fa1 = $1 + m3;g =* operands: from reg,multiplier *=

[A1] (1,1,0)

%instr A1 d, d (double ; clk a) =* Launch add *=

fa1 = $1 + $2;g =* operands: from regs *=

[M1] (1,1,0)

%instr A2 (double ; clk a) =* Advance add thru stage 2 *=

fa2 = a1;g

[M2] (1,1,0)

%instr A3 (double ; clk a) =* Advance add thru stage 3 *=

fa3 = a2;g

[M3] (1,1,0)

%instr FWBa d (double ; clk a) =* Catch add result *=

f$1 = a3;g

[FWB] (1,1,0)

Figure 4.8: Instructions for the i860 add pipeline. Instruction A1m takes an operand from

the multiply pipeline. Instruction Aam takes one operand from the add pipeline and the other from

the multiply pipeline. Temporal registers a1, a2 and a3 represent the latches in the add pipeline.

To support chaining, the restriction that no node may be part of more than one temporal

sequence is removed. This allows temporal fanin to be greater than one, but temporal fanout is

still restricted to be less than or equal to 1. If a node x has two incoming temporal edges, then it

is part of a temporal tree. Intuitively, a temporal tree is a subgraph of the code DAG such that all

nodes are connected by temporal edges. Since temporal fanout is still at most 1, the subgraph is a

tree. More formally,

De�nition: Let R and S be temporal sequences. T = R [ S is a partial temporal tree

i� seqtail(R) 2 S or seqtail(S) 2 R. R is a temporal tree i� either (1) T is a partial

temporal tree and there is no temporal sequence V such that either seqtail(V ) 2 T or

seqtail(T) 2 V , or (2) T is a temporal sequence and 9 x 2 T such that jclks(x)j > 1.

De�nition: Let T be a temporal tree. entries(T ) = fx j x 2 T and there is no edge

(z; x) 2 E such that (z; x) is a temporal edgeg. Let y 2 T . entries(y) = fx j x 2

entries(T ) and x

�

! y such that all nodes on the path are members of Tg.

De�nition: Let T be a temporal tree. Let x 2 T . x is a merge point i� x has temporal

fanin > 1 or jclks(x)j > 1 or there are temporal sequences S and T such that S 6= T

and x 2 S and x 2 T .

De�nition: Let T be a temporal tree. clks(T ) = fk j 9 x 2 T such that k 2 clks(x)g.

De�nition: Let S and T be temporal trees. S precedes T i� 8x 2 S and 8y 2 T , x

precedes y in the code thread.
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Figure 4.9: Example temporal tree. Nodes A1 through FWBa form a temporal sequence based

on clock a. Nodes M1 through Aam form a temporal sequence based on clock m. Together the

two temporal sequences form a temporal tree with a merge point Aam. Nodes A1 and M1 are the

entries into the temporal tree.

De�nition (modi�ed): Let x 2 N . Let R; S be temporal sequences.

seqhead(x) =

8

>

<

>

:

seqhead(S); if x 2 R and x 2 S and seqtail(R) 2 S

seqhead(R); if x 2 R

x, otherwise

seqtail(x) =

8

>

<

>

:

seqtail(R); if x 2 R and x 2 S and seqtail(R) 2 S

seqtail(R); if x 2 R

x, otherwise

Figure 4.9 shows a temporal tree that contains two temporal sequences. The node Aam is a merge

point; it takes one operand directly from the add pipeline and the other directly from the multiply

pipeline. The edge (M3,Aam) is an alternate entry into the temporal sequence that is based on

clock a.
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Overlapping the execution of temporal trees is di�cult. One method I considered is the fol-

lowing: require every entry of a temporal tree to be scheduled before any entry of the next tree.

However, this will not prevent deadlock if temporal sequences based on a given clock di�er in length.

A merge point in one tree may be waiting for nodes dependent on clock j to be scheduled, while

clock k is not permitted to tick; another tree may be waiting for nodes dependent on clock k to be

scheduled, while clock j is not permitted to tick.

Therefore, I chose to force any two temporal trees that have some clock in common to be well

ordered. This means that all merge points of the �rst tree must be scheduled before any entry of

the second tree. Marion enforces this by adding code DAG edges as follows:

Let S and T be two temporal trees such that,

(1) clks(S) \ clks(T ) 6= ;,

(2) S precedes T , and

(3) there is no temporal tree R such that S precedes R and R precedes T and either

clks(S) � clks(R) or clks(R) � clks(T ).

Let x be the last merge point in S. Then 8 y 2 entries(T ), add edge (x; y) to E.

To prevent these additional edges from creating cycles in the graph, the code selector ensures that

temporal trees are not nested by evaluating all subexpressions of temporal tree entries before any

part of the temporal tree itself.

Temporal trees complicate the protection of temporal sequences. Algorithm 3, shown in Fig-

ure 4.10, is a modi�cation of Algorithm 2. It accommodates alternate entries into a temporal

sequence that is part of a temporal tree. Other temporal sequences are handled as in Algorithm 2.

Within a temporal tree each new edge that is added because of an alternate entry (z; y) has a des-

tination that is a member of the set of entries(seqhead(y)), instead of seqhead(y). If the alternate

entry is itself part of the same temporal tree, the source of the new edge is an ancestor of that

sequence. The worst case behavior of Algorithm 3 is the same as the that of Algorithm 2, O(ne).

Now I show that, given a code DAG G = (N;E) output by Algorithm 3, the scheduler avoids

deadlock. Again, the proof focuses on the set P of edges across which the scheduler is scheduling.

P = f(x; y) j (x; y) 2 E is a temporal edge and x is scheduled and y is unscheduledg.

Both Lemmas 1 and 2 still hold, because they consider cases that are una�ected by the modi�cations

to the algorithm or by the presence of temporal trees. Lemma 3 considers edges whose destinations

are temporal tree merge points. It argues that if two such edges are in P , their associated trees

may not a�ect any clock in common. Two such edges in P cannot be part of the same temporal

tree, because merge points are also alternate entry points; Algorithm 3 in e�ect orders alternate

entry points within the same temporal tree. Two such edges cannot be in separate trees, if those

trees a�ect some clock in common, because temporal trees that a�ect some clock in common are

well ordered.

Lemma 3: Let Q = f(x; y) 2 P j there is a temporal tree T such that y 2 T and y is

a merge pointg. Let S and T be temporal trees. If (x; y); (x

0

; y

0

) 2 Q and y 2 S and

y

0

2 T , then S 6= T and clks(S) \ clks(T ) = ;.

Proof: Let (x; y); (x

0

; y

0

) 2 Q and y 2 S and y

0

2 T .



52

Algorithm 3: protect temporal sequence

Input: code DAG G = (N;E); Output: modi�ed code DAG G

De�ne foreach x 2 N : x:list = list of tuples (h; k; d; S): 9z; y such that x

�

! z ! y

and z ! y is an alternate entry into a sequence based on k;

h is seqhead(y); d = dist

k

(h; y); S is the temporal

sequence that contains z and y, if such a sequence exists.

x:order = the topological order number.

Method:

foreach x 2 N (in reverse topological order)

if j clks(x) j> 0

foreach (h; k; d;S) 2 x:list

if x:order < h:order and (x is a merge point or x 62 S)

and (x; h 62 the same temporal tree or x is not an ancestor of h) then

if 9 j 2 clks(x) such that j 6= k or x is a merge point then

let w = x

elseif dist

k

(seqhead(x); x) � d then

let w = seqhead(x)

else

let w = (dist

k

(seqhead(x); x)� d+ 1)th node in x's sequence

endif

if y 2 a temporal tree T then

foreach z 2 entries(h), add edge (w; z) to E; endfor

else add edge (w; h) to E

endif

remove (h; k; d; S) from x:list

endif

endfor

endif

foreach y 2 predecessors(x)

if (y; x) is an alternate entry into a temporal sequence T based on k then

if y; x 62 the same temporal tree or :(y

+

! v), where v 2 T; v ! x then

if 9 a temporal sequence S such that y; x 2 S then

add (seqhead(x); k; dist

k

(seqhead(x); x); S) to y:list

else

add (seqhead(x); k; dist

k

(seqhead(x); x); ;) to y:list

endif

endif

else

foreach (z; k; d; S) 2 x:list

if jclks(x)j = 0 or y 2 S then add (z; k; d; S) to y:list

else add (z; k;max(0; d� 1); S) to y:list

endif

endfor

endif

endfor

endfor

Figure 4.10: Modi�ed algorithm protect temporal sequence.
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First, show that S 6= T by contradiction. Assume S = T . Assume, without loss of

generality, that y precedes y

0

in the code thread.

Case 1: Let y

+

! y

0

. y cannot be an ancestor of x

0

, because x

0

is scheduled and y is not

scheduled. Therefore, 9 z 2 N such that y

+

! z ! y

0

and z ! y

0

is an alternate entry

into a temporal sequence R, where x

0

; y

0

2 R. But from Algorithm 3, since y is a merge

point, y

+

! x

0

.

N

Case 2: 9 s 2 S such that y

�

! s and y

0

�

! s. Let r; r

0

2 S such that y

�

! r ! s

and y

0

�

! r

0

! s. (r; s) is an alternate entry into some temporal sequence R such that

r

0

; s 2 R. Therefore, from Algorithm 3, 9w 2 N such that w

�

! r and w

�

! x

0

. Since y

is a merge point, y

�

! w

�

! r. Therefore, y

�

! x

0

. Since x

0

is scheduled, y is scheduled.

N

Therefore, S 6= T .

Now, show clks(S) \ clks(T ) = ; by contradiction. Assume clks(S) \ clks(T ) 6= ;. Let

S precede T . y is a merge point of S. Since temporal trees whose clocks overlap are

well ordered, 8v 2 entires(T ), y

+

! v. Therefore, y

+

! x

0

. Since x

0

is scheduled, y is

scheduled.

N

Therefore, clks(S) \ clks(T ) = ;. 2

Theorem 2 shows that the scheduler will not deadlock, given the output of Algorithm 3. First,

the cases covered by Lemmas 1 and 2 are considered. Then, the case is considered where for all

(x; y) 2 P such that y is not ready, y is a merge point of a temporal tree T . There must be some

unscheduled z such that z ! y and some ancestor v of z must be ready. There are two subcases.

First, if v is in z's temporal sequence, then v can be grouped with other nodes and scheduled,

because for all (x

0

; y

0

) 2 P , either y

0

is ready or y

0

is a merge point of a temporal tree none of whose

clocks overlap with T 's clocks. Second, if v

+

! seqhead(z), then v a�ects no clocks and, therefore,

can be scheduled. This argument is similar to the proof of Lemma 2.

Theorem 2: Given the output of Algorithm 3, the scheduler will not deadlock.

Proof: If 8 (x; y) 2 P; y is ready, then by Lemma 1, the scheduler can proceed.

Let (x; y) 2 P such that y is not ready. Then 9 (z; y) 2 E such that z is unscheduled.

Let (z; y) be non-temporal. By Lemma 2, 9 u 2 N such that u

�

! z and u can be

scheduled.

Now, 8 (x; y) 2 P such that y is not ready, let (z; y) 2 E be temporal. Therefore, y is

a merge point. Let T be a temporal tree such that x; y; z 2 T . There are two cases.

Case 1: 9 v 2 N such that v is ready and seqhead(z)

�

! v

�

! z. Let k be the clock

on which (x; y) is based. (z; y) must be based on some clock j 6= k. By Lemma 3, z

cannot be a merge point. Therefore, there is a temporal sequence R based on j such

that v; z 2 R and k 62 clks(v). By Lemma 3, there is no edge (x

0

; y

0

) 2 P such that

y

0

is a merge point of a temporal tree S and clks(S) \ clks(T ) 6= ;. Furthermore,

8 (x

0

; y

0

) 2 P , either y

0

is ready and not a merge point or y

0

is a member of a temporal

tree S such that clks(S) \ clks(T ) = ;. Therefore, 8 (x

0

; y

0

) 2 P such that clks(y

0

) \

clks(v) 6= ;; y

0

can be grouped with v and the group can be scheduled.
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Case 2: 9 v such that v is ready and v

+

! seqhead(z). If v 2 T , then seqhead(z) is a merge

point. Therefore, by Algorithm 3, seqhead(z)

�

! x. But seqhead(z) is unscheduled and

x is scheduled. Therefore, v 62 T . Let k be the clock on which (x; y) is based. Let S

be a temporal sequence such that x; y 2 S. If 9 j 2 clks(v) such that j 6= k, then, from

Algorithm 3, v

+

! x, because (z; y) is an alternate entry into S. But v is unscheduled

and x is scheduled. Therefore, either jclks(v)j = 0 or clks(v) = fkg.

Show clks(v) 6= fkg by contradiction. Assume clks(v) = fkg. Since k 2 clks(v);9w 2 N

such that seqhead(v)

�

! w

�

! v and w

�

! x (because Algorithm 3 adds an edge from

w to an ancestor of seqhead(y)). If v = w, then w is unscheduled. But x is scheduled.

Therefore, v 6= w. This implies that there is a temporal sequence R such that w; v 2 R

and R and S are both based on k. This implies that after seqhead(y) is scheduled,

nodes from S and T are scheduled in lock step according to k. Now, from Algorithm 3,

dist

k

(w; v) � dist

k

(w; seqtail(v)) � dist

k

(seqhead(y); y):

Therefore,

sched

k

(x) = sched

k

(seqhead(y)) + dist

k

(seqhead(y); y)� 1

� sched

k

(seqhead(y)) + dist

k

(w; v)� 1

� sched

k

(w) + 1 + dist

k

(w; v)� 1

� sched

k

(w) + dist

k

(w; v)

� sched

k

(v)

This implies that sched(x) � sched(v). Since x is scheduled, then v is scheduled.

N

Therefore, j clks(v) j= 0. This implies that v can be scheduled.

Therefore, the scheduler will not deadlock. 2

4.8 Scheduling for the i860

The machine description for the i860 uses all of the features described, including classes, class

elements and clocks. (See Appendix D for the complete machine description.) As discussed in

Section 4.5, Marion models the i860 FPU as a long instruction word processor. Eight �elds in

the long instruction word correspond to the FPU pipestages: three for the adder, three for the

multiplier, one for the oating point write-back bus and one for the special T register, which holds

a value in between the multiplier and the adder.

M1 M2 M3 A1 A2 A3 FWB T

Figure 4.11 shows the simpli�ed i860 FPU datapath diagram on which the machine description

is based. Both the add and multiply pipelines have three stages, which are represented by boxes; the

stages are separated by latches, which are represented by ovals. The dashed lines show the clocks

that control the latches. To launch both an add and a multiply with one instruction, four source

and two destination operands are needed, but only three operands, src1 , src2 and rdest, are general

purpose registers; the others come from chaining the pipelines together or from special registers.

Marion supports the special T register, which feeds the adder, but not the KR and KI special
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Figure 4.11: Marion's view of the i860 FPU data path. The dashed lines show the clocks

that control the explicitly advanced pipelines. The T register is a latch that is independent of both

pipelines; consequently, it has its own clock. Marion does not use the KR and KI registers, which

are not shown is this diagram.
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registers, which feed the multiplier. The T register is loaded by the multiplier result; therefore,

if an expression adds the result of two multiplies, using the T register is clearly advantageous.

The KR and KI registers, however, are loaded only from general purpose oating point registers;

therefore, the pro�tability of using them depends on the usage context. It may be possible for

the code selector to identify cases that use KR or KI, but I have not investigated these cases. An

example where KR or KI could be used is to hold a loop invariant value that is multiplied by an

array element on each iteration of the loop.

Not all of the combinations of add and multiply sources and destinations are supported by

the i860 architecture. To enforce the necessary restrictions, all legal long instruction words are

de�ned to be class elements. Associated with each individual sub-operation, such as A1 or M2, is

a class; the class contains the elements (long instruction words) of which the sub-operation could

be a part. Figure 4.12 shows the i860 machine description class and element declarations. The

instructions pfadd and pfmul are long instruction words that advance a single pipeline. The \X"

mnemonics represent long instruction words that advance both pipelines.

8

(See Figure 4.12 for the

\X" mnemonic key.) After the \X" the �rst two character positions specify the multiplier's inputs,

the next two the adder's inputs. The next character position indicates the adder's operation (`p'

means add, `s' means subtract). The next position indicates which pipeline result is written to the

result register. The last two characters are optional and specify that one or more of the special

registers is loaded. For example, consider the X12tapat instruction: source registers src1 and src2

are fed to the multiplier; an add operation is initiated with inputs from T and the adder result a3;

a3 is sent to the result register rdest; and T is loaded with the output of the multiplier.

The i860 machine description declares the adder and multiplier latches (a1� a3 and m1�m3)

and the T register to be temporal registers. The sub-operations that compose EAP operations

are declared as individual instructions. (See Figures 4.3 and 4.8.) The code selector produces

these sub-operations, from which a code DAG containing temporal sequences and temporal trees

is constructed. Marion schedules instructions using Algorithm 3 for temporal scheduling with

chaining. The restrictions discussed in Section 4.7 all hold, except that there are additional packing

restrictions, due to contention for FWB. Fortunately, this does not cause deadlock, because if FWB

is needed by two instructions, then neither can be a merge point (since the write-back stage takes

only one input) and they must be dependent on di�erent clocks (otherwise they would be ordered

by Algorithm 3).

Figure 4.13 shows the code produced by the Marion i860 compiler, using a Postpass strategy, for

a sample C program fragment. The �rst instruction launches the multiply. The second advances the

multiply pipeline and launches an add. The third advances both pipelines and launches another

add. The fourth instruction advances the add pipeline while the multiply pipeline waits. The

�fth launches another add, taking inputs directly from the add and multiply pipeline results. The

remaining instructions drain the add pipeline.

4.9 Evaluation of Temporal Scheduling

Why does Marion support EAPs with temporal scheduling? An EAP could be treated as a \normal"

pipeline, so that once an operation is launched, it advances through the pipeline on every cycle.

8

These mnemonics are close to those given by Intel [Int89], but are easier to interpret than Intel's.
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%element pfadd (clk a); =* add *=

%element pfmul (clk m); =* multiply *=

=* multiply and add=sub combinations *=

%element Xr21mpa (clk a, clk m);

%element Xr2tmpar (clk a, clk m);

%element Xr21apat (clk a, clk m, clk t);

%element Xr2tapart (clk a, clk m, clk t);

%element Xra12part (clk a, clk m, clk t);

%element X12ampa (clk a, clk m);

%element Xra12par (clk a, clk m);

%element X12tapat (clk a, clk m, clk t);

%element X12tmpa (clk a, clk m);

%element X12tapa (clk a, clk m);

%element Xr21mpm (clk a, clk m);

%element Xr2tmpmr (clk a, clk m);

%element Xr21mpmt (clk a, clk m, clk t);

%element Xr2tmpmrt (clk a, clk m, clk t);

%element Xrm12pmt (clk a, clk m, clk t);

%element X12mmpm (clk a, clk m);

%element Xrm12pm (clk a, clk m);

%element X12tmpmt (clk a, clk m, clk t);

%element X12tmpm (clk a, clk m);

%class M1 fpfmul, X12@@@@*g; =* m1 = $1 * $2 *=

%class M2 fpfmul, X*g; =* m2 = m1 *=

%class M3 fpfmul, X*g; =* m3 = m2 *=

%class Rm fpfmul, X@@@@@m*g; =* $3 = m3 *=

%class A1 fpfadd, X@@12p@*g; =* a1 = $1 + $2 *=

%class A1m fX@@1mp@*g; =* a1 = $1 + m3 *=

%class Atm fX@@tmp@*g; =* a1 = t + m3 *=

%class A2 fpfadd, X*g; =* a2 = a1 *=

%class A3 fpfadd, X*g; =* a3 = a2 *=

%class Ra fpfadd, X@@@@@a*g; =* $3 = a3 *=

%class Tld fX@@@@@@*tg; =* t = m3 *=

X mnemonic key

Position Meaning Character Meaning

1 Mul opnd 1 r KR (placeholder only)

2 Mul opnd 2 t T

3 Add opnd 1 1 src1

4 Add opnd 2 2 src2

5 Adder operation p add

6 rdest from s subtract

7-8 Special reg loads a from Adder

m from Multiplier

Figure 4.12: Element and class declarations for the i860. An element directive indicates which

clocks the element a�ects. Class members take simple regular expressions, where \@" matches any

single character and \*" matches any string of zero or more characters.
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C fragment

a = (x+ b) + (a � x);

return(y + x);

Cycle i860 instruction Remarks

0 pfmul.s a,x,f0 m1 a � x

1 rat1p2.s x,b,f0 a1 x+ b

m2 m1

2 rat1p2.s y,x,f0 a2 a1

m3 m2

a1 y + x

4 pfadd.s f0,f0,f0 a3 a2

a2 a1

5 m12apm.s f0,f0,f0 a1 a3 +m3

a3 a2

6 pfadd.s f0,f0,r r a3

a2 a1

7 pfadd.s f0,f0,f0 a3 a2

8 pfadd.s f0,f0,a a a3

Figure 4.13: Code produced by the Marion i860 Postpass compiler. The remarks column

shows the operations that each instruction performs. The variables a, b, x and y are in oating

point registers. The variable r represents the return value register. Temporal registers a1-a3 and

m1-m3 represent latches in the oating point add and multiply pipelines, respectively. On cycle 5

the add pipeline takes inputs from the multiply and add pipeline outputs.

However, this reduces scheduling opportunities, because sub-operations can be scheduled where

complete operations cannot. In addition, chaining sometimes requires one pipeline to \wait" for

another to catch up.

Given sub-operations, some form of temporal scheduling is necessary to keep track of interme-

diate values in the pipeline. Marion's approach is to protect temporal sequences before scheduling,

so that deadlock cannot occur. This avoids backtracking and reliance on the register allocator,

and removes the burden of temporal scheduling from the scheduling algorithm and code generation

strategy.

An alternative to temporal scheduling with chaining is to allow the scheduler to chain \on the

y" whenever possible. The register that represents the \link" in the chain can be freed and reused.

Touzeau uses this approach in the FPS-164 Fortran Compiler [Tou84], but because it requires the

scheduler to manipulate chains and to perform local register allocation, it is not exible enough for

Marion's di�erent code generation strategies.

Cohn et al. [CGLT89] faced a similar problem with implicit registers on the iWarp processor.

Implicit registers are like Marion's temporal registers: they represent latches at the heads or tails

of memory queues and allow values from memory to be fed directly into oating point operations

and vice versa. The iWarp compiler groups nodes in the code DAG that are connected by implicit
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registers; the DAG is modi�ed so that the set of edges to/from the node group is the union of the

edges to/from the individual nodes in the group. If this causes a cycle, then the group is broken

and operations are added to copy the implicit register into an explicit register. To schedule a group,

the scheduler �nds a legal schedule for all nodes in the group.

Davidson, Landskov et al. [LDSM80, DLSM81] allow two micro-operations (a producer and a

consumer) to be connected by a delay constraint via a resource; this means that the consumer

micro-operation must be scheduled at least delay cycles after the producer and the resource must

not be used by another micro-operation. The resource is analogous to a temporal register. They

do not indicate how to handle a sequence of such operations.

Backward scheduling, in which instructions are scheduled from the end of the basic block to the

beginning, could be advantageous for temporal scheduling with chaining. Because temporal fanout

is at most one, merge points e�ectively become fork points, which would not cause scheduling prob-

lems. However, the scheduler would still have to handle alternate entries. I have not investigated

this approach.

Temporal scheduling allows sub-operations to be separated in the schedule and supports chain-

ing between EAPs. However, to ensure correctness, a non-backtracking scheduler must be con-

strained by additional code DAG edges. I have not compared temporal scheduling with the methods

used by the iWarp compiler or the FPS-164 Fortran compiler. The additional code DAG edges re-

quired for temporal scheduling constrain the scheduler, but the separation of sub-operations gives it

more freedom. More study is needed to understand how much bene�t temporal scheduling provides

relative to its complexity.

4.10 Summary

This chapter has described Marion's instruction scheduling mechanisms. A labeled code DAG

incorporates operation latencies, memory reference order requirements and, for some code gener-

ation strategies, restrictions on register use order. Resource vectors enable the scheduler to avoid

structural hazards.

Temporal scheduling supports explicitly advanced pipelines, but additional DAG edges are

required to avoid scheduling deadlock. Adding DAG edges separates temporal scheduling support

from the scheduling algorithm, enabling Marion to embrace many algorithms. Temporal scheduling

is also useful for machines with condition code registers.
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Chapter 5

Methodology

This chapter describes the methodology used to compare code generation strategies and to examine

the e�ect of architectural features on performance. Both studies use the same workload and mea-

surement criteria. Methodological aspects that are speci�c to only one of the studies are discussed

with that study.

5.1 Workload

The workload is composed primarily of oating point intensive benchmarks and applications, but

also includes integer code. Many of the programs contain large basic blocks and an extensive use

of multi-cycle operations. Because large blocks have a high degree of instruction-level parallelism

and multi-cycle operations can cause long pipeline delays, this workload readily exposes di�erences

among code generation strategies and architectural features that a�ect instruction scheduling. This

workload is important because (1) many computation-intensive scienti�c programs fall into this

category and (2) techniques that increase instruction-level parallelism, either by increasing basic

block size, such as loop unrolling [DJ79] and trace scheduling [Fis81], or overlapping the execution

of di�erent loop iterations, such as software pipelining [Cha81, Lam88, DHB89], are becoming

widely used. These techniques are pro�table, even on scalar processors [WS87].

The programs in the workload are categorized into �ve groups:

(1) Livermore contains the �rst fourteen Livermore Loop kernels [McM72].

(2) Nasker contains the seven NAS kernel benchmarks [BB84]. BTR is a block tri-

diagonal solver; CHO performs Cholesky decomposition; EMI is a vortices emission

simulation; FFT performs a 2-dimensional fast Fourier transform; GMT does a Gaussian

elimination of matrix wall inuence coe�cients; MXM performs 4-way unrolled matrix

multiply; and VPE does pentadiagonals inversion.

(3)Perfect includes eight programs from the PERFECTClub Benchmark Suite [BCK

+

89].

ARC2D models supersonic reentry; BDNA is a nucleic acid simulation; DYFESM mod-

els structural dynamics; FLO52 models transonic ow; MDG is a water molecule simula-

tion; MG3D performs seismic migration; QCD is a lattice gauge; and TRACK performs

missile tracking.

(4) Misc contains miscellaneous computation-intensive applications. NEURAL is a

neural net simulator that trains a multi-layer neural network using backpropagation.

1

Three programs from the Rice Compiler Evaluation Suite (RiCEPS)

2

include BOAST,

1

NEURAL was supplied by by David Cohn.

2

RiCEPS programs are courtesy of Rice University.
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which is a reservoir simulation, SPHOT, which is a photon transport problem solver,

and WANAL1, which models wave equation boundary control. COSTSC is a network

ow analyzer.

3

(5) Int contains integer programs, including the benchmarks DHRYSTONE [Wei84],

INTEGER and KNIGHT, LCC (the Lcc front end) and SPARSE, a sparse matrix

equation solver. Sparse performs some oating point operations, but is dominated by

data structure manipulation.

Both the Perfect and Misc groups include programs with very large basic blocks; many contain

hundreds of instructions and some have more than one thousand. In particular, execution time in

ARC2D, BDNA and MG3D is dominated by those large blocks. No loop unrolling was performed

on any of the programs, but some of the NAS kernels were written with explicit unrolling.

5.2 Measurement Criteria

To compare code generation strategies or di�erent architecture variations Marion computes, for

each program,

total cycles =

X

b2blocks

cycles

b

� freq

b

: (5.1)

Cycles

b

is the number of machine cycles that would be required to execute block b to completion.

It is computed by the scheduler and takes into account all structural, control and data hazards.

Freq

b

is the number of times block b was executed when run by a separate pro�ling tool prior to

the experiments. Total cycles is an estimate of CPU execution time; it does not consider delays

outside the processor, such as cache misses.

All data presented in the next two chapters is in terms of speedups or normalized execution

times. Each program is normalized to a particular strategy or architecture, depending on the

parameter of interest. In e�ect this gives equal weight to each program in the workload and avoids

allowing a few of the large oating point programs to dominate the others. Programs in a group

are summarized using the harmonic mean.

Code produced for the R2000 has been executed. For the Livermore group, on the average the

execution time is 6% greater than the estimated CPU execution time. Section 8.2 discusses this

slow down in more detail.

3

COSTSC was supplied by Jim Larus. It was not used in the code generation strategies comparison.



Chapter 6

Integrating Register Allocation and

Instruction Scheduling

Many compilers for RISCs perform register allocation and instruction scheduling separately, with

each phase ignorant of the requirements of the other. In reality each can impose constraints on the

other, sometimes producing ine�cient code.

Code ine�ciencies are caused by an excess of memory references or pipeline delays. When

register allocation is performed �rst, the same physical register may be assigned to independent

expression temporaries, reducing the potential instruction-level parallelism. This, in turn, decreases

the scheduler's opportunities to mask pipeline delays. When scheduling precedes register allocation,

the number of simultaneously live values may be increased, creating more spills to memory.

The major unresolved issue is whether this lack of communication between register allocation

and instruction scheduling produces ine�cient schedules; if it does, then to what extent must the

two functions be integrated to improve the generated code? This chapter investigates this issue by

comparing the performance of three strategies for register allocation and instruction scheduling:

(1) a simple Postpass strategy, in which global register allocation is performed before

instruction scheduling [HG83, GM86];

(2) a variation of Integrated Prepass Scheduling (IPS) [GH88], in which the scheduler

is invoked before register allocation and must schedule within a local register limit; and

(3) a new technique that I developed called RASE (Register Allocation with Schedule

Estimates), which integrates register allocation and instruction scheduling by giving the

register allocator cost estimates that quantify the e�ect of its allocation choices on the

subsequently generated schedule.

The �rst strategy serves as a base for the experiments, since it cleanly separates register alloca-

tion and instruction scheduling. This approach is the choice of retargetable compilers that include

instruction scheduling, such as GCC [Sta89]. RASE represents the other end of the spectrum of

alternatives. It provides a vehicle through which the register allocator and the instruction scheduler

can communicate their register requirements. My version of IPS occupies the middle ground; tech-

nically it separates the two functions, but it emulates communication by encouraging the scheduler

to keep register pressure at a level conducive to good register allocation.

The experiments were performed using benchmarks and applications on compilers targeted to

three RISCs, the MIPS R2000, the Motorola 88000 and the Intel i860.

IPS and RASE each produce code that is on the average 12% faster than Postpass, supporting

the hypothesis that the lack of communication between register allocation and instruction schedul-

ing produces ine�cient schedules. On the other hand, the performance of code generated by IPS
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and RASE is almost identical; RASE surpasses IPS only on a few programs that contain very large

basic blocks. For these particular architectures the close coupling of instruction scheduling and

register allocation found in RASE is not necessary; therefore, IPS is a better choice, because it is

conceptually simpler and less expensive at compile time. Nevertheless, strategies such as RASE are

worth further exploration for other architectures (see Chapter 7) or if programs with large blocks

become more common due to techniques such as loop unrolling and trace scheduling.

The rest of this chapter is organized as follows: Section 6.1 explains the problem with the lack of

communication between instruction scheduling and register allocation in more detail; Sections 6.2

describes the three code generation strategies; Section 6.3 gives the results of the experiments; and

Section 6.4 summarizes.

6.1 The Problem

Code e�ciency is a function of the execution time of the program. To increase e�ciency, a register

allocator reduces memory references; an instruction scheduler reduces pipeline delays by masking

the latency of multi-cycle operations. However, reducing one may increase the other. Even if a

compiler is given pro�ling information that indicates which parts of the program are most impor-

tant, a compiler that separates register allocation and instruction scheduling may be unable to

�nd the right mix of pipeline delays and memory references, because of the lack of communication

between the two phases.

Many compilers perform global register allocation before instruction scheduling [HG83, GM86].

The problem with this approach is that the same physical register may be assigned to independent

pseudo-registers. If they are referenced within the same basic block, the scheduler cannot overlap

operations that use them, because doing so would yield incorrect code.

Figure 6.1(a) shows a sample machine code fragment that contains two independent multiply

operations. Global pseudo-registers pr1 and pr2 have lifetimes that span the code fragment. Local

pseudo-registers pr3 and pr4 have lifetimes that do not overlap each other. Assume that another

global pseudo-register pr5 is live across the code fragment, but not referenced in it. Figure 6.1(b)

illustrates pseudo-register lifetimes; pseudo-registers whose lifetimes overlap interfere and cannot

be assigned the same register. Therefore, given four physical registers, the register allocator is

faced with a choice: force pr3 and pr4 to share a physical register or spill pr5 (see Figure 6.1(c)). If

the register allocator makes the �rst choice, then the scheduler cannot overlap the two multiplies,

yielding a schedule that takes 10 cycles. With the second choice, however, the scheduler can

produce a schedule that takes only 6 cycles, as shown in Figure 6.1(d). If pr5 is rarely used and

the code fragment is executed frequently, the second choice would yield better overall performance.

If multiply were a single-cycle operation, however, then the two schedules would be equivalent;

therefore, better performance could be achieved with the �rst choice, which avoids the spill. Which

allocation is better? It depends on the number and size of the latencies and the degree of instruction-

level parallelism within the basic block, information that is outside the register allocator's context.

Similar problems occur if scheduling precedes register allocation. Since the scheduler's goal is

to exploit instruction-level parallelism, it may increase local register usage without bound. This

in turn may reduce the register allocator's opportunities to avoid memory references. Figure 6.2

illustrates this case. Two schedules for a series of four loads and two adds are shown. Assuming no
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Code Fragment

pr3 pr1 � pr1

store pr3

pr4 pr1 � pr2

store pr4

(a)

Pseudo-register Lifetimes

pr1

pr2

pr3

pr4

pr5

(b)

Register Allocator

choice 1 choice 2

pr1 r1 r1

pr2 r2 r2

pr3 r3 r3

pr4 r3 r4

pr5 r4 spill

(c)

Instruction Scheduler

Code with choice 1 Code with choice 2

Cycle Instr Cycle Instr

0 r3 r1 � r1 0 r3 r1 � r1

4 store r3 1 r4 r1 � r2

5 r3 r1 � r2 4 store r3

9 store r3 5 store r4

(d)

Figure 6.1: Example: register allocation precedes instruction scheduling. The code frag-

ment is shown in (a). Pseudo-register lifetimes are shown in (b). Lifetimes that overlap cannot

be assigned to the same physical register. Given 4 physical registers: if the same physical register

is assigned to pr3 and pr4 (choice 1), then the multiplies cannot be overlapped; if pr5 is spilled

(choice 2), then they can be overlapped.

cache misses and a 2-cycle load latency, the �rst schedule executes in one less cycle and therefore

is preferred by the scheduler. However, the second sequence requires one less register and could

result in a faster overall program, if using that register to hold a global pseudo-register saves more

than one cycle. Again, which schedule is better depends on information outside of the scheduler's

context. Because spill code introduced by the register allocator must still be scheduled, scheduling

before register allocation does not completely avoid the �rst problem discussed in this section.

The magnitude of the problem of lack of communication between register allocation and in-

struction scheduling depends on the interaction between a program's instruction mix and the target

processor's characteristics, such as operation latencies and register set size. On most RISCs the

load latency on a cache hit is short (2 or 3 cycles) and most integer operation latencies are 1. There-

fore, with programs that contain mostly integer operations, this lack of communication causes little

performance degradation. With scienti�c workloads, however, the problem is signi�cant for three
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Cycle Instr

0 load r1; 12(fp)

1 load r2; 16(fp)

2 load r3; 40(fp)

3 load r4; 44(fp)

4 r1 r1 + r2

5 r2 r3 + r4

(a)

Cycle Instr

0 load r1; 12(fp)

1 load r2; 16(fp)

2 load r3; 40(fp)

3 r1 r1 + r2

4 load r2; 44(fp)

6 r2 r3 + r2

(b)

Figure 6.2: Two schedules for independent loads and adds. Schedule (a) takes 6 cycles and

requires 4 registers. Schedule (b) takes 7 cycles and requires 3 registers. Which is better depends

on how the extra register could be used.

reasons. First, these workloads tend to have a high degree of instruction-level parallelism, because

they contain large basic blocks with many independent expressions. Second, they use many multi-

cycle oating point operations, which can cause long pipeline delays. Avoiding these delays requires

exploiting that parallelism. Third, the large basic blocks contain many local pseudo-registers, as

well as global pseudo-registers; the increased number of register allocation choices exacerbates the

lack of coordination in a simple code generation strategy.

6.2 Code Generation Strategies

A number of code generation strategies separate register allocation from instruction scheduling.

Hennessy and Gross's method [HG83, Gro83] and Gibbons and Muchnick's method [GM86] perform

register allocation before basic block instruction scheduling. Both schedulers use list scheduling

algorithms with heuristics to choose among scheduling candidates. The primary di�erence between

the two is in dealing with a physical register that is used for two independent computations within a

block. Gibbons and Muchnick's method adds edges to the code DAG to force an ordering between

the two computations; the scheduler itself isO(n

2

), where n is the number of nodes in the code DAG.

Hennessy and Gross's method allows the scheduler to reorder the computations, which sometimes

yields better code; however, this increases the scheduling complexity to O(n

4

).

A method by Goodman and Hsu [GH88, Hsu87] performs DAG-driven local register allocation

before instruction scheduling. The register allocator examines the code DAG during allocation. If

two pseudo-registers must share the same physical register, extra edges are added to the DAG, as

in Gibbons and Muchnick's method. The di�erence is that the register allocator attempts to limit

its e�ect on the scheduler: when a pseudo-register is to be assigned a physical register, the register

allocator �rst attempts to choose a register such that any additional DAG edges are redundant;

failing that, it chooses a register that will minimize the increase in the height of the DAG. (The

height of a DAG is maximum distance along a path from any root to any leaf.)

Goodman and Hsu [GH88, Hsu87] also developed an approach called Integrated Prepass Schedul-

ing, which performs scheduling before local register allocation. Section 6.2.2 describes this approach

in more detail.

Auslander and Hopkins [AH82] perform instruction scheduling �rst, followed by register alloca-
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tion and another scheduling pass. Warren [War90] builds upon this method with some heuristics for

limiting the instruction scheduler's e�ect on the register allocator. In particular, Warren's method

decreases the priority of loads as register pressure increases.

6.2.1 Postpass Scheduling

The Postpass strategy cleanly separates register allocation and instruction scheduling. Global reg-

ister allocation is performed �rst, using a Chaitin-style graph coloring allocator [Cha82, BCKT89].

Instruction scheduling follows (hence the name Postpass), using an O(n

2

) list scheduling algorithm,

similar to Gibbons and Muchnick's [GM86]. The list scheduler builds the code DAG and keeps two

lists: the ready list contains instructions that can be scheduled without causing a delay; the leader

list contains instructions whose predecessors have been scheduled, but would cause a data hazard

if scheduled. Instructions are scheduled from the ready list according to the following heuristics:

(1) choose the ready instruction with the maximum distance; if not unique, then

(2) choose from that set the instruction with the maximum number of successors; if not

unique, then

(3) choose from that set the instruction with the greatest latency; if not unique, then

(4) choose an arbitrary instruction from that set.

Section 4.2 provides a more detailed description of list scheduling algorithms and Section 3.7 dis-

cusses global register allocation.

Register Coloring Policies

Hennessy and Gross [HG83] suggested that a round-robin register allocation policy would have less

impact on a postpass scheduler than a �rst-�t policy. Goodman and Hsu's results [GH88] con�rm

this. In both compilers round-robin was used only for local register allocation.

I compared four policies to determine the e�ects of a global register allocator's coloring policy

on the Postpass scheduler.

(1) First-�t chooses the �rst free register (or register pair).

(2) Round-robin begins searching for a free register from the point where the last suc-

cessful search ended.

(3) Mixture combines the �rst two policies: Round-robin is used over the �rst half of

the register set; if a free register is not found, First-�t is used over the second half.

(4) With Basic-block, the idea is to avoid using the same physical register more than

once within a basic block, thereby attempting to minimize introduced dependences. For

pseudo-register p, range(p) is de�ned to be the set of all basic blocks in which p is live.

For color c, range(c) is the set of the blocks in which the color is used. Range(c) is

updated as pseudo-registers are colored. When a pseudo-register p is to be colored, the

policy chooses the color c such that jrange(p) \ range(c)j is the minimum over all free

colors.

The Round-robin policy tends to spread out register usage, but, since the order in which pseudo-

registers are colored is based on priority, not proximity, pseudo-registers in the same vicinity may
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Table 6.1: Comparison of register coloring policies. All values are harmonic means of the

execution times, normalized to First-�t, of the programs within each group. The best policy choice

for each group is shown in bold. (Smaller values are better.)

Test First-�t Round-robin Mixture Basic-block

Livermore 1.00 0.79 0.80 0.80

Nasker 1.00 0.89 0.91 0.97

88000 Perfect 1.00 0.91 0.92 0.96

Misc 1.00 0.96 0.93 0.97

Integer 1.00 1.13 1.02 1.01

Livermore 1.00 0.96 0.92 0.93

Nasker 1.00 0.94 0.95 0.97

R2000 Perfect 1.00 0.93 0.92 0.95

Misc 1.00 0.95 0.92 0.91

Integer 1.00 1.14 1.05 1.01

Livermore 1.00 0.84 0.90 0.88

Nasker 1.00 0.83 0.88 0.86

i860 Perfect 1.00 0.86 0.88 0.90

Misc 1.00 0.90 0.90 0.87

Integer 1.00 1.10 1.01 1.01

still be assigned the same physical register. The Basic-block policy more precisely spreads out

register usage. However, after all colors have been used once in a large block, the policy in e�ect

reverts to First-�t. Therefore, it does not work well on basic blocks in which many pseudo-registers

are live.

Table 6.1 shows the results of the comparison in terms of execution time normalized to First-�t.

Each value in the table is the harmonic mean of the normalized execution times for a particular

program group.

Except on the Integer group, First-�t is consistently worse than the other policies. First-�t is

the best on the Integer group; the other policies use more registers, which increases procedure call

overhead, but provides little scheduling bene�t.

On the four oating-point intensive program groups, both Round-robin and Mixture are better

than Basic-block. Mixture is the best on the R2000, whereas Round-robin is the best on the i860.

On the 88000 Round-robin is the best on three of the four groups, but it is better than Mixture on

those groups by only 1%.

Considering both oating point and integer programs, Mixture is the best choice. Nevertheless,

I use Round-robin in the Postpass strategy in all further experiments. The main reason is that I

added Mixture to the comparison after many of the experiments were conducted. Since Mixture has

an advantage over Round-robin only on integer programs, I decided not to rerun the experiments.

6.2.2 Integrated Prepass Scheduling

Marion's IPS is a variant of Goodman and Hsu's original Integrated Prepass Scheduling [GH88,

Hsu87]. In their version the scheduler precedes the register allocator, but attempts to restrict the

number of concurrently live local pseudo-registers by giving each basic block a register limit. A
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register limit places an upper bound on the number of live local pseudo-registers, thus limiting

the amount of instruction-level parallelism that the scheduler may exploit. The scheduler selects

instructions to minimize pipeline delays, in a manner similar to the Postpass scheduler, unless the

number of live local pseudo-registers is greater than or equal to the given limit. As long as the

scheduler is at the limit, it attempts to schedule instructions that free registers; if it cannot, it

may exceed the limit. After scheduling, the register allocator assigns physical registers to the local

pseudo-registers within the block; spills to memory are inserted if the limit could not be met. In

their study, Goodman and Hsu assumed that \important" global pseudo-registers, such as induction

variables and loop invariants, are assigned physical registers before scheduling, so that their IPS

considered only local register allocation.

Goodman and Hsu compared their version of IPS to a number of methods including a version

of Postpass. All methods assumed that global pseudo-registers received physical registers a priori.

When given 15 registers for local register allocation, on a workload consisting of the Livermore

Loops, IPS achieved speedups of roughly 1.6 over Postpass with a �rst-�t allocation policy and 1.3

over Postpass with a round-robin policy, on a long pipeline machine (based on the Cray-1). The

speedups were 1.2 and 1.1, respectively, on a medium pipeline machine. There was no speedup over

the strategies other than Postpass for 15 local registers. Given 30 local registers, IPS exhibited

virtually no speedup over any strategy.

The context of Goodman and Hsu's experiment was limited by several factors. First, they

allocated global pseudo-registers (essentially by hand) before running IPS and performed only local

register allocation after scheduling. For large programs, global register allocation is necessary to

e�ectively use registers over many basic blocks. Second, spills were scheduled by the local register

allocator, using a simple scheme. The scheme does not reorder instructions, but instead attempts

to place a load enough instructions before the reference to the loaded register to avoid the load

latency; it also attempts to place a store enough instructions after the reference to avoid any

operation latency. When register pressure is high, this scheme will have di�culty avoiding that

latency. Third, structural hazards were not considered. On some RISCs there may be contention

for a non-pipelined functional unit or a register write-back bus. Fourth, their workload was limited

to 12 Livermore Loops, with some loop unrolling.

Marion's version of IPS addresses all of these limitations. First, to model reserving physical

registers for important global pseudo-registers, Marion's IPS sets the local register limit for each

block as follows:

limit = max(3; avail� global used); (6.1)

where avail is the maximum number of registers available to the register allocator and globals used

is the number of unique global pseudo-registers referenced within the block. After scheduling, the

new instruction order (produced by the scheduler) is used by the register allocator to compute

interferences. The register allocator is identical to the Postpass allocator, except that the First-�t

coloring policy is used, since scheduling precedes register allocation. Second, the Postpass scheduler

is invoked after register allocation to ensure that spill code is scheduled as well as possible. Third,

the scheduler takes structural hazards into account when scheduling code. Fourth, the experiments

are performed on a workload that includes complete programs, in addition to the Livermore Loops

and the NAS kernels.
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The IPS strategy represents an intermediate level of integration between register allocation and

instruction scheduling. In e�ect it \reserves" registers for global pseudo-registers by reducing the

register limit by the number of globals referenced in the block. In addition, it restricts local register

use by imposing register limits on scheduling. Together these impose constraints on the scheduler

that mimic those that the register allocator must face.

6.2.3 RASE Code Generation

RASE provides its register allocator with schedule cost estimates that allow the allocator to quantify

the e�ect of its choices on the scheduler. This is in contrast to IPS, which uses a heuristic to attempt

to minimize the scheduler's impact on the register allocator. There are two aspects to the solution

used in RASE: (1) a pre-scheduler (PRESCHED) is invoked before the global register allocator

(GRA) to gather schedule cost information that is then used by GRA; and (2) the responsibility

for allocating registers is distributed; the instruction scheduler (FINALSCHED) allocates registers

to local pseudo-registers and GRA allocates registers only to global pseudo-registers.

As with all of the strategies, a simple code selector generates straightforward machine code that

de�nes and uses pseudo-registers. RASE's three phases then follow. (See Figure 6.3.)

First, PRESCHED computes a schedule cost function for each basic block. Given a register

limit, the schedule cost function returns a schedule cost estimate. A schedule cost estimate is the

estimated number of machine cycles required to execute the instructions in a basic block, while

remaining within the register limit. In contrast to IPS's register limits, RASE's limits must not be

exceeded.

In the second phase, GRA uses the schedule cost estimates to compute the incremental cost of

reducing each register limit. The incremental cost reects the additional cycles required to schedule

a block with a reduced upper bound on the parallelism. The incremental costs are in the same units

(machine cycles) as the costs associated with spilling global pseudo-registers to memory. GRA uses

both the incremental and spill costs to assign physical registers to global pseudo-registers and to

decide what register limit to impose on each block.

