
A Structural Theory of

Explanation-Based Learning

Oren Etzioni

To appear in arti�cial intelligence

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195

etzioni@cs.washington.edu

May 1992

Abstract

The impact of Explanation-Based Learning (EBL) on problem-solving e�ciency varies

greatly from one problem space to another. In fact, seemingly minute modi�cations to prob-

lem space encoding can drastically alter EBL's impact. For example, while prodigy/ebl

(a state-of-the-art EBL system) signi�cantly speeds up the prodigy problem solver in the

Blocksworld, prodigy/ebl actually slows prodigy down in a representational variant of

the Blocksworld constructed by adding a single, carefully chosen, macro-operator to the

Blocksworld operator set. Although EBL has been tested experimentally, no theory has

been put forth that accounts for such phenomena. This paper presents such a theory.

The theory exhibits a correspondence between a graph representation of problem spaces

and the proofs used by EBL systems to generate search-control knowledge. The theory

relies on this correspondence to account for the variations in EBL's impact. This account

is validated by static, a program that extracts EBL-style control knowledge directly from

the graph representation, without using training examples. When tested on prodigy/ebl's

benchmark tasks, static was up to three times as e�ective as prodigy/ebl in speeding up

prodigy.



1 INTRODUCTION 1

1 Introduction

Controlling search is a central concern for AI. Explanation-Based Learning (EBL) is a widely-

used technique for acquiring search-control knowledge [34]. The credibility of EBL was

bolstered by Minton's experiments [30]. Minton tested EBL's impact on the prodigy prob-

lem solver in three benchmark problem spaces. In each case, prodigy's explanation-based

learning module, prodigy/ebl, was able to signi�cantly speed up prodigy by acquiring

search-control rules.

1

To demonstrate the power of EBL, Minton ran prodigy, with and

without prodigy/ebl's control rules, on one hundred randomly generated problems in each

problem space. prodigy ran considerably faster when guided by prodigy/ebl's control

rules. Figure 1 shows the results of applying prodigy/ebl to the Blocksworld.

0.00

500.00

1000.00

1500.00

2000.00

2500.00

T
o

ta
l C

P
U

 T
im

e

0 20 40 60 80 100 120 140 160
Time Bound

Prodigy
Prodigy+EBL

Figure 1: prodigy/ebl speeds up prodigy in the Blocksworld. A bound is placed on the

CPU-time allotted to each problem. The total time to solve all the problems (Y-axis) is

graphed against the time bound (X-axis). Thus, the Y-coordinate of a point on a curve

represents the amount of time a system spent to solve all the problems, given the time

bound in the X-coordinate. The graph is designed to show how the relative performance of

the systems scales as the time bound is increased. See Section 6.2 for additional discussion

of this graphical format.

1.1 Motivation

Unfortunately, EBL's impact on problem-solving e�ciency varies widely from one prob-

lem space to another. In fact, seemingly minute modi�cations to problem space encoding

can drastically alter EBL's impact on problem-solving time. The Augmented Blocksworld

1

The paper uses the term \prodigy/ebl" to refer speci�cally to prodigy's EBL module, and \EBL"

to refer to the general paradigm. The prodigy problem solver, guided by prodigy/ebl's control rules, is

referred to as \prodigy+ebl" (see, for example, Figure 1).



1 INTRODUCTION 2

problem space (ABworld for short) illustrates this point. The ABworld, created by adding

a single, carefully chosen, macro-operator to prodigy's Blocksworld operator set, foiled

prodigy/ebl. The macro-operator, displayed in Figure 2, enables prodigy to grasp a

block that is second-from-the-top of a tower.

1

2

3

2

1

3

Figure 2: The grasp-second-block macro-operator used to create the ABworld.

Running prodigy/ebl on the ABworld (following Minton's training procedure for the

Blocksworld) produced a rule set that actually slowed prodigy down on Minton's test

problems (Figure 3). A detailed discussion of this experiment appears in Section 6.3.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

T
o

ta
l C

P
U

 T
im

e

0 20 40 60 80 100 120 140 160
Time Bound

Prodigy
Prodigy+EBL’s ABworld rules
Prodigy+EBL’s Blocksworld rules

Figure 3: prodigy/ebl is foiled in the ABworld.

Note that controlling search is easy in the ABworld. Merely ignoring the added macro-

operator yields Minton's original Blocksworld. Indeed, the rules learned by prodigy/ebl

in Minton's Blocksworld lead to adequate performance even when they are used to guide

prodigy in the ABworld (Figure 3). The added macro-operator makes learning to control

search more di�cult. A theory is needed to explain this surprising phenomenon.

Previous work (e.g., [15, 30, 38, 52]) has emphasized the role of the problem distribution

encountered by the problem solver in accounting for EBL's performance. However, problem



1 INTRODUCTION 3

distributions cannot explain why prodigy/ebl was foiled in the ABworld since the same

problems were used to train and test prodigy/ebl in both the Blocksworld and the ABworld.