The third phase, FINALSCHED, schedules each block, assigning physical registers to local

pseudo-registers within the register limit for that block. Both PRESCHED and FINALSCHED use

an underlying scheduler (SCHED).

This approach addresses the code generation communication problem by giving GRA respon-

sibility for determining how many registers to use, both for exploiting instruction-level parallelism

and for reducing memory references. In essence, for each basic block, GRA partitions the register

set into two portions. One portion is given to the instruction scheduler, in the form of the register

limit, to exploit instruction-level parallelism. GRA itself assigns the registers in the other portion

to the procedure's most important global pseudo-registers, thereby reducing memory references.

Based on both the spill and incremental costs, GRA determines the appropriate balance between

these two competing needs for registers.

Schedule Cost Estimates

For each block b, PRESCHED constructs a schedule cost function,

schedcost

b

(x) = c+ d=x

2

; (6.2)
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Figure 6.3: RASE structure. PRESCHED calls SCHED to gather schedule cost information.

The global register allocator assigns registers to global pseudo-registers and establishes register

limits. FINALSCHED calls SCHED to perform actual scheduling within the register limits.

that returns the estimated number of machine cycles needed to execute block b with a register limit

of x. PRESCHED constructs the function by twice invoking the underlying scheduler (SCHED)

to obtain two points on the function's curve and then uses the points to compute the coe�cients c

and d. On the �rst invocation, SCHED is given a small register limit, typically 3. On the second

invocation SCHED is given the maximum register limit, usually the total number of registers.

SCHED returns an ordered pair (regs,schedcost), where schedcost is the schedule cost, in machine

cycles, and regs is the maximum number of live local pseudo-registers at any point within the basic

block. The value, regs, gives PRESCHED an upper bound on the instruction-level parallelism

within a block. It will be less than the given register limit if SCHED was unable to exploit enough

parallelism to reach the limit, but can never be greater. Schedcost takes into consideration aspects

of the target architecture that are known at compile time, such as operation latencies and structural

hazards.

If the architecture has more than one register set, a schedule cost function is constructed for

each set. A total of 1 + k invocations of SCHED is required, where k is the number of distinct

general purpose register sets in the target architecture, one for the minimum plus a maximum for

each set. For most RISCs, k is 1 or 2. These calls to SCHED do not change the instruction order.

RASE constructs a schedule cost function for two reasons: (1) calling SCHED for each register

limit would be prohibitively expensive and (2) since GRA may introduce spill code for global

pseudo-registers, additional calls to SCHED would not necessarily yield more precise estimates.

I conjectured that increasing the register limit would decrease the schedule cost rapidly near the

minimum limit and slowly near the maximum. To test this hypothesis, the cost estimates were

computed for each point for each block in the NAS kernels on the 88000. The average correlation

coe�cient between the points and the inverse quadratic function was 0.88. In most cases the

schedule cost function decreases more rapidly than the curve of computed cost estimates. Additional

tuning could yield a better function. Figure 6.4 shows the curves for the �rst two large blocks in

the �rst kernel.
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Figure 6.4: Example schedule cost function for a basic block returns the estimated number of

machine cycles to execute the block, given a register limit. This graph shows the schedule costs

for two basic blocks, computed by calling SCHED for each register limit, and the schedule cost

function for Block 2. The schedule cost function for Block 1 is nearly identical, so it is not shown.
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Global Register Allocation

RASE's global register allocator di�ers from the Chaitin-style allocator [Cha82] used by Postpass

and IPS. Chaitin's register allocator includes nodes in the interference graph that represent both

global and local pseudo-registers. In RASE, the nodes for local pseudo-registers are replaced with

nodes representing basic block pseudo-registers. (See Figure 6.5.) The number of basic block

pseudo-registers for each block is the maximum number of live local pseudo-registers at any point

(as determined by PRESCHED). For each basic block the number of basic block pseudo-registers

that get colored becomes the register limit for that block. In e�ect, the responsibility for local

register allocation is replaced by the responsibility for determining the register limits.

As in Chaitin's register allocator, the RASE allocator colors nodes in decreasing order of priority.

For each node p,

priority

p

=

regcost

p

degree

p

: (6.3)

(See Section 3.7 for a detailed description of Chaitin's allocator.) For global pseudo-register nodes

regcost

p

is the cost of spilling p to memory. RASE calculates this in the same manner as Chaitin's

allocator. For basic block pseudo-register nodes, regcost

p

represents the incremental cost of reducing

the register limit by one. This is calculated as follows. First, for each block b, let n be the number

of basic block pseudo-register nodes for b. Each such node p is given a value between 1 and n

that represents a possible register limit for b. Then, for each node p, with value x, regcost

p

is the

additional cost of the schedule that would result if the block's register limit were reduced from x

to x� 1. Thus,

regcost

p

= (schedcost

b

(x� 1)� schedcost

b

(x)) � freq

b

; (6.4)

where schedcost

b

(x) is the schedule cost function for b and freq

b

is the frequency with which b is

executed.

To force GRA to color a minimum number of basic block pseudo-register nodes for each block,

regcost

p

is set to in�nity for those nodes. For each block, this minimum is the maximum number

of pseudo-register source operands in any single instruction in the block.

After coloring the graph, GRA counts the number of basic block pseudo-register nodes that

were colored, for each basic block. This number becomes the register limit for that block.

Since RASE's register allocation still precedes scheduling, the First-�t coloring policy may

constrain the scheduler. The Round-robin policy alleviates the problem somewhat, but may still

cause scheduling constraints. The Basic-block policy did not work well with Postpass, because it

was overloaded by local pseudo-registers. The RASE allocator, however, allocates registers only to

global pseudo-registers, which enables the Basic-block policy to perform better than Round-robin.

Consequently, the RASE register allocator uses the Basic-block coloring policy.

As discussed in Section 3.7.1, the Marion global register allocator constructs interference graph

nodes that represent register pairs and requires them to be colored with adjacent physical registers.

This applies to basic block pseudo-registers as well. In particular, within the group of basic block

pseudo-registers that do not have in�nite cost, all of the nodes representing pairs precede those

representing single registers. Thus, the pairs have a higher regcost than the singles and, therefore,

will be candidates for coloring �rst.
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(a) The graph in a Chaitin-style register allocator contains a node for each global and local pseudo-

register. Some local pseudo-registers may interfere, while others may not. The instruction order

presented to the register allocator determines the interference.
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(b) The graph in the RASE register allocator contains 4 basic block pseudo-register nodes, because

out of the 6 local pseudo-registers, at most 4 are live at any point in the block. All such nodes

conict, so that no two get the same color. The number that do get colored becomes the register

limit for this block.

Figure 6.5: Interference graphs for a basic block in Chaitin-style and RASE register

allocators. Assume that (1) global pseudo-registers gr15 and gr17 are live throughout the block,

(2) the basic block contains 6 local pseudo-registers and (3) of those 6, at most 4 are live at

any point in the block. (lr = local pseudo-register, br = basic block pseudo-register, gr = global

pseudo-register).
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The two groups of nodes representing basic block pseudo-register pairs and singles, respec-

tively, are further subdivided into calleesave and non-calleesave subgroups. Within each group

the calleesave subgroup precedes the non-calleesave subgroup. PRESCHED indicates how many

local pseudo-registers (both pairs and singles) are live across a call; these become the size of the

calleesave groups. Nodes in these groups interfere with callersave physical registers, forcing them

to be colored with calleesave physical registers (if at all). If calleesave physical registers are not

available, but callersave register are, it is sometimes pro�table to give callersave registers to a basic

block, even though it would prefer calleesave. To enable this to happen, for each calleesave basic

block pseudo-register, an extra non-calleesave basic block pseudo-register is added. These extra

pseudo-registers are given low regcosts, beginning at :001 � freq and decreasing for each subsequent

one.

The Underlying Scheduler (SCHED)

The algorithm for SCHED, shown in Figure 6.6, is O(n

2

) and is similar to the IPS scheduler's algo-

rithm. Signi�cant di�erences are that SCHED performs local register allocation while scheduling

and strictly adheres to the register limit, spilling if necessary. In contrast, the IPS scheduler may

exceed the limit, since it precedes register allocation.

When a register limit is reached, SCHED, like IPS, attempts to schedule an instruction that

frees registers in the limited register set or at least creates no more registers than it frees. However,

if no such instruction exists, SCHED spills the local pseudo-register r from the limited set such

that

h(r) � h(s); 8s 2 regs; where h(r) = max

u2use(r)

(c

u

) (6.5)

and c

u

is the maximum cumulative cost of u. In other words, SCHED chooses the register whose

farthest use from the end of the block is closer to the end of the block than any other register's.

When spilling, SCHED schedules the store of the spilled register r and then adds the corresponding

load instruction to the code DAG, ensuring that it precedes all unscheduled uses of r. Spilling is

sometimes necessary because SCHED performs local register allocation, along with scheduling.

SCHED's heuristics for choosing a ready instruction are a superset of Postpass's heuristics:

(1) choose the ready instruction whose maximum distance

1

is within tolerance of the

greatest maximum distance of any instruction; if not unique, then

(2) choose from that set the instruction that is not a local load instruction; if not unique,

then

(3) choose from that set the instruction with the maximum distance; if not unique, then

(4) choose from that set the instruction with the maximum number of successors; if not

unique, then

(5) choose from that set the instruction with the greatest latency; if not unique, then

(6) choose an arbitrary instruction from that set.

1

Maximum distance is de�ned in Section 4.2.
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Algorithm 4: schedule within limit

Input: code DAG; foreach register set s, a register limit, limit(s)

Output: schedule

De�ne:

c is the current cycle, initially 0

R is the set of ready nodes, initially = f DAG roots g

L is the set of leader nodes (ready except for outstanding latency), initially empty

foreach register set s, use(s) is current number of registers in use, initially 0

foreach node x and foreach register set s,

net(x; s) is the net number of s registers created by n

foreach node x 2 L, lat(x) is the remaining latency of x

Method:

while R 6= ; and L 6= ;

if R 6= ; then

y = ?

if foreach s, use(s) < limit(s) then

y = choose x 2 R, using heuristics

else

let s be a register set such that use(s) � limit(s)

if 9 x 2 R such that net(x; s) < 0 then

y = choose best such x, using heuristics

elseif 9 x 2 R such that net(x; s) = 0 then

y = choose best such x, using heuristics

elseif 9 x 2 L such that net(x; s) <= 0 then

y = NOP

else spill a register from s

endif

endif

else y = NOP

endif

if y 6= ? then

schedule y

foreach successor x of y

if all predecessors of x are scheduled then

L = L [ fxg; lat(x) = remaining latency of x's predecessors

endif

endfor

endif

c = c+ 1

foreach x 2 L

decrement lat(x)

if lat(x) = 0 then L = L � x; R = R [ x; endif

endfor

endwhile

Figure 6.6: Algorithm for the RASE scheduler SCHED.
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The tolerance is at most 8 and is a function of the number of currently live local pseudo-registers; as

the number approaches the limit, the tolerance increases. The tolerance used in the �rst heuristic,

along with the second heuristic, allows the scheduler more freedom to �nd an instruction that does

not increase the number of live local pseudo-registers. The latter four heuristics are the same as

those use by Postpass.

Allocating local registers on-the-y creates two problems that complicate SCHED and some-

times cause it to spill unnecessarily. First, considerable e�ort is needed to avoid reloading a spilled

register when it cannot be used. To accomplish this, SCHED marks each reload and will not

schedule it unless some successor has no predecessors other than reloads. This avoids reloading

too early, but sometimes forces reloading to occur too late. For example, in a large basic block

with many local common subexpressions, those subexpressions may be spilled after their initial

uses. Then, the latter part of the schedule may contain many load delays, because only reloads

and their dependent operations are left to schedule. It is fairly common to �nd a small number of

these reloads in a large basic block; the problem is serious only in a few large blocks.

The second problem concerns function calls. During pre-scheduling, the scheduler notes how

many local pseudo-registers are live across each call site in a basic block. The global register

allocator uses this information to try to give the basic block enough calleesave registers to meet its

needs. However, until it schedules a call, SCHED does not know which pseudo-registers will be live

across the call.

An alternative that may solve the second problem is to delay register assignment until after

scheduling. Since the scheduler remains within the register limit, spilling should not be neces-

sary; some moves between registers may be needed, however, because of speci�c register needs for

parameter passing, calleesave and callersave registers, and register pairs.

A potential solution to both problems is to allow SCHED to exceed the register limit, like the

IPS scheduler, and then do local register allocation after scheduling. Of course, spills would have to

be inserted, requiring them to be scheduled. Nevertheless, this would simplify SCHED and could

improve both compile-time performance and the schedules produced.

The presence of two or more registers sets causes another problem for SCHED (and for the

IPS scheduler as well). For example, if one set (e.g., oating point) is at its register limit, but

there are ready instructions that use only the other set (e.g., integer), SCHED will schedule them.

Eventually a oating point register may have to be spilled anyway. If the integer instructions could

have been overlapped with oating point instructions, the resulting schedule is inferior. Preventing

this is di�cult, because some of those integer instructions may be predecessors of oating point

instructions; therefore, scheduling the integer instructions may avoid the oating point register spill.

Fortunately, this problem is rare; the only signi�cant case observed was on the Nasker program

VPE on the i860. Section 6.3 discusses this problem further.

6.3 Results

The comparison of code generation strategies was performed on three commercially available RISC

architectures, the MIPS R2000, the Motorola 88000 and the Intel i860. These architectures are

discussed in Chapter 2.

All data given in this section are speedups. (Larger numbers are better.) The speedup of
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Table 6.2: Speedup of IPS and RASE over Postpass for the Livermore group on three

architectures. (Larger numbers are better.)

Speedup over Postpass

88000 R2000 i860

Test IPS RASE IPS RASE IPS RASE

Ker1 1.00 1.00 1.00 1.00 1.00 1.00

Ker2 1.19 1.19 1.06 1.06 0.99 1.00

Ker3 1.00 1.00 1.00 1.00 1.00 1.00

Ker4 1.01 1.01 1.01 1.01 1.01 1.01

Ker5 1.00 1.00 1.00 1.00 0.96 1.00

Ker6 1.00 1.00 1.00 1.00 1.00 1.00

Ker7 1.59 1.57 1.32 1.36 1.00 1.00

Ker8 1.26 1.24 1.16 1.17 1.08 1.10

Ker9 1.21 1.23 1.17 1.16 1.02 1.02

Ker10 1.19 1.19 1.17 1.17 1.19 1.19

Ker11 1.00 1.00 1.00 1.00 1.00 1.00

Ker12 1.00 1.00 1.00 1.00 1.00 1.00

Ker13 1.16 1.16 1.08 1.08 1.01 1.14

Ker14 1.07 1.08 1.08 1.08 0.96 1.04

HMn 1.10 1.10 1.07 1.07 1.01 1.03

strategy x (IPS or RASE) over Postpass is,

Speedup =

total cycles(Postpass)

total cycles(x)

: (6.6)

Table 6.2 shows the speedups of IPS and RASE over Postpass on the three architectures, for

the Livermore group. In virtually all cases, IPS and RASE produce faster code. On the 88000,

both IPS and RASE achieve speedups over Postpass of up to 1.6. On the R2000, the speedups

are smaller, but on four loops they exceed 1.15. The speedups for the Nasker group are shown in

Table 6.3. On the 88000, both IPS and RASE achieve speedups averaging 1.2 (for the unoptimized

kernels). Again the speedups are smaller on the R2000.

The greater speedups of IPS and RASE over Postpass on the 88000 versus the R2000 are

caused by three di�erences between the architectures. First, the 88000 has only 32 registers,

while the R2000 has 32 integer registers and 16 oating point registers. Given more registers, the

register allocator is less likely to constrain the Postpass scheduler. Second, the 88000 oating point

operation latency is roughly twice that of the R2000. Since hiding shorter latencies requires less

instruction-level parallelism, scheduling constraints imposed by the register allocator have a smaller

impact. Third, a double precision load/store takes 2 instructions on the R2000, but only 1 on the

88000 (with a 3-cycle load latency). The additional instructions give schedulers more possibilities

for hiding latencies, thereby reducing the impact of scheduling constraints.

Livermore kernel 10 is an interesting case. It contains only double precision subtracts, loads

and stores. Since double subtract latency is only two on the R2000, we expected IPS and RASE to

exhibit little speedup over Postpass on that architecture. Postpass's Round-robin coloring policy,

however, forces an important value that is used in the inner loop to be spilled, yielding an inferior



79

schedule. Although the Round-robin policy yields better code than First-�t for most programs,

Round-robin can sometimes produce poor results.

The average speedup of IPS and RASE over Postpass is smaller on the i860 than either the 88000

or R2000, because the i860 has more registers (32 integer and 32 single precision oating point).

Nevertheless, the results are consistent with those from the other architectures: IPS and RASE

are better than Postpass. The speedups vary widely and in some cases IPS and RASE produce

worse code than Postpass. Much of the variation is attributed to the di�culty of scheduling the

explicitly advanced pipelines on the i860; each of the schedulers must be restricted to ensure that

intermediate values in the pipelines are not lost. Modi�cations to the RASE scheduler might reduce

the variation; this area needs further study.

On the i860, the NAS kernel VPE exhibits the di�cultly of scheduling with register limits on

a machine with two register sets. Both IPS and RASE produce worse code than Postpass. Each

reaches the oating point register limit and then continues to schedule integer instructions that

could have been overlapped with oating point instructions, if a oating point register had been

spilled or the limit surpassed.

No global optimizations are performed by the Marion's Lcc front end. The lack of these opti-

mizations can a�ect the results. To gauge this e�ect, I hand-optimized the Nasker program group.

In general, while execution time improved over the unoptimized code, the relative performance

across code generation strategies remained comparable to that produced by the unoptimized code.

Table 6.3 contrasts the unoptimized and hand-optimized Nasker group. The hand-optimized

kernels were hand-optimized using loop induction variable analysis and strength reduction and loop

invariant removal. These optimizations change a program's instruction mix, generally reducing

integer addressing code, including integer multiplies, but increasing integer pseudo-registers to

hold compiler-created strength-reduced induction variables. On the optimized kernels, IPS and

RASE exhibit speedups over Postpass comparable to those on the unoptimized code. On the

optimized programs, the speedups are somewhat lower on the 88000, but higher on the R2000 and

i860. The lower speedups on the 88000 result from fewer integer multiplies in the optimized code;

integer multiplies contend with oating point instructions for the FPU. Fewer integer multiplies

are also the reason for the higher speedups on the R2000. Because the R2000 integer multiply

has a long latency and is not pipelined, the integer multiply/divide unit is the critical resource on

the unoptimized code; when optimizations reduce those multiplies, the registers become the critical

resource. Because IPS and RASE more e�ectively use registers, they produce better schedules than

Postpass on the optimized code.

Tables 6.4 and 6.5 show the speedups for the Perfect and Misc groups, respectively. On these

programs both IPS and RASE exhibit smaller speedups over Postpass than on the kernels: IPS

speedups ranged from 1.0 to 1.2; for RASE they ranged from 1.0 to nearly 1.3. In most of the

programs, execution time is distributed over many basic blocks, as opposed to the Livermore and

Nasker groups. Since the level of scheduling di�culty varies considerably between blocks, the

potential speedup over Postpass is smaller for the programs than for the kernels. Nevertheless,

some applications exhibit signi�cant speedups on the 88000 and good speedups on the R2000.

In both ARC2D and MG3D, which exhibit some of the largest speedups, the dominating blocks

contain large numbers of oating point operations of all kinds.

On the 88000, RASE exhibits speedups over IPS of 7% to 13% on four of the Perfect group

programs. This occurs because IPS decreases a block's local register limit by the number of global
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Table 6.3: Speedup of IPS and RASE over Postpass for the Nasker group (a) unopti-

mized and (b) optimized, on three architectures. No global optimizations were performed on the

unoptimized kernels, (the same as on all other programs). Loop induction variable analysis and

strength reduction and invariant removal were performed by hand on the optimized kernels.

Speedup over Postpass

88000 R2000 i860

Test IPS RASE IPS RASE IPS RASE

BTR 1.24 1.25 1.23 1.24 1.17 1.20

CHO 1.18 1.18 1.03 1.03 1.05 1.03

EMI 1.17 1.18 1.02 1.03 1.06 1.08

FFT 1.33 1.33 1.04 1.03 0.96 1.01

GMT 1.10 1.10 1.00 1.00 1.00 0.97

MXM 1.31 1.33 1.06 1.06 1.05 1.13

VPE 1.17 1.17 1.08 1.08 0.97 0.91

HMn 1.21 1.21 1.06 1.07 1.03 1.04

(a) Unoptimized Nasker group

Speedup over Postpass

88000 R2000 i860

Test IPS RASE IPS RASE IPS RASE

BTR 1.20 1.21 1.19 1.21 1.14 1.15

CHO 1.07 1.08 1.08 1.08 1.08 1.08

EMI 1.09 1.12 1.09 1.10 1.01 1.02

FFT 1.22 1.23 1.01 1.01 1.09 1.11

GMT 1.04 1.04 1.00 1.00 1.00 1.00

MXM 1.29 1.29 1.19 1.21 1.11 1.11

VPE 1.14 1.14 1.08 1.08 0.97 0.91

HMn 1.14 1.15 1.08 1.09 1.05 1.05

(b) Hand-optimized Nasker group

pseudo-registers referenced within the block, which in e�ect favors global pseudo-registers at the

expense of locals. Most of the time this heuristic is e�ective. However, for blocks that contain more

global pseudo-registers than physical registers (which is the case with these four programs), the

register limit is reduced to the minimum, preventing the scheduler from exploiting much instruction-

level parallelism. RASE, on the other hand, �nds a better balance between using registers for

scheduling and using them to reduce memory references. This results in more physical registers

being used locally for scheduling, which yields better schedules for these large blocks.

On workloads that have small basic blocks or mostly integer operations, IPS and RASE both

perform better than Postpass, as shown in Table 6.6. The speedups result primarily from Post-

pass's Round-robin register allocation policy, which causes a higher than necessary procedure call

overhead. If Postpass used the Mixture policy, the speedups would be signi�cantly smaller.
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Table 6.4: Speedup of IPS and RASE over Postpass for the Perfect group on three

architectures.

Speedup over Postpass

88000 R2000 i860

Test IPS RASE IPS RASE IPS RASE

ARC2D 1.16 1.25 1.06 1.06 1.13 1.16

BDNA 1.04 1.18 1.11 1.15 0.99 1.01

DYFESM 1.11 1.11 1.03 1.03 1.06 1.06

FLO52 1.11 1.11 1.04 1.04 1.08 1.12

MDG 1.05 1.05 1.02 1.01 1.04 1.03

MG3D 1.18 1.28 1.05 1.06 1.05 1.08

QCD 1.02 1.10 1.04 1.02 1.05 1.04

TRACK 1.02 1.06 1.02 1.05 1.03 1.02

HMn 1.08 1.14 1.05 1.05 1.05 1.06

Table 6.5: Speedup of IPS and RASE over Postpass for the Misc group on three architec-

tures.

Speedup over Postpass

88000 R2000 i860

Test IPS RASE IPS RASE IPS RASE

BOAST 1.12 1.13 1.10 1.10 1.08 1.11

SPHOT 1.09 1.10 1.10 1.08 1.10 1.11

WANAL1 1.15 1.17 1.08 1.08 1.05 1.06

NEURAL 1.24 1.24 1.15 1.14 1.11 1.11

HMn 1.15 1.16 1.11 1.10 1.09 1.10

Table 6.6: Speedup of IPS and RASE over Postpass for the Int group on three architectures.

Speedup over Postpass

88000 R2000 i860

Test IPS RASE IPS RASE IPS RASE

DHRYSTONE 1.07 1.04 1.12 1.05 1.07 1.03

INTEGER 1.07 1.07 1.05 1.05 1.12 1.09

KNIGHT 1.25 1.24 1.17 1.16 1.16 1.17

LCC 1.39 1.35 1.39 1.30 1.35 1.29

SPARSE 1.23 1.21 1.24 1.19 1.22 1.19

HMn 1.19 1.17 1.18 1.14 1.18 1.15
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Table 6.7: Average speedup over the four oating point program groups of IPS and

RASE over Postpass on three architectures.

Speedup over Postpass

Architecture IPS RASE

88000 1.14 1.15

R2000 1.07 1.07

i860 1.05 1.06

6.4 Summary

This chapter presents a study of code generation strategies to test the hypothesis that separating

instruction scheduling and register allocation produces ine�cient schedules. Three strategies were

examined: Postpass separates the two phases completely, performing register allocation �rst; IPS

schedules before register allocation, using a heuristic that emulates the register allocation con-

straints; RASE most closely couples the two phases by computing schedule cost estimates that are

used by the register allocator.

Both RASE and IPS are considerably better than Postpass (see Table 6.7), supporting the

hypothesis that integrating the two phases is necessary. IPS is better than Postpass for two reasons.

First, by limiting local register usage, the IPS scheduler emulates the constraints under which the

register allocator must operate. The register limit takes into consideration the global pseudo-

registers referenced within a block. This restrains the growth of register pressure, which reduces

overall spilling and, in particular, avoids signi�cant spilling in important blocks. Second, because

IPS schedules before register allocation, the scheduler is free from speci�c register restrictions and

also presents the register allocator with an ordering that is closer to the �nal schedule (modulo spill

code), which gives the allocator a better picture of the interference between pseudo-registers.

RASE is better than Postpass for two reasons. First, the schedule cost estimates let the register

allocator �nd a balance between local and global register needs, which gives each basic block

su�cient registers to exploit instruction-level parallelism, but not enough to cause unnecessary

spilling elsewhere. Second, it delays local register allocation until �nal scheduling, which reduces

speci�c register restrictions on the scheduler.

On the three architectures examined in this study, RASE achieves little speedup over IPS (1%

on the average), except on programs with large basic blocks. On architectures with fewer registers

or longer latencies, RASE achieves greater speedups. This is discussed in the next chapter.

Three modi�cations to RASE may improve the code it produces. First, RASE could present

the global register allocator with an ordering computed by PRESCHED. The prepass reordering

would make RASE more like IPS, but RASE would still retain the more precise heuristic for

determining the local register limit. Second, RASE could separate local register allocation from

FINALSCHED, which may eliminate unnecessary local spills caused by the di�culty of performing

these two functions together. Third, a global register allocator with live-range splitting might

reduce overall spilling. (This might also improve the other strategies.)

Both IPS and RASE take more compilation time than Postpass. IPS takes roughly twice as

much time as Postpass, because it schedules each block twice and because the scheduler must check
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register limits. RASE is roughly three times slower than IPS, because it schedules each block three

or four times (depending on the number of register sets) and because the scheduling algorithm is

more complicated than IPS's. More detail is given in Section 8.2.

In summary, the results demonstrate that some level of integration is necessary to produce

e�cient schedules, but that the implementation and compilation expense of strategies that closely

couple the two phases, such as RASE, is unnecessary at present. Nevertheless, given the trend

toward techniques that increase instruction-level parallelism, RASE's better performance on pro-

grams with very large basic blocks makes it a good candidate for further examination.
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Chapter 7

Register Sets and Latency Versus Code

Generation Strategy

This chapter discusses experiments that examine the e�ect on RISC processor performance of

register set size and organization, and operation and load latency, using di�erent code genera-

tion strategies. The strategies used in these studies are those discussed in the previous chapter.

The architectures that are examined incorporate many features of two single-processor RISCs, the

Motorola 88000 and the MIPS R2000, although none is an exact model of either.

Naturally, more registers yield better overall performance, but at some point the additional

bene�t diminishes. In general, code generators that integrate register allocation and instruction

scheduling yield more e�cient schedules, but their relative advantage decreases as the register set

size increases.

The results show that, for a smaller number of registers, register pressure causes the architecture

with a shared register organization to execute faster than a split organization; for a larger number

of registers, the write-back bus to the shared register set becomes the bottleneck, making a split

organization better. The split organization's advantage can be o�set by double-porting the shared

register �le.

The results also indicate that a machine with a oating point coprocessor does not always

execute faster than one with a slower on-chip implementation, if the coprocessor does not also

perform expensive integer operations, such as multiply and divide. The problem can be solved by

transferring operands to the FPU, performing the operation there, and then shipping the data back

to the CPU.

The rest of this chapter is organized as follows: Section 7.1 describes the methodology that

is speci�c to these studies; Section 7.2 discusses the experiments and results; Section 7.3 outlines

related work; and Section 7.4 summarizes the results of these experiments.

7.1 Methodology

Most architectural features used in these studies are adopted from the Motorola 88000 chip and

the MIPS R2000/R2010 chip set. The aim is not to model these machines exactly, but to choose

components that would constitute a \reasonable" base model for RISCs, and then vary features of

that model. When varying a particular feature, other aspects of the architecture remain �xed.

The architectures examined include several common features. First, the CPU contains a 4-

stage instruction pipeline that handles all integer operations, except multiply and divide. Second,

the FPU contains separate add and multiply pipelines that share initial and �nal stages. Divide
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Table 7.1: Longerop and Shorterop operation latencies used in the experiments.

Latency (in cycles)

Longerop Shorterop

fadd.s 5 2

fmul.s 6 4

fdiv.s 30 11

fadd.d 6 2

fmul.d 9 5

fdiv.d 60 18

imul 4 12

idiv 38 35

Table 7.2: Longload and Shortload load latencies used in the experiments.

Latency (in cycles)

Longload Shortload

ld 11 2

ld.d 12 3

operations iterate within the �rst add pipe stage. Third, a 32-bit bus connects the CPU to a

data cache and memory.

1

Fourth, load operations use a 2-stage load pipeline. Integer and single

precision oating point loads have a 2-cycle latency; double precision loads take 3 cycles.

Five independent architectural parameters are examined: (1) the code generation strategy; (2)

the number of 32-bit registers (16 to 128);

2

(3) the organization of the register �le; (4) the operation

latencies; and (5) the load latency.

The experiments compare two sets of operation latencies: Longerop, which models 88000 laten-

cies, and Shorterop, which models R2000 latencies. (See Table 7.1.) These particular latencies were

chosen because they represent those of two alternative chip designs, single-chip and dual-chip. The

oating point latencies of the dual-chip design are roughly half those of the single-chip, because

more of the dual-chip area can be devoted to oating point operations. In the dual-chip design,

integer multiply is done on the CPU chip; the latency is three times that of the single-chip, which

uses the FPU to perform this operation.

The studies compare two sets of load latencies: Longload, which models architectures without a

cache (such as the Cray-1), and Shortload, which models architectures with a cache. (See Table 7.2.)

Only the shorter load latencies are used in most of the experiments; the longer latencies are used

only in the load latency study and the code generation strategy study.

Both split and shared register organizations are examined. In a split organization registers are

usually divided into two equal partitions for integer and oating point values, respectively. This is

the logical choice for an architecture with a separate oating point coprocessor; therefore, in our

studies the split organization is usually coupled with the shorter oating point operation latencies.

1

The memory system is not modeled; instead all references are assumed to be cache hits.

2

The instruction word format is not altered to take register set size into consideration.
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A shared organization is most appropriate for a single chip implementation; therefore, it is paired

with the longer oating point latencies. The shared organization is also used with shorter latencies

in some of the experiments, to test the e�ect of changing only the register organization. In all

studies, double precision oating point values use 64-bit even-odd register pairs.

The code generation strategies used in these experiments are described in Chapter 6. All of

them perform global (procedure-wide) register allocation. Interprocedural or link-time register al-

location was not considered; With such a register allocation technique, a greater number of registers

could be used e�ectively, mostly to reduce procedure call overhead [Wal86, Cho88]. Techniques

to increase basic block size, such as loop unrolling, trace scheduling and software pipelining, were

not considered; these techniques could also increase the need for more registers. No global or loop

optimizations were performed, except as noted.

7.2 Experiments and Results

7.2.1 Register Set Size

This experiment examines the e�ect on performance of register set sizes ranging from 16 to 128

registers, across three code generation strategies and three architectures. The architectures di�er in

register organization and operation latency. A88sh has a shared register set and Longerop operation

latencies; Ar2sh has the same register organization but with Shorterop latencies; Ar2sp also has

Shorterop latencies, but registers are split into two equal partitions, except for 32/16 and 64/32,

in which the oating point partition is half the size of the integer partition. For each architecture,

the execution time of each program is normalized to the execution time for the same strategy and

same architecture with 32 registers. Tables 7.3 and 7.4 show the results. Figures 7.1 through 7.3

at the end of the chapter summarize the data in the tables.

With the IPS and RASE code generation strategies, 32 registers is a good choice for all three

architectures. Given only 16 registers, the degradation (from 32 registers) averages 12% for A88sh

and Ar2sh and 26% for Ar2sp. Above 32 registers, execution speed improves only 1%, on the

average, for A88sh and Ar2sh and 4% for Ar2sp. Although the slope of the execution speed curve

is steeper (as register set size increases) for the split register organization, Ar2sp, than the shared

organizations, there is little improvement above 32 registers. The Ar2sp slope is steeper because

many programs require more registers of one type than the other. In addition, those needs may

vary over di�erent parts of a program.

The same general trends apply to Postpass, except that the best register set size shifts to 64

registers. Over all three architectures, the improvement between 32 and 64 registers averages 9%.

As with RASE and IPS, when using Postpass, the split register organization is more constrained

with fewer registers, because of the varying needs of di�erent programs. This is evident in the

Perfect and Misc groups, which contain the larger programs. In general, Postpass uses registers

less e�ciently than the other two strategies, because there is no communication between register

allocation and instruction scheduling.

The bene�t of using an integrated code generator, such as IPS or RASE, is that architects can

more comfortably choose a smaller register set size. In this experiment both strategies brought

large gains when varying register set size from 16 to 32, and both limited the penalty of not using

64 or more. A smaller register set size has several advantages: faster access time, less chip area,
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Table 7.3: E�ect of register set size across three machine organizations (shared register

set with longer operation latencies (A88sh), shared with shorter latencies (Ar2sh) and split with

shorter latencies (Ar2sp)). Register sizes 32/16 and 64/32 were not used with the shared register

sets. The execution times for an architecture are normalized to the same machine organization

with 32 registers. Each �gure is the harmonic mean of all programs within a particular workload

group. The data shown here is for the code generation strategies Postpass and IPS. The data for

RASE is in the next table.

Prog Register Set Size

Group 16 32 32/16 64 64/32 128

Liverm 1.12 1.00 0.91 0.90

Nasker 1.18 1.00 0.86 0.84

A88sh Perfect 1.17 1.00 0.94 0.91

Misc 1.13 1.00 0.93 0.90

Int 0.98 1.00 1.03 1.05

Liverm 1.12 1.00 0.92 0.91

Nasker 1.17 1.00 0.88 0.86

Postpass Ar2sh Perfect 1.15 1.00 0.94 0.91

Misc 1.14 1.00 0.92 0.90

Int 0.98 1.00 1.03 1.04

Liverm 1.39 1.00 0.92 0.91 0.87 0.87

Nasker 1.29 1.00 0.88 0.88 0.83 0.82

Ar2sp Perfect 1.30 1.00 0.94 0.91 0.88 0.87

Misc 1.20 1.00 0.92 0.88 0.87 0.86

Int 1.04 1.00 1.02 1.02 1.04 1.04

Liverm 1.04 1.00 1.00 1.00

Nasker 1.17 1.00 0.99 1.00

A88sh Perfect 1.15 1.00 0.96 0.94

Misc 1.19 1.00 0.99 0.99

Int 1.00 1.00 1.00 1.00

Liverm 1.04 1.00 1.00 1.00

Nasker 1.13 1.00 0.99 1.00

IPS Ar2sh Perfect 1.16 1.00 0.97 0.96

Misc 1.23 1.00 1.00 0.99

Int 1.00 1.00 1.00 1.00

Liverm 1.28 1.00 0.99 0.99 0.98 0.99

Nasker 1.22 1.00 0.94 0.93 0.94 0.94

Ar2sp Perfect 1.33 1.00 0.96 0.93 0.92 0.91

Misc 1.31 1.00 0.96 0.94 0.94 0.94

Int 1.07 1.00 1.00 1.00 1.00 1.00
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Table 7.4: E�ect of register set size across three machine organizations (shared register

set with longer operation latencies (A88sh), shared with shorter latencies (Ar2sh) and split with

shorter latencies (Ar2sp)). Register sizes 32/16 and 64/32 were not used with the shared register

sets. The execution times for an architecture are normalized to the same machine organization

with 32 registers. Each �gure is the harmonic mean of all programs within a particular workload

group. The data shown here is for the RASE code generation strategy. The data for Postpass and

IPS is in the previous table.

Prog Register Set Size

Group 16 32 32/16 64 64/32 128

Liverm 1.01 1.00 1.00 1.00

Nasker 1.16 1.00 1.00 1.00

A88sh Perfect 1.13 1.00 0.96 0.95

Misc 1.13 1.00 0.98 0.98

Int 1.00 1.00 1.00 1.00

Liverm 1.01 1.00 1.00 1.00

Nasker 1.15 1.00 1.00 1.01

RASE Ar2sh Perfect 1.17 1.00 0.97 0.97

Misc 1.18 1.00 0.98 0.98

Int 1.00 1.00 1.00 1.00

Liverm 1.20 1.00 1.00 1.00 1.00 1.00

Nasker 1.33 1.00 0.95 0.95 0.95 0.95

Ar2sp Perfect 1.32 1.00 0.98 0.96 0.95 0.94

Misc 1.22 1.00 0.99 0.97 0.97 0.97

Int 1.10 1.00 1.00 1.00 1.00 1.00

and perhaps most important, one fewer bit per operand in the instruction format. If techniques

that increase basic block size, such as loop unrolling and trace scheduling, become more widely

used, the need for more registers will increase; sophisticated strategies will then have even more

utility.

When using Postpass, the Int group performance decreases as register set size increases. This

is because the Round-robin register allocation policy uses more registers than necessary for integer

code, increasing the number of registers that must be preserved over procedure calls.

Many of the Postpass results show that adding additional integer registers is more important

than adding oating point registers. This is because these programs contain many integer address

calculations. If loop optimizations, such as induction variable analysis and loop invariant removal,

were performed, the amount of integer computation would be reduced, but integer register pressure

may be increased by the additional registers needed to hold induction variables and invariants.

Therefore, even with loop optimizations, adding integer registers remains more important than

adding oating point registers. Section 7.2.6 discusses loop optimizations in greater detail.

7.2.2 Register Set Organization

Table 7.5 shows the e�ect of changing register set organization. (Figures 7.4 through 7.6 at

the end of the chapter summarize the data in the table.) The architectures examined are identical
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Table 7.5: E�ect of register set organization (shared (Ar2sh), split (Ar2sp) and shared with an

additional write-back bus (Ar2shb)) across di�erent register set sizes and code generation strategies.

The execution times for an architecture are normalized to Ar2sh with the same number of registers.

Each �gure is the harmonic mean of all programs within a particular workload group. The register

set size of choice for a particular code generation strategy is in bold face type.

Prog Postpass IPS RASE

Sz Group Ar2sh Ar2sp Ar2shb Ar2sh Ar2sp Ar2shb Ar2sh Ar2sp Ar2shb

Lmore 1.00 1.19 0.93 1.00 1.14 0.91 1.00 1.09 0.91

Nasker 1.00 1.10 0.97 1.00 1.09 0.96 1.00 1.16 0.94

16 Perfect 1.00 1.09 0.95 1.00 1.15 0.97 1.00 1.12 0.97

Misc 1.00 1.01 0.94 1.00 1.00 0.92 1.00 1.01 0.94

Int 1.00 1.03 1.00 1.00 1.06 1.00 1.00 1.11 1.00

Lmore 1.00 0.96 0.91 1.00 0.92 0.91 1.00 0.92 0.91

Nasker 1.00 1.01 0.95 1.00 1.00 0.95 1.00 1.00 0.95

32 Perfect 1.00 0.96 0.94 1.00 1.01 0.98 1.00 0.98 0.97

Misc 1.00 0.96 0.91 1.00 0.94 0.91 1.00 0.92 0.92

Int 1.00 0.98 1.00 1.00 0.99 1.00 1.00 1.01 1.00

Lmore 1.00 0.95 0.91 1.00 0.91 0.91 1.00 0.92 0.91

Nasker 1.00 0.99 0.94 1.00 0.95 0.95 1.00 0.95 0.96

64 Perfect 1.00 0.94 0.93 1.00 0.97 0.96 1.00 0.96 0.95

Misc 1.00 0.93 0.92 1.00 0.89 0.90 1.00 0.90 0.91

Int 1.00 0.97 1.00 1.00 0.99 1.00 1.00 1.01 1.00

Lmore 1.00 0.92 0.91 1.00 0.91 0.91 1.00 0.92 0.91

Nasker 1.00 0.97 0.95 1.00 0.94 0.95 1.00 0.95 0.95

128 Perfect 1.00 0.93 0.94 1.00 0.95 0.95 1.00 0.95 0.94

Misc 1.00 0.92 0.92 1.00 0.89 0.90 1.00 0.90 0.91

Int 1.00 0.98 1.00 1.00 0.99 1.00 1.00 1.01 1.00

except for this feature. All have the longer operation latencies. Ar2sh has a shared register �le.

Ar2sp has registers split into integer and oating point partitions. Ar2shb is the same as Ar2sh,

but with an additional write-back bus and register port, giving it the same number of ports as

Ar2sp. The execution times for each architecture are normalized to Ar2sh with the same strategy

and number of registers.

Surprisingly, for register set sizes greater than 16 registers, the split organization is better

than the shared organization in most cases. This is counterintuitive when considering register set

organization alone; the performance of the shared organization should be at least as good as the

split organization, because a program would have access to more registers when executing in either

a oating point or integer intensive section of code.

One hypothesis is that the crucial performance factor is access to the register �le rather than

its organization. Split organizations use a separate write-back bus for each register partition; the

shared organization architecture, Ar2sh, has only one write-back bus. To test this hypothesis,

a second write-back bus and corresponding register port were added to Ar2sh. (See the Ar2shb

column.) The additional bus enabled programs to execute at least as fast as the split organization in

nearly all cases. In particular, for a register set size of 32, the second bus brought an improvement
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over Ar2sp averaging 2% across the three code generation strategies. There were cases where

Ar2sp performed better than Ar2shb. These fall into two categories. First, on the Int group with

at least 32 registers, the Postpass uses more registers with Ar2shb than Ar2sp, because of the

shared organization. This increases procedure call overhead. Second, using IPS or RASE, when

there are enough registers (64 or more), Ar2sp and Ar2shb perform equally well (always within

1%); the variations are due primarily to the use of heuristics in the algorithms.

For small register set sizes (e.g., 16) the shared organization is better than the split. The smaller

number of registers is a greater bottleneck for Ar2sp than the write-back bus is for Ar2sh. With

32 or more registers, the opposite is true.

In conclusion, a shared organization, coupled with an extra write-back bus and port, is better

than either a single-ported shared �le or a split organization.

7.2.3 Operation Latency

An architecture with a separate oating point coprocessor, such as the R2000, has the chip area to

implement oating point operations e�ciently; consequently, it has shorter oating point operation

latencies. Therefore, given a oating point intensive workload, one would expect that Ar2sp, which

has shorter latencies, would have lower execution times than A88sh, which models a single-chip

implementation and has longer latencies. Consider, however, columns A88sh and Ar2sp of Table 7.6.

For nearly 50% of the program groups, Ar2sp has slower execution times than A88sh. The slower

times are primarily due to integer multiplies; on Ar2sp integer multiply is done in the CPU and

has a longer latency than oating point multiply. Array address calculations are responsible for

most of the multiplies; many of them would be eliminated by loop optimizations. Nevertheless, it

is interesting to examine the implications of programs with numerous long integer operations.

One advantage of combining both integer and oating point operations on the same chip is that

a faster oating point unit can easily be used for integer multiplies, as occurs on the 88000. This

improves the execution speed of programs that are dominated by integer operations. The R2000,

on the other hand, does integer multiply within the main processor, instead of the oating point

coprocessor. The operation latency for the CPU integer multiply is large compared to the oating

point latencies.

To test whether the Ar2sp's slower integer multiply is a bottleneck, we created a variation of

Ar2sp called Ar2spf. To perform integer multiply or divide on Ar2spf, the operands are transferred

to oating point registers, the operation is executed in the FPU and the result is transmitted back.

A transfer between register sets has a 2-cycle latency.

Ar2spf shows improved performance for all program groups where Ar2sp is slower than A88sh.

Even in those cases in which the Ar2sp had been faster, doing integer multiplies and divides in

the oating point unit resulted in better or comparable performance. The only exception is the

Livermore group, on which Ar2spf exhibited a slight degradation from Ar2sp. These programs have

enough oating point operations to hide most integer multiplies on Ar2sp; issuing oating point

instructions is the bottleneck. Therefore, the additional transfer instructions and oating point

multiply instructions required by Ar2spf cause a reduction in the oating point instruction issue

rate and thus a performance degradation. In general, however, the e�ect of using the oating point

coprocessor to execute integer multiplies improves execution time. Figures 7.7 through 7.9 at the

end of the chapter summarize the data in Table 7.6.
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Table 7.6: E�ect of operation latencies (longer latencies (A88sh), shorter latencies (Ar2sp) and

shorter latencies with integer multiply and divide done in the oating point coprocessor (Ar2spf))

across register set sizes and code generation strategies. The execution times for each architecture

are normalized to A88sh with the same number of registers. Each �gure is the harmonic mean of

all programs within a particular workload group. The register set size of choice for a particular

code generation strategy is in bold face type.

Prog Postpass IPS RASE

Sz Group A88sh Ar2sp Ar2spf A88sh Ar2sp Ar2spf A88sh Ar2sp Ar2spf

Lmore 1.00 1.10 1.09 1.00 1.08 1.07 1.00 1.03 1.02

Nasker 1.00 1.20 1.12 1.00 1.20 1.10 1.00 1.33 1.17

16 Perfect 1.00 1.04 1.01 1.00 1.06 0.96 1.00 1.08 1.01

Misc 1.00 0.90 0.89 1.00 0.91 0.87 1.00 0.92 0.88

Int 1.00 1.06 0.98 1.00 1.07 1.00 1.00 1.12 1.03

Lmore 1.00 0.90 0.90 1.00 0.88 0.89 1.00 0.87 0.88

Nasker 1.00 1.09 0.99 1.00 1.14 0.98 1.00 1.15 1.02

32 Perfect 1.00 0.93 0.88 1.00 0.93 0.86 1.00 0.91 0.86

Misc 1.00 0.85 0.83 1.00 0.82 0.79 1.00 0.79 0.79

Int 1.00 1.00 0.93 1.00 1.01 0.93 1.00 1.03 0.95

Lmore 1.00 0.90 0.90 1.00 0.87 0.88 1.00 0.87 0.88

Nasker 1.00 1.13 1.00 1.00 1.08 0.97 1.00 1.10 0.99

64 Perfect 1.00 0.90 0.85 1.00 0.91 0.85 1.00 0.91 0.85

Misc 1.00 0.81 0.80 1.00 0.78 0.77 1.00 0.78 0.78

Int 1.00 0.99 0.91 1.00 1.01 0.93 1.00 1.03 0.95

Lmore 1.00 0.88 0.87 1.00 0.87 0.88 1.00 0.87 0.88

Nasker 1.00 1.08 0.97 1.00 1.07 0.96 1.00 1.09 0.98

128 Perfect 1.00 0.89 0.84 1.00 0.90 0.84 1.00 0.90 0.85

Misc 1.00 0.81 0.81 1.00 0.78 0.77 1.00 0.78 0.78

Int 1.00 0.99 0.92 1.00 1.01 0.93 1.00 1.03 0.95

7.2.4 Load Latency

If a processor has no cache, the load latency will be considerably longer than one with a cache. This

experiment examines the e�ect of register set size on two architectures with long load latencies.

The architectures are the same as two of those examined in the �rst experiment, in Section 7.2.1,

except for load latency. A88shL has the Longerop operation latencies and a shared register �le.

Ar2spL has the Shorterop operation latencies and a split register �le.

The results, shown in Table 7.7 exhibit the same trends as the �rst experiment, except that

the point of diminishing returns is shifted to 64 registers with IPS and RASE. With Postpass, 128

registers provide up to a 5% performance increase for A88shL and 10% on Ar2spL. Also, additional

registers are much more important for the split register �le organization, than the shared, with all

three strategies. Figures 7.10 through 7.12 at the end of the chapter summarize the data in the

table.
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Table 7.7: E�ect of register set size across two machine organizations, each with long

load latencies, and three code generation strategies. The execution time of each program is

normalized to the same architecture with 32 registers. Each �gure is the harmonic mean of all

programs within a particular workload group.

Program Register Set Size

Machine Group 16 32 64 128

Livermore 1.19 1.00 0.78 0.77

Nasker 1.47 1.00 0.79 0.73

A88shL Perfect 1.29 1.00 0.87 0.82

Misc 1.25 1.00 0.88 0.86

Int 1.07 1.00 0.94 0.93

Postpass Livermore 1.58 1.00 0.89 0.83

Nasker 1.62 1.00 0.79 0.68

Ar2spL Perfect 1.47 1.00 0.85 0.80

Misc 1.32 1.00 0.84 0.81

Int 1.17 1.00 0.94 0.87

Livermore 1.20 1.00 1.00 1.00

Nasker 1.63 1.00 0.99 0.99

A88shL Perfect 1.33 1.00 0.88 0.84

Misc 1.44 1.00 0.96 0.96

Int 1.01 1.00 1.00 1.00

IPS Livermore 1.89 1.00 0.90 0.90

Nasker 2.23 1.00 0.86 0.87

Ar2spL Perfect 1.66 1.00 0.83 0.77

Misc 1.70 1.00 0.87 0.87

Int 1.27 1.00 1.00 1.00

Livermore 1.06 1.00 1.00 1.00

Nasker 1.38 1.00 0.99 1.00

A88shL Perfect 1.30 1.00 0.95 0.94

Misc 1.29 1.00 0.96 0.96

Int 1.01 1.00 1.00 1.00

RASE Livermore 1.13 1.00 0.89 0.89

Nasker 1.67 1.00 0.86 0.87

Ar2spL Perfect 1.44 1.00 0.84 0.82

Misc 1.62 1.00 0.92 0.92

Int 1.35 1.00 1.00 1.00
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Table 7.8: E�ect of code generation strategy across machine organizations and register

set sizes. This table compares the same architectures as Table 7.6, except the execution times for

each strategy are normalized to Postpass with the same architecture and register set size. Each

�gure is the harmonic mean of all programs within a particular workload group.

Program A88sh Ar2sh Ar2sp

Sz Group PP IPS RASE PP IPS RASE PP IPS RASE

Livermore 1.00 0.83 0.81 1.00 0.85 0.82 1.00 0.82 0.76

Nasker 1.00 0.83 0.80 1.00 0.85 0.83 1.00 0.84 0.87

16 Perfect 1.00 0.91 0.87 1.00 0.90 0.88 1.00 0.95 0.91

Misc 1.00 0.90 0.85 1.00 0.91 0.87 1.00 0.90 0.86

Int 1.00 0.86 0.88 1.00 0.85 0.87 1.00 0.87 0.93

Livermore 1.00 0.90 0.90 1.00 0.92 0.91 1.00 0.88 0.87

Nasker 1.00 0.83 0.83 1.00 0.89 0.87 1.00 0.88 0.86

32 Perfect 1.00 0.92 0.88 1.00 0.89 0.87 1.00 0.93 0.89

Misc 1.00 0.84 0.85 1.00 0.84 0.84 1.00 0.82 0.80

Int 1.00 0.83 0.85 1.00 0.83 0.84 1.00 0.84 0.88

Livermore 1.00 0.99 0.99 1.00 1.00 0.99 1.00 0.95 0.95

Nasker 1.00 0.95 0.95 1.00 0.97 0.96 1.00 0.93 0.92

64 Perfect 1.00 0.94 0.93 1.00 0.92 0.91 1.00 0.94 0.93

Misc 1.00 0.91 0.91 1.00 0.91 0.90 1.00 0.86 0.87

Int 1.00 0.80 0.82 1.00 0.79 0.81 1.00 0.82 0.85

Livermore 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00

Nasker 1.00 0.98 0.98 1.00 1.01 0.99 1.00 0.98 0.98

128 Perfect 1.00 0.95 0.94 1.00 0.94 0.94 1.00 0.96 0.95

Misc 1.00 0.92 0.92 1.00 0.92 0.91 1.00 0.88 0.88

Int 1.00 0.77 0.79 1.00 0.77 0.79 1.00 0.79 0.82

7.2.5 Code Generation Strategy

In all experiments the IPS and RASE code generation strategies generate more e�cient code than

Postpass. As shown in Table 7.8, for 32 registers IPS and RASE are 15% better than Postpass, on

the average, over all three architectures. These two strategies generate more e�cient code, because

they integrate register allocation and instruction scheduling. (Figures 7.13 and 7.14 at the end of

the chapter summarize the data in this section.)

As register set size increases, the bene�t of IPS or RASE over Postpass diminishes, because

Postpass has enough registers to avoid constraining the scheduler. This result applies for all ar-

chitectures and all program groups, except for the Int group. For integer code, the bene�t of IPS

or RASE over Postpass increases with register set size, because of Postpass's Round-robin register

allocation policy. Recall (from Section 6.2.1) that Round-robin was chosen over First-�t, because

it yields better results for oating point programs.

RASE is slightly better than IPS, given 32 registers or less. With 16 registers, RASE is an

average of 2% better than IPS over all three architectures. Given 32 registers, the average is 1%.

However, on the Perfect group, RASE is an average of nearly 4% better, with both 16 and 32

registers. On large basic blocks, which many Perfect group programs contain, IPS uses too many
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Table 7.9: E�ect of code generation strategy across machine organizations and register

set sizes. Both architectures have long load latencies. The execution times for each strategy are

normalized to Postpass with the same architecture and register set size. Each �gure is the harmonic

mean of all programs within a particular workload group.

Program A88shL Ar2spL

Sz Group PP IPS RASE PP IPS RASE

Livermore 1.00 0.81 0.69 1.00 1.02 0.61

Nasker 1.00 0.81 0.66 1.00 1.04 0.78

16 Perfect 1.00 0.98 0.85 1.00 1.12 0.89

Misc 1.00 0.93 0.83 1.00 1.01 0.93

Int 1.00 0.75 0.76 1.00 0.84 0.91

Livermore 1.00 0.77 0.77 1.00 0.86 0.85

Nasker 1.00 0.71 0.71 1.00 0.75 0.76

32 Perfect 1.00 0.94 0.84 1.00 0.98 0.90

Misc 1.00 0.81 0.81 1.00 0.78 0.75

Int 1.00 0.80 0.81 1.00 0.75 0.76

Livermore 1.00 0.99 0.99 1.00 0.89 0.89

Nasker 1.00 0.89 0.88 1.00 0.83 0.84

64 Perfect 1.00 0.95 0.91 1.00 0.95 0.91

Misc 1.00 0.88 0.88 1.00 0.80 0.81

Int 1.00 0.85 0.85 1.00 0.80 0.81

Livermore 1.00 1.00 1.00 1.00 0.94 0.94

Nasker 1.00 0.96 0.96 1.00 0.96 0.97

128 Perfect 1.00 0.98 0.96 1.00 0.96 0.95

Misc 1.00 0.90 0.90 1.00 0.83 0.84

Int 1.00 0.86 0.87 1.00 0.85 0.86

registers to avoid memory references and not enough to exploit instruction-level parallelism. RASE

is able to �nd a better balance.

On machines with a long load latency, RASE exhibits a greater performance gain over Postpass

than IPS. (See Table 7.9.) This is particularly evident on the Perfect group, which contains ap-

plications with large basic blocks; with 32 registers RASE is 10% better than IPS on A88shL and

8% better on Ar2spL. In addition, on A88shL, IPS exhibits less performance gain over Postpass

with 16 registers than with 32 registers, and on Ar2spL with 16 registers, IPS performs worse than

Postpass. This is because IPS sets the local register limit too low to handle the more constrained

architectures, those with long load latencies and 16 registers.

In summary, this study reinforces the results of comparing the strategies from Chapter 6.

Integrating instruction scheduling and register allocation produces more e�cient schedules. Both

IPS and RASE produce better code than Postpass. RASE performs better than IPS on programs

with large basic blocks. In addition, RASE is much less sensitive to architectural changes, such

as long load latencies and a small number of registers. Since RASE has a greater compile-time

expense, it is probably not necessary for many architectures. Nevertheless, on architectures with

long load latencies and/or small register set sizes, RASE is necessary to take advantage of the

architecture's performance potential. Also, if the trend in compiler technology continues in the
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direction of greater loop unrolling and trace scheduling, using a strategy such as RASE will be

advantageous.

7.2.6 E�ect of Loop Optimizations

As explained in Section 7.1, Marion compilers do not perform global optimizations. To gauge

the e�ect of loop optimizations on our previous results, induction variable analysis, strength re-

duction and loop invariant removal were done by hand on the Nasker group. The optimizations

eliminated most integer multiplies. Table 7.10 shows the e�ect of register set size across register

set organizations, operation latencies and code generation strategies, for both hand-optimized and

unoptimized code. (The unoptimized numbers are the same as those in Table 7.3.) The execu-

tion time for each register set size (within a code generation strategy and optimization level) is

normalized to the same architecture, with 32 registers.

Naturally, for all program groups and machine organizations the optimizations result in lower

execution times. The savings di�er considerably between machine organizations, but little between

register set sizes. (See Table 7.11.) For A88sh, the savings average 11%. For the three architectures

with the slower integer multiply, Ar2sh, Ar2shb and Ar2sp, the savings average 38%. For Ar2spf,

where integer multiply uses the FPU, the savings average 26%.

Although the loop optimizations yield lower execution times, they do not change the general

trends we have observed. For example, variations in register set size produce similar relative

performance �gures for both optimized and unoptimized code. Thirty-two registers is still the

register set size of choice when using IPS and RASE; 64 registers are needed when using Postpass.

3

On the optimized code, for each code generation strategy, Ar2sp and Ar2spf performance are almost

identical; also, the trend as register set size increases is close to the trend of the unoptimized code

on Ar2spf. This makes sense, since the optimizations reduce the e�ect of a slow integer multiplier.

When comparing across machine organizations (Table 7.12), while holding the register set size

�xed, the hand-optimized Nasker kernels follow the same trends as the unoptimized kernels: for 32

or more registers the write-back bus is still the bottleneck in the shared organization; IPS and RASE

still perform signi�cantly better than Postpass. One exception is that, for machine organizations

Ar2sh, Ar2shb and Ar2sp, which have a slow integer multiply, the unoptimized code is slower,

relative to A88sh; the optimized code is faster. Additionally, for Ar2spf, which uses the FPU for

integer multiply, the unoptimized code is marginally faster, relative to A88sh; the optimized code

is signi�cantly faster. Both results are because the unoptimized code pays a high penalty for either

the slow integer multiply or the additional transfers to and from the FPU.

7.3 Related Work

Hwu and Chang evaluated micro-architectural parallelism, including multiple instruction issue,

multiple result distribution buses, multiple execution units and pipelined execution units [HC88].

All of their architecture variations had a split register organization with 32 integer and 32 oating

point registers. Code was generated with a prepass code generation strategy, in which instruc-

tion scheduling precedes register allocation. Using the Livermore Loops and Linpack subroutines

3

It remains to be seen whether this particular result will hold for programs with larger basic blocks, such

as the Perfect Club benchmarks.
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Table 7.10: E�ect of register set size across machine organizations and code generation

strategies for unoptimized and hand-optimized Nasker group. The execution times for

each architecture are normalized to the same machine organization with 32 registers. Each �gure

is the harmonic mean of all programs in the Nasker group.

Register Set Size

Mach 16 32 64 128

Unopt 1.18 1.00 0.86 0.84

A88sh Opt 1.23 1.00 0.88 0.87

Unopt 1.17 1.00 0.88 0.86

Ar2sh Opt 1.22 1.00 0.85 0.83

Postpass Unopt 1.19 1.00 0.89 0.87

Ar2shb Opt 1.25 1.00 0.86 0.85

Unopt 1.29 1.00 0.88 0.82

Ar2sp Opt 1.33 1.00 0.86 0.81

Unopt 1.33 1.00 0.87 0.82

Ar2spf Opt 1.30 1.00 0.85 0.80

Unopt 1.17 1.00 0.99 1.00

A88sh Opt 1.14 1.00 0.99 1.00

Unopt 1.13 1.00 0.99 1.00

Ar2sh Opt 1.14 1.00 1.00 1.00

IPS Unopt 1.14 1.00 0.99 0.99

Ar2shb Opt 1.18 1.00 1.00 1.00

Unopt 1.22 1.00 0.93 0.94

Ar2sp Opt 1.36 1.00 0.96 0.96

Unopt 1.32 1.00 0.98 0.98

Ar2spf Opt 1.34 1.00 0.96 0.95

Unopt 1.16 1.00 1.00 1.00

A88sh Opt 1.13 1.00 1.00 1.00

Unopt 1.15 1.00 1.00 1.01

Ar2sh Opt 1.15 1.00 1.00 1.00

RASE Unopt 1.16 1.00 1.00 1.00

Ar2shb Opt 1.15 1.00 1.00 1.00

Unopt 1.33 1.00 0.95 0.95

Ar2sp Opt 1.37 1.00 0.96 0.96

Unopt 1.34 1.00 0.97 0.96

Ar2spf Opt 1.38 1.00 0.96 0.96
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Table 7.11: E�ect of loop optimizations on the Nasker group for four register set sizes,

�ve machine organizations and three code generation strategies. The table shows the performance

improvement of the hand-optimized over the unoptimized Nasker group. Each �gure is the harmonic

mean of all programs in the Nasker group.

Register Set Size

16 32 64 128

A88sh 0.88 0.86 0.89 0.89

Ar2sh 0.68 0.64 0.61 0.62

Postpass Ar2shb 0.66 0.63 0.60 0.61

Ar2sp 0.67 0.63 0.61 0.61

Ar2spf 0.73 0.74 0.73 0.73

A88sh 0.88 0.90 0.91 0.90

Ar2sh 0.63 0.61 0.62 0.62

IPS Ar2shb 0.62 0.60 0.61 0.61

Ar2sp 0.68 0.60 0.61 0.61

Ar2spf 0.78 0.76 0.74 0.74

A88sh 0.88 0.90 0.90 0.90

Ar2sh 0.64 0.62 0.62 0.62

RASE Ar2shb 0.64 0.61 0.61 0.61

Ar2sp 0.64 0.61 0.61 0.61

Ar2spf 0.77 0.75 0.74 0.74

as benchmarks, Hwu and Chang concluded that, when used together, multiple instruction issue

and pipelined execution units produced a speedup greater than the sum of the speedups of each

taken separately. In addition, oating point pipelining was more important than pipelining the

cache. They also found that issuing more than two instructions per cycle produced little additional

speedup, even though loop unrolling was done by the compiler.

Others have examined multiple instruction issue, operation and memory access latencies and

pipelined versus non-pipelined architectures, but with no variation in the number of registers or

code generation strategy. Pleszkun and Sohi [PS88] studied variations of the Cray-1, which has

eight 64-bit scalar registers. They found that multiple functional units improve performance, but

pipelining functional units that execute in parallel does not signi�cantly improve scalar code. They

also found that performance is enhanced by issuing up to four instructions, when memory latencies

are short. They did not describe their code generator.

Sohi and Vajapeyam [SV89] examined variations of a VLIW with unlimited registers. They per-

formed loop unrolling and instruction scheduling. They found that as operation latencies increase,

the need for multiple instruction issue decreases. They also concluded that given an unrestricted

horizontal instruction format, a split register �le is superior to a shared one; however, with a

restricted instruction format, neither is signi�cantly better than the other.

Goodman and Hsu [GH88] implemented the original Integrated Prepass Scheduler (IPS). They

compared it to a number of strategies, including a version of Postpass. Their experiment is discussed

in more detail in Section 6.2.2.
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Table 7.12: E�ect of machine organization across register set sizes and code generation

strategies for unoptimized and hand-optimized Nasker group. The execution times for

each architecture are normalized to A88sh with the same register set size. Each �gure is the

harmonic mean of all programs in the Nasker group.

Size A88sh Ar2sh Ar2shb Ar2sp Ar2spf

Unopt 1.00 1.10 1.05 1.20 1.12

16 Opt 1.00 0.90 0.85 0.96 0.95

Unopt 1.00 1.11 1.04 1.09 0.99

32 Opt 1.00 0.91 0.84 0.89 0.90

Postpass Unopt 1.00 1.14 1.07 1.13 1.00

64 Opt 1.00 0.88 0.82 0.86 0.86

Unopt 1.00 1.14 1.07 1.08 0.97

128 Opt 1.00 0.88 0.83 0.83 0.83

Unopt 1.00 1.11 1.06 1.20 1.10

16 Opt 1.00 0.87 0.84 1.00 0.99

Unopt 1.00 1.16 1.09 1.14 0.98

32 Opt 1.00 0.87 0.81 0.85 0.85

IPS Unopt 1.00 1.16 1.09 1.08 0.97

64 Opt 1.00 0.87 0.82 0.82 0.82

Unopt 1.00 1.15 1.08 1.07 0.96

128 Opt 1.00 0.87 0.81 0.81 0.81

Unopt 1.00 1.14 1.09 1.33 1.17

16 Opt 1.00 0.90 0.85 1.06 1.07

Unopt 1.00 1.15 1.09 1.15 1.02

32 Opt 1.00 0.89 0.84 0.88 0.88

RASE Unopt 1.00 1.15 1.10 1.10 0.99

64 Opt 1.00 0.89 0.84 0.84 0.84

Unopt 1.00 1.15 1.09 1.09 0.98

128 Opt 1.00 0.89 0.84 0.84 0.84

All four studies measured only oating point intensive kernels, such as the Livermore Loops

and Linpack subroutines, rather than complete applications, as was done in this study.

7.4 Summary

This study has examined the e�ect on RISC architecture performance of register set size and

organization, operation and load latencies, and strategies for register allocation and instruction

scheduling. The results show that a sophisticated code generation strategy reduces the number

of registers needed to achieve good performance. By using such a strategy, architects can more

comfortably use a smaller register set size, which can lower the register access time, use fewer bits

in the instruction format and allow more logic to be spent on other components.

The results also show that changing the register set size has roughly the same e�ect on both of

the architectures with the shared register organization, even though the operation latencies di�ered.
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However, the change in register set size has a much greater impact on the architecture with the

split organization.

Given a reasonable number of registers, the crucial factor (for register �les) is the number of

register write-back buses rather than the register set organization. In particular, the split organi-

zation, which inherently has a second write-back bus, yields faster execution times than the shared

organization with the same register set size. Adding a second bus to the shared organization tips

the balance the other way. Given only 16 registers, the split register organization yields slower

execution times than the shared organization with either one or two write-back buses, because

large programs can usually use more than 8 of either integer or oating point registers.

Shorter operation latencies usually result in faster execution. However, if most operation la-

tencies are reduced at the expense of making a few latencies longer, then the instruction mix of a

program determines whether there is an improvement. For example, programs dominated by long

integer operations, such as multiply and divide, will execute more slowly if the latency of these

operations is longer. The results show that the performance of these programs can be improved by

using the oating point coprocessor, even with the additional expense of transferring the operands

and result between chips. If the integer code is dominated by multiplies stemming from array

address calculations, then global optimizations can reduce the number of such operations and a

machine that has a separate (but slower) integer multiplier should perform as well as a machine

that uses the FPU for integer multiply.

Among the variations examined, the choice of code generation strategy has the greatest e�ect on

performance. Adding additional registers has a signi�cant e�ect when using the Postpass strategy,

but not when using the other strategies.
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Figure 7.1: Summary of the e�ect of register set size (Postpass). This graph summarizes

the results from Section 7.2.1. It shows the harmonic mean of the normalized execution times of

all four oating point intensive program groups for three architectures for Postpass. Times are

normalized to 16 registers with the same architecture.
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Figure 7.2: Summary of the e�ect of register set size (IPS). This graph summarizes the

results from Section 7.2.1. It shows the harmonic mean of the normalized execution times of all

four oating point intensive program groups for three architectures for IPS. Times are normalized

to 16 registers with the same architecture.
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Figure 7.3: Summary of the e�ect of register set size (RASE). This graph summarizes the

results from Section 7.2.1. It shows the harmonic mean of the normalized execution times of all four

oating point intensive program groups for three architectures for RASE. Times are normalized to

16 registers with the same architecture.
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Figure 7.4: Summary of the e�ect of register set organization (Postpass). This graph

summarizes the results from Section 7.2.2. It shows the harmonic mean of the normalized execution

times of all four oating point intensive program groups for three architectures for Postpass. Times

are normalized to Ar2sh with the same number of registers.
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Figure 7.5: Summary of the e�ect of register set organization (IPS). This graph summarizes

the results from Section 7.2.2. It shows the harmonic mean of the normalized execution times of all

four oating point intensive program groups for three architectures for IPS. Times are normalized

to Ar2sh with the same number of registers.
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Figure 7.6: Summary of the e�ect of register set organization (RASE). This graph sum-

marizes the results from Section 7.2.2. It shows the harmonic mean of the normalized execution

times of all four oating point intensive program groups for three architectures for RASE. Times

are normalized to Ar2sh with the same number of registers.



107

Postpass

0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

16 32 64 128

Number of Registers

E
xe

cu
ti

o
n

 t
im

e 
n

o
rm

al
iz

ed
 t

o
 A

88
sh

A88sh

Ar2sp

Ar2spf

Figure 7.7: Summary of the e�ect of operation latency (Postpass). This graph summarizes

the results from Section 7.2.3. It shows the harmonic mean of the normalized execution times of

all four oating point intensive program groups for three architectures for Postpass. Times are

normalized to A88sh with the same number of registers.
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Figure 7.8: Summary of the e�ect of operation latency (IPS). This graph summarizes the

results from Section 7.2.3. It shows the harmonic mean of the normalized execution times of all

four oating point intensive program groups for three architectures for IPS. Times are normalized

to A88sh with the same number of registers.
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Figure 7.9: Summary of the e�ect of operation latency (RASE). This graph summarizes the

results from Section 7.2.3. It shows the harmonic mean of the normalized execution times of all four

oating point intensive program groups for three architectures for RASE. Times are normalized to

A88sh with the same number of registers.
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Figure 7.10: Summary of the e�ect of register set size with long load latency (Postpass).

This graph summarizes the results from Section 7.2.4. It shows the harmonic mean of the normalized

execution times of all four oating point intensive program groups for the two long load latency

architectures for Postpass. Times are normalized to 32 registers with the same architecture. The

y-axis range for this graph and the following two graphs di�ers from the previous graphs.
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Figure 7.11: Summary of the e�ect of register set size with long load latency (IPS). This

graph summarizes the results from Section 7.2.4. It shows the harmonic mean of the normalized

execution times of all four oating point intensive program groups for the two long load latency

architectures for IPS. Times are normalized to 32 registers with the same architecture.
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Figure 7.12: Summary of the e�ect of register set size with long load latency (RASE).

This graph summarizes the results from Section 7.2.4. It shows the harmonic mean of the normalized

execution times of all four oating point intensive program groups for the two long load latency

architectures for RASE. Times are normalized to 32 registers with the same architecture.
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Figure 7.13: Summary of the performance increase of IPS over Postpass. This graph

summarizes the results from Section 7.2.5. It shows the harmonic mean of the normalized execution

times of all four oating point intensive program groups for four architectures for IPS normalized

to Postpass. One would expect the performance improvement of IPS over Postpass to increase as

register set size decreases; however, for the load load latency architectures with 16 registers IPS

performs poorly, because it too heavily favors global pseudo-registers over locals. The y-axis range

for this graph and the following graph di�ers from the previous graphs.
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Figure 7.14: Summary of the performance increase of RASE over Postpass. This graph

summarizes the results from Section 7.2.5. It shows the harmonic mean of the normalized execution

times of all four oating point intensive program groups for four architectures for RASE normalized

to Postpass. The performance improvement of RASE over Postpass continues to increase as register

set size decreases, even on the long load latency architectures with 16 registers. This is because

RASE is able to balance global and local register needs.



Chapter 8

Evaluation

This chapter evaluates the Marion system. The �rst section examines the machine descriptions for

three targets and discusses the process of retargeting. The second section discusses system size and

performance. The third section discusses Marion's coverage of common RISC features.

8.1 Machine Descriptions

Marion evolved in the same way as most other retargetable code generators. Although I initially

attempted to design a broad description language, I had to extend and modify Maril as each signif-

icant target was implemented. The extensions for the R2000 and 88000 were minor, but, because

I wanted to exploit most of the i860's unique features, including explicitly advanced pipelines and

chaining, that architecture forced me to rethink the model and led me to add classes and temporal

scheduling to Marion, as described in Chapter 4.

It may seem that building a retargetable code generator for RISCs would be easier than one for

CISCs. RISCs have simpli�ed some aspects of code generation, particularly code selection; however,

instruction scheduling and its interaction with register allocation have added new complications.

Support for register pairs and the pipeline timing and interconnect anomalies found on some RISCs

increase the complexity. The challenge was to design a practical machine description language that

could encapsulate as many of an architecture's scheduling and register details as possible, and build

a system that could maintain and use that information to make judicious scheduling and register

allocation choices.

The Maril description language is rich enough to encapsulate most scheduling information for

RISCs. I have used it to build code generators for three commercially-available RISCs and for

numerous architectural variations. Although Maril is not as succinct as possible, the descriptions

for the R2000 and 88000 were easy to write. Modeling the i860 was more di�cult, due to the

complexity of its architecture. Table 8.1 shows the size and composition of the machine descriptions

for these architectures. Instruction directives constitute the bulk of the descriptions and much of

the instruction information is replicated, since most instructions' scheduling properties fall into one

of a few categories. The use of a macro preprocessor could signi�cantly reduce description size.

Using Maril to build a new target involves three steps. First, the compiler writer identi�es the

features of the target machine, including registers, pipelines and latencies. This typically involves

scrutinizing the architecture manual or the programmer's reference manual and conceptualizing the

machine model as the compiler will see it. If the target has multiple instruction issue or explicitly

advanced pipelines, then the compiler writer should determine, in this step, how to model those

features. For example, for explicitly advanced pipelines, the compiler writer must determine which
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Table 8.1: Maril machine description statistics. The �rst part shows the section size (in

number of non-blank non-comment lines). The second part gives the number of items of a each

kind.

Section size (lines)

88000 R2000 i860

Declare 16 17 251

Cwvm 14 16 21

Instr 582 536 750

Total 612 569 1022

Number of items

88000 R2000 i860

Instructions 125 120 167

Clocks 0 0 4

Elements 0 0 140

Classes 0 0 67

Auxiliary latencies 6 0 12

Glue transformations 29 18 27

Escape functions 1 2 7

Escape function C lines 17 30 399

instructions control which pipelines.

The second step is to express the machine model in Maril. This is primarily a matter of declaring

registers and resources, determining calling conventions and listing each instruction, along with its

latency and resource requirements. It is important to make sure that registers and instructions

are typed correctly. All datatypes supported in the IL must be represented by the register set. In

addition, if an instruction performs an operation on values of some datatype, but the instruction's

register operands hold other datatypes, type constraints should be used to restrict the permissible

datatypes. The compiler writer should also check that resources used to control multiple instruction

issue adhere to the machine model.

The third step is to complete the mapping between the IL and the target machine. This

involves determining which IL constructs are not directly covered by the target, either by inspection

or by running a set of test programs. Conversions and conditional branches usually require glue

transformations and/or dummy instructions. If there is some \normal" language operation, such as

divide or remainder, that is not directly supported by the target, then either a glue transformation

or escape function is necessary. Other things to look for are operations that require multiple

instructions, such as loads, stores or register moves. In addition, 32-bit constants and addresses

usually require glue transformations. See Chapter 3 for details on these Maril constructs.

8.2 System Size and Performance

Marion was designed to support di�erent scheduling algorithms and code generation strategies.

The scheduling infrastructure can support most list scheduling algorithms. Other algorithm types
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Table 8.2: Marion system source code size (in lines of C code). The �gures for target- and

strategy-independent do not include the front end, Each target-dependent portion is automatically

produced by the code generator generator.

Phase Lines

Code Generator Generator 4991

Target- and strategy-independent 10877

Target-dependent, 88000 6864

Target-dependent, R2000 5512

Target-dependent, i860 8492

Strategy-dependent, Postpass 151

Strategy-dependent, IPS 1269

Strategy-dependent, RASE 3750

could be added with minor additions. I implemented three signi�cantly di�erent code generation

strategies, Postpass, IPS and RASE. IPS was the last to be implemented, and took only one (expert)

person-week.

Table 8.2 shows the size of the Marion system source code. The target-dependent portion that

is output by the code generator is large, but roughly 75% is initialization code to construct pattern

trees. The target- and strategy-independent portion includes the glue transformer, code selector,

global register allocator, code DAG builder and scheduling support.

Marion compilers are not fast. Marion is a prototype system designed to show that retargetable

instruction scheduling is feasible. It was not built for compile-time e�ciency; instead it employs

the \best simple" implementation whenever possible. For example, most algorithms use lists and

naive search techniques. The register allocator's interference graph is implemented entirely with

lists, instead of partially with a bit matrix (as Chaitin suggests [Cha82]). Also, resource vectors

accommodate the longest operation, typically divide, but few instructions use more than a fraction

of the vector; no attempt is made to limit resource vector comparisons to the relevant fraction.

Improvements in these areas, along with more e�cient data structures in other areas, would improve

compile-time substantially.

Table 8.3 contains the execution times of the front end and Marion-built R2000 and i860 code

generators when compiling a program suite on a DECstation 5000. The program suite is a subset of

the workload described in Chapter 5. It includes the Nasker group, ARC2D from the Perfect group,

SPHOT from the Misc group and Lcc from the Int group. \Dilation" is the ratio of instructions

executed to instructions generated. The compile-time of all code generation strategies could be

improved; the signi�cance of the data is the relative speed of the strategies. IPS takes longer

than Postpass, because it schedules each block twice and its scheduler is more complicated than

Postpass's. RASE takes even longer; in e�ect it schedules four times (three times during pre-

scheduling) and its scheduler is more complicated than IPS's. Because the i860 requires extensive

use of temporal registers and classes, and because oating point operations are split into sub-

operations, compiling for the i860 takes roughly twice as long as for the R2000.

Table 8.4 shows the percentage of total compilation time spent in each of the three portions

of the Marion R2000 code generators (each with a di�erent code generation strategy). Postpass
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Table 8.3: Marion compile-time performance. Time spent in the front end, the Marion code

generators and the MIPS host C compiler, when compiling the program suite for the R2000 and

the i860. MIPS C is a production compiler; with the -O1 option, it performs local optimizations,

but no global register allocation. All compilers were run on a 25Mhz DECstation 5000.

R2000 target

Module User time (secs) Dilation (�10

4

)

Lcc front end 31 0.95

Marion, Postpass 989 28.49

Marion, IPS 1846 58.16

Marion, RASE 5969 192.60

MIPS C -O1 54 1.66

MIPS assembler 32 0.99

i860 target

Module User time (secs) Dilation (�10

4

)

Lcc front end 33 0.85

Marion, Postpass 1778 43.52

Marion, IPS 3128 83.80

Marion, RASE 10746 285.60

Table 8.4: Marion code generator pro�le. Percentage of compilation time spent in code gen-

erator portions for three Marion R2000 code generators.

Time fraction, %

Phase Postpass IPS RASE

Target- & strategy-independent 91.9 87.1 65.2

Target-dependent 4.3 3.3 2.6

Strategy-dependent 0.6 7.8 31.4

spends almost all of its time in target- and strategy-independent code, because the strategy itself

is simple. In contrast, strategy-dependent code accounts for nearly 8% of IPS's time and over 31%

of RASE's time.

For all code generators, roughly 13% of total time is spent manipulating resource vectors. Each

resource vector is an array of 32-bit integers. The array size is the length of the target's longest

latency. Each integer represents a cycle; each bit represents a resource. When comparing vectors,

Marion makes no attempt to limit the the number of elements it examines.

Register allocation takes between 25% and 32% of total time, and code DAG building takes over

20% of total time for Postpass and IPS, but only 6% for RASE. RASE spends almost a third of its

time in strategy-dependent code, most of it in the scheduler; for the R2000 RASE schedules three

times during pre-scheduling plus once during �nal scheduling. Therefore, improving the compile-

time performance of register allocation and resource vector manipulation (both target- and strategy-

independent) would have a greater impact on Postpass and IPS than RASE. However, an improved

scheduling implementation, for example using an ordered ready list and doing less recomputation,
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Table 8.5: Actual execution time and ratio of actual to estimated execution time of

Marion-generated R2000 code for the Livermore Loops. The execution time is in user time

seconds. The mean is arithmetic for execution times and harmonic for ratios.

Kernel Exec time (secs) Actual/Estimated

Postp IPS RASE Postp IPS RASE

1 2.22 2.22 2.22 1.13 1.13 1.13

2 2.40 1.98 1.98 1.11 1.02 1.02

3 1.82 1.82 1.82 1.11 1.10 1.10

4 1.32 1.32 1.32 0.99 0.99 0.99

5 2.09 2.08 2.09 1.05 1.05 1.05

6 1.31 1.32 1.31 1.04 1.05 1.05

7 2.71 2.73 2.68 1.06 1.13 1.12

8 4.24 4.21 4.25 1.09 1.13 1.13

9 3.19 3.12 3.19 1.13 1.13 1.15

10 4.73 4.76 4.76 1.09 1.10 1.10

11 1.72 1.72 1.73 1.01 1.01 1.01

12 1.83 1.83 1.83 1.01 1.01 1.01

13 2.97 2.93 2.93 1.02 1.02 1.02

14 3.20 3.14 3.13 1.04 1.03 1.03

Mean 2.38 2.35 2.35 1.06 1.06 1.06

would have a greater impact on RASE's compile-time e�ciency.

The performance data for the code generation strategies comparison is derived by combining

basic block execution costs computed by each scheduler with execution frequencies computed by

a separate pro�ling tool. Therefore, activity outside of the CPU, such as cache misses, is not

considered; Marion assumes all memory references are cache hits. Table 8.5 compares the estimated

execution cycles, computed by Marion schedulers, to the actual execution cycles for the �rst fourteen

Livermore Loop kernels. Marion-produced code is assembled by the MIPS assembler and linked

with the MIPS libraries. The actual cycles are computed by timing the execution on a DECstation

5000 and multiplying by the clock rate, which is 25MHz. The machine speci�cation used to produce

executable code di�ers in three ways from the one used in the code generation strategies comparison,

because of the need to interface with the assembler:

(1) The MIPS C calling conventions are followed [Kan87]. None of the registers that

MIPS reserves for the assembler and operating system are reserved in the strategies

comparison. (See Chapter 6.) Therefore, the register allocators in the strategies com-

parison have more allocable registers.

(2) The la pseudo-instruction is used to load a 32-bit relocatable address into a register.

In addition, other load and store instructions have 32-bit relocatable address operands

that the assembler maps into 2-instruction sequences. In the strategies comparison 32-

bit relocatables are broken into high and low halves, so that the two instructions can

be individually scheduled.

(3) The global data pointer is not used. The code generators in the strategies comparison

use a global data pointer, which decreases the cost (from two instructions to one) of

accessing static data.
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An R2000 assembly language formatter takes Marion's representation of target machine instructions

and produces assembly code. This conversion routine was written by hand.

The ratio of actual time to estimated time varies between loops, because each loop has a di�erent

memory usage pattern. However, for a given loop, the ratio is consistent across strategies, with a

few exceptions. Postpass's ratio is lower than IPS's or RASE's for Loops 7 and 8; in both cases

Postpass's load instruction order is di�erent from the load instruction order produced by either of

the other strategies, which could cause di�erent cache miss ratios. For Loop 2, Postpass's ratio is

higher, but the load instruction order is the same. The higher ratio could be caused because no

oating operation precedes any load, so that all such operations are delayed on a cache miss. A

oating point operation that is initiated before a load does not stall when the CPU stalls.

For the Livermore Loops RASE-generated code was 26% faster than code produced by MIPS

C -O1, which performs only local optimizations; code produced by MIPS C -O2, which performs

global register allocation and global optimizations, was 42% faster than RASE code. This makes

sense, because Marion compilers perform global register allocation, but no global optimizations.

Also, the Marion R2000 compiler that produces executable code su�ers because it must interface

with the assembler.

8.3 Support for RISC Architectures

Completeness is a desirable quality of a retargetable system's machine description language. Com-

pleteness means that the language can model all machines in a particular class. Maril is not yet

complete over the RISC class, but can model most RISC features. To get a perspective, the next

few paragraphs list common architectural features and some of the commercially available RISC

machines that contain those features. Each paragraph discusses how and whether Marion can

support the feature. The feature is in boldface and the machines are in parentheses.

Split register �le (R2000, i860, SPARC, IBM RS/6000 [OG90]): In the machine description

the compiler-writer can declare any number of register sets. Special purpose registers can also be

declared.

Register pairs (88000, i860, SPARC): The compiler writer can declare a register set to rep-

resent the pairs and indicate that the set overlays another register set with the %equiv directive.

Escape functions allow halves of registers to be accessed.

Register windows (SPARC): A unique feature of the SPARC is its register windows. A

register window is the subset of the machine's total register set that is visible by a particular

procedure. Typically, when another procedure is called, the new procedure shifts the window, in

e�ect, saving the previous procedure's registers. The SPARC uses register windows only for integer

registers. Each window contains 24 registers, 8 ins, which overlap with the previous procedure's

window, 8 scratch registers, which overlap with no other window, and 8 outs, which overlap

with the window of a procedure that may be called by the current procedure. A procedure passes

parameters in registers by placing them in outs. The called procedure sees them in its ins.

Marion does not currently support register windows, because changing windows in e�ect saves

and renames the registers: the old outs become the new ins. Maril'sCWVM could be extended to

specify parameters and arguments separately, which models the register renaming, and to specify

calleesave and callersave registers separately, which supports hidden register saving.
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Hard-wired registers (R2000, 88000, i860, SPARC): Hard-wired registers, i.e., those that

always contain a constant, are supported by the %hard directive.

Structural hazards (R2000, 88000, i860, SPARC, RS/6000): Resource vectors declared with

each instruction are checked during scheduling. This avoids structural hazards.

Hardware priority scheme for resource contention (88000): Marion does not support

the 88000's write-back bus priority scheme. (See Section 4.3.) Adding Maril language features to

accommodate this scheme would not be di�cult; a priority range could be attached to pertinent

resources and an instruction could indicate its priority for using that resource. However, it would be

expensive to check the priorities during scheduling. Instead, Marion gives priority to the instruction

that is scheduled �rst.

Two-instruction double oat load (R2000): The escape mechanism allows the 2-instruction

sequence to be generated, with each instruction accessing half of the double precision register. The

two loads are then scheduled as separate instructions.

Branch delay slots (R2000, 88000, i860, SPARC): Each instruction directive indicates how

many delay slots follow the instruction. Currently these slots are �lled with no-ops, but Gross and

Hennessy's method for �lling them [GH82] could be implemented with the information available

from the machine description.

Branch delay slots conditionally executed (i860, SPARC): A negative delay slot value in

an instruction directive indicates the instruction in the slot is executed only if the branch is taken.

Condition code register (i860, SPARC, RS/6000): The condition code register can be de-

clared as a separate temporal register (see Section 4.5); instruction directives can indicate that the

result of a comparison is stored in this register. However, separate directives must be listed in

the machine description for instructions that set the condition code as a side e�ect e.g., subtract.

Therefore, two instructions can sometimes be generated where one would su�ce.

Set-on-condition instruction (R2000): The set-on-condition instruction represents a default

if-then-else construct. An if-then-else construct encompasses multiple basic blocks. Because the IL

presented to the Marion code selector is low-level, and, therefore, does not contain the procedure's

control structure, the code selector cannot generate this instruction. A higher-level IL would help.

Conditional call instruction (R2000): Like the set-on-condition, the conditional call repre-

sents an IL construct that spans basic blocks. Therefore the code selector cannot generate it.

Latency dependent on consumer instruction (88000, i860): The auxiliary latency directive

(%aux) speci�es a pair of instructions with constraints and a latency. If the constraints are

satis�ed, a code DAG edge between two such instructions is labeled with the auxiliary latency.

(See Section 3.3.3.)

Multiple instruction issue (i860, RS/6000): Marion supports multiple instruction issue in

which the instruction set is partitioned such that an instruction from each partition can be issued

per cycle. This can model the i860's multiple instruction issue and should be able to model the IBM

RS/6000's as well. Marion does not support multiple identical functional units; introducing arrays

of resources would be a natural extension, but would require resource scheduling. This extension

alone would not support identical functional units, which each take inputs from a di�erent register

set.

Loop decrement and branch instruction (i860): Marion cannot support loop decrement

and branch for two reasons. First, the simple pattern matcher cannot match a single instruction

to a pair of IL constructs (the decrement and the branch). Second, Marion currently does not
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recognize loops in the IL.

Multiple addressing modes (88000, i860, RS/6000): The Marion code selector searches an

ordered list of patterns that corresponding to instructions. Ordering the instructions that contain

addressing modes, (e.g., putting register + displacement before register + register), is su�cient to

generate instructions with the desired addressing modes.

Auto-increment addressing mode (i860, RS/6000): Again, the auto-increment would re-

quire a single instruction to match a pair of IL constructs. In addition, selecting this address mode

a�ects scheduling and register allocation opportunities [HO91].

Bypass cache load (i860): Here the problem is choosing between the normal load, which

accesses the cache, and the load that bypasses the cache. Marion has no information indicating

when it is pro�table to bypass the cache. Marion always uses the normal load.

Explicitly advanced pipelines (i860): As discussed in Chapter 4, Marion supports explicitly

advanced pipelines, including chaining between them.

Although Marion can represent most RISC features, there are a number of notable exceptions.

These include the 88000's resource contention priority scheme, the SPARC's register windows,

instruction side e�ects, such as setting the condition code, and general multiple instruction issue.

Natural extensions could handle register windows and more general multiple instruction issue. Side

e�ects could be handled by peephole optimization or more sophisticated code selection, but the

interaction of these e�ects with instruction scheduling is yet unexplored. E�ciently modeling a

resource contention priority scheme is di�cult. Also, instructions representing IL constructs that

span basic block boundaries cannot be generated without a higher-level IL or special case pattern

matching.

From the compiler's point of view, by far the most di�cult RISC feature to handle is explicitly

advanced pipelines. Considerable e�ort was required to develop and implement temporal schedul-

ing. In addition, temporal scheduling slows compilation speed by nearly a factor of 2. A second

di�cult feature is the priority scheme for resource contention. In e�ect, this feature means that the

cycle on which an instruction uses a resource can vary, which complicates the scheduler's structural

hazard avoidance.

In general, the R2000 is an easy target. There are few irregularities and no register pairs. A

pipelined FPU and allowing an integer and oating point instruction to be issued on the same cycle

would increase performance, without signi�cant additional burden on the compiler. The R2000's

set-on-condition instruction requires a higher-level transformation than Marion supports, but is

advantageous because it avoids branching.
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Conclusion

The Marion system is a retargetable code generation system designed speci�cally for RISCs. The

machine description language has primitives to describe most instruction scheduling requirements

and can model a broad range of RISCs, including some superscalars. Marion cannot handle all

details perfectly, but can model most of the important features required to produce a good instruc-

tion scheduler as part of a complete code generator. Marion can also model complicated features

found in some RISCs, such as explicitly advanced pipelines and irregular packing restrictions.

Marion has been used to construct compilers for the MIPS R2000, the Motorola 88000 and the

Intel i860. The machine descriptions for the R2000 and the 88000 use many of Marion's features,

including resource vectors, auxiliary latencies, glue transformations and escape functions. The i860

target also uses the above features plus temporal scheduling with chaining, instruction classes and

resource vectors to control multiple instruction issue.

This dissertation has investigated the interaction of instruction scheduling and register alloca-

tion by comparing three code generation strategies, each of which represents a di�erent degree of

communication between the two phases. The results indicate that at least an intermediate degree

of integration is needed to produce e�cient schedules. In particular, the code produced by the

intermediate strategy IPS for oating point programs on the 88000, is, on the average, 13% faster

than code produced by the Postpass strategy, which has no communication between the two phases.

The RASE strategy, which closely couples the two phases, also exhibits a signi�cant performance

improvement over Postpass (averaging 15% on the 88000), but little over IPS on most programs and

most architectures. However, on programs with large basic blocks and on architectures with small

register sets or long load latencies, RASE is able to �nd a better balance between using registers

for instruction scheduling and using them to reduce memory references. This results in better code

than IPS. For example, on the 88000 for four of the Perfect group programs, RASE-produced code

is 7% to 13% faster than IPS-produced code.

Additional experiments have examined the e�ect on performance of architectural features, in-

cluding register set size and structure and load and operation latencies, versus code generation

strategies. These experiments reinforce the results of the code generation strategies comparison.

They also show that sophisticated code generation strategies can give computer architects more ex-

ibility in making trade-o�s between register set size and other components, because these strategies

use registers more e�ectively.

Marion supports a broad range of RISCs, including the complicated i860. In addition, Marion

was the enabling factor for the code generation strategies comparison and the experiments with

architectural variations. Taken together, this demonstrates that retargetable instruction scheduling

for RISCs is feasible and pro�table.
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9.1 A Production System

Marion is a prototype retargetable code generation system, but with additional work a production

system could be derived. The additional work is in six areas, most of which are well-understood.

The �rst is global optimizations. To become a production system, the Marion front end needs

standard global optimizations, particularly loop induction variable analysis, strength reduction and

invariant removal.

The second area is improving compile-time performance. Marion takes a substantial amount

of time to compile large programs. Much of this is due to the use of simple data structures and

algorithms in the register allocator and scheduling support routines. A reimplementation using

more e�cient techniques should speed up the compiler, but compile-time will still di�er between

the code generation strategies: Postpass will remain the fastest and RASE will remain the slowest.

Third, Marion needs to �ll branch delay slots with useful instructions. An implementation of

Gross and Hennessy's algorithm [GH82] would meet this requirement.

Fourth, unsigned datatypes need to be added to Maril. This should be straight-forward.

Fifth, a method for exploiting side e�ects, such as condition codes, would be useful. This is not

as important as the others, but a number of RISCs have condition codes. More sophisticated code

selection or simple peephole optimization would be su�cient.

The sixth area is probably the most di�cult, but also one of the most important. Maril should

be improved to handle multiple identical functional units and register windows. In addition, more

architectures should be examined for other important features. Adding new constructs to Maril is

not that di�cult, but it is important to keep the language succinct, so that eliciting the desired

code from a machine description is not a nightmare.

9.2 Future Directions

A number of techniques that increase instruction-level parallelism have been developed. These in-

clude loop unrolling, trace scheduling and various forms of software pipelining. Bernstein and Rodeh

[BR91] have recently developed another method, which schedules across basic block boundaries us-

ing the program dependence graph [FOW87] as the primary data structure. Enhancing Marion

with one of these methods would enable further experiments to gauge the e�ect on performance of

architectural variations and code generation strategies with respect to increased instruction-level

parallelism. In addition, the interaction between these techniques and the other phases of code

generation needs to be investigated.