The only change was the addition of a single macro-operator to the Blocksworld's operator

set. Only a theory that analyzes the e�ectiveness of EBL in terms of problem-space char-

acteristics can account for prodigy/ebl's performance in the ABworld experiment. This

paper presents such a theory.

1.2 Overview

The theory relies on two basic constructs: the dichotomy between recursive and nonrecursive

proofs and the Problem Space Graph (PSG) representation. The dichotomy is important

because, as argued below, nonrecursive proofs tend to generate e�ective search-control knowl-

edge whereas recursive proofs often fail to do so. The PSG is an and/or graph representing

all backward-chaining paths through a problem space. PSGs facilitate answering questions

such as \in what ways do di�erent subgoals interact?" and \which subgoals give rise to re-

cursive plans?" PSGs enable us to anticipate the proofs EBL can generate, given a particular

problem space encoding.

These constructs enables us to state the fundamental tenet of the structural theory.

The Structural Thesis: there is a correspondence between the PSG representation and the

proofs used by EBL systems to generate search-control knowledge. As a result, automatic PSG

analysis can be used to compute the weakest preconditions of the proofs and to discriminate

between recursive and nonrecursive proofs.

The thesis is validated by static, a novel computational procedure that yields e�ective

search-control knowledge based on PSG analysis. Given a problem-space de�nition, static

generates and traverses the appropriate PSGs, systematically searching for PSG subgraphs

that correspond to nonrecursive EBL proofs. static outputs the control knowledge EBL

would have acquired from these proofs. static's performance is compared with that of

prodigy/ebl in Section 6.2; its design is described in detail in [11].

Asymptotic Analysis EBL's impact on problem solving is a complex phenomenon that

depends on a large number of factors including the problem space de�nition, the problem

distribution, the problem solver's search method, the problem solver's matcher, EBL's target

concepts, EBL's training examples, and more. The analysis in this paper abstracts away from

many of these intricate details, and attempts to identify key problem space characteristics

that strongly inuence EBL's performance.

The analysis contrasts recursive and nonrecursive proofs and shows that, as state size

increases, the size of nonrecursive proof trees is bounded whereas the size of recursive proof

trees is not. It follows that the cost of matching the weakest preconditions of recursive proofs

increases exponentially with state size, but only polynomially in the case of nonrecursive

proofs. The analysis also shows that, unless the depth of the problem solver's recursions

is bounded, no �nite set of recursive proofs can achieve a polynomial-node search in the

limit. However, when learning from nonrecursive proofs, EBL can achieve polynomial-time



1 INTRODUCTION 4

problem solving in certain cases (see Section 5.1.2).

Heuristics Based on the asymptotic analysis summarized above, I derive two simple

heuristics for EBL systems:

� Learn from nonrecursive proofs.

� Do not learn from recursive proofs.

Since these heuristics do not take problem distribution into account, it is easy to manufacture

cases in which they are inappropriate (see Section 5). Nevertheless, the experiments in

Section 6 demonstrate that both heuristics are useful in practice. Note that by learning

from target concepts such as failure, EBL can learn from nonrecursive proofs even in highly

recursive problem spaces.

The heuristics are attractive because they constitute an a priori basis for generating

e�ective control knowledge. A number of researchers have developed post hoc mechanisms

for evaluating control knowledge by measuring its e�ectiveness on a sample of problems [19,

20, 32, 54]. However, as argued in Section 5, these post hoc mechanisms are heuristic as

well. In addition, generating the large samples typically required by these mechanisms is

very costly.

Experimental Validation When applied to prodigy, the structural theory helps explain

prodigy/ebl's success in Minton's experiments as well as several experimental results re-

ported in [10]:

1. static outperforms prodigy/ebl when compared using prodigy/ebl's benchmark

tasks.

2. prodigy/ebl's impact degrades signi�cantly in the ABworld relative to the

Blocksworld.

3. prodigy/ebl signi�cantly reduces prodigy's Blocksworld problem-solving time over

a wide range of problem distributions.

4. prodigy/ebl's impact degrades sharply when learning only from success.

Organization The paper is organized as follows. Sections 2 and 3 present a complexity

analysis of EBL problem solvers. Section 4 introduces the structural thesis, and Section 5

argues for the heuristics mentioned above, concluding the presentation of the theory. Sec-

tion 6 describes a host of experiments performed to test the theory, and Section 7 contrasts

the theory with related work analyzing EBL. Finally, Section 8 presents a critique of the

structural theory and points to directions for future work.



2 META-LEVEL PROBLEM SOLVERS 5

2 Meta-Level Problem Solvers

This section describes an abstract model of meta-level problem solvers that is the basis

for the analysis that follows. The model is an idealization of problem solvers such as [7],

mrs [18], Soar [25], prodigy [34], theo [37], and many others. The distinguishing feature

of meta-level problem solvers is their ability to use domain-speci�c meta-level rules (called

control rules) to guide their problem solving. Each control rule consists of applicability

conditions and a recommendation. At every node in its problem-solving search, a meta-level

problem solver matches the applicability conditions of its rules against its current state.

When the applicability conditions of a rule are met, the meta-level problem solver abides by

its recommendation. The problem solver does not subgoal on the applicability conditions of

control rules. The prodigy problem solver, described below, is an example of a meta-level

problem solver.

2.1 The PRODIGY Problem Solver

Detailed descriptions of prodigy appear in [30, 34, 35]. The bare essentials follow. prodigy

is a domain-independent problem solver. Given an initial state and a goal expression,

prodigy searches for a sequence of operators that will transform the initial state into

a state that matches the goal expression. A sample prodigy operator appears in Ta-

ble 1. prodigy's sole problem-solving method is a form of means-ends analysis [40]. Like

strips [16], prodigy employs operator preconditions as its di�erences. However, prodigy's

operator description language is considerably more expressive, allowing universal quanti�ca-

tion and conditional e�ects.

(UNSTACK

(preconditions

(and (object Block-X) (object Block-Y)

(on Block-X Block-Y) (clear Block-X) (arm-empty)))

(effects ((del (on Block-X Block-Y))

(del (clear Block-X))

(del (arm-empty))

(add (holding Block-X))

(add (clear Block-Y)))))

Table 1: The Blocksworld operator unstack. Variable names are capitalized.

prodigy's default search strategy is depth-�rst search. The search is carried out by

repeating the following decision cycle [31]:

1. Choose a node in the search tree. A node consists of a set of goals and a world state.



2 META-LEVEL PROBLEM SOLVERS 6

2. Choose one of the goals at that node.

3. Choose an operator that can potentially achieve the goal.

4. Choose bindings for the variables in the operator. If the instantiated operator's pre-

conditions match the state then apply the operator and update the state, otherwise

subgoal on the operator's unmatched preconditions. In either case, a new node is

created.

Search-control knowledge in prodigy is encoded via control rules, which override

prodigy's default behavior by specifying that particular candidates (nodes, goals, oper-

ators, or bindings) should be selected, rejected, or preferred over other candidates [31].

Alternatives that are selected are the only ones tried; alternatives that are rejected are re-

moved from the selected set. Finally, all other things being equal, preferred alternatives

are tried before other ones. prodigy matches control rules against its current state. If the

antecedent of a control rule matches, prodigy abides by the recommendation in the con-

sequent. For example, the control rule in Table 2 tells prodigy to reject the Blocksworld

operator unstack when the block to be held is not on any other block.

(REJECT-UNSTACK

(if (and (current-node Node)

(current-goal Node (holding Block-X))

(candidate-operator Node unstack)

(known Node (not (on Block-X Block-Y)))))

(then (reject operator unstack)))

Table 2: A control rule from prodigy's Blocksworld.

2.2 Formal De�nition

I specify the meta-level problem solvers model more precisely below. See [10] for a complete

speci�cation. A problem space is de�ned by a set of operators that add and delete ground

literals from states.

2

Given a problem-space de�nition, a problem solver takes as input an

initial state and a ground goal expression, and searches for an operator sequence that will

map the initial state to one that matches the goal. The size of the problem solver's state is

denoted by s. In the absence of control knowledge, the number of nodes expanded during

search is assumed to scale exponentially with s in the worst case.

Control rules have the potential to reduce the number of nodes expanded to a polynomial

or even linear function of s. Since matching each control rule has a cost, however, control

2

A literal is a possibly negated atomic formula. A ground literal is one that contains no variables.



2 META-LEVEL PROBLEM SOLVERS 7

rules typically reduce the number of nodes searched but increase the cost of expanding each

node, measured by the total number of elementary matching operations [57]. Consequently,

control rules do not necessarily reduce problem-solving time.

When does a set of control rules � reduce problem-solving time on an individual problem?

This question can be answered simply using the following notation:

� �: the number of nodes expanded during unguided problem solving.

� �

�

: the number of nodes expanded when problem solving is guided by � .

� �: the �xed cost of expanding a node without matching any control rules.

� �

�

: the average cost, per node, of matching � .

The cost of solving a problem without control rules is ��. The cost of solving the problem

using the rule set � is (�+ �

�

)�

�

. Clearly, � reduces problem-solving time if and only if:

(�+ �

�

)�

�

< �� (1)

2.3 The Utility Problem

The above inequality applies to individual problems. However, control knowledge is usually

provided for an entire problem space. When is control knowledge e�ective over the entire

space? The most widely-used notion of e�ectiveness in the literature is average speedup.