Another area to explore is the interaction between code selection and instruction scheduling.

Although code selection is simpler on RISCs than CISCs, there are opportunities to make code

sequence choices. First, the evaluation order used by the code selector a�ects the register lifetime

information that is presented to the register allocator. In addition, balanced expressions trees allow

more scheduling opportunities, but at the expense of greater register pressure. A second opportunity

exists on architectures where an operation can be performed by two di�erent functional units. For

example, on the R2000, if two integer multiplies need to be performed, it is faster to do one in the

FPU and one in the integer multiply/divide unit, which is non-pipelined. However, if other oating

point operations need to be performed, using the FPU for integer multiply may not be faster. The

choice may also depend of where operands reside or how the result is used. A third opportunity is
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with instruction side e�ects, such as the condition code and auto-increment addressing mode. Code

that exploits side e�ects can be more e�cient, but can also limit scheduling choices. Finally, on

architectures that support chaining between pipelines, such the i860, the code selector can decide

to use the chaining. This is the case in Marion. Chaining reduces register pressure, but can limit

scheduling opportunities, because the chained operations cannot be separated without involving

the register allocator.

Marion provides a basis for exploring techniques to increase instruction-level parallelism and

for investigating the interaction between various code generation phases.
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Appendix A

MIPS R2000 Machine Description

=****************

; Machine speci�cation for MIPS R2000

;

****************=

#include "sinstrs.h"

declare

f

%reg r[0:31] (char jshort jint jpointer); =* general purpose registers *= 10

%reg hi (char jshort jint ); lo (char jshort jint ); =* int mul=div registers *=

%reg f[0:15] (int joat jdouble ); =* oat registers *=

%reg bf (int ); =* bool signal from oating compare *=

=* instruction pipeline stages

IF: instruction fetch

RD: decode=register fetch

ALU: execution

MEM: access memory

WB: register writeback 20

*=

%resource IF; RD; ALU; MEM; WB;

=* oating point coprocessor pipeline

FRD: oat register decode

FALU: oat ALU

FMEM: access memory

FWB: check exceptions

FFWB: oat writeback

*= 30

%resource FRD; FALU; FMEM; FWB; FFWB;

%resource MD; =* int mul=div unit *=

%resource FMUL; =* oat mul unit *=

%resource FDIV; =* oat div unit *=

%memory m[0:2147483647];

%def const16 [�32768:32767];

%def uconst16 [0:65535] +halfreloc ;

%def spconst16 [0:32767] +halfreloc ; =* special for loading relocatable *= 40
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%def const32 [�2147483648:�32769, 65536:2147483647]; =* only for glue *=

%def uconst32 [65536:2147483647] +relocatable ;

%label rlab [�32768:32767] +relative ;

%label alab [0:100000000] +relocatable ;

%label tmplab +local ;

g

cwvm

f

%general (char jshort jint jpointer) r; 50

%general (oat jdouble ) f;

%sp r[29] +down ; =* stack pointer *=

%fp r[30] +down ;

%gp r[28] 32767; =* global data area pointer *=

%allocable r[1:27,31];

%allocable f[0:15];

%hard r[0] 0;

%calleesave r[3:30]; f[2:15];

%arg (int ) r[1] 1; =* 1st int arg in r[4] *= 60

%arg (int ) r[2] 2;

%arg (oat jdouble ) f[0] 1;

%arg (oat jdouble ) f[1] 2;

%retaddr r[31];

%result r[1] (int );

%result f[0] (oat jdouble );

g

instr 70

f

%instr addi r, r, #const16

f$1 = $2 + $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr addi r, r, #const16

f$1 = $3 + $2;g

[IF; RD; ALU; MEM; WB] (1,1,0)

=*** load signed constant ***= 80

%instr addi r, r[0], #const16

f$1 = $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr addiu r, r, #uconst16

f$1 = $2 + $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr addiu r, r, #uconst16

f$1 = $3 + $2;g 90

[IF; RD; ALU; MEM; WB] (1,1,0)
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%instr addu r, r, r

f$1 = $2 + $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr sub r, r, r

f$1 = $2 � $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

100

=*** To cover unary minus ***=

%instr sub r, r[0], r

f$1 = �$3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr andi r, r, #uconst16

f$1 = $2 & $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr andi r, r, #uconst16 110

f$1 = $3 & $2;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr ori r, r, #uconst16

f$1 = $2 j $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr ori r, r, #uconst16

f$1 = $3 j $2;g

[IF; RD; ALU; MEM; WB] (1,1,0) 120

%instr xori r, r, #uconst16

f$1 = $2 ^ $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr xori r, r, #uconst16

f$1 = $3 ^ $2;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr and r, r, r 130

f$1 = $2 & $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr or r, r, r

f$1 = $2 j $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr xor r, r, r

f$1 = $2 ^ $3;g

[IF; RD; ALU; MEM; WB] (1,1,0) 140
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%instr nor r, r, r

f$1 = ~($2 j $3);g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr lui r, #uconst16

f$1 = $2 << 16;g

[IF; RD; ALU; MEM; WB] (1,1,0)

150

=*** load unsigned constant ***=

%instr ori r, r[0], #uconst16

f$1 = $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

=*** complement ***=

%instr nor r, r, r[0]

f$1 = ~$2;g

[IF; RD; ALU; MEM; WB] (1,1,0)

160

=*** these 2 set�reg�relational instrs won�t really be used ***=

%instr slt r, r, r

f$1 = $2 < $3;g =* signed compare *=

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr slti r, r, #const16

f$1 = $2 < $3;g =* signed compare *=

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr sra r, r, #const16 170

f$1 = $2 >>> $3;g =* arithmetic shift *=

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr srav r, r, r

f$1 = $2 >>> $3;g =* arithmetic shift *=

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr sll r, r, #const16

f$1 = $2 << $3;g

[IF; RD; ALU; MEM; WB] (1,1,0) 180

%instr sllv r, r, r =* logical shift left *=

f$1 = $2 << $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr srl r, r, #const16

f$1 = $2 >> $3;g =* logical shift *=

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr srlv r, r, r 190

f$1 = $2 >> $3;g =* logical shift right *=

[IF; RD; ALU; MEM; WB] (1,1,0)
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=*** dummy converts between char, short, int. ***=

%instr dummy r, r ($1==char & $2==int )

f$1 = char ($2);g

[] (0,0,0)

%instr dummy r, r ($1==char & $2==short )

f$1 = char ($2);g 200

[] (0,0,0)

%instr dummy r, r ($1==short & $2==int )

f$1 = short ($2);g

[] (0,0,0)

%instr dummy r, r ($1==int & $2==short )

f$1 = int ($2);g

[] (0,0,0)

210

%instr dummy r, r ($1==int & $2==char )

f$1 = int ($2);g

[] (0,0,0)

%instr dummy r, r ($1==short & $2==char )

f$1 = short ($2);g

[] (0,0,0)

%instr mult r, r

flo = $1 * $2;g 220

[IF; RD; 11*MD] (1,11,0)

%instr div r, r

flo = $1 = $2;g

[IF; RD; 34*MD] (1,34,0)

%instr div r, r =* remainder *=

fhi = $1 % $2;g

[IF; RD; 34*MD] (1,34,0)

230

%instr mfhi r

f$1 = hi;g

[IF; RD; ALU; MEM, MD; WB, MD] (1,1,0)

%instr mo r

f$1 = lo;g

[IF; RD; ALU; MEM, MD; WB, MD] (1,1,0)

=***** int loads=stores *****= 240

%instr lw r, #const16, r ($1==int )

f$1 = m[$3+$2];g

[IF; RD; ALU; MEM; WB] (1,2,1)
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%instr lw r, #const16, r ($1==int )

f$1 = m[$2+$3];g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr lw r, #spconst16, r ($1==int )

f$1 = m[$3+$2];g 250

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr sw r, #const16, r ($1==int )

fm[$3+$2] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr sw r, #const16, r ($1==int )

fm[$2+$3] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

260

%instr sw r, #spconst16, r ($1==int )

fm[$3+$2] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

=***** These two patterns prevent blocks from (extr reg), etc *****=

%instr lw r, 0, r ($1==int )

f$1 = m[$3];g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr sw r, 0, r ($1==int ) 270

fm[$3] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

=***** short loads=stores *****=

%instr lh r, #const16, r ($1==short )

f$1 = m[$3+$2];g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr lh r, #const16, r ($1==short )

f$1 = m[$2+$3];g 280

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr lh r, #spconst16, r ($1==short )

f$1 = m[$3+$2];g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr sh r, #const16, r ($1==short )

fm[$3+$2] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

290

%instr sh r, #const16, r ($1==short )

fm[$2+$3] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)
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%instr sh r, #spconst16, r ($1==short )

fm[$3+$2] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr lh r, 0, r ($1==short ) 300

f$1 = m[$3];g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr sh r, 0, r ($1==short )

fm[$3] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

=***** char loads=stores *****=

%instr lb r, #const16, r ($1==char )

f$1 = m[$3+$2];g 310

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr lb r, #const16, r ($1==char )

f$1 = m[$2+$3];g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr lb r, #spconst16, r ($1==char )

f$1 = m[$3+$2];g

[IF; RD; ALU; MEM; WB] (1,2,1)

320

%instr sb r, #const16, r ($1==char )

fm[$3+$2] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr sb r, #const16, r ($1==char )

fm[$2+$3] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr sb r, #spconst16, r ($1==char )

fm[$3+$2] = $1;g 330

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr lb r, 0, r ($1==char )

f$1 = m[$3];g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr sb r, 0, r ($1==char )

fm[$3] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr b #rlab 340

fgoto $1;g

[IF; RD; ALU; MEM; WB] (1,2,1)

=* since 1 delayslot, latency==2 (but not really used) *=
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%instr bal #rlab

fcall $1;g

[IF; RD; ALU; MEM; WB] (1,2,1)

350

%instr jr r

fgoto $1;g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr jalr r

fcall $1;g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr beq r, r, #rlab

fif $1 == $2 360

goto $3;g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr bne r, r, #rlab

fif $1 != $2

goto $3;g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr blez r, #rlab

fif $1 <= 0 370

goto $2;g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr bgtz r, #rlab

fif $1 > 0

goto $2;g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr bltz r, #rlab

fif $1 < 0 380

goto $2;g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr bgez r, #rlab

fif $1 >= 0

goto $2;g

[IF; RD; ALU; MEM; WB] (1,2,1)

=**************************************************

Floating point operations (single precision) 390

**************************************************=

%instr [s lds] lwc1 f, #const16, r ($1==oat jint )

f$1 = m[$3+$2];g

[IF; RD; ALU; FMEM; FWB; FFWB] (1,2,1)
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%instr lwc1 f, #const16, r ($1==oat jint )

f$1 = m[$2+$3];g

[IF; RD; ALU; FMEM; FWB; FFWB] (1,2,1) 400

%instr [s sts] swc1 f, #const16, r ($1==oat jint )

fm[$3+$2] = $1;g

[IF; RD; ALU; FMEM; FWB; FFWB] (1,1,0)

%instr swc1 f, #const16, r ($1==oat jint )

fm[$2+$3] = $1;g

[IF; RD; ALU; FMEM; FWB; FFWB] (1,1,0)

=***** These two patterns prevent blocks from (extr reg), etc *****= 410

%instr lwc1 f, 0, r ($1==oat jint )

f$1 = m[$3];g

[IF; RD; ALU; FMEM; FWB; FFWB] (1,2,1)

%instr swc1 f, 0, r ($1==oat jint )

fm[$3] = $1;g

[IF; RD; ALU; FMEM; FWB; FFWB] (1,1,0)

%instr mtc1 r, f (int )

f$2 = move ($1);g 420

[IF; RD; ALU; FMEM; FWB; FFWB] (1,2,1)

%instr mfc1 r, f (int )

f$1 = move ($2);g

[IF; RD; ALU; MEM; WB] (1,2,0)

%instr add.s f, f, f (oat )

f$1 = $2 + $3;g

[IF; FRD; 2*FALU; FMEM; FWB; FFWB;] (1,2,0)

430

%instr sub.s f, f, f (oat )

f$1 = $2 � $3;g

[IF; FRD; 2*FALU; FMEM; FWB; FFWB;] (1,2,0)

%instr mul.s f, f, f (oat )

f$1 = $2 * $3;g

[IF; FRD; FALU; 2*FMUL; FALU; FMEM; FWB; FFWB;] (1,4,0)

%instr div.s f, f, f (oat )

f$1 = $2 = $3;g 440

[IF; FRD; FALU; 8*FDIV; 2*FALU; FMEM; FWB; FFWB;] (1,11,0)

%instr neg.s f, f (oat )

f$1 = �$2;g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,1,0)
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=* convert to int *=

%instr cvt.w.s f, f ($1==int & $2==oat ) 450

f$1 = int ($2);g

[IF; FRD; 2*FALU; FMEM; FWB; FFWB;] (1,2,0)

=* convert from int *=

%instr cvt.s.w f, f ($1==oat & $2==int )

f$1 = oat ($2);g

[IF; FRD; 3*FALU; FMEM; FWB; FFWB;] (1,3,0)

=*convert from double*=

%instr cvt.s.d f, f ($1==oat & $2==double ) 460

f$1 = oat ($2);g

[IF; FRD; 2*FALU; FMEM; FWB; FFWB;] (1,2,0)

%instr c.eq.s bf, f, f ($2==oat & $3==oat )

f$1 = ($2 == $3);g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,2,1)

%instr c.lt.s bf, f, f ($2==oat & $3==oat )

f$1 = ($2 < $3);g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,2,1) 470

%instr c.le.s bf, f, f ($2==oat & $3==oat )

f$1 = ($2 <= $3);g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,2,1)

=**************************************************

double precision

**************************************************=

=*** these load=stores are actually 2 instructions each ***= 480

%instr *ldd f, #const16, r ($1==double )

f$1 = m[$3+$2];g

[] (0,0,0)

%instr *ldd f, #const16, r ($1==double )

f$1 = m[$2+$3];g

[] (0,0,0)

%instr *std f, #const16, r ($1==double )

fm[$3+$2] = $1;g 490

[] (0,0,0)

%instr *std f, #const16, r ($1==double )

fm[$2+$3] = $1;g

[] (0,0,0)

%instr *ldd f, 0, r ($1==double )

f$1 = m[$3];g

[] (0,0,0)
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500

%instr *std f, 0, r ($1==double )

fm[$3] = $1;g

[] (0,0,0)

%instr add.d f, f, f (double )

f$1 = $2 + $3;g

[IF; FRD; 2*FALU; FMEM; FWB; FFWB;] (1,2,0)

%instr sub.d f, f, f (double )

f$1 = $2 � $3;g 510

[IF; FRD; 2*FALU; FMEM; FWB; FFWB;] (1,2,0)

%instr mul.d f, f, f (double )

f$1 = $2 * $3;g

[IF; FRD; FALU; 3*FMUL; FALU; FMEM; FWB; FFWB;] (1,5,0)

%instr div.d f, f, f (double )

f$1 = $2 = $3;g

[IF; FRD; FALU; 15*FDIV; 2*FALU; FMEM; FWB; FFWB;] (1,18,0)

520

%instr neg.d f, f (double )

f$1 = �$2;g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,1,0)

=* convert to int *=

%instr cvt.w.d f, f ($1==int & $2==double )

f$1 = int ($2);g

[IF; FRD; 2*FALU; FMEM; FWB; FFWB;] (1,2,0)

=* convert from int *= 530

%instr cvt.d.w f, f ($2==int & $1==double )

f$1 = double ($2);g

[IF; FRD; 3*FALU; FMEM; FWB; FFWB] (1,3,0)

=*convert from oat*=

%instr cvt.d.s f, f ($2==oat & $1==double )

f$1 = double ($2);g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,1,0)

%instr c.eq.d bf, f, f ($2==double & $3==double ) 540

f$1 = ($2 == $3);g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,2,1)

%instr c.lt.d bf, f, f ($2==double & $3==double )

f$1 = ($2 < $3);g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,2,1)

%instr c.le.d bf, f, f ($2==double & $3==double )

f$1 = ($2 <= $3);g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,2,1) 550
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%instr bc1t bf, #rlab

fif $1

goto $2;

g

[IF; RD, FRD; ALU, FALU; MEM; WB;] (1,2,1)

%instr bc1f bf, #rlab

fif ~$1

goto $2; 560

g

[IF; RD, FRD; ALU, FALU; MEM; WB;] (1,2,1)

%move or r, r, r[0]

f$1 = $2;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%move movf f, f (oat jdouble )

f$1 = $2;g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,1,0) 570

%nop noop =* really or r[0], r[0], r[0] *=

fg

[IF; RD; ALU; MEM; WB] (1,1,0)

=* for loading 32�bit constant *=

%glue #const32 (int )

f$1 ==> ((high($1) << 16) j low($1));g

580

=* for loading 32�bit address *=

%glue #uconst32 (int )

f$1 ==> ((high($1) << 16) + low($1));g

=*** There is no subtract immediate ***=

%glue r, #const16

f($1 � $2) ==> ($1 + eval(�$2));g

%glue #const16, r

f($1 � $2) ==> ($2 + eval(�$1));g

590

=*** Transformations for relationals ***=

%glue r (int )

f(0 < $1) ==> ($1 > 0);g

%glue r (int )

f(0 <= $1) ==> ($1 >= 0);g

%glue r (int )

f(0 > $1) ==> ($1 < 0);g

%glue r (int )

f(0 >= $1) ==> ($1 <= 0);g

%glue r, r (int ) 600

f($1 < $2) ==> (($1 � $2) < 0);g
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%glue r, r (int )

f($1 <= $2) ==> (($1 � $2) <= 0);g

%glue r, r (int )

f($1 > $2) ==> (($1 � $2) > 0);g

%glue r, r (int )

f($1 >= $2) ==> (($1 � $2) >= 0);g

%glue f, f (oat jdouble )

f($1 != $2) ==> (~($1 == $2));g 610

%glue f, f (oat jdouble )

f($1 > $2) ==> (~($1 <= $2));g

%glue f, f (oat jdouble )

f($1 >= $2) ==> (~($1 < $2));g

=*** For converts ***=

%glue f (oat )

f(int ($1)) ==> (move (int ($1)));g

%glue f (double ) 620

f(int ($1)) ==> (move (int ($1)));g

%glue r (int )

f(oat ($1)) ==> (oat (move ($1)));g

%glue r (int )

f(double ($1)) ==> (double (move ($1)));g

=*** charjshort conversions; intjshort in replacement ensures expr is typed

correctly, dummy instr matches it

***=

%glue r ($1==char jshort ) 630

f(int ($1)) ==> ((int ($1) << 16) >>> 16);g =* >>> is arith >> *=

%glue r ($1==char )

f(short ($1)) ==> ((short ($1) << 8) >>> 8);g =* >>> is arith >> *=

g
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Appendix B

MIPS R2000 Machine Description to

Interface with the MIPS Assembler

This is the machine description used to produce executable code for the R2000. The code produced

is assembled by the MIPS assembler and linked with the MIPS libraries. The di�erences from the

machine description in Appendix A are as follows:

(1) The MIPS C calling conventions are followed [Kan87].

(2) The la pseudo-instruction is used to load a 32-bit relocatable address. In addition,

other load and store instructions have 32-bit relocatable address operands. All of these

map into a 2-instruction sequences.

(3) The global data pointer is not used.

(4) Delay slots are used to prevent div or mul from being scheduled immediately after

mo or mfhi.

=****************

; Machine speci�cation for MIPS R2000 executable code

; for CGP

****************=

#include "sinstrs.h"

declare

f

%reg r[0:31] (char jshort jint jpointer); =* general purpose registers *= 10

%reg hi (char jshort jint ); lo (char jshort jint ); =* int mul=div registers *=

%reg f[0:15] (int joat jdouble ); =* oat registers *=

%reg bf (int ); =* bool signal from oating compare *=

=* instruction pipeline stages

IF: instruction fetch

RD: decode=register fetch

ALU: execution

MEM: access memory

WB: register writeback 20

*=

%resource IF; RD; ALU; MEM; WB;
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=* oating point coprocessor pipeline

FRD: oat register decode

FALU: oat ALU

FMEM: access memory

FWB: check exceptions

FFWB: oat writeback 30

*=

%resource FRD; FALU; FMEM; FWB; FFWB;

%resource MD; =* int mul=div unit *=

%resource FMUL; =* oat mul unit *=

%resource FDIV; =* oat div unit *=

%memory m[0:2147483647];

%def const16 [�32768:32767];

%def uconst16 [0:65535] +halfreloc ; 40

%def spconst16 [0:32767] +halfreloc ; =* special for loading relocatable *=

%def const32 [�2147483648:�32769, 65536:2147483647]; =* only for glue *=

%def uconst32 [65536:2147483647] +relocatable ;

%label rlab [�32768:32767] +relative ;

%label alab [0:100000000] +relocatable ;

%label tmplab +local ;

g

cwvm

f 50

%general (char jshort jint jpointer) r;

%general (oat jdouble ) f;

%sp r[29] +down ; =* stack pointer *=

%fp r[30] +down ;

%allocable r[2:25,31];

%allocable f[0:15];

%hard r[0] 0;

%calleesave r[16:23]; f[10:15];

%arg (int ) r[4] 1; =* 1st int arg in r[4] *= 60

%arg (int ) r[5] 2;

%arg (int ) r[6] 3;

%arg (int ) r[7] 4;

%arg (oat jdouble ) f[6] 1;

%arg (oat jdouble ) f[7] 2;

%retaddr r[31];

%result r[2] (int );

%result f[0] (oat jdouble );

g

70

instr

f

%instr addi r, r, #const16

f$1 = $2 + $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)
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%instr addi r, r, #const16

f$1 = $3 + $2;g

[IF; RD; ALU; MEM; WB] (1,1,0)

80

=*** load signed constant ***=

%instr addi r, r[0], #const16

f$1 = $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr addiu r, r, #uconst16

f$1 = $2 + $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr addiu r, r, #uconst16 90

f$1 = $3 + $2;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr addu r, r, r

f$1 = $2 + $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr sub r, r, r

f$1 = $2 � $3;g

[IF; RD; ALU; MEM; WB] (1,1,0) 100

=*** To cover unary minus ***=

%instr sub r, r[0], r

f$1 = �$3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr andi r, r, #uconst16

f$1 = $2 & $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

110

%instr andi r, r, #uconst16

f$1 = $3 & $2;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr ori r, r, #uconst16

f$1 = $2 j $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr ori r, r, #uconst16

f$1 = $3 j $2;g 120

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr xori r, r, #uconst16

f$1 = $2 ^ $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)
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%instr xori r, r, #uconst16

f$1 = $3 ^ $2;g

[IF; RD; ALU; MEM; WB] (1,1,0)

130

%instr and r, r, r

f$1 = $2 & $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr or r, r, r

f$1 = $2 j $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr xor r, r, r

f$1 = $2 ^ $3;g 140

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr nor r, r, r

f$1 = ~($2 j $3);g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr lui r, #uconst16

f$1 = $2 << 16;g

[IF; RD; ALU; MEM; WB] (1,1,0)

150

=*** load unsigned constant ***=

%instr ori r, r[0], #uconst16

f$1 = $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

=*** complement ***=

%instr nor r, r, r[0]

f$1 = ~$2;g

[IF; RD; ALU; MEM; WB] (1,1,0)

160

=*** these 2 set�reg�relational instrs won�t really be used ***=

%instr slt r, r, r

f$1 = $2 < $3;g =* signed compare *=

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr slti r, r, #const16

f$1 = $2 < $3;g =* signed compare *=

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr sra r, r, #const16 170

f$1 = $2 >>> $3;g =* arithmetic shift *=

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr srav r, r, r

f$1 = $2 >>> $3;g =* arithmetic shift *=

[IF; RD; ALU; MEM; WB] (1,1,0)
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%instr sll r, r, #const16

f$1 = $2 << $3;g

[IF; RD; ALU; MEM; WB] (1,1,0) 180

%instr sllv r, r, r =* logical shift left *=

f$1 = $2 << $3;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr srl r, r, #const16

f$1 = $2 >> $3;g =* logical shift *=

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr srlv r, r, r 190

f$1 = $2 >> $3;g =* logical shift right *=

[IF; RD; ALU; MEM; WB] (1,1,0)

=*** dummy converts between char, short, int. ***=

%instr dummy r, r ($1==char & $2==int )

f$1 = char ($2);g

[] (0,0,0)

%instr dummy r, r ($1==char & $2==short )

f$1 = char ($2);g 200

[] (0,0,0)

%instr dummy r, r ($1==short & $2==int )

f$1 = short ($2);g

[] (0,0,0)

%instr dummy r, r ($1==int & $2==short )

f$1 = int ($2);g

[] (0,0,0)

210

%instr dummy r, r ($1==int & $2==char )

f$1 = int ($2);g

[] (0,0,0)

%instr dummy r, r ($1==short & $2==char )

f$1 = short ($2);g

[] (0,0,0)

%instr mult r, r

flo = $1 * $2;g 220

[IF; RD; 11*MD] (1,11,0)

%instr divu r, r

flo = $1 = $2;g

[IF; RD; 34*MD] (1,34,0)
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%instr divu r, r =* remainder *=

fhi = $1 % $2;g 230

[IF; RD; 34*MD] (1,34,0)

%instr mfhi r

f$1 = hi;g

[IF; RD; ALU; MEM, MD; WB, MD] (1,1,2)

=* delay slots prevent div=mult from following directly *=

%instr mo r

f$1 = lo;g

[IF; RD; ALU; MEM, MD; WB, MD] (1,1,2) 240

=***** int loads=stores *****=

%instr lw r, #const16, r ($1==int )

f$1 = m[$3+$2];g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr lw r, #const16, r ($1==int )

f$1 = m[$2+$3];g

[IF; RD; ALU; MEM; WB] (1,2,1)

250

%instr lw r, #spconst16, r ($1==int )

f$1 = m[$3+$2];g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr lw r, #uconst32 ($1==int )

f$1 = m[$2];g

[IF; RD,IF; ALU,RD; MEM,ALU; WB,MEM; WB] (2,3,1)

%instr sw r, #const16, r ($1==int )

fm[$3+$2] = $1;g 260

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr sw r, #const16, r ($1==int )

fm[$2+$3] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr sw r, #spconst16, r ($1==int )

fm[$3+$2] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

270

%instr sw r, #uconst32 ($1==int )

fm[$2] = $1;g

[IF; RD,IF; ALU,RD; MEM,ALU; WB,MEM; WB] (2,3,0)

=***** These two patterns prevent blocks from (extr reg), etc *****=

%instr lw r, 0, r ($1==int )

f$1 = m[$3];g

[IF; RD; ALU; MEM; WB] (1,2,1)
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%instr sw r, 0, r ($1==int ) 280

fm[$3] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

=***** short loads=stores *****=

%instr lh r, #const16, r ($1==short )

f$1 = m[$3+$2];g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr lh r, #const16, r ($1==short )

f$1 = m[$2+$3];g 290

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr lh r, #spconst16, r ($1==short )

f$1 = m[$3+$2];g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr lh r, #uconst32 ($1==short )

f$1 = m[$2];g

[IF; RD,IF; ALU,RD; MEM,ALU; WB,MEM; WB] (2,3,1)

300

%instr sh r, #const16, r ($1==short )

fm[$3+$2] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr sh r, #const16, r ($1==short )

fm[$2+$3] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr sh r, #spconst16, r ($1==short ) 310

fm[$3+$2] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr sh r, #uconst32 ($1==short )

fm[$2] = $1;g

[IF; RD,IF; ALU,RD; MEM,ALU; WB,MEM; WB] (2,3,0)

%instr lh r, 0, r ($1==short )

f$1 = m[$3];g

[IF; RD; ALU; MEM; WB] (1,2,1) 320

%instr sh r, 0, r ($1==short )

fm[$3] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

=***** char loads=stores *****=

%instr lb r, #const16, r ($1==char )

f$1 = m[$3+$2];g

[IF; RD; ALU; MEM; WB] (1,2,1)

330
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%instr lb r, #const16, r ($1==char )

f$1 = m[$2+$3];g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr lb r, #spconst16, r ($1==char )

f$1 = m[$3+$2];g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr lb r, #uconst32 ($1==char )

f$1 = m[$2];g 340

[IF; RD,IF; ALU,RD; MEM,ALU; WB,MEM; WB] (2,3,1)

%instr sb r, #const16, r ($1==char )

fm[$3+$2] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr sb r, #const16, r ($1==char )

fm[$2+$3] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

350

%instr sb r, #spconst16, r ($1==char )

fm[$3+$2] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr sb r, #uconst32 ($1==char )

fm[$2] = $1;g

[IF; RD,IF; ALU,RD; MEM,ALU; WB,MEM; WB] (2,3,0)

%instr lb r, 0, r ($1==char )

f$1 = m[$3];g 360

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr sb r, 0, r ($1==char )

fm[$3] = $1;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%instr b #rlab

fgoto $1;g

[IF; RD; ALU; MEM; WB] (1,2,1) =* ready==2, since 1 delayslot *=

370

%instr bal #rlab

fcall $1;g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr j r

fgoto $1;g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr jal r

fcall $1;g 380

[IF; RD; ALU; MEM; WB] (1,2,1)
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%instr beq r, r, #rlab

fif $1 == $2

goto $3;g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr bne r, r, #rlab

fif $1 != $2

goto $3;g 390

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr blez r, #rlab

fif $1 <= 0

goto $2;g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr bgtz r, #rlab

fif $1 > 0

goto $2;g 400

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr bltz r, #rlab

fif $1 < 0

goto $2;g

[IF; RD; ALU; MEM; WB] (1,2,1)

%instr bgez r, #rlab

fif $1 >= 0

goto $2;g 410

[IF; RD; ALU; MEM; WB] (1,2,1)

=**************************************************

Floating point operations (single precision)

**************************************************=

%instr [s lds] lwc1 f, #const16, r ($1==oat jint )

f$1 = m[$3+$2];g

[IF; RD; ALU; FMEM; FWB; FFWB] (1,2,1) 420

%instr lwc1 f, #const16, r ($1==oat jint )

f$1 = m[$2+$3];g

[IF; RD; ALU; FMEM; FWB; FFWB] (1,2,1)

%instr lwc1 f, #uconst32 ($1==oat jint )

f$1 = m[$2];g

[IF; RD,IF; ALU,RD; FMEM,ALU; FWB,FMEM; FFWB,FWB] (2,3,1)

%instr [s sts] swc1 f, #const16, r ($1==oat jint ) 430

fm[$3+$2] = $1;g

[IF; RD; ALU; FMEM; FWB; FFWB] (1,1,0)
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%instr swc1 f, #const16, r ($1==oat jint )

fm[$2+$3] = $1;g

[IF; RD; ALU; FMEM; FWB; FFWB] (1,1,0)

%instr swc1 f, #uconst32 ($1==oat jint )

fm[$2] = $1;g

[IF; RD,IF; ALU,RD; FMEM,ALU; FWB,FMEM; FFWB,FWB] (2,3,1) 440

=***** These two patterns prevent blocks from (extr reg), etc *****=

%instr lwc1 f, 0, r ($1==oat jint )

f$1 = m[$3];g

[IF; RD; ALU; FMEM; FWB; FFWB] (1,2,1)

%instr swc1 f, 0, r ($1==oat jint )

fm[$3] = $1;g

[IF; RD; ALU; FMEM; FWB; FFWB] (1,1,0)

450

%instr mtc1 r, f (int )

f$2 = move ($1);g

[IF; RD; ALU; FMEM; FWB; FFWB] (1,2,1)

%instr mfc1 r, f (int )

f$1 = move ($2);g

[IF; RD; ALU; MEM; WB] (1,2,0)

%instr add.s f, f, f (oat )

f$1 = $2 + $3;g 460

[IF; FRD; 2*FALU; FMEM; FWB; FFWB;] (1,2,0)

%instr sub.s f, f, f (oat )

f$1 = $2 � $3;g

[IF; FRD; 2*FALU; FMEM; FWB; FFWB;] (1,2,0)

%instr mul.s f, f, f (oat )

f$1 = $2 * $3;g

[IF; FRD; FALU; 2*FMUL; FALU; FMEM; FWB; FFWB;] (1,4,0)

470

%instr div.s f, f, f (oat )

f$1 = $2 = $3;g

[IF; FRD; FALU; 8*FDIV; 2*FALU; FMEM; FWB; FFWB;] (1,11,0)

%instr neg.s f, f (oat )

f$1 = �$2;g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,1,0)

=* convert to int *=

%instr cvt.w.s f, f ($1==int & $2==oat ) 480

f$1 = int ($2);g

[IF; FRD; 2*FALU; FMEM; FWB; FFWB;] (1,2,0)
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=* convert from int *=

%instr cvt.s.w f, f ($1==oat & $2==int )

f$1 = oat ($2);g

[IF; FRD; 3*FALU; FMEM; FWB; FFWB;] (1,3,0)

=*convert from double*= 490

%instr cvt.s.d f, f ($1==oat & $2==double )

f$1 = oat ($2);g

[IF; FRD; 2*FALU; FMEM; FWB; FFWB;] (1,2,0)

%instr c.eq.s bf, f, f ($2==oat & $3==oat )

f$1 = ($2 == $3);g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,2,1)

%instr c.lt.s bf, f, f ($2==oat & $3==oat )

f$1 = ($2 < $3);g 500

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,2,1)

%instr c.le.s bf, f, f ($2==oat & $3==oat )

f$1 = ($2 <= $3);g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,2,1)

=**************************************************

double precision

**************************************************=

=*** these load=stores are actually 2 instructions each ***= 510

%instr *ldd f, #const16, r ($1==double )

f$1 = m[$3+$2];g

[] (0,0,0)

%instr *ldd f, #const16, r ($1==double )

f$1 = m[$2+$3];g

[] (0,0,0)

%instr *std f, #const16, r ($1==double )

fm[$3+$2] = $1;g 520

[] (0,0,0)

%instr *std f, #const16, r ($1==double )

fm[$2+$3] = $1;g

[] (0,0,0)

%instr *ldd f, 0, r ($1==double )

f$1 = m[$3];g

[] (0,0,0)

530

%instr *std f, 0, r ($1==double )

fm[$3] = $1;g

[] (0,0,0)
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%instr add.d f, f, f (double )

f$1 = $2 + $3;g

[IF; FRD; 2*FALU; FMEM; FWB; FFWB;] (1,2,0)

%instr sub.d f, f, f (double ) 540

f$1 = $2 � $3;g

[IF; FRD; 2*FALU; FMEM; FWB; FFWB;] (1,2,0)

%instr mul.d f, f, f (double )

f$1 = $2 * $3;g

[IF; FRD; FALU; 3*FMUL; FALU; FMEM; FWB; FFWB;] (1,5,0)

%instr div.d f, f, f (double )

f$1 = $2 = $3;g

[IF; FRD; FALU; 15*FDIV; 2*FALU; FMEM; FWB; FFWB;] (1,18,0) 550

%instr neg.d f, f (double )

f$1 = �$2;g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,1,0)

=* convert to int *=

%instr cvt.w.d f, f ($1==int & $2==double )

f$1 = int ($2);g

[IF; FRD; 2*FALU; FMEM; FWB; FFWB;] (1,2,0)

560

=* convert from int *=

%instr cvt.d.w f, f ($2==int & $1==double )

f$1 = double ($2);g

[IF; FRD; 3*FALU; FMEM; FWB; FFWB] (1,3,0)

=*convert from oat*=

%instr cvt.d.s f, f ($2==oat & $1==double )

f$1 = double ($2);g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,1,0)

570

%instr c.eq.d bf, f, f ($2==double & $3==double )

f$1 = ($2 == $3);g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,2,1)

%instr c.lt.d bf, f, f ($2==double & $3==double )

f$1 = ($2 < $3);g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,2,1)

%instr c.le.d bf, f, f ($2==double & $3==double )

f$1 = ($2 <= $3);g 580

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,2,1)
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%instr bc1t bf, #rlab

fif $1

goto $2;

g 590

[IF; RD, FRD; ALU, FALU; MEM; WB;] (1,2,1)

%instr bc1f bf, #rlab

fif ~$1

goto $2;

g

[IF; RD, FRD; ALU, FALU; MEM; WB;] (1,2,1)

%instr la r, #uconst32

f$1 = $2;g 600

[IF; RD,IF; ALU,RD; MEM,ALU; WB,MEM; WB] (2,2,0)

%move or r, r, r[0]

f$1 = $2;g

[IF; RD; ALU; MEM; WB] (1,1,0)

%move movf f, f oat jdouble )

f$1 = $2;g

[IF; FRD; FALU; FMEM; FWB; FFWB;] (1,1,0) 610

%nop noop =* really or r[0], r[0], r[0] *=

fg

[IF; RD; ALU; MEM; WB] (1,1,0)

=* for loading 32�bit constant *=

%glue #const32 (int )

f$1 ==> ((high($1) << 16) j low($1));g

=* for loading 32�bit address *= 620

=******* NOT POSSIBLE FOR ASSEMBLER ********

%glue #uconst32 (int)

f$1 ==> ((high($1) << 16) + low($1));g

************************************=

=*** There is no subtract immediate ***=

%glue r, #const16

f($1 � $2) ==> ($1 + eval(�$2));g

%glue #const16, r

f($1 � $2) ==> ($2 + eval(�$1));g 630

=*** Transformations for relationals ***=

%glue r (int )

f(0 < $1) ==> ($1 > 0);g

%glue r (int )

f(0 <= $1) ==> ($1 >= 0);g
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%glue r (int )

f(0 > $1) ==> ($1 < 0);g

%glue r (int )

f(0 >= $1) ==> ($1 <= 0);g 640

%glue r, r (int )

f($1 < $2) ==> (($1 � $2) < 0);g

%glue r, r (int )

f($1 <= $2) ==> (($1 � $2) <= 0);g

%glue r, r (int )

f($1 > $2) ==> (($1 � $2) > 0);g

%glue r, r (int )

f($1 >= $2) ==> (($1 � $2) >= 0);g

%glue f, f (oat jdouble )

f($1 != $2) ==> (~($1 == $2));g 650

%glue f, f (oat jdouble )

f($1 > $2) ==> (~($1 <= $2));g

%glue f, f (oat jdouble )

f($1 >= $2) ==> (~($1 < $2));g

=*** For converts ***=

%glue f (oat )

f(int ($1)) ==> (move (int ($1)));g

%glue f (double )

f(int ($1)) ==> (move (int ($1)));g 660

%glue r (int )

f(oat ($1)) ==> (oat (move ($1)));g

%glue r (int )

f(double ($1)) ==> (double (move ($1)));g

=*** charjshort conversions; intjshort in replacement ensures expr is typed

correctly, dummy instr matches it

***=

%glue r ($1==char jshort )

f(int ($1)) ==> ((int ($1) << 16) >>> 16);g =* >>> is arith >> *= 670

%glue r ($1==char )

f(short ($1)) ==> ((short ($1) << 8) >>> 8);g =* >>> is arith >> *=

g



Appendix C

Motorola 88000 Machine Description

=****************

; Machine speci�cation for Motorola 88000

; for CGP

;

****************=

#include "sinstrs.h"

declare

f 10

%reg r[0:31] (char jshort jint jpointerjoat ); =* general purpose registers *=

%reg d[0:15] (double ); =* these overlap the gprs *=

%equiv r[0] d[0];

=* integer unit stages

IF: instruction fetch

ID: decode=register fetch (reply)

IE: execution

IW: register writeback

*= 20

%resource IF; ID; IE; IW;

=* data unit stages:

DE: data execute (calculates e�ective address)

DA: data address (drives address bus)

DR: data reply (reads data o� bus)

*=

%resource DE; DA; DR;

=* oating point unit (FPU) stages: 30

F1: inital FPU stage (shared by add and multiply pipelines)

FA2: add stage 2

FA3: add stage 3

FA4: add stage 4

FM2: multiply stage 2

FM3: multiply stage 3

FM4: multiply stage 4

FM5: multiply stage 5

FL: �nal FPU stage (shared)

*= 40
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%resource F1;

%resource FA2; FA3; FA4;

%resource FM2; FM3; FM4; FM5;

%resource FL;

%memory m[0:2147483647];

=* All immediates are unsigned. 32�bit constants take 2 instrs to

load. Negative constants down to �65535 can be loaded in 1 instr

using sub, hence the breakdown between nconst16 and const32 50

*=

%def nconst16 [�65535:�1];

%def const32 [�2147483648:�65536, 65536:2147483647];

%def uconst16 [0:65535] +halfreloc ;

%def uconst32 [65536: 2147483647] +relocatable ;

%label rlab [�32768:32767] +relative ;

%label alab [0:100000000] +relocatable ;

%label tmplab +local ;

g

60

cwvm

f

%general (char jshort jint jpointerjoat ) r;

%general (double ) d;

%sp r[31] +down ; =* stack pointer *=

%fp r[30] +up ;

%gp r[29] 65536; =* global data area pointer *=

%allocable r[1:28];

%hard r[0] 0;

70

%calleesave r[4:31];

%arg (int joat ) r[2] 1; =* 1st integer arg in r[2] *=

%arg (int joat ) r[3] 2;

%arg (double ) d[1] 1;

%retaddr r[1];

%result r[2] (int joat );

%result d[1] (double );

%evalargs +left;

g

80

instr

f

%instr add r, r, #uconst16 (char jshort jint )

f$1 = $2 + $3;g

[IF; ID; IE; IW;] (1,1,0)

%instr add r, r, #uconst16 (char jshort jint )

f$1 = $3 + $2;g

[IF; ID; IE; IW;] (1,1,0) 90
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%instr add r, r, r (char jshort jint )

f$1 = $2 + $3;g

[IF; ID; IE; IW;] (1,1,0)

%instr sub r, r[0], #uconst16 (char jshort jint )

f$1 = �$3;g

[IF; ID; IE; IW;] (1,1,0)

=*** To cover unary minus ***= 100

%instr sub r, r[0], r (char jshort jint )

f$1 = �$3;g

[IF; ID; IE; IW;] (1,1,0)

%instr sub r, r, #uconst16 (char jshort jint )

f$1 = $2 � $3;g

[IF; ID; IE; IW;] (1,1,0)

%instr sub r, r, r (char jshort jint )

f$1 = $2 � $3;g 110

[IF; ID; IE; IW;] (1,1,0)

%instr mul r, r, #uconst16 (char jshort jint )

f$1 = $2 * $3;g

[IF; ID; F1; FM2; FM3; FL; IW;] (1,4,0)

%instr mul r, r, #uconst16 (char jshort jint )

f$1 = $3 * $2;g

[IF; ID; F1; FM2; FM3; FL; IW;] (1,4,0)

120

%instr mul r, r, r (char jshort jint )

f$1 = $2 * $3;g

[IF; ID; F1; FM2; FM3; FL; IW;] (1,4,0)

%instr div r, r, #uconst16 (char jshort jint )

f$1 = $2 = $3;g

[IF; ID; F1; 34*FA2; FA3; FA4; FL; IW;] (1,38,0)

%instr div r, r, r (char jshort jint )

f$1 = $2 = $3;g 130

[IF; ID; F1; 34*FA2; FA3; FA4; FL; IW;] (1,38,0)

%instr masku r, r, #uconst16 (char jshort jint )

f$1 = $2 & ($3 << 16);g

[IF; ID; IE; IW;] (1,1,0)

%instr masku r, r, #uconst16 (char jshort jint )

f$1 = ($3 << 16) & $2;g

[IF; ID; IE; IW;] (1,1,0)

140
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%instr mask r, r, #uconst16 (char jshort jint )

f$1 = $2 & $3;g

[IF; ID; IE; IW;] (1,1,0)

%instr mask r, r, #uconst16 (char jshort jint )

f$1 = $3 & $2;g

[IF; ID; IE; IW;] (1,1,0)

150

%instr andc r, r, r (char jshort jint )

f$1 = $2 & ~$3;g

[IF; ID; IE; IW;] (1,1,0)

%instr andc r, r, r (char jshort jint )

f$1 = ~$3 & $2;g

[IF; ID; IE; IW;] (1,1,0)

%instr and r, r, r (char jshort jint )

f$1 = $2 & $3;g 160

[IF; ID; IE; IW;] (1,1,0)

%instr or r, r, #uconst16 (char jshort jint )

f$1 = $2 j $3;g

[IF; ID; IE; IW;] (1,1,0)

%instr or r, r, #uconst16 (char jshort jint )

f$1 = $3 j $2;g

[IF; ID; IE; IW;] (1,1,0)

170

%instr orc r, r, r (char jshort jint )

f$1 = $2 j ~$3;g

[IF; ID; IE; IW;] (1,1,0)

%instr orc r, r, r (char jshort jint )

f$1 = ~$3 j $2;g

[IF; ID; IE; IW;] (1,1,0)

%instr oru r, r, #uconst16 (char jshort jint )

f$1 = $2 j ($3 << 16);g 180

[IF; ID; IE; IW;] (1,1,0)

%instr oru r, r, #uconst16 (char jshort jint )

f$1 = ($3 << 16) j $2;g

[IF; ID; IE; IW;] (1,1,0)

%instr or r, r, r (char jshort jint )

f$1 = $2 j $3;g

[IF; ID; IE; IW;] (1,1,0)

190

%instr oru r, r[0], #uconst16 (char jshort jint )

f$1 = ($3 << 16);g =* load constant upper *=

[IF; ID; IE; IW;] (1,1,0)
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%instr or r, r[0], #uconst16 (char jshort jint )

f$1 = $3;g =* load constant *=

[IF; ID; IE; IW;] (1,1,0)

%instr orc r, r[0], r (char jshort jint )

f$1 = ~$3;g =* unary complement *= 200

[IF; ID; IE; IW;] (1,1,0)

%instr xoru r, r, #uconst16 (char jshort jint )

f$1 = $2 ^ ($3 << 16);g

[IF; ID; IE; IW;] (1,1,0)

%instr xoru r, r, #uconst16 (char jshort jint )

f$1 = ($3 << 16) ^ $2;g

[IF; ID; IE; IW;] (1,1,0)

210

%instr xor r, r, #uconst16 (char jshort jint )

f$1 = $2 ^ $3;g

[IF; ID; IE; IW;] (1,1,0)

%instr xor r, r, #uconst16 (char jshort jint )

f$1 = $3 ^ $2;g

[IF; ID; IE; IW;] (1,1,0)

%instr xorc r, r, r (char jshort jint )

f$1 = $2 ^ ~$3;g 220

[IF; ID; IE; IW;] (1,1,0)

%instr xorc r, r, r (char jshort jint )

f$1 = ~$3 ^ $2;g

[IF; ID; IE; IW;] (1,1,0)

%instr xor r, r, r (char jshort jint )

f$1 = $2 ^ $3;g

[IF; ID; IE; IW;] (1,1,0)

230

%instr cmp r, r, #uconst16 (char jshort jint )

f$1 = $2 :: $3;g =* compare *=

[IF; ID; IE; IW;] (1,1,0)

%instr cmp r, r, r (char jshort jint )

f$1 = $2 :: $3;g =* compare *=

[IF; ID; IE; IW;] (1,1,0)

%instr ext r, r, 0, #uconst16 (char jshort jint )

f$1 = $2 >>> $4;g =* arithmetic right shift *= 240

[IF; ID; IE; IW;] (1,1,0)
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%instr ext r, r, r (char jshort jint )

f$1 = $2 >>> $3;g =* arithmetic right shift *=

=* assumes $3 < 32 *=

[IF; ID; IE; IW;] (1,1,0)

%instr extu r, r, 0, #uconst16 (char jshort jint ) 250

f$1 = $2 >> $4;g =* logical right shift *=

[IF; ID; IE; IW;] (1,1,0)

%instr extu r, r, r (char jshort jint )

f$1 = $2 >> $3;g =* logical right shift *=

=* assumes $3 < 32 *=

[IF; ID; IE; IW;] (1,1,0)