A set of control rules is said to be e�ective if it speeds up problem solving, on average,

on a population of problems (e.g. [21, 32, 52]). Average speedup is relatively easy to test

experimentally; measuring problem-solving time with and without a set of control rules, on

a large, randomly generated sample of problems, indicates whether the set achieves average

speedup or not [13]. Unfortunately, average speedup is distribution-speci�c|a rule set may

be e�ective on one problem distribution and ine�ective on another. Furthermore, average

speedup is a weak notion. Problem solving may remain intractable, due to its exponential

nature, despite a sizable average speedup.

We can replace \average speedup" with \achieving polynomial-time problem solving"

as the criterion for the e�ectiveness of a rule set. Polynomial-time problem solving is

distribution-free, and achieving polynomial-time problem solving is generally taken to guar-

antee tractability (\polynomial" may be replaced with \low-order polynomial" if necessary).

Moreover, any rule set that achieves polynomial-time problem solving will also achieve av-

erage speedup on su�ciently di�cult problems because, for any pair of polynomial and

exponential functions, there is some point after which the exponential function is always

larger. Thus, the exponential cost of default problem solving is invariably greater than the

cost of polynomial-time problem solving for su�ciently di�cult problems.

Note that the terms \polynomial" and \exponential" in the above paragraph refer to

the computational complexity of the problem solver's running time, not to the inherent

complexity class of the problem (e.g., NP, PSPACE, etc.). The complexity class of any



2 META-LEVEL PROBLEM SOLVERS 8

problem is �xed given the problem de�nition and a particular computational model. However,

the complexity of di�erent methods or algorithms for solving the problem varies. The goal

of speedup learning, as formulated above, is to automatically transform the problem solver's

default search behavior into a polynomial-time algorithm for a given problem. Clearly,

this can only be done for problems in the complexity class P (i.e., problems solvable in

polynomial time). Still, automatically generating polynomial-time algorithms, for a wide

range of problems in P, has distinct advantages over requiring a human programmer to

derive the algorithms by hand.

Although the polynomial-time criterion is stronger and easier to analyze (cf. [39]), it is

worst-case and asymptotic. Furthermore, average speedup may be attainable in cases where

polynomial-time problem solving is not. Consequently, this paper will consider both criteria

explicitly.

2.4 The Cost of Matching Control Rules

This section shows that the cost of matching a conjunctive logical expression against a

problem solver's state, using standard match algorithms, is exponential in the expression's

length [57].

3

This observation is invoked repeatedly in the analysis that follows.

Consider the tree generated by the matching process. A node in the tree represents an

unbound variable in the expression being matched, and a branch in the tree represents a

potential binding for the variable. A path from the root of the tree to a leaf represents a

variable substitution under which the expression is matched (Figure 4).

X=a

Y=bY=c

Z=cZ=d

Figure 4: A match tree showing how the expression p(X,Y),r(Y,Z) might be matched

against the state p(a,c),p(a,b),r(c,d),r(b,c) .

Thus, the tree's depth is the number of unbound variables, and the tree's branching fac-

tor is the number of potential bindings for each variable. When an expression containing v

unbound variables is matched against a state of size s, the number of nodes in the tree (and

hence the work done by the matcher) is O(s

v+1

). Since the number of unbound variables in

an expression is bounded by the expression's length, match time is said to be exponential

in the expression's length. The exponential cost of matching cannot be overcome by merely

improving matching algorithms, because the problem of matching arbitrary conjunctive ex-

pressions is intrinsically di�cult. To see this note that the problem of subgraph isomorphism,

3

This match cannot be performed via uni�cation (which is linear-time) because uni�cation is not de�ned

for conjunctive expressions. See [22] for a precise de�nition of uni�cation.



3 EBL PROBLEM SOLVERS 9

which is known to be NP-hard [17, page 202], can be reduced to the problem of matching a

conjunctive expression [36, page 184].

This observation is important because, although the cost of matching a rule against a

state of size s is exponential in the rule's length, match cost is polynomial in s for any rule

of bounded length. If the rule's length is bounded by k, its match cost is O(s

k+1

) which is

polynomial in s. This observation holds for any �nite set of control rules. Consequently, we

have the following:

Proposition 1 Any �nite set of control rules, which reduces the number of nodes expanded

by a problem solver from an exponential in s to a polynomial in s, will achieve polynomial-

time problem solving (and average speedup for su�ciently large values of s).

Note that this observation holds only when the problem solver is able to reach a point where

no further learning is necessary. Thus, the number and size of the control rules does not scale

with s. As argued in Section 3.3.3, this favorable situation can occur when the problem solver

is learning control rules based on nonrecursive proofs. If, on the other hand, the problem

solver is forced to continue learning additional control rules as the state size s increases, then

it will not converge to a �nite set of control rules in the limit. As explained in Section 3.3.1,

this situation occurs when the problem solver is forced to learn from unbounded recursive

proofs.

3 EBL Problem Solvers

This section considers EBL problem solvers, a restricted class of meta-level problem solvers

that acquires control rules via EBL. The section presents the EBG framework, which de�nes

standard EBL terminology, and describes the relationship between EBL's proofs and the

length of EBL's control rules, a prerequisite to the analysis in Section 3.3.

3.1 The EBG Framework

Mitchell, Keller and Kedar-Cabelli [38] describe a model of EBL, called Explanation-Based

Generalization (EBG) that articulates many of the aspects common to various EBL systems

(see also [8]). Two of the major contributions of the EBG model are the identi�cation of

explanations with proofs, giving a precise meaning to the term \explanation," and the clear

speci�cation of the inputs and output of EBL shown in Table 3. The inputs consist of a target

concept, a theory for constructing explanations, a training example, and an operationality

criterion. The output is a su�cient condition for recognizing the target concept. The

operationality criterion is intended to ensure that the su�cient condition can be used to

recognize instances of the concept e�ciently.

According to the model, EBL systems prove that the training example is an instance of the

target concept and output the weakest precondition of the proof. The weakest precondition

of a proof is the (weakest) su�cient condition under which the proof succeeds. Section 3.2,

below, de�nes this notion more precisely (cf. [9, 29]).



3 EBL PROBLEM SOLVERS 10

Given:

� Target Concept De�nition: A concept de�nition describing the concept to be learned.

(It is assumed that this concept de�nition fails to satisfy the Operationality Criterion.)

� Training Example: An example of the target concept.

� Domain Theory: A set of rules and facts to be used in explaining how the training

example is an example of the target concept.

� Operationality Criterion: A predicate over concept de�nitions, specifying the form in

which the learned concept de�nition must be expressed.

Determine:

� A generalization of the training example that is a su�cient concept description for the

target concept and that satis�es the operationality criterion.

Table 3: Mitchell et al.'s speci�cation of EBG.

We can use EBG terminology to characterize the control rules acquired by EBL prob-

lem solvers. Consider the target concept \success." A training example is a portion of the

problem solver's trace exemplifying the success of a particular candidate (e.g. an operator).

Based on the training example, EBL proves that the operator invariably succeeds under

certain conditions. The applicability conditions of the resulting control rule are the weak-

est precondition of that proof. The rule's recommendation is a function of what is being

proved. In prodigy/ebl, for example, proving that an operator succeeds yields an operator

preference rule; proving that a binding fails yields binding rejection rule, etc.

3.2 Proof Trees

This section de�nes the notion of a weakest precondition (WP), and shows how WP length is

determined by proof-tree size. The section then analyzes the relationship between proof-tree

size and recursive proofs and shows that, given any �nite rule set, the size of a nonrecursive

proof tree is bounded whereas the size of a recursive proof tree is not.

For simplicity, I restrict the discussion to Horn Clauses. The analysis is easily extended

to more expressive languages. I de�ne a proof to be the instantiation of a proof tree. A proof

tree is an and-tree rooted in the literal derived by the proof. Each internal node in the tree

is derived by some Horn Clause whose consequent or \head" uni�es with the literal at the

node. The variable substitutions from the uni�cation are propagated to the rule's antecedent

conditions or \body," which is denoted by a collection of nodes connected by an and-arc.

Note that a proof tree, as de�ned here, is only partially instantiated. An illustrative proof

tree appears in Figure 5. The conjunction of the tree's leaves constitutes the proof tree's



3 EBL PROBLEM SOLVERS 11

WP.

above(X,Y)

on(V1,V2) above(V2,Y)

on(X,V1) above(V1,Y)

Figure 5: A recursive proof tree.

WP length is the number of literals in a proof's WP. WP length can be characterized in

terms of the corresponding proof tree: it is the number of leaf nodes in the tree. It follows

that, in the worst case, WP length is:

� polynomial in the proof-tree's branching factor.

� exponential in the proof-tree's depth.

These observations are of interest because, as shown in Section 2.4, the cost of matching a

logical expression depends on its length. Since EBL problem solvers match the WP of EBL's

proofs, the cost of matching EBL's control rules depends on WP length. The following

sections relate WP length to the recursive nature of the proof.

A proof is said to be recursive when it is derived from a recursive proof schema. A proof

schema is said to be recursive when it yields proofs that derive one literal from a second

literal that uni�es with, but is not identical to, the �rst. For example, the inference rule:

above(X,Y) :- on(X,V1), above(V1,Y).

can be used to de�ne a recursive proof schema in which above(X,Y) is derived from

above(V1,Y), above(V1,Y) can be derived from another application of the inference rule

and so on. Of course, recursive derivations need not be immediate in general. The recursive

depth of a proof is the maximal depth to which any recursion (there may be several) is ex-

panded or \unfolded" in the proof. The recursive depth of the proof in Figure 5 is two. A

recursive proof is said to be nontrivial when the body of its recursive inference rule contains

more than one literal. For example, the inference rule p(X) :- p(Y) is trivial, but the above

inference rule is not.