%instr mak r, r, 0, #uconst16 (char jshort jint )

f$1 = $2 << $4;g =* logical left shift *= 260

[IF; ID; IE; IW;] (1,1,0)

%instr mak r, r, r (char jshort jint )

f$1 = $2 << $3;g =* logical left shift *=

=* assumes $3 < 32 *=

[IF; ID; IE; IW;] (1,1,0)

=*** converts from charjshort to int ***=

%instr ext r, r, 8, 0 ($1==int & $2==char )

f$1 = int ($2);g 270

[IF; ID; IE; IW;] (1,1,0)

%instr ext r, r, 16, 0 ($1==int & $2==short )

f$1 = int ($2);g

[IF; ID; IE; IW;] (1,1,0)

%instr ext r, r, 8, 0 ($1==short & $2==char )

f$1 = short ($2);g

[IF; ID; IE; IW;] (1,1,0)

280

=*** dummy converts from int to charjshort ***=

%instr dummy r, r ($1==char & $2==int )

f$1 = char ($2);g

[] (0,0,0)

%instr dummy r, r ($1==char & $2==short )

f$1 = char ($2);g

[] (0,0,0)

%instr dummy r, r ($1==short & $2==int ) 290

f$1 = short ($2);g

[] (0,0,0)
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=*** branches ***=

%instr brn #rlab

fgoto $1;g

[IF; ID; IE;] (1,2,1)

300

%instr bsrn #rlab

fcall $1;g

[IF; ID; IE;] (1,2,1)

%instr jmpn r (int )

fgoto $1;g

[IF; ID; IE;] (1,2,1)

%instr jsrn r (int )

fcall $1;g 310

[IF; ID; IE;] (1,2,1)

%instr beq0n r, #rlab ($1==int )

=* requires transform to use cmp instr *=

fif $1 == 0

goto $2;g

[IF; ID; IE;] (1,2,1)

%instr bne0n r, #rlab ($1==int )

=* bcnd.n ne0, r, #rlab *= 320

fif $1 != 0

goto $2;g

[IF; ID; IE;] (1,2,1)

%instr ble0n r, #rlab ($1==int )

fif $1 <= 0

goto $2;g

[IF; ID; IE;] (1,2,1)

%instr bgt0n r, #rlab ($1==int ) 330

fif $1 > 0

goto $2;g

[IF; ID; IE;] (1,2,1)

%instr blt0n r, #rlab ($1==int )

fif $1 < 0

goto $2;g

[IF; ID; IE;] (1,2,1)

%instr bge0n r, #rlab ($1==int ) 340

fif $1 >= 0

goto $2;g

[IF; ID; IE;] (1,2,1)
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=*** loads=stores ***=

%instr ld r, r, #uconst16 ($1==int joat )

f$1 = m[$2+$3];g

[IF; ID; DE; DA,IW; DR;] (1,3,0) 350

%instr ld r, r, #uconst16 ($1==int joat )

f$1 = m[$3+$2];g

[IF; ID; DE; DA,IW; DR;] (1,3,0)

%instr ldsc r, r, r ($1==int joat )

f$1 = m[$2+($3<<2)];g =* scaled load *=

[IF; ID; DE; DA,IW; DR;] (1,3,0)

%instr ldsc r, r, r ($1==int joat ) 360

f$1 = m[($3<<2)+$2];g =* scaled load *=

[IF; ID; DE; DA,IW; DR;] (1,3,0)

%instr ld r, r, r ($1==int joat )

f$1 = m[$2+$3];g

[IF; ID; DE; DA,IW; DR;] (1,3,0)

%instr ld r, r, 0 ($1==int joat )

f$1 = m[$2];g

[IF; ID; DE; DA,IW; DR;] (1,3,0) 370

%instr st r, r, #uconst16 ($1==int joat )

fm[$2+$3] = $1;g

[IF; ID; DE; DA,IW; DR;] (1,1,0)

%instr st r, r, #uconst16 ($1==int joat )

fm[$3+$2] = $1;g

[IF; ID; DE; DA,IW; DR;] (1,1,0)

%instr stsc r, r, r ($1==int joat ) 380

fm[$2+($3<<2)] = $1;g =* scaled store *=

[IF; ID; DE; DA,IW; DR;] (1,1,0)

%instr stsc r, r, r ($1==int joat )

fm[($3<<2)+$2] = $1;g =* scaled store *=

[IF; ID; DE; DA,IW; DR;] (1,1,0)

%instr st r, r, r ($1==int joat )

fm[$2+$3] = $1;g

[IF; ID; DE; DA,IW; DR;] (1,1,0) 390

%instr st r, r, 0 ($1==int joat )

fm[$2] = $1;g

[IF; ID; DE; DA,IW; DR;] (1,1,0)
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%instr ld.b r, r, #uconst16 ($1==char & $2==int & $3==int )

f$1 = m[$2+$3];g

[IF; ID; DE; DA,IW; DR;] (1,3,0) 400

%instr ld.b r, r, #uconst16 ($1==char & $2==int & $3==int )

f$1 = m[$3+$2];g

[IF; ID; DE; DA,IW; DR;] (1,3,0)

%instr ld.b r, r, r ($1==char & $2==int & $3==int )

f$1 = m[$2+$3];g

[IF; ID; DE; DA,IW; DR;] (1,3,0)

%instr ld.b r, r, 0 ($1==char & $2==int & $3==int ) 410

f$1 = m[$2];g

[IF; ID; DE; DA,IW; DR;] (1,3,0)

%instr st.b r, r, #uconst16 ($1==char & $2==int & $3==int )

fm[$2+$3] = $1;g

[IF; ID; DE; DA,IW; DR;] (1,1,0)

%instr st.b r, r, #uconst16 ($1==char & $2==int & $3==int )

fm[$3+$2] = $1;g

[IF; ID; DE; DA,IW; DR;] (1,1,0) 420

%instr st.b r, r, r ($1==char & $2==int & $3==int )

fm[$2+$3] = $1;g

[IF; ID; DE; DA,IW; DR;] (1,1,0)

%instr st.b r, r, 0 ($1==char & $2==int & $3==int )

fm[$2] = $1;g

[IF; ID; DE; DA,IW; DR;] (1,1,0)

%instr ld.h r, r, #uconst16 ($1==short & $2==int & $3==int ) 430

f$1 = m[$2+$3];g

[IF; ID; DE; DA,IW; DR;] (1,3,0)

%instr ld.h r, r, #uconst16 ($1==short & $2==int & $3==int )

f$1 = m[$3+$2];g

[IF; ID; DE; DA,IW; DR;] (1,3,0)

%instr ldsc.h r, r, r ($1==short & $2==int & $3==int )

f$1 = m[$2+($3<<1)];g

[IF; ID; DE; DA,IW; DR;] (1,3,0) 440

%instr ldsc.h r, r, r ($1==short & $2==int & $3==int )

f$1 = m[($3<<1)+$2];g

[IF; ID; DE; DA,IW; DR;] (1,3,0)

%instr ld.h r, r, r ($1==short & $2==int & $3==int )

f$1 = m[$2+$3];g

[IF; ID; DE; DA,IW; DR;] (1,3,0)
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%instr ld.h r, r, 0 ($1==short & $2==int & $3==int )

f$1 = m[$2];g 450

[IF; ID; DE; DA,IW; DR;] (1,3,0)

%instr st.h r, r, #uconst16 ($1==short & $2==int & $3==int )

fm[$2+$3] = $1;g

[IF; ID; DE; DA,IW; DR;] (1,1,0)

%instr st.h r, r, #uconst16 ($1==short & $2==int & $3==int )

fm[$3+$2] = $1;g

[IF; ID; DE; DA,IW; DR;] (1,1,0)

460

%instr stsc.h r, r, r ($1==short & $2==int & $3==int )

fm[$2+($3<<1)] = $1;g

[IF; ID; DE; DA,IW; DR;] (1,1,0)

%instr stsc.h r, r, r ($1==short & $2==int & $3==int )

fm[($3<<1)+$2] = $1;g

[IF; ID; DE; DA,IW; DR;] (1,1,0)

%instr st.h r, r, r ($1==short & $2==int & $3==int )

fm[$2+$3] = $1;g 470

[IF; ID; DE; DA,IW; DR;] (1,1,0)

%instr st.h r, r, 0 ($1==short & $2==int & $3==int )

fm[$2] = $1;g

[IF; ID; DE; DA,IW; DR;] (1,1,0)

%instr ld.d d, r, #uconst16

f$1 = m[$2+$3];g

[IF; ID; DE; DA,DE,IW; DR,DA,IW; DR;] (1,4,0)

480

%instr ld.d d, r, #uconst16

f$1 = m[$3+$2];g

[IF; ID; DE; DA,DE,IW; DR,DA,IW; DR;] (1,4,0)

%instr ldsc.d d, r, r

f$1 = m[$2+($3<<3)];g =* scaled load *=

[IF; ID; DE; DA,DE,IW; DR,DA,IW; DR;] (1,4,0)

%instr ldsc.d d, r, r

f$1 = m[($3<<3)+$2];g =* scaled load *= 490

[IF; ID; DE; DA,DE,IW; DR,DA,IW; DR;] (1,4,0)

%instr ld.d d, r, r

f$1 = m[$2+$3];g

[IF; ID; DE; DA,DE,IW; DR,DA,IW; DR;] (1,4,0)

%instr ld.d d, r, 0

f$1 = m[$2];g

[IF; ID; DE; DA,DE,IW; DR,DA,IW; DR;] (1,4,0)
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500

%instr st.d d, r, #uconst16

fm[$2+$3] = $1;g

[IF; ID; DE,ID; DA,IW,DE; DR,DA,IW; DR;] (1,1,0)

%instr st.d d, r, #uconst16

fm[$3+$2] = $1;g

[IF; ID; DE,ID; DA,IW,DE; DR,DA,IW; DR;] (1,1,0)

%instr stsc.d d, r, r

fm[$2+($3<<3)] = $1;g =* scaled store *= 510

[IF; ID; DE,ID; DA,IW,DE; DR,DA,IW; DR;] (1,1,0)

%instr stsc.d d, r, r

fm[($3<<3)+$2] = $1;g =* scaled store *=

[IF; ID; DE,ID; DA,IW,DE; DR,DA,IW; DR;] (1,1,0)

%instr st.d d, r, r

fm[$2+$3] = $1;g

[IF; ID; DE,ID; DA,IW,DE; DR,DA,IW; DR;] (1,1,0)

520

%instr st.d d, r, 0

fm[$2] = $1;g

[IF; ID; DE,ID; DA,IW,DE; DR,DA,IW; DR;] (1,1,0)

=* Floating point operations (single precision) *=

%instr fadd.s r, r, r (oat )

f$1 = $2 + $3;g

[IF; ID; F1; FA2; FA3; FA4; FL; IW;] (1,5,0)

530

%instr fsub.s r, r, r (oat )

f$1 = $2 � $3;g

[IF; ID; F1; FA2; FA3; FA4; FL; IW;] (1,5,0)

%instr fsub.s r, r[0], r (oat )

f$1 = �$3;g

[IF; ID; F1; FA2; FA3; FA4; FL; IW;] (1,5,0)

%instr fmul.s r, r, r (oat )

f$1 = $2 * $3;g 540

[IF; ID; F1; FM2; FM3; FM4; FM5; FL; IW;] (1,6,0)

%instr fdiv.s r, r, r (oat )

f$1 = $2 = $3;g

[IF; ID; F1; 26*FA2; FA3; FA4; FL; IW;] (1,30,0)

%instr t.s r, r ($1==oat & $2==int )

f$1 = oat ($2);g

[IF; ID; F1; FA2; FA3; FA4; FL; IW;] (1,5,0)

550
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%instr fadd.sds r, d, r[0] ($1==oat )

f$1 = oat ($2);g

[IF; ID; F1; FA2; FA3; FA4; FL; IW;] (1,5,0)

%instr trnc.s r, r ($1==int & $2==oat )

f$1 = int ($2);g

[IF; ID; F1; FA2; FA3; FA4; FL; IW;] (1,5,0)

%instr fcmp.s r, r, r ($1==int & $2==oat & $3==oat )

f$1 = $2 :: $3;g 560

[IF; ID; F1; FA2; FA3; FA4; FL; IW;] (1,5,0)

=* Floating point operations (double precision) *=

%instr fadd.d d, d, d

f$1 = $2 + $3;g

[IF; ID; F1,ID; F1; FA2; FA3; FA4; FL; IW,FL; IW;] (1,6,0)

%instr fsub.d d, d, d

f$1 = $2 � $3;g 570

[IF; ID; F1,ID; F1; FA2; FA3; FA4; FL; IW,FL; IW;] (1,6,0)

%instr fsub.dsd d, r[0], d ($2==oat )

f$1 = �$3;g

[IF; ID; F1,ID; F1; FA2; FA3; FA4; FL; IW,FL; IW;] (1,6,0)

%instr fmul.d d, d, d

f$1 = $2 * $3;g

[IF; ID; F1,ID; 3*F1; FM2; FM3; FM4; FM5; FL; IW,FL; IW;] (1,9,0)

580

%instr fdiv.d d, d, d

f$1 = $2 = $3;g

[IF; ID; F1,ID; F1; 55*FA2; FA3; FA4; FL; IW,FL; IW;] (1,60,0)

%instr t.d d, r ($2==int )

f$1 = double ($2);g

[IF; ID; F1; FA2; FA3; FA4; FL; IW,FL; IW;] (1,5,0)

%instr fadd.dss d, r, r[0] ($2==oat )

f$1 = double ($2);g 590

[IF; ID; F1; FA2; FA3; FA4; FL; IW,FL; IW;] (1,5,0)

%instr trnc.sd r, d ($1==int )

f$1 = int ($2);g

[IF; ID; F1,ID; F1; FA2; FA3; FA4; FL; IW;] (1,6,0)

%instr fcmp.d r, d, d ($1==int )

f$1 = $2 :: $3;g

[IF; ID; F1,ID; F1; FA2; FA3; FA4; FL; IW;] (1,6,0)

600
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%move [s movs] or r, r, r[0]

f$1 = $2;g

[IF; ID; IE; IW;] (1,1,0)

%move *movd d, d (double )

f$1 = $2;g =* 2�instr sequence *=

[] (0,0,0)

%nop noop =* really or r[0], r[0], r[0] *= 610

fg

[IF; ID; IE; IW;] (1,1,0)

=*** Auxiliary latencies; takes 1 additional cycle to get the result

to the data bus

***=

%aux fadd.d : st.d (1.$1==2.$1) (7)

%aux fsub.d : st.d (1.$1==2.$1) (7)

%aux fmul.d : st.d (1.$1==2.$1) (10)

%aux fdiv.d : st.d (1.$1==2.$1) (61) 620

%aux t.d : st.d (1.$1==2.$1) (6)

%aux fadd.dss : st.d (1.$1==2.$1) (6)

=* for loading 32�bit constant *=

%glue #const32 (int )

f$1 ==> (low($1) j (high($1) << 16));g

=* for adding negative constant *=

%glue r, #nconst16 (char jshort jint jpointer)

f($1 + $2) ==> ($1 � eval(�$2));g 630

=* for loading negative constant *=

%glue #nconst16 (char jshort jint jpointer)

f$1 ==> (� eval(�$1));g

=* for loading 32�bit address *=

%glue #uconst32 (int )

f$1 ==> ((high($1) << 16) + low($1));g

=*** Remainder ***= 640

%glue r, r (char jshort jint )

f($1 % $2) ==> ($1 � (($1 = $2) * $2));g

=*** Transformations for relationals ***=

%glue r, #uconst16 (int )

f($1 == $2) ==> (($1 :: $2) == 0);g

%glue r, #uconst16 (int )

f($1 != $2) ==> (($1 :: $2) != 0);g

%glue r, #uconst16 (int )

f($1 < $2) ==> (($1 :: $2) < 0);g 650

%glue r, #uconst16 (int )

f($1 <= $2) ==> (($1 :: $2) <= 0);g
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%glue r, #uconst16 (int )

f($1 > $2) ==> (($1 :: $2) > 0);g

%glue r, #uconst16 (int )

f($1 >= $2) ==> (($1 :: $2) >= 0);g

%glue #uconst16, r (int )

f($1 == $2) ==> (($2 :: $1) == 0);g

%glue #uconst16, r (int ) 660

f($1 != $2) ==> (($2 :: $1) != 0);g

%glue #uconst16, r (int )

f($1 < $2) ==> (($2 :: $1) > 0);g

%glue #uconst16, r (int )

f($1 <= $2) ==> (($2 :: $1) >= 0);g

%glue #uconst16, r (int )

f($1 > $2) ==> (($2 :: $1) < 0);g

%glue #uconst16, r (int )

f($1 >= $2) ==> (($2 :: $1) <= 0);g

670

%glue r, r (int joat )

f($1 == $2) ==> (($1 :: $2) == 0);g

%glue r, r (int joat )

f($1 != $2) ==> (($1 :: $2) != 0);g

%glue r, r (int joat )

f($1 < $2) ==> (($1 :: $2) < 0);g

%glue r, r (int joat )

f($1 <= $2) ==> (($1 :: $2) <= 0);g

%glue r, r (int joat )

f($1 > $2) ==> (($1 :: $2) > 0);g 680

%glue r, r (int joat )

f($1 >= $2) ==> (($1 :: $2) >= 0);g

%glue d, d

f($1 == $2) ==> (($1 :: $2) == 0);g

%glue d, d

f($1 != $2) ==> (($1 :: $2) != 0);g

%glue d, d

f($1 < $2) ==> (($1 :: $2) < 0);g

%glue d, d 690

f($1 <= $2) ==> (($1 :: $2) <= 0);g

%glue d, d

f($1 > $2) ==> (($1 :: $2) > 0);g

%glue d, d

f($1 >= $2) ==> (($1 :: $2) >= 0);g

g



Appendix D

Intel i860 Machine Description

X mnemonic key

Position Meaning Character Meaning

1 Mul opnd 1 r KR (placeholder only)

2 Mul opnd 2 t T

3 Add opnd 1 1 src1

4 Add opnd 2 2 src2

5 Adder operation p add

6 rdest from s subtract

7-8 Special reg loads a from Adder

m from Multiplier

i KI

=****************

; Machine speci�cation for Intel i860

; for CGP

;

*=

#include "sinstrs.h"

declare 10

f

%reg [r r] r[0:31] (char jshort jint jpointer); =* general purpose registers *=

%reg f[0:31] (oat jint );

%reg d[0:15] (double );

%equiv f[0] d[0];

%reg  1 (oat jdouble ); =* hack: oating 1.0 *=

=* instruction pipeline stages *=

%resource ALU; =* core execution *= 20

%resource WB; =* core register write�back *=

=* oat pipeline stages *=

%resource A1; =* Adder stage 1 *=

%resource A2; =* Adder stage 2 *=

%resource A3; =* Adder stage 3 *=

%resource M1; =* Multiplier stage 1 *=

%resource M2; =* Multiplier stage 2 *=
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%resource M3; =* Multiplier stage 3 *=

%resource FWB; =* Float register write�back *= 30

%resource T; =* T latch setting hardware *=

%resource FQ; =* mystery piece of hardware shared by fst and

scalar oat instrs (except frcp) *=

%resource DBUS; =* data bus *=

%resource DCH; =* data cache *=

%memory m[0:2147000000];

%def const16 [�32768:32767];

%def uconst16 [0:65535] +halfreloc ; 40

%def spconst16 [0:32767] +halfreloc ; =* special for loading relocatable *=

%def const32 [�2147483648:�32769, 65536:2147483647]; =* only for glue *=

%def uconst32 [65536:2147483647] +relocatable ;

%label rlab [�32768:32767] +relative ;

%label alab [�100000000:100000000] +relocatable ;

%label tmplab +local ;

=*********************************************************

Latches, elements and classes to handle oating point pipelines

*******************************************************= 50

=*** Clocks separate from primary clock ***=

%clock clk a; =* adder clock *=

%clock clk m; =* multiplier clock *=

%clock clk t; =* t latch clock *=

%clock clk cc; =* condition code changer *=

=*** latches representing partial results ***=

%reg [r a1] a1 (int joat jdouble ; clk a) +temporal ;

%reg [r a2] a2 (int joat jdouble ; clk a) +temporal ; 60

%reg [r a3] a3 (int joat jdouble ; clk a) +temporal ;

%reg [r m1] m1 (oat jdouble ; clk m) +temporal ;

%reg [r m2] m2 (oat jdouble ; clk m) +temporal ;

%reg [r m3] m3 (oat ; clk m) +temporal ;

%reg t (oat jdouble ; clk t) +temporal ;

%reg cc (int ; clk cc) +temporal ; =* codition code *=

%element pfadd.s (clk a); =* 1st stage *=

%element pfsub.s (clk a);

%element pfmul.s (clk m); 70

%element pfamov.sd (clk a);

%element pfgt.s (clk a);

%element pe.s (clk a);

%element pfeq.s (clk a);

%element pftrunc.s (clk a);

%element pfadd.d (clk a);

%element pfsub.d (clk a);

%element pfmul.d (clk m);

%element pfamov.ds (clk a);
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%element pfgt.d (clk a); 80

%element pe.d (clk a);

%element pfeq.d (clk a);

%element pftrunc.d (clk a);

=*** multiply and add=sub combinations ***= =* Intel mnemonic *=

%element Xr21mpa.s (clk a, clk m); =* r2p1.s *=

%element Xr2tmpar.s (clk a, clk m); =* r2pt.s *=

%element Xr21apat.s (clk a, clk m, clk t); =* r2ap1.s *=

%element Xr2tapart.s (clk a, clk m, clk t); =* r2apt.s *=

%element Xi21mpa.s (clk a, clk m); =* i2p1.s *= 90

%element Xi2tmpai.s (clk a, clk m); =* i2pt.s *=

%element Xi21apat.s (clk a, clk m, clk t); =* i2ap1.s *=

%element Xi2tapait.s (clk a, clk m, clk t); =* 12apt.s *=

%element Xra12part.s (clk a, clk m, clk t); =* rat1p2.s *=

%element X12ampa.s (clk a, clk m); =* m12apm.s *=

%element Xra12par.s (clk a, clk m); =* ra1p2.s *=

%element X12tapat.s (clk a, clk m, clk t); =* m12ttpa.s *=

%element Xia12pat.s (clk a, clk m, clk t); =* iat1p2.s *=

%element X12tmpa.s (clk a, clk m); =* m12tpm.s *=

%element Xia12pa.s (clk a, clk m); =* ia1p2.s *= 100

%element X12tapa.s (clk a, clk m); =* m12tpa.s *=

%element Xr21mpm.s (clk a, clk m); =* mr2p1.s *=

%element Xr2tmpmr.s (clk a, clk m); =* mr2pt.s *=

%element Xr21mpmt.s (clk a, clk m, clk t); =* mr2mp1.s *=

%element Xr2tmpmrt.s (clk a, clk m, clk t); =* mr2mpt.s *=

%element Xi21mpm.s (clk a, clk m); =* mi2p1.s *=

%element Xi2tmpmi.s (clk a, clk m); =* mi2pt.s *=

%element Xi21mpmt.s (clk a, clk m, clk t); =* mi2mp1.s *=

%element Xi2tmpmit.s (clk a, clk m, clk t); =* mi2mpt.s *=

%element Xrm12pmt.s (clk a, clk m, clk t); =* mrmt1p2.s *= 110

%element X12mmpm.s (clk a, clk m); =* mm12mpm.s *=

%element Xrm12pm.s (clk a, clk m); =* mrm1p2.s *=

%element X12tmpmt.s (clk a, clk m, clk t); =* mm12ttpm.s *=

%element Xim12pmt.s (clk a, clk m, clk t); =* mimt1p2.s *=

%element X12tmpm.s (clk a, clk m); =* mm12tpm.s *=

%element Xim12pm.s (clk a, clk m); =* mim1p2.s *=

%element Xr21msa.s (clk a, clk m); =* r2s1.s *=

%element Xr2tmsar.s (clk a, clk m); =* r2st.s *=

%element Xr21asat.s (clk a, clk m, clk t); =* r2as1.s *= 120

%element Xr2tasart.s (clk a, clk m, clk t); =* r2ast.s *=

%element Xi21msa.s (clk a, clk m); =* i2s1.s *=

%element Xi2tmsai.s (clk a, clk m); =* i2st.s *=

%element Xi21asat.s (clk a, clk m, clk t); =* i2as1.s *=

%element Xi2tasait.s (clk a, clk m, clk t); =* 12ast.s *=

%element Xra12sart.s (clk a, clk m, clk t); =* rat1s2.s *=

%element X12amsa.s (clk a, clk m); =* m12asm.s *=

%element Xra12sar.s (clk a, clk m); =* ra1s2.s *=

%element X12tasat.s (clk a, clk m, clk t); =* m12ttsa.s *=

%element Xia12sat.s (clk a, clk m, clk t); =* iat1s2.s *= 130
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%element X12tmsa.s (clk a, clk m); =* m12tsm.s *=

%element Xia12sa.s (clk a, clk m); =* ia1s2.s *=

%element X12tasa.s (clk a, clk m); =* m12tsa.s *=

%element Xr21msm.s (clk a, clk m); =* mr2s1.s *=

%element Xr2tmsmr.s (clk a, clk m); =* mr2st.s *=

%element Xr21msmt.s (clk a, clk m, clk t); =* mr2ms1.s *=

%element Xr2tmsmrt.s (clk a, clk m, clk t); =* mr2mst.s *=

%element Xi21msm.s (clk a, clk m); =* mi2s1.s *=

%element Xi2tmsmi.s (clk a, clk m); =* mi2st.s *=

%element Xi21msmt.s (clk a, clk m, clk t); =* mi2ms1.s *= 140

%element Xi2tmsmit.s (clk a, clk m, clk t); =* mi2mst.s *=

%element Xrm12smt.s (clk a, clk m, clk t); =* mrmt1s2.s *=

%element X12mmsm.s (clk a, clk m); =* mm12msm.s *=

%element Xrm12sm.s (clk a, clk m); =* mrm1s2.s *=

%element X12tmsmt.s (clk a, clk m, clk t); =* mm12ttsm.s *=

%element Xim12smt.s (clk a, clk m, clk t); =* mimt1s2.s *=

%element X12tmsm.s (clk a, clk m); =* mm12tsm.s *=

%element Xim12sm.s (clk a, clk m); =* mim1s2.s *=

%element Xr21mpa.d (clk a, clk m); =* r2p1.d *= 150

%element Xr2tmpar.d (clk a, clk m); =* r2pt.d *=

%element Xr21apat.d (clk a, clk m, clk t); =* r2ap1.d *=

%element Xr2tapart.d (clk a, clk m, clk t); =* r2apt.d *=

%element Xi21mpa.d (clk a, clk m); =* i2p1.d *=

%element Xi2tmpai.d (clk a, clk m); =* i2pt.d *=

%element Xi21apat.d (clk a, clk m, clk t); =* i2ap1.d *=

%element Xi2tapait.d (clk a, clk m, clk t); =* 12apt.d *=

%element Xra12part.d (clk a, clk m, clk t); =* rat1p2.d *=

%element X12ampa.d (clk a, clk m); =* m12apm.d *=

%element Xra12par.d (clk a, clk m); =* ra1p2.d *= 160

%element X12tapat.d (clk a, clk m, clk t); =* m12ttpa.d *=

%element Xia12pat.d (clk a, clk m, clk t); =* iat1p2.d *=

%element X12tmpa.d (clk a, clk m); =* m12tpm.d *=

%element Xia12pa.d (clk a, clk m); =* ia1p2.d *=

%element X12tapa.d (clk a, clk m); =* m12tpa.d *=

%element Xr21mpm.d (clk a, clk m); =* mr2p1.d *=

%element Xr2tmpmr.d (clk a, clk m); =* mr2pt.d *=

%element Xr21mpmt.d (clk a, clk m, clk t); =* mr2mp1.d *=

%element Xr2tmpmrt.d (clk a, clk m, clk t); =* mr2mpt.d *=

%element Xi21mpm.d (clk a, clk m); =* mi2p1.d *= 170

%element Xi2tmpmi.d (clk a, clk m); =* mi2pt.d *=

%element Xi21mpmt.d (clk a, clk m, clk t); =* mi2mp1.d *=

%element Xi2tmpmit.d (clk a, clk m, clk t); =* mi2mpt.d *=

%element Xrm12pmt.d (clk a, clk m, clk t); =* mrmt1p2.d *=

%element X12mmpm.d (clk a, clk m); =* mm12mpm.d *=

%element Xrm12pm.d (clk a, clk m); =* mrm1p2.d *=

%element X12tmpmt.d (clk a, clk m, clk t); =* mm12ttpm.d *=

%element Xim12pmt.d (clk a, clk m, clk t); =* mimt1p2.d *=

%element X12tmpm.d (clk a, clk m); =* mm12tpm.d *=

%element Xim12pm.d (clk a, clk m); =* mim1p2.d *= 180
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%element Xr21msa.d (clk a, clk m); =* r2s1.d *=

%element Xr2tmsar.d (clk a, clk m); =* r2st.d *=

%element Xr21asat.d (clk a, clk m, clk t); =* r2as1.d *=

%element Xr2tasart.d (clk a, clk m, clk t); =* r2ast.d *=

%element Xi21msa.d (clk a, clk m); =* i2s1.d *=

%element Xi2tmsai.d (clk a, clk m); =* i2st.d *=

%element Xi21asat.d (clk a, clk m, clk t); =* i2as1.d *=

%element Xi2tasait.d (clk a, clk m, clk t); =* 12ast.d *=

%element Xra12sart.d (clk a, clk m, clk t); =* rat1s2.d *= 190

%element X12amsa.d (clk a, clk m); =* m12asm.d *=

%element Xra12sar.d (clk a, clk m); =* ra1s2.d *=

%element X12tasat.d (clk a, clk m, clk t); =* m12ttsa.d *=

%element Xia12sat.d (clk a, clk m, clk t); =* iat1s2.d *=

%element X12tmsa.d (clk a, clk m); =* m12tsm.d *=

%element Xia12sa.d (clk a, clk m); =* ia1s2.d *=

%element X12tasa.d (clk a, clk m); =* m12tsa.d *=

%element Xr21msm.d (clk a, clk m); =* mr2s1.d *=

%element Xr2tmsmr.d (clk a, clk m); =* mr2st.d *=

%element Xr21msmt.d (clk a, clk m, clk t); =* mr2ms1.d *= 200

%element Xr2tmsmrt.d (clk a, clk m, clk t); =* mr2mst.d *=

%element Xi21msm.d (clk a, clk m); =* mi2s1.d *=

%element Xi2tmsmi.d (clk a, clk m); =* mi2st.d *=

%element Xi21msmt.d (clk a, clk m, clk t); =* mi2ms1.d *=

%element Xi2tmsmit.d (clk a, clk m, clk t); =* mi2mst.d *=

%element Xrm12smt.d (clk a, clk m, clk t); =* mrmt1s2.d *=

%element X12mmsm.d (clk a, clk m); =* mm12msm.d *=

%element Xrm12sm.d (clk a, clk m); =* mrm1s2.d *=

%element X12tmsmt.d (clk a, clk m, clk t); =* mm12ttsm.d *=

%element Xim12smt.d (clk a, clk m, clk t); =* mimt1s2.d *= 210

%element X12tmsm.d (clk a, clk m); =* mm12tsm.d *=

%element Xim12sm.d (clk a, clk m); =* mim1s2.d *=

=* Operation *=

=* ��������� *=

%class Mr2.s fXr2@@@@*.sg; =* m1 = kr * $2 *=

%class Mi2.s fXi2@@@@*.sg; =* m1 = ki * $2 *=

%class Mra.s fXra@@@@*.sg; =* m1 = kr * a3 *=

%class Mia.s fXia@@@@*.sg; =* m1 = ki * a3 *=

%class M12.s fpfmul.s, X12@@@@*.sg; =* m1 = $1 * $2 *= 220

%class Mrm.s fXrm@@@@*.sg; =* m1 = kr * m3 *=

%class Mim.s fXim@@@@*.sg; =* m1 = ki * m3 *=

%class A1m.s fX@@1mp@*.sg; =* a1 = $1 + m3 *=

%class Atm.s fX@@tmp@*.sg; =* a1 = t + m3 *=

%class A1a.s fX@@1ap@*.sg; =* a1 = $1 + a3 *=

%class Ata.s fX@@tap@*.sg; =* a1 = t + a3 *=

%class A12.s fpfadd.s, X@@12p@*.sg; =* a1 = $1 + $2 *=

%class Aam.s fX@@amp@*.sg; =* a1 = a3 + m3 *=

%class Amm.s fX@@mmp@*.sg; =* a1 = m3 + m3 *=

%class S1m.s fX@@1ms@*.sg; =* a1 = $1 � m3 *= 230

%class Stm.s fX@@tms@*.sg; =* a1 = t � m3 *=

%class S1a.s fX@@1as@*.sg; =* a1 = $1 � a3 *=
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%class Sta.s fX@@tas@*.sg; =* a1 = t � a3 *=

%class S12.s fpfsub.s, X@@12s@*.sg; =* a1 = $1 � $2 *=

%class Sam.s fX@@ams@*.sg; =* a1 = a3 � m3 *=

%class Smm.s fX@@mms@*.sg; =* a1 = m3 � m3 *=

%class GT12.s fpfgt.sg; =* CC = $1 > $2 *=

%class LE12.s fpe.sg; =* CC = $1 <= $2 *=

%class EQ12.s fpfeq.sg; =* CC = $1 == $2 *=

%class Krld.s fX@@@@@@r*.sg; =* kr = $1 *= 240

%class Kild.s fX@@@@@@i*.sg; =* ki = $1 *=

%class Tld.s fX@@@@@@*t.sg; =* t = m3 *=

%class Ra.s fpfadd.@, pfsub.@, pftrunc.@, pfamov.@@,

pfgt.@, pe.@, pfeq.@, X@@@@@a*.@g; =* $3 = a3 *=

%class Rm.s fpfmul.@, X@@@@@m*.@g; =* $3 = m3 *=

%class M2.s fpfmul.s, X*.sg; =* m2 = m1 *=

%class M3.s fpfmul.s, X*.sg; =* m3 = m2 *=

=* Operation *=

=* ��������� *= 250

%class Mr2.d fXr2@@@@*.dg; =* m1 = kr * $2 *=

%class Mi2.d fXi2@@@@*.dg; =* m1 = ki * $2 *=

%class Mra.d fXra@@@@*.dg; =* m1 = kr * a3 *=

%class Mia.d fXia@@@@*.dg; =* m1 = ki * a3 *=

%class M12.d fpfmul.d, X12@@@@*.dg; =* m1 = $1 * $2 *=

%class Mrm.d fXrm@@@@*.dg; =* m1 = kr * m3 *=

%class Mim.d fXim@@@@*.dg; =* m1 = ki * m3 *=

%class A1m.d fX@@1mp@*.dg; =* a1 = $1 + m3 *=

%class Atm.d fX@@tmp@*.dg; =* a1 = t + m3 *=

%class A1a.d fX@@1ap@*.dg; =* a1 = $1 + a3 *= 260

%class Ata.d fX@@tap@*.dg; =* a1 = t + a3 *=

%class A12.d fpfadd.d, X@@12p@*.dg; =* a1 = $1 + $2 *=

%class Aam.d fX@@amp@*.dg; =* a1 = a3 + m3 *=

%class Amm.d fX@@mmp@*.dg; =* a1 = m3 + m3 *=

%class S1m.d fX@@1ms@*.dg; =* a1 = $1 � m3 *=

%class Stm.d fX@@tms@*.dg; =* a1 = t � m3 *=

%class S1a.d fX@@1as@*.dg; =* a1 = $1 � a3 *=

%class Sta.d fX@@tas@*.dg; =* a1 = t � a3 *=

%class S12.d fpfsub.d, X@@12s@*.dg; =* a1 = $1 � $2 *=

%class Sam.d fX@@ams@*.dg; =* a1 = a3 � m3 *= 270

%class Smm.d fX@@mms@*.dg; =* a1 = m3 � m3 *=

%class GT12.d fpfgt.dg; =* CC = $1 > $2 *=

%class LE12.d fpe.dg; =* CC = $1 <= $2 *=

%class EQ12.d fpfeq.dg; =* CC = $1 == $2 *=

%class Krld.d fX@@@@@@r*.dg; =* kr = $1 *=

%class Kild.d fX@@@@@@i*.dg; =* ki = $1 *=

%class Tld.d fX@@@@@@*t.dg; =* t = m3 *=

%class Ra.d fpfadd.@, pfsub.@, pftrunc.@, pfamov.@@,

pfgt.@, pe.@, pfeq.@, X@@@@@a*.@g; =* $3 = a3 *=

%class Rm.d fpfmul.@, X@@@@@m*.@g; =* $3 = m2 *= 280

%class M2.d fpfmul.d, X*.dg; =* m2 = m1 *=

%class A2 fpfadd.@, pfsub.@, pfamov.@@, pfgt.@@, pe.@@,

pfeq.@, pftrunc.@, X*.@g; =* a2 = a1 *=
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%class A3 fpfadd.@, pfsub.@, pfamov.@@, pfgt.@, pe.@,

pfeq.@, pftrunc.@, X*.@g; =* a3 = a2 *=

%class Acvt� fpftrunc.sg; =* a1 = int($1) *=

%class Acvtdi fpftrunc.dg; =* a1 = int($1) *=

%class Acvtfd fpfamov.sdg; =* a1 = double($1) *=

%class Acvtdf fpfamov.dsg; =* a1 = oat($1) *=

g 290

cwvm

f

%general (char jshort jint jpointer) r;

%general (oat ) f;

%general (double ) d;

%sp r[2] +down ; =* stack pointer *=

%fp r[3] +down ;

%gp r[4] 32768; =* global data area pointer *=

%allocable r[1,5:31]; f[2:31]; 300

%hard r[0] 0;

%hard f[0] 0;

%hard f[1] 0;

%hard d[0] 0;

%calleesave r[2:29]; f[2:29];

%arg (int ) r[30] 1;

%arg (int ) r[31] 2;

%arg (oat ) f[30] 1;

%arg (oat ) f[31] 2; 310

%arg (double ) d[15] 1;

%result r[30] (int );

%result f[30] (oat );

%result d[15] (double );

%retaddr r[1];

%evalargs +left;

g

320

instr

f

=*** integer arithmetic ***=

%instr adds #const16, r, r (; clk cc)

f$3 = $1 + $2;g

[ALU; WB] (1,1,0)

%instr adds #const16, r, r (; clk cc)

f$3 = $2 + $1;g

[ALU; WB] (1,1,0) 330

%instr adds #spconst16, r, r (; clk cc) =* array addr *=

f$3 = $2 + $1;g

[ALU; WB] (1,1,0)
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%instr adds r, r, r (; clk cc)

f$3 = $1 + $2;g

[ALU; WB] (1,1,0)

%instr subs #const16, r, r (; clk cc) 340

f$3 = $1 � $2;g

[ALU; WB] (1,1,0)

%instr [s subs] subs r, r, r (; clk cc)

f$3 = $1 � $2;g

[ALU; WB] (1,1,0)

%instr *idiv r, r, r

f$3 = $1 = $2;g

[] (0,0,0) 350

%instr *irem r, r, r

f$3 = $1 % $2;g

[] (0,0,0)

=*** To cover unary minus and complement ***=

%instr subs r, r[0], r (; clk cc)

f$3 = �$1;g

[ALU; WB] (1,1,0)

360

%instr com r, r (; clk cc) =* really subs �1, r, r *=

f$2 = ~$1;g

[ALU; WB] (1,1,0)

=*** logical ***=

%instr andnoth #uconst16, r, r (; clk cc)

f$3 = ~($1 << 16) & $2;g

[ALU; WB] (1,1,0)

%instr andnoth #uconst16, r, r (; clk cc) 370

f$3 = $2 & ~($1 << 16);g

[ALU; WB] (1,1,0)

%instr andnot #uconst16, r, r (; clk cc)

f$3 = ~$1 & $2;g

[ALU; WB] (1,1,0)

%instr andnot #uconst16, r, r (; clk cc)

f$3 = $2 & ~$1;g

[ALU; WB] (1,1,0) 380

%instr andnot r, r, r (; clk cc)

f$3 = ~$1 & $2;g

[ALU; WB] (1,1,0)
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%instr and #uconst16, r, r (; clk cc)

f$3 = $1 & $2;g

[ALU; WB] (1,1,0)

%instr and #uconst16, r, r (; clk cc) 390

f$3 = $2 & $1;g

[ALU; WB] (1,1,0)

%instr andh #uconst16, r, r (; clk cc)

f$3 = ($1 << 16) & $2;g

[ALU; WB] (1,1,0)

%instr andh #uconst16, r, r (; clk cc)

f$3 = $2 & ($1 << 16);g

[ALU; WB] (1,1,0) 400

%instr and r, r, r (; clk cc)

f$3 = $1 & $2;g

[ALU; WB] (1,1,0)

%instr or #uconst16, r, r (; clk cc)

f$3 = $1 j $2;g

[ALU; WB] (1,1,0)

%instr or #uconst16, r, r (; clk cc) 410

f$3 = $2 j $1;g

[ALU; WB] (1,1,0)

%instr orh #uconst16, r, r (; clk cc)

f$3 = ($1 << 16) j $2;g

[ALU; WB] (1,1,0)

%instr orh #uconst16, r, r (; clk cc)

f$3 = $2 j ($1 << 16);g

[ALU; WB] (1,1,0) 420

%instr or r, r, r (; clk cc)

f$3 = $1 j $2;g

[ALU; WB] (1,1,0)

%instr xor #uconst16, r, r (; clk cc)

f$3 = $1 ^ $2;g

[ALU; WB] (1,1,0)

%instr xor #uconst16, r, r (; clk cc) 430

f$3 = $2 ^ $1;g

[ALU; WB] (1,1,0)

%instr [s xorh] xorh #uconst16, r, r (; clk cc)

f$3 = ($1 << 16) ^ $2;g

[ALU; WB] (1,1,0)
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%instr xorh #uconst16, r, r (; clk cc)

f$3 = $2 ^ ($1 << 16);g

[ALU; WB] (1,1,0) 440

%instr xor r, r, r (; clk cc)

f$3 = $1 ^ $2;g

[ALU; WB] (1,1,0)

=*** instructions for loading constants ***=

%instr [s orh] orh #uconst16, r[0], r (; clk cc)

f$3 = $1 << 16;g

[ALU; WB] (1,1,0)

450

%instr or #uconst16, r[0], r (; clk cc)

f$3 = $1;g

[ALU; WB] (1,1,0)

%instr subs #const16, r[0], r (; clk cc)

f$3 = $1;g

[ALU; WB] (1,1,0)

=*** dummy converts between char, short, int. ***=

%instr dummy r, r ($1==char & $2==int ) 460

f$1 = char ($2);g

[] (0,0,0)

%instr dummy r, r ($1==char & $2==short )

f$1 = char ($2);g

[] (0,0,0)

%instr dummy r, r ($1==short & $2==int )

f$1 = short ($2);g

[] (0,0,0) 470

%instr dummy r, r ($1==int & $2==short )

f$1 = int ($2);g

[] (0,0,0)

%instr dummy r, r ($1==int & $2==char )

f$1 = int ($2);g

[] (0,0,0)

%instr dummy r, r ($1==short & $2==char ) 480

f$1 = short ($2);g

[] (0,0,0)

=*** shifts ***=

%instr shl #uconst16, r, r

f$3 = $2 << $1;g

[ALU; WB] (1,1,0)
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%instr shl r, r, r

f$3 = $2 << $1;g 490

[ALU; WB] (1,1,0)

%instr shr #uconst16, r, r

f$3 = $2 >> $1;g =* logical shift *=

[ALU; WB] (1,1,0)

%instr shr r, r, r

f$3 = $2 >> $1;g =* logical shift *=

[ALU; WB] (1,1,0)

500

%instr shra #uconst16, r, r

f$3 = $2 >>> $1;g =* arithmetic shift *=

[ALU; WB] (1,1,0)

%instr shra r, r, r

f$3 = $2 >>> $1;g =* arithmetic shift *=

[ALU; WB] (1,1,0)

=*** integer load=stores; loads use the WB, but it does not appear

to conict with arithmetic=logical uses of WB 510

***=

%instr ld.l #const16, r, r ($3==int )

f$3 = m[$2+$1];g

[ALU; DBUS,DCH] (1,2,0)

%instr ld.l #spconst16, r, r ($3==int )

f$3 = m[$2+$1];g

[ALU; DBUS,DCH] (1,2,0)

%instr ld.l #const16, r, r ($3==int ) 520

f$3 = m[$1+$2];g

[ALU; DBUS,DCH] (1,2,0)

%instr ld.l r, r, r ($3==int )

f$3 = m[$1+$2];g

[ALU; DBUS,DCH] (1,2,0)

%instr st.l r, #const16, r ($1==int )

fm[$3+$2] = $1;g

[ALU; DBUS; DCH] (1,1,0) 530

%instr st.l r, #spconst16, r ($1==int )

fm[$3+$2] = $1;g

[ALU; DBUS; DCH] (1,1,0)

%instr st.l r, #const16, r ($1==int )

fm[$2+$3] = $1;g

[ALU; DBUS; DCH] (1,1,0)
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=***** These two patterns prevent blocks from (extr reg), etc *****= 540

%instr ld.l 0, r, r ($3==int )

f$3 = m[$2];g

[ALU; DBUS,DCH] (1,2,0)

%instr st.l r, 0, r ($1==int )

fm[$3] = $1;g

[ALU; DBUS; DCH] (1,1,0)

=*** short load=stores ***=

%instr ld.s #const16, r, r ($3==short ) 550

f$3 = m[$2+$1];g

[ALU; DBUS,DCH] (1,2,0)

%instr ld.s #spconst16, r, r ($3==short )

f$3 = m[$2+$1];g

[ALU; DBUS,DCH] (1,2,0)

%instr ld.s #const16, r, r ($3==short )

f$3 = m[$1+$2];g

[ALU; DBUS,DCH] (1,2,0) 560

%instr ld.s r, r, r ($3==short )

f$3 = m[$1+$2];g

[ALU; DBUS,DCH] (1,2,0)

%instr st.s r, #const16, r ($1==short )

fm[$3+$2] = $1;g

[ALU; DBUS; DCH] (1,1,0)

%instr st.s r, #spconst16, r ($1==short ) 570

fm[$3+$2] = $1;g

[ALU; DBUS; DCH] (1,1,0)

%instr st.s r, #const16, r ($1==short )

fm[$2+$3] = $1;g

[ALU; DBUS; DCH] (1,1,0)

%instr ld.s 0, r, r ($3==short )

f$3 = m[$2];g

[ALU; DBUS,DCH] (1,2,0) 580

%instr st.s r, 0, r ($1==short )

fm[$3] = $1;g

[ALU; DBUS; DCH] (1,1,0)

=*** char load=stores ***=

%instr ld.b #const16, r, r ($3==char )

f$3 = m[$2+$1];g

[ALU; DBUS,DCH] (1,2,0)



187

590

%instr ld.b #spconst16, r, r ($3==char )

f$3 = m[$2+$1];g

[ALU; DBUS,DCH] (1,2,0)

%instr ld.b #const16, r, r ($3==char )

f$3 = m[$1+$2];g

[ALU; DBUS,DCH] (1,2,0)

%instr ld.b r, r, r ($3==char )

f$3 = m[$1+$2];g 600

[ALU; DBUS,DCH] (1,2,0)

%instr st.b r, #const16, r ($1==char )

fm[$3+$2] = $1;g

[ALU; DBUS; DCH] (1,1,0)