When each nontrivial recursive call replaces a proof tree leaf by two leaves, WP length

increases linearly with recursive depth. In Figure 5, for example, above(X,Y) is replaced

by on(X,V1), above(V1,Y). When the recursion is carried a step further, above(V1,Y)

is replaced by on(V1,V2), above(V2,Y) and so on. When the number of recursive calls



3 EBL PROBLEM SOLVERS 12

increases with each recursive expansion, as in the inference rule:

above(X,Y) :- above(X,Z), above(Z,Y).

WP length increases exponentially with recursive depth. In general, we have the following:

Proposition 2 The WP length of a nontrivial recursive proof increases (at least) linearly

with the proof's recursive depth.

This proposition suggests that recursive proofs expanded to nontrivial depths will result in

lengthy WPs. This suggestion is corroborated by the empirical results in Section 6.

A proof is said to be nonrecursive when it is not generated by a recursive proof schema.

Given a �nite set of inference rules, the depth of an arbitrary nonrecursive proof tree is

bounded by the number of literals in the rule set that do not unify with each other. Since the

branching factor of a proof tree is bounded by the maximal number of antecedent conditions

to an inference rule in the theory, it follows that the size and WP length of nonrecursive

proof trees are bounded as well. Thus, we have the following:

Proposition 3 Given a �nite rule set, the WP length of a nonrecursive proof tree is bounded.

Note that this result applies to nonrecursive proof trees, where a tree is de�ned to be rooted

in a single literal. Naturally, if the number of literals at the root is unbounded so is the size

of the proof.

3.3 A Complexity Analysis of EBL Problem Solvers

The previous section described EBL's role in meta-level problem solvers and showed that

whereas the WP length of arbitrary nonrecursive proof trees is bounded, in any �nite rule

set, the WP length of recursive proofs is not. This section considers the implications of this

observation for the e�ectiveness of EBL. Note that although learning from recursive proofs is

shown to be problematic in many cases, learning in recursive problem spaces is not.

4

Utilizing

a variety of target concepts (e.g. failure) facilitates learning from nonrecursive proofs even

in recursive problem spaces. The following discussion does not suggest, therefore, that EBL

is ine�ective when confronted with recursive problem spaces.

3.3.1 Recursive Proofs

Since the cost of matching a conjunctive expression is exponential in its length (Section 2.4),

and since WP length increases (at least) linearly with recursive depth (Proposition 2), it

follows that the cost of matching the WP of a recursive proof tree is exponential (or worse) in

the tree's recursive depth. In many cases, recursive depth increases with state size. Consider,

4

A problem space is said to be recursive when there are problems in the space whose solution necessitates

recursive plans. A recursive plan is a plan generated by a recursive plan schema. A plan schema is said to

be recursive when it generates plans where, in order to achieve one literal, the plan achieves a second literal

that uni�es with, but is not identical to, the �rst.



3 EBL PROBLEM SOLVERS 13

for example, a Blocksworld state that consists entirely of a tower of blocks. Proving that

the bottom block of the tower can be cleared is recursive and the depth of the recursion is

equal to the height of the tower or, equivalently, to the state size. In general, we have the

following:

Proposition 4 When the recursive depth of the proof trees generated by EBL increases

linearly with the state size s, the cost of matching the weakest preconditions of EBL's proofs

increases exponentially (or worse) with s.

Thus, as the problem solver encounters larger and larger problems, and correspondingly

deeper recursions, it is forced to acquire control rules with successively longer antecedents,

and the match cost of the antecedents increases exponentially. Clearly, this result refers to

worst-case match cost. If the predicates in a proof tree are unique attributes, for example,

the cost of matching the proof tree's WP can be linear in its recursive depth.

5

Even in this case, however, rules learned from unique-attribute recursive proofs can result

in exponential match cost due to insu�cient reduction in the number of nodes expanded. To

see this consider Equation 1 (Section 2.2). The equation demonstrates that the total overhead

due to learning is the overhead of matching control rules, at a given node, multiplied by the

number of nodes expanded. If the number of nodes expanded after learning, �

�

, remains

exponential in s, then the total overhead of matching � is exponential in s, even when the

per-node match cost of � is constant, let alone linear in rule length. Thus, we have the

following:

Proposition 5 When �

�

is exponential in s, the total overhead of matching � is exponential

in s.

6

Unique-attribute rules are particularly susceptible to the problem of insu�cient pruning

because recoding a domain theory into unique attributes, to reduce the per-node match cost

of learned rules, can lead EBL to produce highly-speci�c rules [56]).

Another problem with recursive proofs is recursion-depth-speci�city, the WP of a recursive

proof only matches states that support the very same recursive expansion the WP was learned

from. As a result, when EBL's proofs are recursive, distinct rules are learned at every

recursive depth to which the proofs are expanded [4, 43, 48]. For example, prodigy/ebl

learns distinct Blocksworld control rules for clearing the bottom block of a two-block tower,

a three-block tower, and so on. Thus, after learning from examples of two, three, and four

block towers, prodigy/ebl will fail to generalize to �ve-block towers; in fact, any �nite

set of control rules learned from recursive proofs will fail to cover all possible Blocksworld

problems.

As a result, when learning from recursive proofs, EBL is particularly sensitive to both

problem distribution and choice of training examples. To make this observation more precise

5

Roughly, unique attributes (also known as determinate literals) are predicates whose arguments have

unique bindings thereby restricting the branching factor in their match tree to one [56]. The cost of matching

a unique-attribute rule scales only linearly with rule length.

6

Paul Rosenbloom notes that even though the total overhead of � is exponential in s, the ratio (� +

�

�

)�

�

=�� is constant, so long as �

�

is constant. See [12] for additional discussion of this issue.



3 EBL PROBLEM SOLVERS 14

I de�ne the recursive depth of a problem, relative to a given EBL problem solver, to be the

maximum of the recursive depths of the proofs EBL has to learn from in order to eliminate

backtracking on that problem. Suppose EBL learns from recursive proofs whose maximal

depth is �, and subsequently encounters a problem whose recursive depth is �

0

, where �

0

> �.

The problem solver's search will be unguided until it reduces its problem into subproblems

whose recursive depth is �. If we assume that the number of nodes expanded by the problem

solver is exponential in �

0

� � in the worst case then, by Proposition 5, we have that the

total match cost overhead of EBL's control rules is exponential in �

0

� �. It follows that,

unless �

0

� � is bounded, EBL cannot achieve polynomial-time problem solving by learning

from recursive proofs. This observation applies to unique-attribute proofs as well.

3.3.2 Generalization-to-N

In some cases, the recursion-depth-speci�city of EBL's control rules can be overcome us-

ing a technique known as generalization-to-N [4, 5, 27, 43, 48, 47, 52]. Generalization-to-N

algorithms analyze the recursive expansion in their training example, induce a general rep-

resentation of the recursion's structure (e.g. a �nite automaton or a context-free grammar),

and construct a new recursion based on this representation. This recursion is expanded \at

run-time," when the rule produced by generalization-to-N is matched.

7

Thinking of a recursive proof as a string where each inference rule is a symbol helps to

understand how generalization-to-N constructs new recursions. In essence, generalization-to-

N heuristically detects repeated substrings in the proof and generates rules that allow these

substrings to repeat an arbitrary number of times. For example, the technique can generalize

from aaab to a

�

b or from abcabc to (abc)

�

. However, the formalism used to represent recursion

imposes limitations on the process. If the formalism is �nite automata, for example, then

generalization-to-N cannot generalize from aabb to the expression a

n

b

n

, which cannot be

represented as a �nite automaton. Furthermore, many strings are ambiguous. The string

abaaba is plausibly generalized to (aba)

�

or to aba

�

ba. In e�ect, generalization-to-N imposes

an inductive bias on the generalization of recursions, based on its heuristics for detecting

and generalizing repeated substrings, which can lead it to overgeneralize (cf. [3]).

Thus, although generalization-to-N addresses the recursion-depth-speci�city of EBL's

control knowledge, it will not always generalize a recursion appropriately or adequately.

Furthermore, the technique yields rules that expand recursions at run time. The match cost

of this expansion is still exponential in its depth in the worst case.

3.3.3 Nonrecursive Proofs

Nonrecursive proofs avoid both the unboundedWP length and the recursion-depth-speci�city

associated with recursive proofs. As Proposition 3 shows, the size of nonrecursive proofs is

7

For this reason, generalization-to-N is outside the scope of the EBL problem solvers model employed here.

Indeed, EBL problem solvers such as Soar and prodigy do not use generalization-to-N. Nevertheless, the

above discussion shows that generalization-to-N does not solve all of the problems associated with recursive

proofs.



4 THE STRUCTURAL THESIS 15

bounded in any �nite rule set. Unlike recursive proof trees, the WP length of nonrecursive

proofs does not scale with the state size s. By the complexity argument in Section 2.4, it

follows that the match cost of a nonrecursive control rule (i.e., a control rule derived from a

nonrecursive proof) is polynomial in s.

Proposition 6 Given a �nite rule set, the cost of matching the weakest precondition of an

arbitrary nonrecursive proof tree against a state of size s is polynomial in s.

Since the WP length of nonrecursive proof trees is bounded, given any �nite rule set, it

follows that the number of distinct nonrecursive proof trees is also bounded. Furthermore,

by Proposition 6, the cost of matching the WPs of an arbitrary set of nonrecursive control

rules is polynomial in s. Thus, if EBL acquires a set of nonrecursive control rules that

reduces the number of nodes expanded by the problem solver to a polynomial in s then, by

Proposition 1, EBL has achieved polynomial-time problem solving. Note that, unless the

depth of the problem solver's recursions is bounded, EBL cannot achieve polynomial-time

problem solving by learning from recursive proofs.