%instr st.b r, #spconst16, r ($1==char )

fm[$3+$2] = $1;g

[ALU; DBUS; DCH] (1,1,0)

610

%instr st.b r, #const16, r ($1==char )

fm[$2+$3] = $1;g

[ALU; DBUS; DCH] (1,1,0)

%instr ld.b 0, r, r ($3==char )

f$3 = m[$2];g

[ALU; DBUS,DCH] (1,2,0)

%instr st.b r, 0, r ($1==char )

fm[$3] = $1;g 620

[ALU; DBUS; DCH] (1,1,0)

=***** Compares and branches (see transformations also) *****=

%instr subs #const16, r, r[0] (; clk cc)

fcc = ($1 < $2);g

[ALU; WB] (1,2,0)

%instr subs r, r, r[0] (; clk cc)

fcc = ($1 < $2);g

[ALU; WB] (1,2,0) 630

%instr subs #const16, r, r[0] (; clk cc)

fcc = ($2 > $1);g

[ALU; WB] (1,2,0)

%instr subs r, r, r[0] (; clk cc)

fcc = ($2 > $1);g

[ALU; WB] (1,2,0)

640
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%instr xor #uconst16, r, r[0] (; clk cc)

fcc = ($1 == $2);g

[ALU; WB] (1,1,0)

%instr xor r, r, r[0] (; clk cc)

fcc = ($1 == $2);g

[ALU; WB] (1,1,0)

%instr br #rlab

fgoto $1;g 650

[ALU] (1,2,1)

%instr callr #rlab =* really �call� *=

fcall $1;g

[ALU; DBUS] (1,2,1)

%instr bri r

fgoto $1;g

[ALU] (1,2,1)

660

%instr calli r

fcall $1;g

[ALU; DBUS] (1,2,1)

%instr bc.t #rlab

fif cc

goto $1;g

[ALU] (1,2,�1)

%instr bnc.t #rlab 670

fif ~cc

goto $1;g

[ALU] (1,2,�1)

=* Floating point load=stores (single precision) *=

%instr [s dl] d.l #const16, r, f

f$3 = m[$2+$1];g

[ALU; DBUS,DCH] (1,3,0)

%instr d.l #spconst16, r, f 680

f$3 = m[$2+$1];g

[ALU; DBUS,DCH] (1,3,0)

%instr d.l #const16, r, f

f$3 = m[$1+$2];g

[ALU; DBUS,DCH] (1,3,0)

%instr d.l r, r, f

f$3 = m[$2+$1];g

[ALU; DBUS,DCH] (1,3,0) 690
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%instr fst.l f, #const16, r

fm[$3+$2] = $1;g

[ALU,FQ; DBUS; DCH] (1,3,0)

%instr fst.l f, #spconst16, r

fm[$3+$2] = $1;g

[ALU,FQ; DBUS; DCH] (1,1,0)

%instr fst.l f, #const16, r 700

fm[$2+$3] = $1;g

[ALU,FQ; DBUS; DCH] (1,1,0)

%instr fst.l f, r, r

fm[$3+$2] = $1;g

[ALU,FQ; DBUS; DCH] (1,1,0)

%instr d.l 0, r, f

f$3 = m[$2];g

[ALU; DBUS,DCH] (1,3,0) 710

%instr fst.l f, 0, r

fm[$3] = $1;g

[ALU,FQ; DBUS; DCH] (1,1,0)

=* Floating point load=stores (double precision) *=

%instr [s dd] d.d #const16, r, d

f$3 = m[$2+$1];g

[ALU; DBUS,DCH] (1,3,0)

720

%instr d.d #spconst16, r, d

f$3 = m[$2+$1];g

[ALU; DBUS,DCH] (1,3,0)

%instr d.d #const16, r, d

f$3 = m[$1+$2];g

[ALU; DBUS,DCH] (1,3,0)

%instr d.d r, r, d

f$3 = m[$2+$1];g 730

[ALU; DBUS,DCH] (1,3,0)

%instr fst.d d, #const16, r

fm[$3+$2] = $1;g

[ALU,FQ; DBUS; DCH] (1,1,0)

%instr fst.d d, #spconst16, r

fm[$3+$2] = $1;g

[ALU,FQ; DBUS; DCH] (1,1,0)

740
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%instr fst.d d, #const16, r

fm[$2+$3] = $1;g

[ALU,FQ; DBUS; DCH] (1,1,0)

%instr fst.d d, r, r

fm[$3+$2] = $1;g

[ALU,FQ; DBUS; DCH] (1,1,0)

750

%instr d.d 0, r, d

f$3 = m[$2];g

[ALU; DBUS,DCH] (1,3,0)

%instr fst.l d, 0, r

fm[$3] = $1;g

[ALU,FQ; DBUS; DCH] (1,1,0)

=*** transfers between core and oat units ***=

%instr [s ixfr] ixfr r, f ($2==int ) 760

f$2 = move ($1);g

[ALU; DBUS] (1,3,0)

%instr [s fxfr] fxfr f, r ($1==int )

f$2 = move ($1);g

[A1,A2,A3,M1,M2,M3,FWB; DBUS] (1,2,0)

%instr GT12.s f, f, f[0] ($1==oat & $2==oat ; clk a,clk cc)

fcc = ($1 > $2);g

[A1] (1,2,0) 770

%instr LE12.s f, f, f[0] ($1==oat & $2==oat ; clk a,clk cc)

fcc = ~($1 <= $2);g

[A1] (1,2,0)

%instr EQ12.s f, f, f[0] ($1==oat & $2==oat ; clk a,clk cc)

fcc = ($1 == $2);g

[A1] (1,2,0)

=*** add initiations ***= 780

%instr Atm.s (oat ; clk a,clk m,clk t)

fa1 = t + m3;g

[A1] (1,1,0)

%instr Atm.s (oat ; clk a,clk m,clk t)

fa1 = m3 + t;g

[A1] (1,1,0)

%instr Aam.s (oat ; clk a,clk m)

fa1 = a3 + m3;g 790

[A1] (1,1,0)
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%instr Aam.s (oat ; clk a,clk m)

fa1 = m3 + a3;g

[A1] (1,1,0)

%instr A1m.s f (oat ; clk a,clk m)

fa1 = $1 + m3;g

[A1] (1,1,0) 800

%instr A1m.s f (oat ; clk a,clk m)

fa1 = m3 + $1;g

[A1] (1,1,0)

%instr [s A12s] A12.s f, f (oat ; clk a)

fa1 = $1 + $2;g

[A1] (1,1,0)

=*** sub initiations ***= 810

%instr Stm.s (oat ; clk a,clk m,clk t)

fa1 = t � m3;g

[A1] (1,1,0)

%instr Sam.s (oat ; clk a,clk m)

fa1 = a3 � m3;g

[A1] (1,1,0)

%instr [s S1ms] S1m.s f (oat ; clk a,clk m)

fa1 = $1 � m3;g 820

[A1] (1,1,0)

%instr [s S12s] S12.s f, f (oat ; clk a)

fa1 = $1 � $2;g

[A1] (1,1,0)

%instr S1m.s f[0] (oat ; clk a,clk m)

fa1 = � m3;g

[A1] (1,1,0)

830

%instr S12.s f[0], f (oat ; clk a)

fa1 = � $2;g

[A1] (1,1,0)

=*** mul initiations ***=

%instr [s M12s] M12.s f, f (oat ; clk m)

fm1 = $1 * $2;g

[M1] (1,1,0)

=*** pipeline pushers ***=

%instr [s A2] A2 (; clk a) 840

fa2 = a1;g

[A2] (1,1,0)
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%instr [s A3] A3 (; clk a)

fa3 = a2;g

[A3] (1,1,0)

%instr [s M2s] M2.s (oat ; clk m)

fm2 = m1;g 850

[M2] (1,1,0)

%instr [s M3s] M3.s (oat ; clk m)

fm3 = m2;g

[M3] (1,1,0)

=*** result from pipeline ***=

%instr [s Ras] Ra.s f (; clk a)

f$1 = a3;g

[FWB] (1,0,0) =* most bypasses exist *= 860

%instr [s Rms] Rm.s f (oat ; clk m)

f$1 = m3;g

[FWB] (1,0,0) =* most bypasses exist *=

%instr Tld.s (oat ; clk m, clk t)

ft = m3;g

[T] (1,1,0)

%instr *fdivs f, f, f (oat ) 870

f$3 = $1 = $2;g

[] (0,0,0)

%instr [s frcps] frcp.s f, f (oat ; clk m)

f$2 =  1 = $1;g

[A1,A2,A3,M1,M2,M3,FWB; A1,A2,A3,M1,M2,M3,FWB;

A1,A2,A3,M1,M2,M3,FWB; FWB]

(1,3,0)

%instr GT12.d d, d, d[0] (; clk a,clk cc) 880

fcc = ($1 > $2);g

[A1] (1,2,0)

%instr LE12.d d, d, d[0] (; clk a,clk cc)

fcc = ~($1 <= $2);g

[A1] (1,2,0)

%instr EQ12.d d, d, d[0] (; clk a,clk cc)

fcc = ($1 == $2);g

[A1] (1,2,0) 890

=*** add initiations ***=

%instr Atm.d (double ; clk a,clk m,clk t)

fa1 = t + m2;g

[A1] (1,1,0)
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%instr Atm.d (double ; clk a,clk m,clk t)

fa1 = m2 + t;g

[A1] (1,1,0)

900

%instr Aam.d (double ; clk a,clk m)

fa1 = a3 + m2;g

[A1] (1,1,0)

%instr Aam.d (double ; clk a,clk m)

fa1 = m2 + a3;g

[A1] (1,1,0)

%instr A1m.d d (double ; clk a,clk m)

fa1 = $1 + m2;g 910

[A1] (1,1,0)

%instr A1m.d d (double ; clk a,clk m)

fa1 = m2 + $1;g

[A1] (1,1,0)

%instr [s A12d] A12.d d, d (double ; clk a)

fa1 = $1 + $2;g

[A1] (1,1,0)

920

=*** sub initiations ***=

%instr Stm.d (double ; clk a,clk m,clk t)

fa1 = t � m2;g

[A1] (1,1,0)

%instr Sam.d (double ; clk a,clk m)

fa1 = a3 � m2;g

[A1] (1,1,0)

%instr [s S1md] S1m.d d (double ; clk a,clk m) 930

fa1 = $1 � m2;g

[A1] (1,1,0)

%instr [s S12d] S12.d d, d (double ; clk a)

fa1 = $1 � $2;g

[A1] (1,1,0)

%instr S1m.d d[0] (double ; clk a,clk m)

fa1 = � m2;g

[A1] (1,1,0) 940

%instr S12.d d[0], d (double ; clk a)

fa1 = � $2;g

[A1] (1,1,0)
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=*** mul initiations ***=

%instr [s M12d] M12.d d, d (double ; clk m)

fm1 = $1 * $2;g

[2*M1] (1,2,0) 950

=*** pipeline pushers ***=

%instr [s M2d] M2.d (double ; clk m)

fm2 = m1;g

[2*M2] (1,2,0)

=*** result from pipeline ***=

%instr [s Rad] Ra.d d (double ; clk a)

f$1 = a3;g

[FWB] (1,0,0) =* most bypasses exist *= 960

%instr [s Rmd] Rm.d d (double ; clk m)

f$1 = m2;g

[FWB] (1,0,0) =* most bypasses exist *=

%instr Tld.d (double ; clk m, clk t)

ft = m2;g

[T] (1,1,0)

%instr [s frcpd] frcp.d d, d (; clk m) 970

f$2 =  1 = $1;g

[A1,A2,A3,M1,M2,M3,FWB; A1,A2,A3,M1,M2,M3,FWB;

A1,A2,A3,M1,M2,M3,FWB; FWB]

(1,4,0)

%instr *fdivd d, d, d

f$3 = $1 = $2;g

[] (0,0,0)

=*** conversions and other stu� ***= 980

%instr [s fmlow] fmlow f, f, f (int ; clk m) =* integer multiply *=

f$3 = $1 * $2;g

[A1,A2,A3,M1,M2,M3,FWB,FQ; A1,A2,A3,M1,M2,M3,FWB,FQ;

A1,A2,A3,M1,M2,M3,FWB,FQ; FWB]

(1,3,0)

=* match this, func uses Acvt� *=

%instr *cvt� f, r ($1==oat )

f$2 = int ($1);g

[] (0,0,0) 990

=* convert to int *=

%instr [s Acvt�] Acvt� f ($1==oat ; clk a)

fa1 = int ($1);g

[A1] (1,1,0)
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%instr *cvtdi d, r

f$2 = int ($1);g

[] (0,0,0) 1000

=* convert to int *=

%instr [s Acvtdi] Acvtdi d (; clk a)

fa1 = int ($1);g

[A1] (1,1,0)

%instr *cvtid r, d

f$2 = double ($1);g

[] (0,0,0)

1010

%instr Acvtdf d (; clk a)

=*convert from double*=

fa1 = oat ($1);g

[A1] (1,1,0)

=*convert from oat*=

%instr Acvtfd f ($1==oat & $2==double ; clk a)

fa1 = double ($1);g

[A1] (1,1,0)

1020

%move mov r, r

f$2 = $1;g

[ALU; WB] (1,1,0)

%move [s fmovs] fmov.s f, f (oat )

f$2 = $1;g

[A1,A2,A3,M1,M2,M3,FWB] (1,1,0)

%move [s fmovd] fmov.d d, d

f$2 = $1;g 1030

[A1,A2,A3,M1,M2,M3,FWB] (1,1,0)

%nop noop

fg

[ALU; WB] (1,1,0)

=*** Auxiliary latencies ***=

%aux fst.l : Rm.s (1.$1==2.$1) (2) =* extra clock than normal *=

%aux fst.l : Ra.s (1.$1==2.$1) (2)

%aux fst.l : Rm.d (1.$1==2.$1) (2) 1040

%aux fst.l : Ra.d (1.$1==2.$1) (2)

%aux fst.d : Rm.s (1.$1==2.$1) (2)

%aux fst.d : Ra.s (1.$1==2.$1) (2)

%aux fst.d : Rm.d (1.$1==2.$1) (2)

%aux fst.d : Ra.d (1.$1==2.$1) (2)

%aux Ra.s : M12.s (1.$1==2.$1) (1) =* no bypass to MUL $1 *=

%aux Ra.d : M12.d (1.$1==2.$1) (1)

%aux Rm.s : M12.s (1.$1==2.$1) (1)
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%aux Rm.d : M12.d (1.$1==2.$1) (1)

1050

=* for loading 32�bit constant *=

%glue #const32 (int )

f$1 ==> ((high($1) << 16) j low($1));g

=* for loading 32�bit address *=

%glue #uconst32 (int )

f$1 ==> ((high($1) << 16) + low($1));g

=*** Transformations for relationals ***=

%glue r, r 1060

f($1 <= $2) ==> ~($1 > $2);g

%glue r, r

f($1 >= $2) ==> ~($1 < $2);g

%glue #const16, r

f($1 >= $2) ==> ~($1 < $2);g

%glue r, #const16

f($1 >= $2) ==> ($1 > eval($2 � 1));g

%glue #const16, r

f($1 <= $2) ==> (eval($2 � 1) < $1);g

%glue r, #const16 1070

f($1 <= $2) ==> ~($1 > $2);g

%glue #const16, r

f($1 > $2) ==> ~(eval($1 � 1) < $2);g

%glue r, #const16

f($1 < $2) ==> ~($1 > eval($2 � 1));g

%glue r, r

f($1 != $2) ==> ~($1 == $2);g

%glue #const16, r

f($1 != $2) ==> ~($1 == $2);g

%glue r, #const16 1080

f($1 != $2) ==> ~($2 == $1);g

%glue r, #const16

f($1 == $2) ==> ($2 == $1);g

%glue f, f (oat )

f($1 <= $2) ==> ~~($1 <= $2);g

%glue f, f (oat )

f($1 >= $2) ==> ~~($2 <= $1);g

%glue f, f (oat )

f($1 != $2) ==> ~($1 == $2);g

%glue f, f (oat ) 1090

f($1 < $2) ==> ($2 > $1);g

%glue d, d

f($1 <= $2) ==> ~~($1 <= $2);g

%glue d, d

f($1 >= $2) ==> ~~($2 <= $1);g

%glue d, d

f($1 != $2) ==> ~($1 == $2);g

%glue d, d

f($1 < $2) ==> ($2 > $1);g
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1100

=*** For converts ***=

%glue r (int )

f(oat ($1)) ==> (oat (double ($1)));g

=*** no (a � immediate) ***=

%glue r, #const16

f($1 � $2) ==> ($1 + eval(�$2));g

=*** integer multiply ***=

%glue r, r (int ) 1110

f($1 * $2) ==> (move (move ($1) * move ($2)));g

=*** charjshort conversions; int in replacement ensures expr is typed

correctly, dummy instr matches it

***=

%glue r ($1==char jshort )

f(int ($1)) ==> ((int ($1) << 16) >>> 16);g =* >>> is arith >> *=

%glue r ($1==char )

f(short ($1)) ==> ((short ($1) << 16) >>> 16);g =* >>> is arith >> *=

1120

g
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Appendix E

Sample Output

This appendix shows the machine code produced by Marion code generators for a C code fragment

for the R2000, the 88000 and the i860. The RASE code generation strategy was used for each. The

code fragment is part of Livermore Loop kernel 9.

for (i = 1;i<=i 1;++i) for

f

px[i*25�25] = dm28*px[i*25�13] +

dm27*px[i*25�14] +

dm26*px[i*25�15] +

dm25*px[i*25�16];

g

The following table gives a key to the machine code produced by Marion:

Marion machine code key

Item Meaning

[0] issue cycle

- �rst instruction on a cycle

� instruction is a class

r integer register

f oating point register (if split register �le)

r.0 register allocated by code selector

r'3 register allocated by register allocator

losy() low half of relocatable address

hisy() high half of relocatable address



200

E.1 R2000 Output

[0]- LABELV 13

[0] lw r'5, 32628, gp

[1]- addi r'4, r.0, 25

[2]- mult r'4, r'5, [lo]

[3]- lui r'5, hisy(px-52)

[4]- lui r'4, hisy(px-56)

[5]- addiu r'5, r'5, losy(px-52)

[6]- addiu r'4, r'4, losy(px-56)

[7]- lui r'3, hisy(px-60)

[8]- addiu r'3, r'3, losy(px-60)

[9]- lwc1 f'6, 84, gp

[10]- lwc1 f'5, 80, gp

[11]- lui r'2, hisy(px-64)

[12]- addiu r'2, r'2, losy(px-64)

[13]- mo r'1, [lo]

[14]- sll r'1, r'1, 2

[15]- addu r'5, r'1, r'5

[16]- lwc1 f'4, 0, r'5

[17]- addu r'5, r'1, r'4

[18]- lwc1 f'3, 0, r'5

[19]- addu r'5, r'1, r'3

[20]- mul.s f'6, f'6, f'4

[21]- lwc1 f'4, 0, r'5

[22]- mul.s f'5, f'5, f'3

[23]- addu r'5, r'1, r'2

[24]- lwc1 f'3, 76, gp

[25]- lw r'4, 32628, gp

[26]- mul.s f'4, f'3, f'4

[27]- lwc1 f'3, 0, r'5

[28]- lwc1 f'2, 72, gp

[29]- lui r'5, hisy(px-100)

[30]- mul.s f'3, f'2, f'3

[31]- add.s f'6, f'6, f'5

[32]- addiu r'5, r'5, losy(px-100)

[33]- addu r'5, r'1, r'5

[34]- add.s f'6, f'6, f'4

[35]- addi r'4, r'4, 1

[36]- add.s f'6, f'6, f'3

[37]- sw r'4, 32628, gp

[38]- swc1 f'6, 0, r'5
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E.2 88000 Output

[0]- LABELV 13

[0] ld r'6, gp, 65432

[1]- oru r'5, r.0, hisy(px-52)

[2]- oru r'4, r.0, hisy(px-56)

[3]- mul r'6, r'6, 25

[4]- add r'5, r'5, losy(px-52)

[5]- add r'4, r'4, losy(px-56)

[7]- mak r'6, r'6, 0, 2

[8]- ld r'5, r'6, r'5

[9]- ld r'4, r'6, r'4

[10]- ld r'3, gp, 84

[11]- ld r'2, gp, 80

[12]- oru r'1, r.0, hisy(px-60)

[13]- fmul.s r'5, r'3, r'5

[14]- fmul.s r'4, r'2, r'4

[15]- add r'3, r'1, losy(px-60)

[16]- ld r'3, r'6, r'3

[17]- ld r'2, gp, 76

[20]- fmul.s r'3, r'2, r'3

[21]- oru r'2, r.0, hisy(px-64)

[22]- fadd.s r'5, r'5, r'4

[23]- add r'4, r'2, losy(px-64)

[24]- ld r'4, r'6, r'4

[27]- ld r'2, gp, 72

[28]- fadd.s r'5, r'5, r'3

[29]- ld r'3, gp, 65432

[30]- fmul.s r'4, r'2, r'4

[31]- oru r'2, r.0, hisy(px-100)

[33]- add r'2, r'2, losy(px-100)

[34]- add r'3, r'3, 1

[36]- fadd.s r'5, r'5, r'4

[37]- st r'3, gp, 65432

[41]- st r'5, r'6, r'2
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E.3 i860 Output

[0]- LABELV 13

[0] ld.l 32628, gp, r'8

[1]- or 25, r.0, r'7

[2]- ixfr r'7, f'7

[3]- ixfr r'8, f'6

[4]- orh hisy(px-52), r.0, r'8

[5]- adds losy(px-52), r'8, r'8

[6]- fmlow f'7, f'6, f'7

[6] d.l 84, gp, f'6

[7]- orh hisy(px-56), r.0, r'7

[8]- orh hisy(px-60), r.0, r'6

[9]- orh hisy(px-64), r.0, r'5

[10]- fxfr f'7, r'30

[10] adds losy(px-64), r'5, r'5

[11]- adds losy(px-60), r'6, r'6

[12]- shl 2, r'30, r'30

[13]- d.l r'8, r'30, f'7

[14]- adds losy(px-56), r'7, r'8

[15]- d.l r'8, r'30, f'5

[16]-* M12.s f'6, f'7, [m1] "pfmul.s f'6, f'7, f'0"

[16] d.l 80, gp, f'7

[17]-* M2.s [m2], [m1] "pfmul.s f'0, f'0, f'0"

[17] d.l r'6, r'30, f'6

[18]-* M3.s [m3], [m2] "pfmul.s f'0, f'0, f'0"

[18] d.l 76, gp, f'4

[19]-* Tld.s [t], [m3] "Xr21apat.s f'0, f'0, f'0"

[19] d.l r'5, r'30, f'3

[20]-* M12.s f'7, f'5, [m1] "pfmul.s f'7, f'5, f'0"

[20] d.l 72, gp, f'7

[21]-* M2.s [m2], [m1] "pfmul.s f'0, f'0, f'0"

[21] ld.l 32628, gp, r'8

[22]-* M3.s [m3], [m2] "pfmul.s f'0, f'0, f'0"

[22] orh hisy(px-100), r.0, r'7

[23]-* Atm.s [a1], [t], [m3] "Xr2tmpar.s f'0, f'0, f'0"

[23] adds losy(px-100), r'7, r'7

[24]-* M12.s f'4, f'6, [m1] "X12ampa.s f'4, f'6, f'0"

[24] * A2 [a2], [a1]

[24] adds 1, r'8, r'8

[25]-* M2.s [m2], [m1] "Xr21mpa.s f'0, f'0, f'0"

[25] * A3 [a3], [a2]

[25] st.l r'8, 32628, gp

[26]-* M3.s [m3], [m2] "pfmul.s f'0, f'0, f'0"

[27]-* Aam.s [a1], [a3], [m3] "X12ampa.s f'0, f'0, f'0"

[28]-* M12.s f'7, f'3, [m1] "X12ampa.s f'7, f'3, f'0"

[28] * A2 [a2], [a1]
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[29]-* M2.s [m2], [m1] "Xr21mpa.s f'0, f'0, f'0"

[29] * A3 [a3], [a2]

[30]-* M3.s [m3], [m2] "pfmul.s f'0, f'0, f'0"

[31]-* Aam.s [a1], [a3], [m3] "X12ampa.s f'0, f'0, f'0"

[32]-* A2 [a2], [a1] "pfadd.s f'0, f'0, f'0"

[33]-* A3 [a3], [a2] "pfadd.s f'0, f'0, f'0"

[34]-* Ra.s f'7, [a3] "pfadd.s f'0, f'0, f'7"

[34] fst.l f'7, r'7, r'30



204



Appendix F

Raw Data

This appendix presents the raw data used in the comparison of code generation strategies and in

the architecture investigations. All data are CPU execution times calculated by Marion. The �rst

three tables show the data used in the strategies comparison, organized by architecture. The rest

of the tables show the data used in the architecture investigations. Each contains the data for one

architecture, one code generation strategy and all register set sizes.
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Table F.1: R2000 raw data for three code generation strategies.

Program Code Generation Strategy

PP IPS RASE

Livermore

Ker01 5.07e+07 5.07e+07 5.07e+07

Ker02 6.38e+07 6.00e+07 6.00e+07

Ker03 4.52e+07 4.52e+07 4.52e+07

Ker04 4.39e+07 4.37e+07 4.37e+07

Ker05 5.81e+07 5.81e+07 5.81e+07

Ker06 3.87e+07 3.87e+07 3.87e+07

Ker07 7.79e+07 5.89e+07 5.72e+07

Ker08 1.05e+08 9.02e+07 8.98e+07

Ker09 7.51e+07 6.43e+07 6.51e+07

Ker10 1.09e+08 9.31e+07 9.31e+07

Ker11 5.46e+07 5.46e+07 5.46e+07

Ker12 5.80e+07 5.80e+07 5.80e+07

Ker13 8.09e+07 7.45e+07 7.45e+07

Ker14 9.00e+07 8.32e+07 8.32e+07

Amean 6.79e+07 6.24e+07 6.23e+07

Nasker

BTR 1.80e+09 1.48e+09 1.47e+09

CHO 2.93e+09 2.83e+09 2.83e+09

EMI 6.22e+08 6.09e+08 6.04e+08

FFT 1.40e+09 1.35e+09 1.36e+09

GMT 1.78e+09 1.78e+09 1.78e+09

MXM 1.63e+09 1.54e+09 1.54e+09

VPE 5.33e+07 4.95e+07 4.95e+07

Amean 1.46e+09 1.38e+09 1.38e+09

Optimized Nasker

BTR 1.22e+09 1.03e+09 1.01e+09

CHO 9.43e+08 8.76e+08 8.74e+08

EMI 6.26e+08 5.73e+08 5.69e+08

FFT 1.14e+09 1.13e+09 1.13e+09

GMT 1.03e+09 1.03e+09 1.03e+09

MXM 1.11e+09 9.35e+08 9.20e+08

VPE 5.33e+07 4.95e+07 4.95e+07

Amean 8.75e+08 8.03e+08 7.98e+08

Program Code Generation Strategy

PP IPS RASE

Perfect

ARC2D 3.15e+10 2.98e+10 2.97e+10

BDNA 5.59e+09 5.03e+09 4.88e+09

DYFESM 6.66e+09 6.47e+09 6.47e+09

FLO52 1.08e+10 1.03e+10 1.04e+10

MDG 1.26e+10 1.24e+10 1.24e+10

MG3D 1.29e+11 1.23e+11 1.22e+11

QCD 3.11e+09 3.00e+09 3.05e+09

TRACK 9.83e+08 9.62e+08 9.34e+08

Amean 2.50e+10 2.39e+10 2.37e+10

Misc

BOAST 5.57e+09 5.05e+09 5.05e+09

SPHOT 8.65e+07 7.85e+07 8.00e+07

WANAL1 1.18e+10 1.09e+10 1.09e+10

NEURAL 1.19e+09 1.04e+09 1.04e+09

COSTSC 1.19e+08 8.64e+07 8.68e+07

Amean 3.75e+09 3.43e+09 3.43e+09

Int

DHRYSTO 1.42e+07 1.27e+07 1.35e+07

INTEGER 1.89e+08 1.81e+08 1.81e+08

KNIGHT 4.57e+06 3.90e+06 3.94e+06

LCC 2.03e+07 1.46e+07 1.56e+07

SPARSE 3.31e+06 2.67e+06 2.78e+06

Amean 4.63e+07 4.30e+07 4.34e+07
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Table F.2: 88000 raw data for three code generation strategies.

Program Code Generation Strategy

PP IPS RASE

Livermore

Ker01 6.12e+07 6.11e+07 6.11e+07

Ker02 7.12e+07 5.96e+07 5.96e+07

Ker03 5.50e+07 5.50e+07 5.50e+07

Ker04 5.02e+07 4.96e+07 4.96e+07

Ker05 5.82e+07 5.82e+07 5.82e+07

Ker06 4.42e+07 4.41e+07 4.41e+07

Ker07 1.00e+08 6.30e+07 6.38e+07

Ker08 1.09e+08 8.64e+07 8.77e+07

Ker09 8.37e+07 6.90e+07 6.82e+07

Ker10 1.01e+08 8.53e+07 8.53e+07

Ker11 5.23e+07 5.23e+07 5.23e+07

Ker12 5.56e+07 5.56e+07 5.56e+07

Ker13 8.29e+07 7.17e+07 7.17e+07

Ker14 8.32e+07 7.80e+07 7.71e+07

Amean 7.20e+07 6.35e+07 6.35e+07

Nasker

BTR 1.54e+09 1.24e+09 1.23e+09

CHO 1.51e+09 1.28e+09 1.28e+09

EMI 7.59e+08 6.49e+08 6.44e+08

FFT 1.61e+09 1.21e+09 1.21e+09

GMT 1.38e+09 1.25e+09 1.25e+09

MXM 1.40e+09 1.06e+09 1.05e+09

VPE 6.72e+07 5.77e+07 5.77e+07

Amean 1.18e+09 9.64e+08 9.60e+08

Optimized Nasker

BTR 1.28e+09 1.07e+09 1.05e+09

CHO 1.04e+09 9.69e+08 9.68e+08

EMI 7.30e+08 6.69e+08 6.49e+08

FFT 1.44e+09 1.18e+09 1.17e+09

GMT 1.17e+09 1.12e+09 1.12e+09

MXM 1.19e+09 9.21e+08 9.21e+08

VPE 6.54e+07 5.77e+07 5.77e+07

Amean 9.88e+08 8.55e+08 8.48e+08

Program Code Generation Strategy

PP IPS RASE

Perfect

ARC2D 3.40e+10 2.94e+10 2.73e+10

BDNA 9.07e+09 8.75e+09 7.67e+09

DYFESM 5.36e+09 4.83e+09 4.84e+09

FLO52 9.27e+09 8.33e+09 8.31e+09

MDG 1.88e+10 1.80e+10 1.79e+10

MG3D 1.31e+11 1.11e+11 1.03e+11

QCD 3.47e+09 3.38e+09 3.14e+09

TRACK 1.50e+09 1.47e+09 1.41e+09

Amean 2.66e+10 2.31e+10 2.17e+10

Misc

BOAST 7.30e+09 6.51e+09 6.46e+09

SPHOT 1.13e+08 1.04e+08 1.03e+08

WANAL1 1.16e+10 1.01e+10 9.91e+09

NEURAL 1.36e+09 1.09e+09 1.10e+09

COSTSC 1.66e+08 1.26e+08 1.31e+08

Amean 4.11e+09 3.59e+09 3.54e+09

Int

DHRYSTO 1.43e+07 1.34e+07 1.38e+07

INTEGER 1.64e+08 1.54e+08 1.54e+08

KNIGHT 3.80e+06 3.04e+06 3.07e+06

LCC 2.18e+07 1.57e+07 1.62e+07

SPARSE 3.87e+06 3.15e+06 3.21e+06

Amean 4.16e+07 3.79e+07 3.81e+07
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Table F.3: i860 raw data for three code generation strategies.

Program Code Generation Strategy

PP IPS RASE

Livermore

Ker01 4.63e+07 4.63e+07 4.63e+07

Ker02 5.21e+07 5.28e+07 5.21e+07

Ker03 4.92e+07 4.92e+07 4.92e+07

Ker04 4.55e+07 4.53e+07 4.53e+07

Ker05 4.79e+07 4.99e+07 4.79e+07

Ker06 3.77e+07 3.77e+07 3.77e+07

Ker07 4.90e+07 4.90e+07 4.90e+07

Ker08 7.72e+07 7.15e+07 7.02e+07

Ker09 5.36e+07 5.28e+07 5.28e+07

Ker10 9.47e+07 7.95e+07 7.95e+07

Ker11 4.76e+07 4.76e+07 4.76e+07

Ker12 5.06e+07 5.06e+07 5.06e+07

Ker13 6.69e+07 6.63e+07 5.86e+07

Ker14 7.27e+07 7.59e+07 6.99e+07

Amean 5.65e+07 5.53e+07 5.40e+07

Nasker

BTR 1.36e+09 1.14e+09 1.12e+09

CHO 1.84e+09 1.74e+09 1.78e+09

EMI 6.25e+08 6.05e+08 5.94e+08

FFT 1.40e+09 1.46e+09 1.38e+09

GMT 1.45e+09 1.45e+09 1.50e+09

MXM 1.10e+09 1.05e+09 9.72e+08

VPE 4.56e+07 4.69e+07 5.03e+07

Amean 1.12e+09 1.07e+09 1.06e+09

Optimized Nasker

BTR 1.03e+09 8.90e+08 8.79e+08

CHO 9.02e+08 8.36e+08 8.35e+08

EMI 5.92e+08 5.87e+08 5.82e+08

FFT 1.26e+09 1.15e+09 1.13e+09

GMT 9.52e+08 9.50e+08 9.51e+08

MXM 7.80e+08 7.00e+08 7.00e+08

VPE 4.56e+07 4.69e+07 5.03e+07

Amean 7.95e+08 7.37e+08 7.32e+08

Program Code Generation Strategy

PP IPS RASE

Perfect

ARC2D 2.56e+10 2.26e+10 2.20e+10

BDNA 4.41e+09 4.47e+09 4.37e+09

DYFESM 5.48e+09 5.17e+09 5.18e+09

FLO52 9.07e+09 8.38e+09 8.08e+09

MDG 1.29e+10 1.25e+10 1.25e+10

MG3D 1.07e+11 1.02e+11 9.89e+10

QCD 3.48e+09 3.32e+09 3.33e+09

TRACK 1.02e+09 9.88e+08 9.98e+08

Amean 2.11e+10 1.99e+10 1.94e+10

Misc

BOAST 4.90e+09 4.53e+09 4.42e+09

SPHOT 8.89e+07 8.08e+07 7.99e+07

WANAL1 8.62e+09 8.17e+09 8.14e+09

NEURAL 1.02e+09 9.18e+08 9.16e+08

COSTSC 1.13e+08 8.28e+07 8.28e+07

Amean 2.95e+09 2.76e+09 2.73e+09

Int

DHRYSTO 1.51e+07 1.41e+07 1.46e+07

INTEGER 2.40e+08 2.15e+08 2.20e+08

KNIGHT 4.36e+06 3.77e+06 3.74e+06

LCC 2.31e+07 1.71e+07 1.79e+07

SPARSE 3.52e+06 2.88e+06 2.96e+06

Amean 5.72e+07 5.06e+07 5.18e+07
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Table F.4: A88sh Postpass raw data for four register set sizes.

Prog Register Set Size

16 32 64 128

Livermore

Ker01 7.59e+07 5.81e+07 5.81e+07 5.81e+07

Ker02 7.47e+07 6.68e+07 5.78e+07 5.78e+07

Ker03 5.31e+07 5.10e+07 5.10e+07 5.10e+07

Ker04 5.15e+07 4.67e+07 4.63e+07 4.63e+07

Ker05 7.05e+07 5.40e+07 5.40e+07 5.40e+07

Ker06 4.53e+07 4.13e+07 4.12e+07 4.12e+07

Ker07 1.07e+08 9.35e+07 6.30e+07 6.30e+07

Ker08 1.29e+08 1.06e+08 9.20e+07 8.94e+07

Ker09 8.28e+07 8.21e+07 6.90e+07 6.81e+07

Ker10 1.01e+08 1.00e+08 8.53e+07 8.23e+07

Ker11 5.47e+07 4.99e+07 4.99e+07 4.99e+07

Ker12 5.81e+07 5.30e+07 5.30e+07 5.30e+07

Ker13 8.86e+07 8.14e+07 7.22e+07 7.11e+07

Ker14 9.53e+07 7.99e+07 7.39e+07 7.35e+07

Amean 7.77e+07 6.88e+07 6.19e+07 6.13e+07

Nasker

BTR 1.83e+09 1.49e+09 1.26e+09 1.22e+09

CHO 1.81e+09 1.45e+09 1.41e+09 1.38e+09

EMI 8.08e+08 7.32e+08 6.66e+08 6.36e+08

FFT 1.77e+09 1.59e+09 1.23e+09 1.22e+09

GMT 1.46e+09 1.34e+09 1.21e+09 1.21e+09

MXM 1.58e+09 1.35e+09 1.10e+09 1.02e+09

VPE 8.24e+07 6.51e+07 5.65e+07 5.74e+07

Amean 1.33e+09 1.15e+09 9.90e+08 9.63e+08

Optimized Nasker

BTR 1.52e+09 1.24e+09 1.06e+09 1.04e+09

CHO 1.25e+09 1.00e+09 9.53e+08 9.53e+08

EMI 7.85e+08 7.22e+08 7.01e+08 6.66e+08

FFT 1.66e+09 1.42e+09 1.19e+09 1.18e+09

GMT 1.42e+09 1.13e+09 1.17e+09 1.08e+09

MXM 1.43e+09 1.17e+09 9.05e+08 9.05e+08

VPE 8.00e+07 6.35e+07 5.65e+07 5.74e+07

Amean 1.16e+09 9.64e+08 8.62e+08 8.40e+08

Prog Register Set Size

16 32 64 128

Perfect

ARC2D 4.16e+10 3.30e+10 2.87e+10 2.68e+10

BDNA 1.16e+10 8.82e+09 7.19e+09 6.72e+09

DYFESM 5.50e+09 4.94e+09 4.72e+09 4.44e+09

FLO52 1.05e+10 8.95e+09 8.34e+09 8.32e+09

MDG 1.84e+10 1.77e+10 1.75e+10 1.82e+10

MG3D 1.63e+11 1.25e+11 1.13e+11 1.03e+11

QCD 3.26e+09 3.23e+09 3.29e+09 3.42e+09

TRACK 1.54e+09 1.42e+09 1.40e+09 1.43e+09

Amean 3.19e+10 2.54e+10 2.30e+10 2.15e+10

Misc

BOAST 8.43e+09 7.01e+09 6.57e+09 6.42e+09

SPHOT 1.18e+08 1.09e+08 1.08e+08 1.07e+08

WANAL1 1.33e+10 1.14e+10 1.02e+10 1.02e+10

NEURAL 1.44e+09 1.28e+09 1.15e+09 1.16e+09

COSTSC 1.58e+08 1.53e+08 1.36e+08 1.31e+08

Amean 4.69e+09 3.99e+09 3.63e+09 3.60e+09

Int

DHRYSTO 1.31e+07 1.33e+07 1.33e+07 1.33e+07

INTEGER 1.76e+08 1.64e+08 1.59e+08 1.54e+08

KNIGHT 3.71e+06 3.70e+06 3.54e+06 3.54e+06

LCC 1.76e+07 2.00e+07 2.37e+07 2.74e+07

SPARSE 3.45e+06 3.55e+06 3.87e+06 3.90e+06

Amean 4.28e+07 4.09e+07 4.07e+07 4.04e+07
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Table F.5: A88sh IPS raw data for four register set sizes.

Prog Register Set Size

16 32 64 128

Livermore

Ker01 5.81e+07 5.81e+07 5.81e+07 5.81e+07

Ker02 5.78e+07 5.78e+07 5.78e+07 5.78e+07

Ker03 5.10e+07 5.10e+07 5.10e+07 5.10e+07

Ker04 4.63e+07 4.63e+07 4.63e+07 4.63e+07

Ker05 5.40e+07 5.40e+07 5.40e+07 5.40e+07

Ker06 4.12e+07 4.12e+07 4.12e+07 4.12e+07

Ker07 6.30e+07 6.30e+07 6.30e+07 6.30e+07

Ker08 1.22e+08 8.54e+07 8.54e+07 8.72e+07

Ker09 6.74e+07 6.74e+07 6.74e+07 6.74e+07

Ker10 9.10e+07 8.45e+07 8.45e+07 8.23e+07

Ker11 4.99e+07 4.99e+07 4.99e+07 4.99e+07

Ker12 5.30e+07 5.30e+07 5.30e+07 5.30e+07

Ker13 7.75e+07 7.11e+07 7.11e+07 7.11e+07

Ker14 7.63e+07 7.35e+07 7.35e+07 7.35e+07

Amean 6.49e+07 6.12e+07 6.12e+07 6.11e+07

Nasker

BTR 1.43e+09 1.22e+09 1.20e+09 1.20e+09

CHO 1.39e+09 1.25e+09 1.25e+09 1.25e+09

EMI 8.12e+08 6.16e+08 6.11e+08 6.26e+08

FFT 1.44e+09 1.23e+09 1.23e+09 1.23e+09

GMT 1.21e+09 1.21e+09 1.21e+09 1.21e+09

MXM 1.35e+09 1.02e+09 1.02e+09 1.02e+09

VPE 6.69e+07 5.64e+07 5.50e+07 5.64e+07

Amean 1.10e+09 9.43e+08 9.39e+08 9.42e+08

Optimized Nasker

BTR 1.33e+09 1.04e+09 1.03e+09 1.03e+09

CHO 9.90e+08 9.29e+08 9.29e+08 9.29e+08

EMI 7.97e+08 6.51e+08 6.46e+08 6.51e+08

FFT 1.32e+09 1.18e+09 1.18e+09 1.18e+09

GMT 1.09e+09 1.08e+09 1.08e+09 1.08e+09

MXM 1.03e+09 9.05e+08 9.05e+08 9.05e+08

VPE 6.78e+07 5.64e+07 5.50e+07 5.64e+07

Amean 9.46e+08 8.34e+08 8.32e+08 8.33e+08

Prog Register Set Size

16 32 64 128

Perfect

ARC2D 3.86e+10 2.83e+10 2.60e+10 2.58e+10

BDNA 1.12e+10 8.49e+09 7.36e+09 6.65e+09

DYFESM 4.41e+09 4.41e+09 4.41e+09 4.41e+09

FLO52 9.04e+09 8.09e+09 8.04e+09 8.06e+09

MDG 1.73e+10 1.69e+10 1.68e+10 1.68e+10

MG3D 1.48e+11 1.06e+11 9.82e+10 9.85e+10

QCD 3.16e+09 3.11e+09 3.10e+09 3.11e+09

TRACK 1.50e+09 1.38e+09 1.35e+09 1.35e+09

Amean 2.92e+10 2.21e+10 2.07e+10 2.06e+10

Misc

BOAST 7.25e+09 6.25e+09 6.18e+09 6.18e+09

SPHOT 1.12e+08 1.01e+08 1.00e+08 1.00e+08

WANAL1 1.12e+10 9.68e+09 9.47e+09 9.47e+09

NEURAL 1.33e+09 1.02e+09 1.02e+09 1.02e+09

COSTSC 1.46e+08 1.17e+08 1.15e+08 1.15e+08

Amean 4.01e+09 3.43e+09 3.38e+09 3.38e+09

Int

DHRYSTO 1.24e+07 1.24e+07 1.24e+07 1.24e+07

INTEGER 1.54e+08 1.54e+08 1.54e+08 1.54e+08

KNIGHT 3.01e+06 3.01e+06 3.01e+06 3.01e+06

LCC 1.45e+07 1.45e+07 1.45e+07 1.45e+07

SPARSE 2.95e+06 2.89e+06 2.88e+06 2.89e+06

Amean 3.74e+07 3.74e+07 3.74e+07 3.74e+07
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Table F.6: A88sh RASE raw data for four register set sizes.

Prog Register Set Size

16 32 64 128

Livermore

Ker01 5.81e+07 5.81e+07 5.81e+07 5.81e+07

Ker02 5.78e+07 5.78e+07 5.78e+07 5.78e+07

Ker03 5.10e+07 5.10e+07 5.10e+07 5.10e+07

Ker04 4.63e+07 4.63e+07 4.63e+07 4.63e+07

Ker05 5.40e+07 5.40e+07 5.40e+07 5.40e+07

Ker06 4.12e+07 4.12e+07 4.12e+07 4.12e+07

Ker07 6.30e+07 6.30e+07 6.30e+07 6.30e+07

Ker08 9.07e+07 8.59e+07 8.59e+07 8.76e+07

Ker09 6.74e+07 6.74e+07 6.74e+07 6.74e+07

Ker10 8.53e+07 8.45e+07 8.45e+07 8.23e+07

Ker11 4.99e+07 4.99e+07 4.99e+07 4.99e+07

Ker12 5.30e+07 5.30e+07 5.30e+07 5.30e+07

Ker13 7.17e+07 7.11e+07 7.11e+07 7.11e+07

Ker14 7.79e+07 7.35e+07 7.35e+07 7.35e+07

Amean 6.19e+07 6.12e+07 6.12e+07 6.12e+07

Nasker

BTR 1.35e+09 1.21e+09 1.19e+09 1.19e+09

CHO 1.39e+09 1.26e+09 1.26e+09 1.26e+09

EMI 8.42e+08 6.16e+08 6.16e+08 6.16e+08

FFT 1.32e+09 1.23e+09 1.23e+09 1.23e+09

GMT 1.21e+09 1.21e+09 1.21e+09 1.21e+09

MXM 1.30e+09 1.03e+09 1.03e+09 1.03e+09

VPE 5.97e+07 5.65e+07 5.50e+07 5.65e+07

Amean 1.07e+09 9.45e+08 9.42e+08 9.42e+08

Optimized Nasker

BTR 1.14e+09 1.03e+09 1.02e+09 1.03e+09

CHO 9.92e+08 9.29e+08 9.29e+08 9.29e+08

EMI 8.77e+08 6.46e+08 6.46e+08 6.46e+08

FFT 1.28e+09 1.18e+09 1.18e+09 1.18e+09

GMT 1.08e+09 1.08e+09 1.08e+09 1.08e+09

MXM 1.02e+09 9.05e+08 9.05e+08 9.05e+08

VPE 5.97e+07 5.65e+07 5.50e+07 5.65e+07

Amean 9.21e+08 8.32e+08 8.31e+08 8.32e+08

Prog Register Set Size

16 32 64 128

Perfect

ARC2D 3.47e+10 2.65e+10 2.56e+10 2.56e+10

BDNA 1.24e+10 7.70e+09 6.85e+09 6.48e+09

DYFESM 4.41e+09 4.41e+09 4.41e+09 4.41e+09

FLO52 8.47e+09 8.05e+09 8.04e+09 8.05e+09

MDG 1.71e+10 1.68e+10 1.68e+10 1.68e+10

MG3D 1.22e+11 1.00e+11 9.74e+10 9.74e+10

QCD 2.94e+09 2.92e+09 2.93e+09 2.93e+09

TRACK 1.54e+09 1.34e+09 1.33e+09 1.33e+09

Amean 2.54e+10 2.10e+10 2.04e+10 2.04e+10

Misc

BOAST 6.90e+09 6.23e+09 6.16e+09 6.16e+09

SPHOT 1.07e+08 9.98e+07 9.98e+07 9.98e+07

WANAL1 9.81e+09 9.59e+09 9.59e+09 9.59e+09

NEURAL 1.24e+09 1.03e+09 1.03e+09 1.03e+09

COSTSC 1.50e+08 1.22e+08 1.15e+08 1.15e+08

Amean 3.64e+09 3.41e+09 3.40e+09 3.40e+09

Int

DHRYSTO 1.28e+07 1.28e+07 1.28e+07 1.28e+07

INTEGER 1.54e+08 1.54e+08 1.54e+08 1.54e+08

KNIGHT 3.04e+06 3.04e+06 3.04e+06 3.04e+06

LCC 1.50e+07 1.50e+07 1.50e+07 1.50e+07

SPARSE 3.02e+06 2.95e+06 2.95e+06 2.95e+06

Amean 3.76e+07 3.76e+07 3.76e+07 3.76e+07



212

Table F.7: Ar2sh Postpass raw data for four register set sizes.

Prog Register Set Size

16 32 64 128

Livermore

Ker01 6.41e+07 5.22e+07 5.22e+07 5.22e+07

Ker02 6.78e+07 5.74e+07 5.61e+07 5.61e+07

Ker03 4.72e+07 4.52e+07 4.52e+07 4.52e+07

Ker04 4.84e+07 4.38e+07 4.33e+07 4.33e+07

Ker05 6.02e+07 5.40e+07 5.40e+07 5.40e+07

Ker06 4.53e+07 3.76e+07 3.75e+07 3.75e+07

Ker07 8.53e+07 7.46e+07 5.64e+07 5.64e+07

Ker08 1.32e+08 1.08e+08 8.63e+07 8.11e+07

Ker09 7.90e+07 7.67e+07 5.97e+07 5.97e+07

Ker10 1.07e+08 1.00e+08 8.53e+07 8.23e+07

Ker11 5.23e+07 4.99e+07 4.99e+07 4.99e+07

Ker12 5.56e+07 5.30e+07 5.30e+07 5.30e+07

Ker13 8.72e+07 8.09e+07 7.07e+07 6.92e+07

Ker14 9.04e+07 7.31e+07 7.23e+07 7.23e+07

Amean 7.30e+07 6.47e+07 5.87e+07 5.80e+07

Nasker

BTR 2.16e+09 1.73e+09 1.49e+09 1.32e+09

CHO 2.94e+09 2.66e+09 2.60e+09 2.51e+09

EMI 6.97e+08 6.26e+08 6.11e+08 5.83e+08

FFT 1.85e+09 1.66e+09 1.37e+09 1.34e+09

GMT 1.74e+09 1.66e+09 1.61e+09 1.61e+09

MXM 2.01e+09 1.52e+09 1.38e+09 1.36e+09

VPE 6.83e+07 5.30e+07 4.56e+07 4.61e+07

Amean 1.64e+09 1.42e+09 1.30e+09 1.25e+09

Optimized Nasker

BTR 1.45e+09 1.19e+09 9.51e+08 9.23e+08

CHO 1.08e+09 8.40e+08 8.03e+08 8.03e+08

EMI 6.89e+08 6.25e+08 5.89e+08 5.88e+08

FFT 1.60e+09 1.39e+09 1.16e+09 1.15e+09

GMT 1.28e+09 9.46e+08 9.44e+08 9.01e+08

MXM 1.31e+09 1.12e+09 7.62e+08 7.62e+08

VPE 6.79e+07 5.30e+07 4.56e+07 4.61e+07

Amean 1.07e+09 8.81e+08 7.51e+08 7.39e+08

Prog Register Set Size

16 32 64 128

Perfect

ARC2D 4.43e+10 3.54e+10 3.01e+10 2.78e+10

BDNA 9.15e+09 6.88e+09 5.83e+09 5.35e+09

DYFESM 6.97e+09 6.15e+09 5.76e+09 5.71e+09

FLO52 1.27e+10 1.06e+10 1.00e+10 9.67e+09

MDG 1.41e+10 1.35e+10 1.38e+10 1.47e+10

MG3D 1.62e+11 1.26e+11 1.14e+11 9.87e+10

QCD 3.36e+09 3.37e+09 3.45e+09 3.57e+09

TRACK 1.25e+09 1.16e+09 1.16e+09 1.20e+09

Amean 3.17e+10 2.54e+10 2.30e+10 2.08e+10

Misc

BOAST 7.03e+09 5.60e+09 5.19e+09 5.10e+09

SPHOT 8.84e+07 8.24e+07 8.12e+07 8.08e+07

WANAL1 1.49e+10 1.20e+10 1.12e+10 1.12e+10

NEURAL 1.40e+09 1.22e+09 1.09e+09 1.10e+09

COSTSC 1.37e+08 1.31e+08 1.16e+08 1.12e+08

Amean 4.71e+09 3.81e+09 3.54e+09 3.52e+09

Int

DHRYSTO 1.35e+07 1.36e+07 1.36e+07 1.36e+07

INTEGER 1.91e+08 1.78e+08 1.66e+08 1.57e+08

KNIGHT 4.10e+06 4.08e+06 3.91e+06 3.91e+06

LCC 1.76e+07 2.00e+07 2.37e+07 2.74e+07

SPARSE 3.22e+06 3.33e+06 3.65e+06 3.67e+06

Amean 4.59e+07 4.38e+07 4.22e+07 4.11e+07
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Table F.8: Ar2sh IPS raw data for four register set sizes.

Prog Register Set Size

16 32 64 128

Livermore

Ker01 5.37e+07 5.37e+07 5.37e+07 5.37e+07

Ker02 5.61e+07 5.61e+07 5.61e+07 5.61e+07

Ker03 4.52e+07 4.52e+07 4.52e+07 4.52e+07

Ker04 4.33e+07 4.33e+07 4.33e+07 4.33e+07

Ker05 5.40e+07 5.40e+07 5.40e+07 5.40e+07

Ker06 3.75e+07 3.75e+07 3.75e+07 3.75e+07

Ker07 5.80e+07 5.80e+07 5.80e+07 5.80e+07

Ker08 1.21e+08 8.06e+07 8.06e+07 8.24e+07

Ker09 6.12e+07 6.12e+07 6.12e+07 6.12e+07

Ker10 9.10e+07 8.45e+07 8.45e+07 8.23e+07

Ker11 4.99e+07 4.99e+07 4.99e+07 4.99e+07

Ker12 5.30e+07 5.30e+07 5.30e+07 5.30e+07

Ker13 7.56e+07 7.02e+07 7.02e+07 7.02e+07

Ker14 7.27e+07 7.23e+07 7.23e+07 7.23e+07

Amean 6.23e+07 5.85e+07 5.85e+07 5.85e+07

Nasker

BTR 1.62e+09 1.32e+09 1.30e+09 1.32e+09

CHO 2.54e+09 2.43e+09 2.43e+09 2.43e+09

EMI 6.84e+08 5.78e+08 5.83e+08 5.88e+08

FFT 1.58e+09 1.33e+09 1.34e+09 1.34e+09

GMT 1.62e+09 1.69e+09 1.61e+09 1.61e+09

MXM 1.74e+09 1.44e+09 1.44e+09 1.44e+09

VPE 5.33e+07 4.64e+07 4.59e+07 4.64e+07

Amean 1.41e+09 1.26e+09 1.25e+09 1.25e+09

Optimized Nasker

BTR 1.17e+09 9.24e+08 9.32e+08 9.30e+08

CHO 8.39e+08 7.79e+08 7.79e+08 7.79e+08

EMI 6.59e+08 5.78e+08 5.78e+08 5.78e+08

FFT 1.29e+09 1.15e+09 1.15e+09 1.15e+09

GMT 9.06e+08 9.01e+08 9.01e+08 9.01e+08

MXM 1.01e+09 7.77e+08 7.77e+08 7.77e+08

VPE 5.32e+07 4.64e+07 4.59e+07 4.64e+07

Amean 8.47e+08 7.36e+08 7.38e+08 7.37e+08

Prog Register Set Size

16 32 64 128

Perfect

ARC2D 4.05e+10 2.89e+10 2.71e+10 2.70e+10

BDNA 8.75e+09 6.40e+09 5.58e+09 5.43e+09

DYFESM 5.70e+09 5.69e+09 5.69e+09 5.69e+09

FLO52 1.05e+10 9.50e+09 9.42e+09 9.42e+09

MDG 1.34e+10 1.29e+10 1.29e+10 1.29e+10

MG3D 1.42e+11 9.94e+10 9.82e+10 9.84e+10

QCD 2.96e+09 2.93e+09 2.92e+09 2.92e+09

TRACK 1.22e+09 1.12e+09 1.10e+09 1.09e+09

Amean 2.81e+10 2.09e+10 2.04e+10 2.04e+10

Misc

BOAST 5.91e+09 5.03e+09 4.99e+09 4.99e+09

SPHOT 8.22e+07 7.48e+07 7.48e+07 7.48e+07

WANAL1 1.28e+10 1.06e+10 1.06e+10 1.06e+10

NEURAL 1.44e+09 1.00e+09 1.00e+09 1.00e+09

COSTSC 1.24e+08 9.56e+07 9.38e+07 9.38e+07

Amean 4.07e+09 3.36e+09 3.35e+09 3.35e+09

Int

DHRYSTO 1.28e+07 1.28e+07 1.28e+07 1.28e+07

INTEGER 1.57e+08 1.57e+08 1.57e+08 1.57e+08

KNIGHT 3.38e+06 3.38e+06 3.38e+06 3.38e+06

LCC 1.45e+07 1.45e+07 1.45e+07 1.45e+07

SPARSE 2.72e+06 2.66e+06 2.66e+06 2.66e+06

Amean 3.81e+07 3.81e+07 3.81e+07 3.81e+07
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Table F.9: Ar2sh RASE raw data for four register set sizes.

Prog Register Set Size

16 32 64 128

Livermore

Ker01 5.22e+07 5.22e+07 5.22e+07 5.22e+07

Ker02 5.61e+07 5.61e+07 5.61e+07 5.61e+07

Ker03 4.52e+07 4.52e+07 4.52e+07 4.52e+07

Ker04 4.33e+07 4.33e+07 4.33e+07 4.33e+07

Ker05 5.40e+07 5.40e+07 5.40e+07 5.40e+07

Ker06 3.75e+07 3.75e+07 3.75e+07 3.75e+07

Ker07 5.72e+07 5.72e+07 5.72e+07 5.72e+07

Ker08 9.68e+07 8.02e+07 8.02e+07 8.19e+07

Ker09 5.97e+07 5.97e+07 5.97e+07 5.97e+07

Ker10 8.45e+07 8.45e+07 8.45e+07 8.23e+07

Ker11 4.99e+07 4.99e+07 4.99e+07 4.99e+07

Ker12 5.30e+07 5.30e+07 5.30e+07 5.30e+07

Ker13 6.92e+07 6.92e+07 6.92e+07 6.92e+07

Ker14 7.23e+07 7.23e+07 7.23e+07 7.23e+07

Amean 5.93e+07 5.82e+07 5.82e+07 5.81e+07

Nasker

BTR 1.59e+09 1.29e+09 1.29e+09 1.29e+09

CHO 2.58e+09 2.43e+09 2.43e+09 2.43e+09

EMI 7.51e+08 5.78e+08 5.88e+08 5.88e+08

FFT 1.45e+09 1.33e+09 1.34e+09 1.34e+09

GMT 1.61e+09 1.61e+09 1.61e+09 1.61e+09

MXM 1.52e+09 1.36e+09 1.36e+09 1.36e+09

VPE 5.03e+07 4.61e+07 4.50e+07 4.61e+07

Amean 1.36e+09 1.23e+09 1.24e+09 1.24e+09

Optimized Nasker

BTR 1.07e+09 9.18e+08 9.08e+08 9.09e+08

CHO 8.42e+08 7.79e+08 7.79e+08 7.79e+08

EMI 7.83e+08 5.78e+08 5.98e+08 5.98e+08

FFT 1.26e+09 1.17e+09 1.15e+09 1.15e+09

GMT 9.04e+08 9.00e+08 9.00e+08 9.00e+08

MXM 9.98e+08 7.62e+08 7.62e+08 7.62e+08

VPE 5.03e+07 4.61e+07 4.50e+07 4.61e+07

Amean 8.44e+08 7.36e+08 7.35e+08 7.35e+08

Prog Register Set Size

16 32 64 128

Perfect

ARC2D 3.94e+10 2.82e+10 2.68e+10 2.68e+10

BDNA 9.28e+09 5.95e+09 5.42e+09 5.35e+09

DYFESM 5.69e+09 5.69e+09 5.69e+09 5.69e+09

FLO52 1.00e+10 9.48e+09 9.30e+09 9.30e+09

MDG 1.32e+10 1.30e+10 1.29e+10 1.30e+10

MG3D 1.26e+11 9.70e+10 9.69e+10 9.69e+10

QCD 3.00e+09 2.97e+09 2.96e+09 2.96e+09

TRACK 1.27e+09 1.10e+09 1.09e+09 1.09e+09

Amean 2.60e+10 2.04e+10 2.01e+10 2.01e+10

Misc

BOAST 5.93e+09 4.92e+09 4.91e+09 4.90e+09

SPHOT 7.73e+07 7.47e+07 7.47e+07 7.47e+07

WANAL1 1.19e+10 1.04e+10 1.04e+10 1.04e+10

NEURAL 1.22e+09 9.73e+08 9.73e+08 9.73e+08

COSTSC 1.31e+08 1.01e+08 9.53e+07 9.53e+07

Amean 3.85e+09 3.29e+09 3.29e+09 3.29e+09

Int

DHRYSTO 1.32e+07 1.32e+07 1.32e+07 1.32e+07

INTEGER 1.57e+08 1.57e+08 1.57e+08 1.57e+08

KNIGHT 3.41e+06 3.41e+06 3.41e+06 3.41e+06

LCC 1.50e+07 1.50e+07 1.50e+07 1.50e+07

SPARSE 2.79e+06 2.73e+06 2.73e+06 2.73e+06

Amean 3.83e+07 3.83e+07 3.83e+07 3.83e+07
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Table F.10: Ar2shb Postpass raw data for four register set sizes.

Prog Register Set Size

16 32 64 128

Livermore

Ker01 6.11e+07 4.48e+07 4.48e+07 4.48e+07

Ker02 6.53e+07 5.74e+07 5.23e+07 5.23e+07

Ker03 4.34e+07 4.13e+07 4.13e+07 4.13e+07

Ker04 4.69e+07 4.07e+07 4.03e+07 4.03e+07

Ker05 6.02e+07 4.99e+07 4.99e+07 4.99e+07

Ker06 4.28e+07 3.64e+07 3.62e+07 3.62e+07

Ker07 7.95e+07 6.63e+07 4.90e+07 4.90e+07

Ker08 1.20e+08 9.50e+07 7.76e+07 7.15e+07

Ker09 6.74e+07 6.51e+07 5.43e+07 5.35e+07

Ker10 1.00e+08 9.39e+07 7.88e+07 7.80e+07

Ker11 5.00e+07 4.75e+07 4.75e+07 4.75e+07

Ker12 5.31e+07 5.05e+07 5.05e+07 5.05e+07

Ker13 7.90e+07 7.27e+07 6.35e+07 6.29e+07

Ker14 8.16e+07 6.38e+07 6.38e+07 6.38e+07

Amean 6.79e+07 5.89e+07 5.36e+07 5.30e+07

Nasker

BTR 2.15e+09 1.63e+09 1.32e+09 1.26e+09

CHO 2.94e+09 2.66e+09 2.60e+09 2.51e+09

EMI 6.27e+08 5.70e+08 5.26e+08 5.13e+08

FFT 1.72e+09 1.48e+09 1.29e+09 1.25e+09

GMT 1.74e+09 1.61e+09 1.61e+09 1.61e+09

MXM 2.01e+09 1.52e+09 1.38e+09 1.36e+09

VPE 6.50e+07 4.84e+07 4.19e+07 4.24e+07

Amean 1.61e+09 1.36e+09 1.25e+09 1.22e+09

Optimized Nasker

BTR 1.32e+09 1.10e+09 8.84e+08 8.44e+08

CHO 1.08e+09 8.39e+08 8.03e+08 8.03e+08

EMI 5.94e+08 5.64e+08 5.13e+08 5.03e+08

FFT 1.49e+09 1.22e+09 1.07e+09 1.06e+09

GMT 1.20e+09 9.45e+08 9.02e+08 9.00e+08

MXM 1.23e+09 1.01e+09 7.30e+08 7.30e+08

VPE 6.44e+07 4.84e+07 4.19e+07 4.22e+07

Amean 9.97e+08 8.18e+08 7.06e+08 6.97e+08

Prog Register Set Size

16 32 64 128

Perfect

ARC2D 4.19e+10 3.32e+10 2.81e+10 2.61e+10

BDNA 8.32e+09 5.87e+09 4.90e+09 4.54e+09

DYFESM 6.93e+09 6.04e+09 5.75e+09 5.70e+09

FLO52 1.24e+10 1.05e+10 9.75e+09 9.54e+09

MDG 1.31e+10 1.28e+10 1.27e+10 1.36e+10

MG3D 1.49e+11 1.16e+11 1.06e+11 9.53e+10

QCD 3.22e+09 3.22e+09 3.31e+09 3.44e+09

TRACK 1.19e+09 1.08e+09 1.08e+09 1.12e+09

Amean 2.95e+10 2.36e+10 2.14e+10 1.99e+10

Misc

BOAST 6.47e+09 5.01e+09 4.58e+09 4.48e+09

SPHOT 8.34e+07 7.65e+07 7.56e+07 7.60e+07

WANAL1 1.35e+10 1.07e+10 1.02e+10 1.03e+10

NEURAL 1.34e+09 1.10e+09 1.02e+09 1.02e+09

COSTSC 1.31e+08 1.24e+08 1.10e+08 1.05e+08

Amean 4.30e+09 3.40e+09 3.20e+09 3.20e+09

Int

DHRYSTO 1.35e+07 1.36e+07 1.36e+07 1.36e+07

INTEGER 1.91e+08 1.78e+08 1.66e+08 1.57e+08

KNIGHT 4.10e+06 4.08e+06 3.91e+06 3.91e+06

LCC 1.76e+07 2.00e+07 2.37e+07 2.74e+07

SPARSE 3.18e+06 3.29e+06 3.61e+06 3.63e+06

Amean 4.59e+07 4.38e+07 4.22e+07 4.11e+07
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Table F.11: Ar2shb IPS raw data for four register set sizes.

Prog Register Set Size

16 32 64 128

Livermore

Ker01 4.48e+07 4.48e+07 4.48e+07 4.48e+07

Ker02 5.23e+07 5.23e+07 5.23e+07 5.23e+07

Ker03 4.13e+07 4.13e+07 4.13e+07 4.13e+07

Ker04 4.03e+07 4.03e+07 4.03e+07 4.03e+07

Ker05 4.98e+07 4.98e+07 4.98e+07 4.98e+07

Ker06 3.62e+07 3.62e+07 3.62e+07 3.62e+07

Ker07 4.90e+07 4.90e+07 4.90e+07 4.90e+07

Ker08 1.11e+08 7.02e+07 7.10e+07 7.10e+07

Ker09 5.51e+07 5.43e+07 5.43e+07 5.43e+07

Ker10 8.46e+07 7.80e+07 7.80e+07 7.80e+07

Ker11 4.75e+07 4.75e+07 4.75e+07 4.75e+07

Ker12 5.05e+07 5.05e+07 5.05e+07 5.05e+07

Ker13 6.93e+07 6.29e+07 6.29e+07 6.29e+07

Ker14 6.42e+07 6.42e+07 6.42e+07 6.42e+07

Amean 5.68e+07 5.29e+07 5.30e+07 5.30e+07

Nasker

BTR 1.53e+09 1.27e+09 1.26e+09 1.24e+09

CHO 2.54e+09 2.43e+09 2.43e+09 2.43e+09

EMI 6.79e+08 5.13e+08 5.13e+08 5.13e+08

FFT 1.40e+09 1.24e+09 1.25e+09 1.25e+09

GMT 1.62e+09 1.69e+09 1.61e+09 1.61e+09

MXM 1.71e+09 1.44e+09 1.44e+09 1.44e+09

VPE 4.96e+07 4.21e+07 4.19e+07 4.22e+07

Amean 1.36e+09 1.23e+09 1.22e+09 1.22e+09

Optimized Nasker

BTR 1.06e+09 8.35e+08 8.35e+08 8.32e+08

CHO 8.39e+08 7.79e+08 7.79e+08 7.79e+08

EMI 7.14e+08 5.03e+08 5.18e+08 5.08e+08

FFT 1.16e+09 1.08e+09 1.07e+09 1.07e+09

GMT 9.08e+08 9.00e+08 9.00e+08 9.00e+08

MXM 9.51e+08 7.30e+08 7.30e+08 7.30e+08

VPE 4.94e+07 4.19e+07 4.19e+07 4.19e+07

Amean 8.12e+08 6.96e+08 6.96e+08 6.94e+08

Prog Register Set Size

16 32 64 128

Perfect

ARC2D 3.85e+10 2.75e+10 2.54e+10 2.54e+10

BDNA 8.23e+09 6.50e+09 5.04e+09 4.50e+09

DYFESM 5.68e+09 5.67e+09 5.67e+09 5.67e+09

FLO52 1.03e+10 9.41e+09 9.31e+09 9.30e+09

MDG 1.26e+10 1.20e+10 1.20e+10 1.20e+10

MG3D 1.36e+11 9.94e+10 9.38e+10 9.36e+10

QCD 3.09e+09 3.08e+09 3.07e+09 3.07e+09

TRACK 1.16e+09 1.06e+09 1.03e+09 1.03e+09

Amean 2.69e+10 2.06e+10 1.94e+10 1.93e+10

Misc

BOAST 5.42e+09 4.33e+09 4.29e+09 4.28e+09

SPHOT 7.87e+07 6.79e+07 6.83e+07 6.83e+07

WANAL1 1.08e+10 9.45e+09 9.35e+09 9.35e+09

NEURAL 1.35e+09 9.18e+08 9.18e+08 9.18e+08

COSTSC 1.22e+08 9.33e+07 8.94e+07 8.94e+07

Amean 3.55e+09 2.97e+09 2.94e+09 2.94e+09

Int

DHRYSTO 1.28e+07 1.28e+07 1.28e+07 1.28e+07

INTEGER 1.57e+08 1.57e+08 1.57e+08 1.57e+08

KNIGHT 3.38e+06 3.38e+06 3.38e+06 3.38e+06

LCC 1.45e+07 1.45e+07 1.45e+07 1.45e+07

SPARSE 2.68e+06 2.62e+06 2.62e+06 2.62e+06

Amean 3.81e+07 3.81e+07 3.81e+07 3.81e+07
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Table F.12: Ar2shb RASE raw data for four register set sizes.

Prog Register Set Size

16 32 64 128

Livermore

Ker01 4.48e+07 4.48e+07 4.48e+07 4.48e+07

Ker02 5.23e+07 5.23e+07 5.23e+07 5.23e+07

Ker03 4.13e+07 4.13e+07 4.13e+07 4.13e+07

Ker04 4.03e+07 4.03e+07 4.03e+07 4.03e+07

Ker05 4.98e+07 4.98e+07 4.98e+07 4.98e+07

Ker06 3.62e+07 3.62e+07 3.62e+07 3.62e+07

Ker07 4.90e+07 4.90e+07 4.90e+07 4.90e+07

Ker08 8.72e+07 6.89e+07 7.10e+07 7.10e+07

Ker09 5.35e+07 5.35e+07 5.35e+07 5.35e+07

Ker10 7.80e+07 7.80e+07 7.80e+07 7.80e+07

Ker11 4.75e+07 4.75e+07 4.75e+07 4.75e+07

Ker12 5.05e+07 5.05e+07 5.05e+07 5.05e+07

Ker13 6.29e+07 6.29e+07 6.29e+07 6.29e+07

Ker14 6.38e+07 6.38e+07 6.38e+07 6.38e+07

Amean 5.41e+07 5.28e+07 5.29e+07 5.29e+07

Nasker

BTR 1.49e+09 1.24e+09 1.23e+09 1.23e+09

CHO 2.58e+09 2.43e+09 2.43e+09 2.43e+09

EMI 6.80e+08 5.18e+08 5.28e+08 5.28e+08

FFT 1.34e+09 1.24e+09 1.25e+09 1.25e+09

GMT 1.61e+09 1.61e+09 1.61e+09 1.61e+09

MXM 1.44e+09 1.36e+09 1.36e+09 1.36e+09

VPE 4.49e+07 4.17e+07 4.17e+07 4.17e+07

Amean 1.31e+09 1.21e+09 1.21e+09 1.21e+09

Optimized Nasker

BTR 9.61e+08 8.34e+08 8.34e+08 8.32e+08

CHO 8.42e+08 7.79e+08 7.79e+08 7.79e+08

EMI 7.40e+08 5.03e+08 5.13e+08 5.13e+08

FFT 1.14e+09 1.08e+09 1.06e+09 1.06e+09

GMT 9.03e+08 9.01e+08 9.00e+08 9.00e+08

MXM 9.51e+08 7.30e+08 7.30e+08 7.30e+08

VPE 4.49e+07 4.17e+07 4.17e+07 4.17e+07

Amean 7.97e+08 6.96e+08 6.94e+08 6.94e+08

Prog Register Set Size

16 32 64 128

Perfect

ARC2D 3.73e+10 2.73e+10 2.51e+10 2.51e+10

BDNA 9.36e+09 5.87e+09 4.85e+09 4.40e+09

DYFESM 5.68e+09 5.67e+09 5.67e+09 5.67e+09

FLO52 9.93e+09 9.35e+09 9.18e+09 9.18e+09

MDG 1.25e+10 1.20e+10 1.20e+10 1.20e+10

MG3D 1.16e+11 9.39e+10 9.29e+10 9.29e+10

QCD 2.97e+09 2.96e+09 2.95e+09 2.95e+09

TRACK 1.22e+09 1.04e+09 1.02e+09 1.02e+09

Amean 2.44e+10 1.98e+10 1.92e+10 1.92e+10

Misc

BOAST 5.44e+09 4.31e+09 4.29e+09 4.29e+09

SPHOT 7.21e+07 6.89e+07 6.89e+07 6.89e+07

WANAL1 1.10e+10 9.30e+09 9.30e+09 9.30e+09

NEURAL 1.20e+09 9.20e+08 9.20e+08 9.20e+08

COSTSC 1.23e+08 9.61e+07 8.91e+07 8.91e+07

Amean 3.57e+09 2.94e+09 2.93e+09 2.93e+09

Int

DHRYSTO 1.32e+07 1.32e+07 1.32e+07 1.32e+07

INTEGER 1.57e+08 1.57e+08 1.57e+08 1.57e+08

KNIGHT 3.41e+06 3.41e+06 3.41e+06 3.41e+06

LCC 1.50e+07 1.50e+07 1.50e+07 1.50e+07

SPARSE 2.75e+06 2.69e+06 2.69e+06 2.69e+06

Amean 3.83e+07 3.83e+07 3.83e+07 3.83e+07
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Table F.13: Ar2sp Postpass raw data for the Livermore and Nasker groups for six register

set sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Livermore

Ker01 7.31e+07 4.63e+07 4.48e+07 4.48e+07 4.48e+07 4.48e+07

Ker02 7.81e+07 5.63e+07 5.23e+07 5.23e+07 5.23e+07 5.23e+07

Ker03 5.91e+07 4.14e+07 4.13e+07 4.13e+07 4.13e+07 4.13e+07

Ker04 6.62e+07 4.07e+07 4.07e+07 4.07e+07 4.03e+07 4.03e+07

Ker05 7.47e+07 5.20e+07 4.99e+07 4.99e+07 4.99e+07 4.99e+07

Ker06 6.09e+07 3.79e+07 3.62e+07 3.62e+07 3.62e+07 3.62e+07

Ker07 8.12e+07 6.80e+07 5.47e+07 5.06e+07 4.90e+07 4.90e+07

Ker08 1.41e+08 1.04e+08 8.55e+07 8.28e+07 6.93e+07 7.19e+07

Ker09 7.60e+07 6.59e+07 5.43e+07 5.43e+07 5.35e+07 5.35e+07

Ker10 1.29e+08 9.61e+07 9.90e+07 9.90e+07 7.80e+07 7.80e+07

Ker11 7.12e+07 5.00e+07 4.75e+07 4.75e+07 4.75e+07 4.75e+07

Ker12 7.57e+07 5.31e+07 5.05e+07 5.05e+07 5.05e+07 5.05e+07

Ker13 1.12e+08 8.14e+07 7.51e+07 7.51e+07 6.54e+07 6.54e+07

Ker14 1.01e+08 8.12e+07 6.75e+07 6.75e+07 6.63e+07 6.63e+07

Amean 8.57e+07 6.24e+07 5.71e+07 5.66e+07 5.32e+07 5.33e+07

Nasker

BTR 2.16e+09 1.81e+09 1.45e+09 1.48e+09 1.28e+09 1.31e+09

CHO 3.40e+09 2.88e+09 2.72e+09 2.72e+09 2.57e+09 2.57e+09

EMI 7.09e+08 5.69e+08 5.59e+08 5.49e+08 5.34e+08 5.14e+08

FFT 1.89e+09 1.42e+09 1.30e+09 1.29e+09 1.30e+09 1.29e+09

GMT 2.62e+09 1.74e+09 1.61e+09 1.61e+09 1.61e+09 1.61e+09

MXM 2.31e+09 1.87e+09 1.52e+09 1.52e+09 1.36e+09 1.36e+09

VPE 6.72e+07 5.15e+07 4.42e+07 4.39e+07 4.27e+07 4.23e+07

Amean 1.88e+09 1.48e+09 1.31e+09 1.32e+09 1.24e+09 1.24e+09

Optimized Nasker

BTR 1.34e+09 1.23e+09 1.03e+09 9.94e+08 8.57e+08 8.63e+08

CHO 1.44e+09 9.95e+08 8.27e+08 8.26e+08 8.03e+08 8.04e+08

EMI 6.93e+08 5.36e+08 5.29e+08 5.24e+08 5.14e+08 4.98e+08

FFT 1.68e+09 1.22e+09 1.07e+09 1.07e+09 1.08e+09 1.07e+09

GMT 1.62e+09 1.07e+09 9.02e+08 9.02e+08 9.01e+08 9.01e+08

MXM 1.36e+09 1.03e+09 8.73e+08 8.73e+08 7.62e+08 7.62e+08

VPE 6.88e+07 5.15e+07 4.42e+07 4.39e+07 4.27e+07 4.10e+07

Amean 1.17e+09 8.76e+08 7.54e+08 7.48e+08 7.09e+08 7.06e+08
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Table F.14: Ar2sp Postpass raw data for the Perfect, Misc and Int groups for six register

set sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Perfect

ARC2D 4.71e+10 3.38e+10 2.92e+10 2.86e+10 2.67e+10 2.64e+10

BDNA 9.31e+09 6.50e+09 6.38e+09 5.19e+09 5.20e+09 4.64e+09

DYFESM 8.63e+09 6.10e+09 6.04e+09 6.04e+09 5.71e+09 5.71e+09

FLO52 1.42e+10 1.12e+10 1.00e+10 9.99e+09 9.57e+09 9.58e+09

MDG 1.56e+10 1.26e+10 1.25e+10 1.26e+10 1.25e+10 1.29e+10

MG3D 1.78e+11 1.26e+11 1.08e+11 1.04e+11 1.01e+11 9.77e+10

QCD 3.77e+09 3.07e+09 3.04e+09 3.07e+09 3.13e+09 3.14e+09

TRACK 1.23e+09 1.10e+09 1.09e+09 1.08e+09 1.10e+09 1.11e+09

Amean 3.47e+10 2.50e+10 2.20e+10 2.13e+10 2.06e+10 2.01e+10

Misc

BOAST 6.61e+09 5.22e+09 4.78e+09 4.67e+09 4.54e+09 4.50e+09

SPHOT 9.50e+07 7.94e+07 8.07e+07 7.73e+07 7.72e+07 7.51e+07

WANAL1 1.60e+10 1.24e+10 1.06e+10 1.02e+10 1.02e+10 1.03e+10

NEURAL 1.38e+09 1.15e+09 1.03e+09 1.01e+09 1.02e+09 1.03e+09

COSTSC 1.36e+08 1.25e+08 1.18e+08 1.13e+08 1.10e+08 1.07e+08

Amean 4.84e+09 3.79e+09 3.32e+09 3.21e+09 3.19e+09 3.20e+09

Int

DHRYSTO 1.42e+07 1.35e+07 1.36e+07 1.36e+07 1.36e+07 1.36e+07

INTEGER 1.96e+08 1.91e+08 1.78e+08 1.78e+08 1.66e+08 1.66e+08

KNIGHT 4.58e+06 4.10e+06 4.08e+06 4.08e+06 3.91e+06 3.91e+06

LCC 1.69e+07 1.77e+07 2.01e+07 2.01e+07 2.38e+07 2.39e+07

SPARSE 3.30e+06 3.16e+06 3.31e+06 3.34e+06 3.58e+06 3.59e+06

Amean 4.70e+07 4.59e+07 4.38e+07 4.38e+07 4.22e+07 4.22e+07
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Table F.15: Ar2sp IPS raw data for the Livermore and Nasker groups for six register set

sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Livermore

Ker01 5.53e+07 4.48e+07 4.48e+07 4.48e+07 4.48e+07 4.48e+07

Ker02 6.11e+07 5.23e+07 5.23e+07 5.23e+07 5.23e+07 5.23e+07

Ker03 4.74e+07 4.13e+07 4.13e+07 4.13e+07 4.13e+07 4.13e+07

Ker04 6.14e+07 4.03e+07 4.03e+07 4.03e+07 4.03e+07 4.03e+07

Ker05 5.83e+07 4.98e+07 4.98e+07 4.98e+07 4.98e+07 4.98e+07

Ker06 4.85e+07 3.62e+07 3.62e+07 3.62e+07 3.62e+07 3.62e+07

Ker07 5.73e+07 4.90e+07 4.90e+07 4.90e+07 4.90e+07 4.90e+07

Ker08 1.18e+08 7.59e+07 7.10e+07 7.10e+07 6.84e+07 7.10e+07

Ker09 6.60e+07 5.35e+07 5.35e+07 5.35e+07 5.35e+07 5.35e+07

Ker10 1.13e+08 8.74e+07 7.80e+07 7.80e+07 7.80e+07 7.80e+07

Ker11 5.72e+07 4.75e+07 4.75e+07 4.75e+07 4.75e+07 4.75e+07

Ker12 6.08e+07 5.05e+07 5.05e+07 5.05e+07 5.05e+07 5.05e+07

Ker13 1.08e+08 6.64e+07 6.48e+07 6.48e+07 6.48e+07 6.48e+07

Ker14 8.33e+07 6.63e+07 6.63e+07 6.63e+07 6.63e+07 6.63e+07

Amean 7.11e+07 5.44e+07 5.32e+07 5.32e+07 5.30e+07 5.32e+07

Nasker

BTR 1.81e+09 1.40e+09 1.24e+09 1.24e+09 1.24e+09 1.25e+09

CHO 2.97e+09 2.54e+09 2.44e+09 2.44e+09 2.44e+09 2.44e+09

EMI 7.14e+08 5.14e+08 5.23e+08 5.13e+08 5.13e+08 5.13e+08

FFT 1.66e+09 1.35e+09 1.25e+09 1.24e+09 1.25e+09 1.25e+09

GMT 1.70e+09 1.61e+09 1.61e+09 1.61e+09 1.61e+09 1.61e+09

MXM 1.93e+09 1.70e+09 1.41e+09 1.41e+09 1.41e+09 1.41e+09

VPE 5.83e+07 4.26e+07 4.13e+07 4.13e+07 4.24e+07 4.13e+07

Amean 1.55e+09 1.31e+09 1.22e+09 1.21e+09 1.22e+09 1.22e+09

Optimized Nasker

BTR 1.16e+09 8.91e+08 8.33e+08 8.44e+08 8.34e+08 8.33e+08

CHO 1.18e+09 8.46e+08 7.79e+08 7.79e+08 7.79e+08 7.79e+08

EMI 6.18e+08 5.04e+08 5.03e+08 5.03e+08 5.03e+08 5.03e+08

FFT 1.42e+09 1.10e+09 1.06e+09 1.06e+09 1.08e+09 1.06e+09

GMT 1.29e+09 9.03e+08 9.00e+08 9.00e+08 9.00e+08 9.00e+08

MXM 1.22e+09 8.10e+08 7.46e+08 7.46e+08 7.46e+08 7.46e+08

VPE 5.98e+07 4.26e+07 4.13e+07 4.13e+07 4.19e+07 4.13e+07

Amean 9.93e+08 7.28e+08 6.95e+08 6.96e+08 6.98e+08 6.95e+08
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Table F.16: Ar2sp IPS raw data for the Perfect, Misc and Int groups for six register set

sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Perfect

ARC2D 4.45e+10 2.99e+10 2.63e+10 2.54e+10 2.54e+10 2.53e+10

BDNA 9.69e+09 6.65e+09 6.31e+09 5.38e+09 5.20e+09 4.66e+09

DYFESM 8.29e+09 5.67e+09 5.67e+09 5.67e+09 5.67e+09 5.67e+09

FLO52 1.27e+10 9.80e+09 9.32e+09 9.32e+09 9.31e+09 9.29e+09

MDG 1.47e+10 1.21e+10 1.20e+10 1.20e+10 1.21e+10 1.21e+10

MG3D 1.64e+11 1.05e+11 9.92e+10 9.40e+10 9.38e+10 9.41e+10

QCD 3.47e+09 2.95e+09 2.94e+09 2.93e+09 2.94e+09 2.92e+09

TRACK 1.18e+09 1.06e+09 1.06e+09 1.03e+09 1.04e+09 1.03e+09

Amean 3.23e+10 2.16e+10 2.04e+10 1.95e+10 1.94e+10 1.94e+10

Misc

BOAST 6.11e+09 4.47e+09 4.36e+09 4.30e+09 4.29e+09 4.29e+09

SPHOT 9.02e+07 7.31e+07 7.31e+07 6.89e+07 6.89e+07 6.89e+07

WANAL1 1.21e+10 9.44e+09 9.44e+09 9.37e+09 9.37e+09 9.37e+09

NEURAL 1.30e+09 1.00e+09 8.91e+08 9.04e+08 9.04e+08 9.04e+08

COSTSC 1.29e+08 9.24e+07 8.83e+07 8.23e+07 8.23e+07 8.23e+07

Amean 3.95e+09 3.02e+09 2.97e+09 2.95e+09 2.94e+09 2.94e+09

Int

DHRYSTO 1.34e+07 1.28e+07 1.28e+07 1.28e+07 1.28e+07 1.28e+07

INTEGER 1.58e+08 1.57e+08 1.57e+08 1.57e+08 1.57e+08 1.57e+08

KNIGHT 4.14e+06 3.38e+06 3.38e+06 3.38e+06 3.38e+06 3.38e+06

LCC 1.46e+07 1.44e+07 1.44e+07 1.44e+07 1.44e+07 1.44e+07

SPARSE 2.84e+06 2.60e+06 2.59e+06 2.60e+06 2.60e+06 2.60e+06

Amean 3.86e+07 3.80e+07 3.80e+07 3.80e+07 3.80e+07 3.80e+07
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Table F.17: Ar2sp RASE raw data for the Livermore and Nasker groups for six register

set sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Livermore

Ker01 5.38e+07 4.48e+07 4.48e+07 4.48e+07 4.48e+07 4.48e+07

Ker02 5.97e+07 5.23e+07 5.23e+07 5.23e+07 5.23e+07 5.23e+07

Ker03 4.74e+07 4.13e+07 4.13e+07 4.13e+07 4.13e+07 4.13e+07

Ker04 5.10e+07 4.03e+07 4.03e+07 4.03e+07 4.03e+07 4.03e+07

Ker05 5.62e+07 4.98e+07 4.98e+07 4.98e+07 4.98e+07 4.98e+07

Ker06 4.23e+07 3.62e+07 3.62e+07 3.62e+07 3.62e+07 3.62e+07

Ker07 5.48e+07 4.90e+07 4.90e+07 4.90e+07 4.90e+07 4.90e+07

Ker08 1.17e+08 7.15e+07 7.10e+07 7.10e+07 6.89e+07 7.10e+07

Ker09 6.36e+07 5.35e+07 5.35e+07 5.35e+07 5.35e+07 5.35e+07

Ker10 1.00e+08 7.80e+07 7.80e+07 7.80e+07 7.80e+07 7.80e+07

Ker11 5.48e+07 4.75e+07 4.75e+07 4.75e+07 4.75e+07 4.75e+07

Ker12 5.82e+07 5.05e+07 5.05e+07 5.05e+07 5.05e+07 5.05e+07

Ker13 7.86e+07 6.49e+07 6.48e+07 6.48e+07 6.48e+07 6.48e+07

Ker14 7.80e+07 6.63e+07 6.63e+07 6.63e+07 6.63e+07 6.63e+07

Amean 6.54e+07 5.33e+07 5.32e+07 5.32e+07 5.31e+07 5.32e+07

Nasker

BTR 2.07e+09 1.45e+09 1.27e+09 1.23e+09 1.24e+09 1.24e+09

CHO 2.65e+09 2.57e+09 2.43e+09 2.43e+09 2.43e+09 2.43e+09

EMI 8.82e+08 5.39e+08 5.28e+08 5.18e+08 5.18e+08 5.28e+08

FFT 1.55e+09 1.33e+09 1.24e+09 1.24e+09 1.25e+09 1.25e+09

GMT 1.92e+09 1.61e+09 1.61e+09 1.61e+09 1.61e+09 1.61e+09

MXM 2.20e+09 1.41e+09 1.36e+09 1.36e+09 1.36e+09 1.36e+09

VPE 5.11e+07 4.22e+07 4.13e+07 4.13e+07 4.22e+07 4.10e+07

Amean 1.62e+09 1.28e+09 1.21e+09 1.20e+09 1.21e+09 1.21e+09

Optimized Nasker

BTR 1.24e+09 8.69e+08 8.40e+08 8.37e+08 8.33e+08 8.34e+08

CHO 1.08e+09 8.39e+08 7.79e+08 7.79e+08 7.79e+08 7.79e+08

EMI 7.87e+08 5.24e+08 5.13e+08 5.03e+08 5.03e+08 5.13e+08

FFT 1.41e+09 1.12e+09 1.06e+09 1.06e+09 1.08e+09 1.06e+09

GMT 1.11e+09 9.00e+08 9.00e+08 9.00e+08 9.01e+08 9.01e+08

MXM 1.20e+09 7.94e+08 7.30e+08 7.30e+08 7.30e+08 7.30e+08

VPE 5.05e+07 4.22e+07 4.13e+07 4.13e+07 4.22e+07 4.10e+07

Amean 9.83e+08 7.27e+08 6.95e+08 6.93e+08 6.95e+08 6.94e+08
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Table F.18: Ar2sp RASE raw data for the Perfect, Misc and Int groups for six register

set sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Perfect

ARC2D 4.55e+10 2.65e+10 2.59e+10 2.51e+10 2.51e+10 2.51e+10

BDNA 1.08e+10 6.00e+09 5.60e+09 5.05e+09 4.66e+09 4.49e+09

DYFESM 6.39e+09 5.67e+09 5.67e+09 5.67e+09 5.67e+09 5.67e+09

FLO52 1.14e+10 9.57e+09 9.19e+09 9.19e+09 9.18e+09 9.18e+09

MDG 1.49e+10 1.21e+10 1.21e+10 1.21e+10 1.21e+10 1.21e+10

MG3D 1.54e+11 9.90e+10 9.43e+10 9.30e+10 9.30e+10 9.30e+10

QCD 3.40e+09 2.99e+09 2.99e+09 2.99e+09 2.97e+09 2.97e+09

TRACK 1.20e+09 1.06e+09 1.05e+09 1.02e+09 1.02e+09 1.02e+09

Amean 3.09e+10 2.04e+10 1.96e+10 1.93e+10 1.92e+10 1.92e+10

Misc

BOAST 6.20e+09 4.40e+09 4.30e+09 4.29e+09 4.28e+09 4.28e+09

SPHOT 8.52e+07 6.94e+07 6.94e+07 6.99e+07 6.99e+07 6.99e+07

WANAL1 1.04e+10 9.30e+09 9.30e+09 9.30e+09 9.30e+09 9.30e+09

NEURAL 1.28e+09 9.36e+08 9.01e+08 9.01e+08 9.01e+08 9.01e+08

COSTSC 1.31e+08 9.36e+07 9.25e+07 8.43e+07 8.43e+07 8.43e+07

Amean 3.62e+09 2.96e+09 2.93e+09 2.93e+09 2.93e+09 2.93e+09

Int

DHRYSTO 1.41e+07 1.33e+07 1.33e+07 1.33e+07 1.33e+07 1.33e+07

INTEGER 1.57e+08 1.57e+08 1.57e+08 1.57e+08 1.57e+08 1.57e+08

KNIGHT 4.42e+06 3.45e+06 3.45e+06 3.45e+06 3.45e+06 3.45e+06

LCC 1.68e+07 1.56e+07 1.56e+07 1.56e+07 1.56e+07 1.56e+07

SPARSE 3.08e+06 2.72e+06 2.71e+06 2.71e+06 2.71e+06 2.71e+06

Amean 3.91e+07 3.84e+07 3.84e+07 3.84e+07 3.84e+07 3.84e+07
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Table F.19: Ar2spf Postpass raw data for the Livermore and Nasker groups for six register

set sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Livermore

Ker01 7.31e+07 4.63e+07 4.48e+07 4.48e+07 4.48e+07 4.48e+07

Ker02 7.61e+07 5.45e+07 5.05e+07 5.05e+07 5.05e+07 5.05e+07

Ker03 5.91e+07 4.14e+07 4.13e+07 4.13e+07 4.13e+07 4.13e+07

Ker04 6.62e+07 4.07e+07 4.07e+07 4.07e+07 4.03e+07 4.03e+07

Ker05 7.47e+07 5.20e+07 4.99e+07 4.99e+07 4.99e+07 4.99e+07

Ker06 6.09e+07 3.79e+07 3.62e+07 3.62e+07 3.62e+07 3.62e+07

Ker07 8.12e+07 6.80e+07 5.47e+07 5.06e+07 4.90e+07 4.90e+07

Ker08 1.33e+08 1.08e+08 9.29e+07 9.11e+07 8.20e+07 8.02e+07

Ker09 7.75e+07 6.82e+07 5.74e+07 5.74e+07 5.66e+07 5.66e+07

Ker10 1.27e+08 9.68e+07 9.68e+07 9.68e+07 7.87e+07 8.09e+07

Ker11 7.12e+07 5.00e+07 4.75e+07 4.75e+07 4.75e+07 4.75e+07

Ker12 7.57e+07 5.31e+07 5.05e+07 5.05e+07 5.05e+07 5.05e+07

Ker13 1.12e+08 8.14e+07 7.51e+07 7.51e+07 6.54e+07 6.54e+07

Ker14 1.01e+08 8.12e+07 6.75e+07 6.75e+07 6.63e+07 6.63e+07

Amean 8.49e+07 6.28e+07 5.76e+07 5.71e+07 5.42e+07 5.42e+07

Nasker

BTR 2.02e+09 1.72e+09 1.47e+09 1.44e+09 1.21e+09 1.19e+09

CHO 2.68e+09 1.99e+09 1.72e+09 1.71e+09 1.65e+09 1.65e+09

EMI 7.25e+08 6.01e+08 5.92e+08 5.39e+08 5.31e+08 5.16e+08

FFT 1.86e+09 1.32e+09 1.22e+09 1.23e+09 1.23e+09 1.23e+09

GMT 2.41e+09 1.41e+09 1.32e+09 1.28e+09 1.28e+09 1.28e+09

MXM 2.03e+09 1.69e+09 1.44e+09 1.27e+09 1.16e+09 1.16e+09

VPE 6.72e+07 5.15e+07 4.42e+07 4.39e+07 4.24e+07 4.10e+07

Amean 1.68e+09 1.25e+09 1.12e+09 1.07e+09 1.01e+09 1.01e+09

Optimized Nasker

BTR 1.36e+09 1.23e+09 1.01e+09 1.01e+09 8.67e+08 8.57e+08

CHO 1.44e+09 9.96e+08 8.27e+08 8.26e+08 8.02e+08 8.03e+08

EMI 7.10e+08 5.56e+08 5.29e+08 5.19e+08 5.08e+08 4.98e+08

FFT 1.68e+09 1.21e+09 1.07e+09 1.07e+09 1.08e+09 1.07e+09

GMT 1.49e+09 1.11e+09 9.02e+08 9.01e+08 9.01e+08 9.01e+08

MXM 1.36e+09 1.03e+09 8.73e+08 8.73e+08 7.62e+08 7.62e+08

VPE 6.88e+07 5.15e+07 4.42e+07 4.36e+07 4.21e+07 4.10e+07

Amean 1.16e+09 8.83e+08 7.51e+08 7.49e+08 7.09e+08 7.05e+08
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Table F.20: Ar2spf Postpass raw data for the Perfect, Misc and Int groups for six register

set sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Perfect

ARC2D 4.29e+10 3.12e+10 2.69e+10 2.51e+10 2.39e+10 2.32e+10

BDNA 9.30e+09 6.48e+09 6.33e+09 5.25e+09 5.27e+09 4.80e+09

DYFESM 8.87e+09 5.24e+09 5.11e+09 5.11e+09 4.87e+09 4.87e+09

FLO52 1.33e+10 1.02e+10 9.01e+09 8.88e+09 8.55e+09 8.54e+09

MDG 1.56e+10 1.26e+10 1.26e+10 1.25e+10 1.25e+10 1.29e+10

MG3D 1.70e+11 1.16e+11 1.00e+11 9.65e+10 9.39e+10 9.12e+10

QCD 3.53e+09 2.77e+09 2.79e+09 2.82e+09 2.86e+09 2.88e+09

TRACK 1.22e+09 1.09e+09 1.09e+09 1.07e+09 1.09e+09 1.10e+09

Amean 3.31e+10 2.32e+10 2.05e+10 1.97e+10 1.91e+10 1.87e+10

Misc

BOAST 6.67e+09 5.29e+09 4.94e+09 4.78e+09 4.62e+09 4.56e+09

SPHOT 9.45e+07 7.74e+07 7.90e+07 7.50e+07 7.45e+07 7.37e+07

WANAL1 1.52e+10 1.15e+10 9.44e+09 8.93e+09 8.74e+09 8.64e+09

NEURAL 1.40e+09 1.24e+09 1.08e+09 1.07e+09 1.07e+09 1.10e+09

COSTSC 1.36e+08 1.25e+08 1.18e+08 1.13e+08 1.10e+08 1.07e+08

Amean 4.70e+09 3.65e+09 3.13e+09 2.99e+09 2.92e+09 2.90e+09

Int

DHRYSTO 1.39e+07 1.32e+07 1.34e+07 1.34e+07 1.34e+07 1.34e+07

INTEGER 1.42e+08 1.38e+08 1.28e+08 1.28e+08 1.24e+08 1.24e+08

KNIGHT 4.56e+06 4.08e+06 3.97e+06 3.97e+06 3.86e+06 3.86e+06

LCC 1.64e+07 1.71e+07 1.96e+07 1.96e+07 2.33e+07 2.34e+07

SPARSE 3.29e+06 3.14e+06 3.30e+06 3.32e+06 3.56e+06 3.58e+06

Amean 3.60e+07 3.51e+07 3.37e+07 3.37e+07 3.36e+07 3.36e+07
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Table F.21: Ar2spf IPS raw data for the Livermore and Nasker groups for six register set

sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Livermore

Ker01 5.53e+07 4.48e+07 4.48e+07 4.48e+07 4.48e+07 4.48e+07

Ker02 5.77e+07 5.05e+07 5.05e+07 5.05e+07 5.05e+07 5.05e+07

Ker03 4.74e+07 4.13e+07 4.13e+07 4.13e+07 4.13e+07 4.13e+07

Ker04 6.14e+07 4.03e+07 4.03e+07 4.03e+07 4.03e+07 4.03e+07

Ker05 5.83e+07 4.98e+07 4.98e+07 4.98e+07 4.98e+07 4.98e+07

Ker06 4.85e+07 3.62e+07 3.62e+07 3.62e+07 3.62e+07 3.62e+07

Ker07 5.73e+07 4.90e+07 4.90e+07 4.90e+07 4.90e+07 4.90e+07

Ker08 1.18e+08 8.41e+07 7.98e+07 7.98e+07 8.06e+07 7.98e+07

Ker09 6.68e+07 5.66e+07 5.66e+07 5.66e+07 5.66e+07 5.66e+07

Ker10 1.16e+08 9.03e+07 8.09e+07 8.09e+07 7.87e+07 8.09e+07

Ker11 5.72e+07 4.75e+07 4.75e+07 4.75e+07 4.75e+07 4.75e+07

Ker12 6.08e+07 5.05e+07 5.05e+07 5.05e+07 5.05e+07 5.05e+07

Ker13 9.84e+07 6.64e+07 6.48e+07 6.48e+07 6.48e+07 6.48e+07

Ker14 8.33e+07 6.63e+07 6.63e+07 6.63e+07 6.63e+07 6.63e+07

Amean 7.05e+07 5.53e+07 5.42e+07 5.42e+07 5.41e+07 5.42e+07

Nasker

BTR 1.58e+09 1.23e+09 1.19e+09 1.20e+09 1.19e+09 1.19e+09

CHO 1.83e+09 1.58e+09 1.53e+09 1.53e+09 1.53e+09 1.53e+09

EMI 7.30e+08 5.13e+08 5.23e+08 5.13e+08 5.13e+08 5.13e+08

FFT 1.52e+09 1.21e+09 1.19e+09 1.19e+09 1.20e+09 1.20e+09

GMT 1.79e+09 1.28e+09 1.28e+09 1.28e+09 1.28e+09 1.28e+09

MXM 1.68e+09 1.21e+09 1.14e+09 1.14e+09 1.14e+09 1.14e+09

VPE 5.92e+07 4.26e+07 4.13e+07 4.13e+07 4.24e+07 4.13e+07

Amean 1.31e+09 1.01e+09 9.85e+08 9.85e+08 9.85e+08 9.85e+08

Optimized Nasker

BTR 1.17e+09 8.98e+08 8.42e+08 8.53e+08 8.44e+08 8.42e+08

CHO 1.16e+09 8.46e+08 7.78e+08 7.78e+08 7.78e+08 7.78e+08

EMI 6.16e+08 5.03e+08 5.03e+08 5.03e+08 5.03e+08 5.03e+08

FFT 1.41e+09 1.13e+09 1.06e+09 1.06e+09 1.08e+09 1.06e+09

GMT 1.28e+09 9.03e+08 9.00e+08 9.00e+08 9.01e+08 9.01e+08

MXM 1.22e+09 8.10e+08 7.46e+08 7.46e+08 7.46e+08 7.46e+08

VPE 5.87e+07 4.26e+07 4.13e+07 4.13e+07 4.19e+07 4.13e+07

Amean 9.88e+08 7.33e+08 6.96e+08 6.97e+08 6.99e+08 6.96e+08
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Table F.22: Ar2spf IPS raw data for the Perfect, Misc and Int groups for six register set

sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Perfect

ARC2D 3.69e+10 2.49e+10 2.31e+10 2.21e+10 2.21e+10 2.21e+10

BDNA 9.56e+09 6.65e+09 6.43e+09 5.43e+09 5.08e+09 4.70e+09

DYFESM 6.05e+09 4.62e+09 4.62e+09 4.62e+09 4.62e+09 4.62e+09

FLO52 1.00e+10 8.60e+09 8.39e+09 8.40e+09 8.40e+09 8.40e+09

MDG 1.45e+10 1.21e+10 1.20e+10 1.20e+10 1.21e+10 1.21e+10

MG3D 1.50e+11 9.52e+10 9.12e+10 8.59e+10 8.59e+10 8.59e+10

QCD 3.13e+09 2.66e+09 2.66e+09 2.65e+09 2.66e+09 2.65e+09

TRACK 1.17e+09 1.06e+09 1.06e+09 1.03e+09 1.04e+09 1.02e+09

Amean 2.89e+10 1.95e+10 1.87e+10 1.78e+10 1.77e+10 1.77e+10

Misc

BOAST 5.96e+09 4.51e+09 4.44e+09 4.35e+09 4.35e+09 4.35e+09

SPHOT 8.60e+07 6.62e+07 6.61e+07 6.73e+07 6.73e+07 6.73e+07

WANAL1 1.23e+10 8.62e+09 8.71e+09 8.64e+09 8.64e+09 8.64e+09

NEURAL 1.15e+09 9.83e+08 9.44e+08 9.44e+08 9.44e+08 9.44e+08

COSTSC 1.28e+08 9.24e+07 8.83e+07 8.23e+07 8.23e+07 8.23e+07

Amean 3.92e+09 2.85e+09 2.85e+09 2.82e+09 2.82e+09 2.82e+09

Int

DHRYSTO 1.30e+07 1.25e+07 1.25e+07 1.25e+07 1.25e+07 1.25e+07

INTEGER 1.19e+08 1.19e+08 1.19e+08 1.19e+08 1.19e+08 1.19e+08

KNIGHT 4.23e+06 3.28e+06 3.28e+06 3.28e+06 3.28e+06 3.28e+06

LCC 1.41e+07 1.39e+07 1.39e+07 1.39e+07 1.39e+07 1.39e+07

SPARSE 2.82e+06 2.58e+06 2.58e+06 2.58e+06 2.58e+06 2.58e+06

Amean 3.06e+07 3.03e+07 3.03e+07 3.03e+07 3.03e+07 3.03e+07
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Table F.23: Ar2spf RASE raw data for the Livermore and Nasker groups for six register

set sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Livermore

Ker01 5.38e+07 4.48e+07 4.48e+07 4.48e+07 4.48e+07 4.48e+07

Ker02 5.62e+07 5.05e+07 5.05e+07 5.05e+07 5.05e+07 5.05e+07

Ker03 4.74e+07 4.13e+07 4.13e+07 4.13e+07 4.13e+07 4.13e+07

Ker04 5.10e+07 4.03e+07 4.03e+07 4.03e+07 4.03e+07 4.03e+07

Ker05 5.62e+07 4.98e+07 4.98e+07 4.98e+07 4.98e+07 4.98e+07

Ker06 4.23e+07 3.62e+07 3.62e+07 3.62e+07 3.62e+07 3.62e+07

Ker07 5.48e+07 4.90e+07 4.90e+07 4.90e+07 4.90e+07 4.90e+07

Ker08 1.00e+08 8.11e+07 8.06e+07 8.06e+07 8.19e+07 8.06e+07

Ker09 6.68e+07 5.66e+07 5.66e+07 5.66e+07 5.66e+07 5.66e+07

Ker10 9.97e+07 8.09e+07 8.09e+07 8.09e+07 7.87e+07 8.09e+07

Ker11 5.48e+07 4.75e+07 4.75e+07 4.75e+07 4.75e+07 4.75e+07

Ker12 5.82e+07 5.05e+07 5.05e+07 5.05e+07 5.05e+07 5.05e+07

Ker13 7.86e+07 6.49e+07 6.48e+07 6.48e+07 6.48e+07 6.48e+07

Ker14 7.80e+07 6.63e+07 6.63e+07 6.63e+07 6.63e+07 6.63e+07

Amean 6.41e+07 5.43e+07 5.42e+07 5.42e+07 5.42e+07 5.42e+07

Nasker

BTR 1.62e+09 1.21e+09 1.18e+09 1.18e+09 1.18e+09 1.18e+09

CHO 1.94e+09 1.57e+09 1.54e+09 1.54e+09 1.54e+09 1.54e+09

EMI 8.74e+08 5.38e+08 5.28e+08 5.18e+08 5.18e+08 5.28e+08

FFT 1.52e+09 1.23e+09 1.19e+09 1.19e+09 1.20e+09 1.19e+09

GMT 1.49e+09 1.28e+09 1.28e+09 1.28e+09 1.28e+09 1.28e+09

MXM 1.77e+09 1.24e+09 1.11e+09 1.11e+09 1.11e+09 1.11e+09

VPE 5.11e+07 4.22e+07 4.13e+07 4.13e+07 4.22e+07 4.10e+07

Amean 1.32e+09 1.02e+09 9.81e+08 9.80e+08 9.81e+08 9.81e+08

Optimized Nasker

BTR 1.25e+09 8.83e+08 8.49e+08 8.47e+08 8.43e+08 8.43e+08

CHO 1.08e+09 8.39e+08 7.78e+08 7.78e+08 7.78e+08 7.78e+08

EMI 7.84e+08 5.23e+08 5.13e+08 5.03e+08 5.03e+08 5.13e+08

FFT 1.41e+09 1.10e+09 1.06e+09 1.06e+09 1.08e+09 1.06e+09

GMT 1.11e+09 9.00e+08 9.00e+08 9.00e+08 9.01e+08 9.01e+08

MXM 1.20e+09 7.94e+08 7.30e+08 7.30e+08 7.30e+08 7.30e+08

VPE 5.05e+07 4.22e+07 4.13e+07 4.22e+07 4.16e+07 4.10e+07

Amean 9.84e+08 7.26e+08 6.96e+08 6.94e+08 6.97e+08 6.95e+08
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Table F.24: Ar2spf RASE raw data for the Perfect, Misc and Int groups for six register

set sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Perfect

ARC2D 4.12e+10 2.37e+10 2.23e+10 2.18e+10 2.18e+10 2.18e+10

BDNA 1.06e+10 6.09e+09 5.68e+09 5.14e+09 4.69e+09 4.51e+09

DYFESM 6.01e+09 4.61e+09 4.61e+09 4.61e+09 4.61e+09 4.61e+09

FLO52 9.37e+09 8.64e+09 8.40e+09 8.39e+09 8.40e+09 8.39e+09

MDG 1.49e+10 1.21e+10 1.21e+10 1.21e+10 1.20e+10 1.21e+10

MG3D 1.44e+11 9.08e+10 8.68e+10 8.54e+10 8.54e+10 8.54e+10

QCD 3.11e+09 2.71e+09 2.71e+09 2.71e+09 2.69e+09 2.70e+09

TRACK 1.19e+09 1.05e+09 1.05e+09 1.02e+09 1.02e+09 1.01e+09

Amean 2.88e+10 1.87e+10 1.80e+10 1.76e+10 1.76e+10 1.76e+10

Misc

BOAST 6.12e+09 4.46e+09 4.37e+09 4.36e+09 4.36e+09 4.36e+09

SPHOT 8.44e+07 6.87e+07 6.87e+07 6.81e+07 6.81e+07 6.81e+07

WANAL1 9.58e+09 8.62e+09 8.62e+09 8.62e+09 8.62e+09 8.62e+09

NEURAL 1.15e+09 9.59e+08 9.51e+08 9.52e+08 9.52e+08 9.52e+08

COSTSC 1.31e+08 9.36e+07 9.25e+07 8.43e+07 8.43e+07 8.43e+07

Amean 3.41e+09 2.84e+09 2.82e+09 2.82e+09 2.82e+09 2.82e+09

Int

DHRYSTO 1.38e+07 1.30e+07 1.30e+07 1.30e+07 1.30e+07 1.30e+07

INTEGER 1.19e+08 1.19e+08 1.19e+08 1.19e+08 1.19e+08 1.19e+08

KNIGHT 4.31e+06 3.35e+06 3.35e+06 3.35e+06 3.35e+06 3.35e+06

LCC 1.61e+07 1.51e+07 1.51e+07 1.51e+07 1.51e+07 1.51e+07

SPARSE 3.06e+06 2.70e+06 2.70e+06 2.70e+06 2.70e+06 2.70e+06

Amean 3.13e+07 3.06e+07 3.06e+07 3.06e+07 3.06e+07 3.06e+07
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Table F.25: A88shL Postpass raw data for four register set sizes.

Prog Register Set Size

16 32 64 128

Livermore

Ker01 1.61e+08 9.14e+07 9.14e+07 9.14e+07

Ker02 1.27e+08 1.18e+08 8.30e+07 8.30e+07

Ker03 1.01e+08 9.86e+07 9.86e+07 9.86e+07

Ker04 1.02e+08 9.15e+07 8.54e+07 8.54e+07

Ker05 1.13e+08 1.04e+08 1.04e+08 1.04e+08

Ker06 9.36e+07 7.47e+07 7.45e+07 7.45e+07

Ker07 1.87e+08 1.57e+08 6.84e+07 6.84e+07

Ker08 2.57e+08 1.77e+08 9.96e+07 9.18e+07

Ker09 1.60e+08 1.39e+08 7.74e+07 7.65e+07

Ker10 2.09e+08 1.68e+08 1.42e+08 1.41e+08

Ker11 1.07e+08 1.05e+08 1.05e+08 1.05e+08

Ker12 1.14e+08 1.12e+08 1.12e+08 1.12e+08

Ker13 1.87e+08 1.64e+08 1.14e+08 1.12e+08

Ker14 2.07e+08 1.37e+08 1.31e+08 1.28e+08

Amean 1.52e+08 1.24e+08 9.90e+07 9.80e+07

Nasker

BTR 3.62e+09 2.32e+09 1.70e+09 1.41e+09

CHO 3.33e+09 2.16e+09 2.10e+09 1.96e+09

EMI 1.43e+09 1.09e+09 9.76e+08 8.70e+08

FFT 3.53e+09 2.59e+09 1.97e+09 1.80e+09

GMT 2.45e+09 1.90e+09 1.60e+09 1.60e+09

MXM 3.01e+09 1.72e+09 1.15e+09 1.10e+09

VPE 1.51e+08 9.53e+07 7.13e+07 7.03e+07

Amean 2.50e+09 1.70e+09 1.37e+09 1.26e+09

Optimized Nasker

BTR 3.03e+09 1.95e+09 1.30e+09 1.21e+09

CHO 2.33e+09 1.56e+09 1.46e+09 1.46e+09

EMI 1.33e+09 1.20e+09 9.61e+08 8.85e+08

FFT 3.31e+09 2.17e+09 1.87e+09 1.81e+09

GMT 2.48e+09 1.69e+09 1.56e+09 1.47e+09

MXM 3.10e+09 1.65e+09 9.41e+08 9.40e+08

VPE 1.51e+08 9.02e+07 7.13e+07 7.03e+07

Amean 2.25e+09 1.47e+09 1.17e+09 1.12e+09

Prog Register Set Size

16 32 64 128

Perfect

ARC2D 7.41e+10 4.91e+10 3.95e+10 3.59e+10

BDNA 1.92e+10 1.23e+10 9.38e+09 8.22e+09

DYFESM 1.12e+10 9.77e+09 8.82e+09 8.77e+09

FLO52 1.91e+10 1.39e+10 1.21e+10 1.18e+10

MDG 3.39e+10 3.10e+10 3.00e+10 3.04e+10

MG3D 3.39e+11 2.15e+11 1.78e+11 1.52e+11

QCD 6.75e+09 6.09e+09 5.78e+09 5.56e+09

TRACK 2.82e+09 2.39e+09 2.28e+09 2.25e+09

Amean 6.33e+10 4.24e+10 3.57e+10 3.19e+10

Misc

BOAST 1.52e+10 1.11e+10 9.73e+09 9.38e+09

SPHOT 1.83e+08 1.55e+08 1.43e+08 1.42e+08

WANAL1 2.33e+10 1.69e+10 1.47e+10 1.45e+10

NEURAL 3.00e+09 2.38e+09 1.98e+09 1.97e+09

COSTSC 3.60e+08 3.24e+08 2.93e+08 2.80e+08

Amean 8.41e+09 6.17e+09 5.37e+09 5.25e+09

Int

DHRYSTO 2.53e+07 2.47e+07 2.47e+07 2.47e+07

INTEGER 1.82e+08 1.68e+08 1.63e+08 1.54e+08

KNIGHT 6.75e+06 5.57e+06 4.23e+06 4.23e+06

LCC 3.75e+07 3.86e+07 4.09e+07 4.11e+07

SPARSE 7.88e+06 7.31e+06 7.25e+06 7.04e+06

Amean 5.19e+07 4.88e+07 4.80e+07 4.62e+07
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Table F.26: A88shL IPS raw data for four register set sizes.

Prog Register Set Size

16 32 64 128

Livermore

Ker01 9.14e+07 9.14e+07 9.14e+07 9.14e+07

Ker02 8.31e+07 8.30e+07 8.30e+07 8.30e+07

Ker03 9.86e+07 9.86e+07 9.86e+07 9.86e+07

Ker04 8.54e+07 8.54e+07 8.54e+07 8.54e+07

Ker05 1.04e+08 1.04e+08 1.04e+08 1.04e+08

Ker06 7.45e+07 7.45e+07 7.45e+07 7.45e+07

Ker07 8.91e+07 7.01e+07 7.01e+07 7.01e+07

Ker08 3.74e+08 9.09e+07 9.09e+07 9.04e+07

Ker09 1.07e+08 7.88e+07 7.88e+07 7.88e+07

Ker10 2.74e+08 1.42e+08 1.41e+08 1.41e+08

Ker11 1.05e+08 1.05e+08 1.05e+08 1.05e+08

Ker12 1.12e+08 1.12e+08 1.12e+08 1.12e+08

Ker13 1.86e+08 1.13e+08 1.13e+08 1.13e+08

Ker14 1.57e+08 1.28e+08 1.28e+08 1.28e+08

Amean 1.39e+08 9.83e+07 9.83e+07 9.82e+07

Nasker

BTR 2.94e+09 1.43e+09 1.35e+09 1.36e+09

CHO 2.52e+09 1.58e+09 1.58e+09 1.58e+09

EMI 1.35e+09 8.75e+08 8.85e+08 8.70e+08

FFT 2.89e+09 1.79e+09 1.80e+09 1.80e+09

GMT 1.61e+09 1.60e+09 1.60e+09 1.60e+09

MXM 2.88e+09 1.11e+09 1.11e+09 1.11e+09

VPE 1.26e+08 6.79e+07 6.77e+07 6.79e+07

Amean 2.05e+09 1.21e+09 1.20e+09 1.20e+09

Optimized Nasker

BTR 2.88e+09 1.25e+09 1.19e+09 1.20e+09

CHO 2.27e+09 1.36e+09 1.36e+09 1.36e+09

EMI 2.01e+09 8.65e+08 8.85e+08 8.75e+08

FFT 3.03e+09 1.72e+09 1.81e+09 1.81e+09

GMT 1.50e+09 1.47e+09 1.47e+09 1.47e+09

MXM 2.33e+09 9.56e+08 9.56e+08 9.56e+08

VPE 1.25e+08 6.79e+07 6.77e+07 6.79e+07

Amean 2.02e+09 1.10e+09 1.11e+09 1.11e+09

Prog Register Set Size

16 32 64 128

Perfect

ARC2D 8.27e+10 4.15e+10 3.48e+10 3.45e+10

BDNA 2.37e+10 1.49e+10 9.83e+09 7.88e+09

DYFESM 8.96e+09 8.74e+09 8.74e+09 8.74e+09

FLO52 1.60e+10 1.14e+10 1.12e+10 1.12e+10

MDG 3.32e+10 3.00e+10 2.94e+10 2.94e+10

MG3D 3.65e+11 1.83e+11 1.45e+11 1.45e+11

QCD 6.58e+09 6.12e+09 6.08e+09 6.09e+09

TRACK 2.78e+09 2.43e+09 2.21e+09 2.21e+09

Amean 6.74e+10 3.73e+10 3.09e+10 3.06e+10

Misc

BOAST 1.45e+10 9.28e+09 8.88e+09 8.86e+09

SPHOT 1.74e+08 1.34e+08 1.34e+08 1.34e+08

WANAL1 1.73e+10 1.24e+10 1.27e+10 1.27e+10

NEURAL 3.20e+09 1.86e+09 1.86e+09 1.86e+09

COSTSC 3.52e+08 2.70e+08 2.32e+08 2.32e+08

Amean 7.11e+09 4.79e+09 4.76e+09 4.76e+09

Int

DHRYSTO 2.45e+07 2.40e+07 2.40e+07 2.40e+07

INTEGER 1.54e+08 1.54e+08 1.54e+08 1.54e+08

KNIGHT 3.70e+06 3.70e+06 3.70e+06 3.70e+06

LCC 2.77e+07 2.77e+07 2.77e+07 2.77e+07

SPARSE 6.29e+06 6.04e+06 6.04e+06 6.04e+06

Amean 4.32e+07 4.31e+07 4.31e+07 4.31e+07
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Table F.27: A88shL RASE raw data for four register set sizes.

Prog Register Set Size

16 32 64 128

Livermore

Ker01 9.14e+07 9.14e+07 9.14e+07 9.14e+07

Ker02 8.30e+07 8.30e+07 8.30e+07 8.30e+07

Ker03 9.86e+07 9.86e+07 9.86e+07 9.86e+07

Ker04 8.54e+07 8.54e+07 8.54e+07 8.54e+07

Ker05 1.04e+08 1.04e+08 1.04e+08 1.04e+08

Ker06 7.45e+07 7.45e+07 7.45e+07 7.45e+07

Ker07 7.01e+07 7.01e+07 7.01e+07 7.01e+07

Ker08 1.52e+08 9.04e+07 9.04e+07 9.22e+07

Ker09 7.74e+07 7.65e+07 7.65e+07 7.65e+07

Ker10 1.43e+08 1.41e+08 1.41e+08 1.41e+08

Ker11 1.05e+08 1.05e+08 1.05e+08 1.05e+08

Ker12 1.12e+08 1.12e+08 1.12e+08 1.12e+08

Ker13 1.56e+08 1.17e+08 1.13e+08 1.13e+08

Ker14 1.42e+08 1.28e+08 1.28e+08 1.28e+08

Amean 1.07e+08 9.83e+07 9.81e+07 9.82e+07

Nasker

BTR 1.97e+09 1.38e+09 1.34e+09 1.35e+09

CHO 2.22e+09 1.58e+09 1.58e+09 1.58e+09

EMI 1.35e+09 8.80e+08 8.70e+08 8.70e+08

FFT 2.49e+09 1.79e+09 1.80e+09 1.80e+09

GMT 1.61e+09 1.60e+09 1.60e+09 1.60e+09

MXM 1.83e+09 1.10e+09 1.10e+09 1.10e+09

VPE 9.65e+07 6.79e+07 6.77e+07 6.79e+07

Amean 1.65e+09 1.20e+09 1.19e+09 1.20e+09

Optimized Nasker

BTR 1.73e+09 1.19e+09 1.16e+09 1.18e+09

CHO 1.55e+09 1.36e+09 1.36e+09 1.36e+09

EMI 1.34e+09 8.75e+08 8.75e+08 8.75e+08

FFT 2.31e+09 1.73e+09 1.81e+09 1.81e+09

GMT 1.48e+09 1.47e+09 1.47e+09 1.47e+09

MXM 1.54e+09 9.40e+08 9.40e+08 9.40e+08

VPE 9.65e+07 6.79e+07 6.77e+07 6.79e+07

Amean 1.44e+09 1.09e+09 1.10e+09 1.10e+09

Prog Register Set Size

16 32 64 128

Perfect

ARC2D 6.36e+10 3.60e+10 3.43e+10 3.43e+10

BDNA 2.15e+10 1.05e+10 8.29e+09 7.64e+09

DYFESM 8.78e+09 8.74e+09 8.74e+09 8.74e+09

FLO52 1.25e+10 1.12e+10 1.12e+10 1.12e+10

MDG 3.30e+10 3.00e+10 2.98e+10 2.98e+10

MG3D 2.70e+11 1.55e+11 1.44e+11 1.44e+11

QCD 5.57e+09 5.27e+09 5.27e+09 5.27e+09

TRACK 2.76e+09 2.19e+09 2.15e+09 2.15e+09

Amean 5.22e+10 3.24e+10 3.05e+10 3.04e+10

Misc

BOAST 1.28e+10 9.03e+09 8.84e+09 8.84e+09

SPHOT 1.53e+08 1.34e+08 1.34e+08 1.34e+08

WANAL1 1.73e+10 1.24e+10 1.24e+10 1.24e+10

NEURAL 2.46e+09 1.86e+09 1.86e+09 1.86e+09

COSTSC 3.39e+08 2.73e+08 2.32e+08 2.32e+08

Amean 6.61e+09 4.74e+09 4.69e+09 4.69e+09

Int

DHRYSTO 2.44e+07 2.44e+07 2.44e+07 2.44e+07

INTEGER 1.54e+08 1.54e+08 1.54e+08 1.54e+08

KNIGHT 3.74e+06 3.74e+06 3.74e+06 3.74e+06

LCC 2.81e+07 2.81e+07 2.81e+07 2.81e+07

SPARSE 6.42e+06 6.07e+06 6.07e+06 6.07e+06

Amean 4.33e+07 4.33e+07 4.33e+07 4.33e+07
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Table F.28: Ar2spL Postpass raw data for the Livermore and Nasker groups for six

register set sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Livermore

Ker01 1.21e+08 7.82e+07 7.66e+07 7.66e+07 7.66e+07 7.66e+07

Ker02 1.85e+08 8.92e+07 7.62e+07 7.62e+07 7.62e+07 7.62e+07

Ker03 1.09e+08 8.89e+07 8.89e+07 8.89e+07 8.89e+07 8.89e+07

Ker04 1.49e+08 7.95e+07 7.94e+07 7.94e+07 7.78e+07 7.78e+07

Ker05 1.56e+08 9.62e+07 9.40e+07 9.40e+07 9.40e+07 9.40e+07

Ker06 1.46e+08 7.00e+07 6.83e+07 6.83e+07 6.83e+07 6.83e+07

Ker07 1.37e+08 1.01e+08 7.58e+07 7.01e+07 5.93e+07 5.93e+07

Ker08 2.57e+08 1.49e+08 1.19e+08 1.10e+08 9.40e+07 7.79e+07

Ker09 1.14e+08 9.05e+07 7.89e+07 7.58e+07 7.50e+07 7.50e+07

Ker10 2.61e+08 2.12e+08 2.02e+08 2.02e+08 1.93e+08 1.93e+08

Ker11 1.77e+08 1.03e+08 9.78e+07 9.78e+07 9.78e+07 9.78e+07

Ker12 1.84e+08 1.07e+08 1.04e+08 1.04e+08 1.04e+08 1.04e+08

Ker13 2.81e+08 1.48e+08 1.22e+08 1.22e+08 1.06e+08 1.06e+08

Ker14 2.33e+08 1.56e+08 1.27e+08 1.27e+08 1.25e+08 1.21e+08

Amean 1.79e+08 1.12e+08 1.01e+08 9.94e+07 9.54e+07 9.40e+07

Nasker

BTR 4.18e+09 2.57e+09 1.96e+09 1.92e+09 1.53e+09 1.49e+09

CHO 5.71e+09 3.92e+09 3.49e+09 3.49e+09 3.20e+09 3.20e+09

EMI 1.33e+09 1.02e+09 8.94e+08 8.58e+08 7.98e+08 7.18e+08

FFT 4.11e+09 2.19e+09 2.19e+09 1.97e+09 1.97e+09 1.97e+09

GMT 5.23e+09 2.51e+09 2.01e+09 2.00e+09 2.00e+09 2.00e+09

MXM 4.58e+09 3.07e+09 2.16e+09 2.16e+09 1.52e+09 1.52e+09

VPE 1.46e+08 8.16e+07 6.22e+07 5.81e+07 5.27e+07 5.29e+07

Amean 3.61e+09 2.19e+09 1.82e+09 1.78e+09 1.58e+09 1.56e+09

Optimized Nasker

BTR 2.72e+09 1.70e+09 1.36e+09 1.32e+09 1.00e+09 1.01e+09

CHO 3.85e+09 2.05e+09 1.33e+09 1.33e+09 1.28e+09 1.29e+09

EMI 1.34e+09 8.48e+08 7.94e+08 8.03e+08 7.33e+08 6.98e+08

FFT 3.71e+09 2.20e+09 1.69e+09 1.76e+09 1.68e+09 1.68e+09

GMT 4.27e+09 1.76e+09 1.25e+09 1.25e+09 1.25e+09 1.25e+09

MXM 3.48e+09 1.57e+09 1.05e+09 1.05e+09 8.45e+08 8.45e+08

VPE 1.52e+08 8.16e+07 6.22e+07 5.81e+07 5.27e+07 5.27e+07

Amean 2.79e+09 1.46e+09 1.08e+09 1.08e+09 9.77e+08 9.75e+08
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Table F.29: Ar2spL Postpass raw data for the Perfect, Misc and Int groups for six register

set sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Perfect

ARC2D 8.80e+10 5.26e+10 4.16e+10 3.96e+10 3.64e+10 3.57e+10

BDNA 1.79e+10 1.03e+10 9.97e+09 7.20e+09 7.21e+09 6.21e+09

DYFESM 1.65e+10 1.06e+10 1.04e+10 1.04e+10 1.00e+10 1.00e+10

FLO52 2.56e+10 1.71e+10 1.44e+10 1.42e+10 1.36e+10 1.36e+10

MDG 3.31e+10 2.73e+10 2.70e+10 2.65e+10 2.64e+10 2.64e+10

MG3D 3.81e+11 2.17e+11 1.83e+11 1.63e+11 1.54e+11 1.47e+11

QCD 7.53e+09 5.55e+09 5.44e+09 5.35e+09 5.38e+09 5.36e+09

TRACK 2.57e+09 2.09e+09 2.05e+09 1.98e+09 1.99e+09 1.98e+09

Amean 7.15e+10 4.28e+10 3.67e+10 3.35e+10 3.19e+10 3.08e+10

Misc

BOAST 1.38e+10 9.50e+09 8.26e+09 7.82e+09 7.60e+09 7.44e+09

SPHOT 1.68e+08 1.35e+08 1.33e+08 1.18e+08 1.18e+08 1.13e+08

WANAL1 2.87e+10 1.94e+10 1.67e+10 1.49e+10 1.53e+10 1.51e+10

NEURAL 3.04e+09 2.43e+09 2.05e+09 1.99e+09 1.95e+09 1.91e+09

COSTSC 3.71e+08 3.09e+08 2.87e+08 2.83e+08 2.70e+08 2.64e+08

Amean 9.22e+09 6.35e+09 5.49e+09 5.02e+09 5.05e+09 4.97e+09

Int

DHRYSTO 3.22e+07 2.55e+07 2.51e+07 2.51e+07 2.51e+07 2.51e+07

INTEGER 2.03e+08 1.97e+08 1.82e+08 1.82e+08 1.70e+08 1.70e+08

KNIGHT 9.49e+06 7.15e+06 5.90e+06 5.90e+06 4.61e+06 4.61e+06

LCC 4.02e+07 3.76e+07 3.86e+07 3.87e+07 4.10e+07 4.11e+07

SPARSE 8.93e+06 7.40e+06 6.99e+06 7.00e+06 6.85e+06 6.85e+06

Amean 5.88e+07 5.49e+07 5.17e+07 5.17e+07 4.95e+07 4.95e+07
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Table F.30: Ar2spL IPS raw data for the Livermore and Nasker groups for six register set

sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Livermore

Ker01 8.72e+07 7.66e+07 7.66e+07 7.66e+07 7.66e+07 7.66e+07

Ker02 1.53e+08 7.62e+07 7.62e+07 7.62e+07 7.62e+07 7.62e+07

Ker03 1.67e+08 8.89e+07 8.89e+07 8.89e+07 8.89e+07 8.89e+07

Ker04 1.49e+08 7.78e+07 7.78e+07 7.78e+07 7.78e+07 7.78e+07

Ker05 2.11e+08 9.40e+07 9.40e+07 9.40e+07 9.40e+07 9.40e+07

Ker06 1.11e+08 6.83e+07 6.83e+07 6.83e+07 6.83e+07 6.83e+07

Ker07 1.07e+08 5.93e+07 5.93e+07 5.93e+07 5.93e+07 5.93e+07

Ker08 3.27e+08 1.38e+08 7.69e+07 7.69e+07 7.47e+07 7.69e+07

Ker09 1.28e+08 6.88e+07 6.88e+07 6.19e+07 6.19e+07 6.19e+07

Ker10 3.23e+08 1.57e+08 1.28e+08 1.28e+08 1.28e+08 1.28e+08

Ker11 2.01e+08 9.78e+07 9.78e+07 9.78e+07 9.78e+07 9.78e+07

Ker12 2.14e+08 1.04e+08 1.04e+08 1.04e+08 1.04e+08 1.04e+08

Ker13 3.80e+08 1.22e+08 1.01e+08 1.01e+08 1.01e+08 1.01e+08

Ker14 1.99e+08 1.25e+08 1.10e+08 1.10e+08 1.10e+08 1.10e+08

Amean 1.97e+08 9.67e+07 8.77e+07 8.72e+07 8.70e+07 8.72e+07

Nasker

BTR 4.58e+09 2.11e+09 1.51e+09 1.40e+09 1.43e+09 1.43e+09

CHO 5.60e+09 3.40e+09 2.79e+09 2.79e+09 2.79e+09 2.79e+09

EMI 1.84e+09 7.19e+08 7.17e+08 7.22e+08 7.22e+08 7.22e+08

FFT 4.35e+09 2.08e+09 1.78e+09 1.78e+09 1.78e+09 1.78e+09

GMT 4.28e+09 2.01e+09 2.00e+09 2.00e+09 2.00e+09 2.00e+09

MXM 4.30e+09 1.80e+09 1.55e+09 1.55e+09 1.55e+09 1.55e+09

VPE 1.74e+08 5.53e+07 5.19e+07 5.19e+07 5.25e+07 5.19e+07

Amean 3.59e+09 1.74e+09 1.49e+09 1.47e+09 1.47e+09 1.47e+09

Optimized Nasker

BTR 3.19e+09 1.29e+09 9.80e+08 9.73e+08 9.67e+08 9.62e+08

CHO 4.13e+09 1.64e+09 1.19e+09 1.19e+09 1.19e+09 1.19e+09

EMI 1.72e+09 7.04e+08 6.97e+08 7.02e+08 6.97e+08 6.97e+08

FFT 4.20e+09 1.90e+09 1.59e+09 1.59e+09 1.62e+09 1.61e+09

GMT 2.58e+09 1.25e+09 1.25e+09 1.25e+09 1.25e+09 1.25e+09

MXM 3.57e+09 1.70e+09 8.13e+08 8.13e+08 8.13e+08 8.13e+08

VPE 1.74e+08 5.53e+07 5.19e+07 5.19e+07 5.19e+07 5.19e+07

Amean 2.79e+09 1.22e+09 9.39e+08 9.39e+08 9.41e+08 9.39e+08
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Table F.31: Ar2spL IPS raw data for the Perfect, Misc and Int groups for six register set

sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Perfect

ARC2D 1.11e+11 5.05e+10 3.60e+10 3.37e+10 3.37e+10 3.32e+10

BDNA 2.42e+10 1.28e+10 1.34e+10 9.17e+09 8.03e+09 6.22e+09

DYFESM 1.78e+10 1.00e+10 9.97e+09 9.97e+09 9.97e+09 9.97e+09

FLO52 2.81e+10 1.53e+10 1.31e+10 1.31e+10 1.29e+10 1.30e+10

MDG 3.45e+10 2.61e+10 2.59e+10 2.44e+10 2.44e+10 2.43e+10

MG3D 4.70e+11 1.94e+11 1.60e+11 1.37e+11 1.37e+11 1.37e+11

QCD 7.07e+09 5.58e+09 5.51e+09 5.40e+09 5.46e+09 5.41e+09

TRACK 2.71e+09 2.10e+09 2.07e+09 1.93e+09 1.93e+09 1.89e+09

Amean 8.69e+10 3.95e+10 3.32e+10 2.93e+10 2.92e+10 2.89e+10

Misc

BOAST 1.56e+10 8.29e+09 7.68e+09 7.11e+09 7.07e+09 7.05e+09

SPHOT 1.59e+08 1.12e+08 1.12e+08 1.06e+08 1.06e+08 1.06e+08

WANAL1 2.69e+10 1.35e+10 1.35e+10 1.29e+10 1.29e+10 1.29e+10

NEURAL 3.35e+09 2.02e+09 1.84e+09 1.81e+09 1.81e+09 1.81e+09

COSTSC 3.63e+08 2.19e+08 1.93e+08 1.60e+08 1.60e+08 1.60e+08

Amean 9.27e+09 4.83e+09 4.66e+09 4.42e+09 4.41e+09 4.41e+09

Int

DHRYSTO 3.01e+07 2.45e+07 2.44e+07 2.45e+07 2.45e+07 2.45e+07

INTEGER 1.62e+08 1.57e+08 1.57e+08 1.57e+08 1.57e+08 1.57e+08

KNIGHT 9.04e+06 4.07e+06 4.07e+06 4.07e+06 4.07e+06 4.07e+06

LCC 3.08e+07 2.78e+07 2.78e+07 2.78e+07 2.78e+07 2.78e+07

SPARSE 7.15e+06 5.78e+06 5.78e+06 5.77e+06 5.77e+06 5.77e+06

Amean 4.78e+07 4.38e+07 4.38e+07 4.38e+07 4.38e+07 4.38e+07
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Table F.32: Ar2spL RASE raw data for the Livermore and Nasker groups for six register

set sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Livermore

Ker01 8.12e+07 7.66e+07 7.66e+07 7.66e+07 7.66e+07 7.66e+07

Ker02 8.78e+07 7.62e+07 7.62e+07 7.62e+07 7.62e+07 7.62e+07

Ker03 9.29e+07 8.89e+07 8.89e+07 8.89e+07 8.89e+07 8.89e+07

Ker04 8.96e+07 7.78e+07 7.78e+07 7.78e+07 7.78e+07 7.78e+07

Ker05 1.00e+08 9.40e+07 9.40e+07 9.40e+07 9.40e+07 9.40e+07

Ker06 9.90e+07 6.83e+07 6.83e+07 6.83e+07 6.83e+07 6.83e+07

Ker07 6.61e+07 5.94e+07 5.93e+07 5.93e+07 5.93e+07 5.93e+07

Ker08 1.66e+08 1.85e+08 7.65e+07 7.65e+07 7.47e+07 7.65e+07

Ker09 7.97e+07 6.27e+07 6.19e+07 6.19e+07 6.19e+07 6.19e+07

Ker10 1.51e+08 1.28e+08 1.28e+08 1.28e+08 1.28e+08 1.28e+08

Ker11 1.05e+08 9.78e+07 9.78e+07 9.78e+07 9.78e+07 9.78e+07

Ker12 1.12e+08 1.04e+08 1.04e+08 1.04e+08 1.04e+08 1.04e+08

Ker13 1.71e+08 1.20e+08 1.01e+08 1.01e+08 1.01e+08 1.01e+08

Ker14 1.23e+08 1.15e+08 1.10e+08 1.10e+08 1.10e+08 1.10e+08

Amean 1.09e+08 9.67e+07 8.72e+07 8.72e+07 8.70e+07 8.72e+07

Nasker

BTR 3.71e+09 1.89e+09 1.60e+09 1.53e+09 1.55e+09 1.54e+09

CHO 4.13e+09 3.18e+09 2.79e+09 2.79e+09 2.79e+09 2.79e+09

EMI 1.74e+09 7.78e+08 7.22e+08 7.17e+08 7.17e+08 7.18e+08

FFT 2.44e+09 2.14e+09 1.78e+09 1.78e+09 1.78e+09 1.78e+09

GMT 3.14e+09 2.00e+09 2.00e+09 2.00e+09 2.00e+09 2.00e+09

MXM 4.85e+09 2.11e+09 1.51e+09 1.51e+09 1.51e+09 1.51e+09

VPE 1.06e+08 5.34e+07 5.17e+07 5.17e+07 5.24e+07 5.17e+07

Amean 2.87e+09 1.74e+09 1.49e+09 1.48e+09 1.49e+09 1.48e+09

Optimized Nasker

BTR 2.82e+09 1.23e+09 1.03e+09 9.97e+08 9.88e+08 9.86e+08

CHO 2.85e+09 1.33e+09 1.19e+09 1.19e+09 1.19e+09 1.19e+09

EMI 1.63e+09 7.58e+08 7.02e+08 6.97e+08 6.97e+08 6.97e+08

FFT 2.30e+09 1.92e+09 1.59e+09 1.59e+09 1.62e+09 1.61e+09

GMT 2.97e+09 1.25e+09 1.25e+09 1.25e+09 1.25e+09 1.25e+09

MXM 3.11e+09 9.57e+08 8.13e+08 8.13e+08 8.13e+08 8.13e+08

VPE 9.90e+07 5.34e+07 5.17e+07 5.17e+07 5.24e+07 5.17e+07

Amean 2.25e+09 1.07e+09 9.47e+08 9.41e+08 9.44e+08 9.43e+08
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Table F.33: Ar2spL RASE raw data for the Perfect, Misc and Int groups for six register

set sizes.

Program Register Set Size

16 32 32/16 64 64/32 128

Perfect

ARC2D 8.69e+10 3.71e+10 3.48e+10 3.35e+10 3.34e+10 3.32e+10

BDNA 2.43e+10 1.01e+10 9.27e+09 6.59e+09 6.21e+09 5.79e+09

DYFESM 1.08e+10 9.97e+09 9.96e+09 9.96e+09 9.96e+09 9.96e+09

FLO52 1.92e+10 1.38e+10 1.29e+10 1.29e+10 1.29e+10 1.29e+10

MDG 3.06e+10 2.50e+10 2.46e+10 2.43e+10 2.43e+10 2.43e+10

MG3D 3.56e+11 2.30e+11 1.47e+11 1.40e+11 1.40e+11 1.40e+11

QCD 6.58e+09 5.34e+09 5.22e+09 5.19e+09 5.20e+09 5.20e+09

TRACK 2.49e+09 2.02e+09 1.99e+09 1.88e+09 1.87e+09 1.85e+09

Amean 6.71e+10 4.17e+10 3.07e+10 2.93e+10 2.92e+10 2.92e+10

Misc

BOAST 1.35e+10 7.57e+09 7.18e+09 7.09e+09 7.08e+09 7.08e+09

SPHOT 1.45e+08 1.09e+08 1.09e+08 1.07e+08 1.07e+08 1.07e+08

WANAL1 2.76e+10 1.30e+10 1.30e+10 1.30e+10 1.30e+10 1.30e+10

NEURAL 3.05e+09 1.94e+09 1.82e+09 1.82e+09 1.82e+09 1.82e+09

COSTSC 3.20e+08 2.12e+08 1.99e+08 1.62e+08 1.62e+08 1.62e+08

Amean 8.92e+09 4.57e+09 4.46e+09 4.44e+09 4.43e+09 4.43e+09

Int

DHRYSTO 3.17e+07 2.49e+07 2.49e+07 2.49e+07 2.49e+07 2.49e+07

INTEGER 1.57e+08 1.57e+08 1.57e+08 1.57e+08 1.57e+08 1.57e+08

KNIGHT 9.60e+06 4.15e+06 4.15e+06 4.15e+06 4.15e+06 4.15e+06

LCC 3.77e+07 2.85e+07 2.84e+07 2.84e+07 2.84e+07 2.84e+07

SPARSE 7.93e+06 5.84e+06 5.82e+06 5.82e+06 5.82e+06 5.82e+06

Amean 4.88e+07 4.41e+07 4.41e+07 4.41e+07 4.41e+07 4.41e+07