The depth of nonrecursive proof trees is not only bounded but, often, quite small. Con-

sider, for example, rule sets that contain no constants (e.g. the Blocksworld problem space

de�nition). The depth of a nonrecursive proof tree, in such a rule set, is bounded by the

number of predicates in the set. Even this bound is tight only when every predicate in

the set participates in some nonrecursive inference chain. In practice, the depth of non-

recursive proof trees is even smaller, resulting in highly compact WPs. Thus, often, the

per-node cost of matching these WPs is not merely an arbitrary polynomial, as guaranteed

by Proposition 6, but a low-order one.

3.4 Conclusion

This section presented an idealized model of EBL problem solvers, and used a complex-

ity analysis to draw a dichotomy between recursive and nonrecursive proofs. The weakest

preconditions (WPs) of nonrecursive proofs have bounded length and polynomial per-node

match cost in any �nite rule set. The number of distinct literals in a rule set is a natural

bound on the maximal WP length for nonrecursive proofs in that rule set. In contrast, the

WPs of recursive proofs have unbounded length and exponential match cost. Furthermore,

recursive proofs are recursion-depth-speci�c whereas nonrecursive proofs are not. It follows

that, unless recursive depth is bounded, EBL can only achieve polynomial-time problem

solving when learning from nonrecursive proofs.

4 The Structural Thesis

The previous section drew a dichotomy between recursive and nonrecursive proofs. This

section demonstrates that we can discriminate between recursive and nonrecursive proofs

using Problem Space Graphs (PSGs), a graph representation of problem spaces. The basic

tenet of this section is the following.



4 THE STRUCTURAL THESIS 16

The Structural Thesis: there is a correspondence between PSGs and the proofs used by

EBL systems to generate search-control knowledge. As a result, automatic PSG analysis

can be used to compute the weakest preconditions of the proofs and to discriminate between

recursive and nonrecursive proofs.

The section is organized as follows. Section 4.1 de�nes Problem Space Graphs (PSGs).

Section 4.2 illustrates how a prodigy/ebl proof can be translated into a PSG subgraph,

explains how to discriminate between recursive and nonrecursive proofs, and how to compute

the weakest precondition of a proof based on its PSG correlate. Finally, Section 4.3 considers

the scope of the thesis, and its limitations. The motivation for focusing on prodigy/ebl

is two-fold. First, prodigy/ebl is a state-of-the-art EBL system that is interesting in and

of itself. Second, since prodigy and its EBL module are well-documented and publicly

available, experiments using prodigy (see Section 6) can be veri�ed and replicated by other

researchers. For the sake of generality, the analysis abstracts away from prodigy/ebl's

singular features such as compression analysis, empirical utility evaluation, example selection

heuristics, etc.

4.1 Problem Space Graphs (PSGs)

The PSG represents all possible paths in a backward-chaining search through a problem

space. The PSG is derived from the problem space de�nition via partial evaluation or

symbolic execution.

8

The PSG is precisely speci�ed below.

4.1.1 Specifying the PSG

A problem space can be represented as a set of disjoint graphs (or PSGs), each rooted

in a distinct achievable literal. A depiction of the PSG rooted in the Blocksworld literal

(holding V) appears in Figure 6. The PSG is a directed, acyclic and/or graph. The root

literal is connected, via or-links, to the operators that match it. The operators are partially

instantiated via the variable substitution from the match. Each operator is connected, via

and-links, to its partially instantiated preconditions. Each precondition is connected to the

operators that match it, and so on. Thus, the PSG's nodes are an alternating sequence of

(sub)goals and operators, and the PSG's edges are an alternating sequence of and-links and

or-links.

When two operators that have a common goal share a precondition, a single node des-

ignates that precondition in the PSG. Both operators are linked to the node via and-links,

so the graph is not a tree in general. In Figure 6, for example, both pick-up(V) and un-

stack(V,V2) have (clear V) as a precondition. Consequently, both operators have and-

links to that node.

As described thus far, recursion would result in in�nite PSGs. In fact, the PSG has well-

de�ned termination conditions under which PSGs are provably �nite [11]. To state these

8

The PSG should not be confused with a state space graph. The state space graph's nodes are states,

and its edges are instantiated operators, whereas PSG nodes are literals or operators, and PSG edges are

and/or links.



4 THE STRUCTURAL THESIS 17

(holding V)

UNSTACK

(on V V2) STACK
(holding V)

(clear V)

UNSTACK

(on V1 V)

(clear V1)

(arm-empty)

STACK
(holding V)

PUT-DOWN
(holding V)

(arm-empty)PICK-UP

(on-table V) PUT-DOWN
(holding V)

goal-cycle

holds

recurs

holds

goal-cycle

goal-cycle

holds

goal-cycle

Figure 6: The holding PSG.

conditions precisely I introduce the notion of a literal's ancestors, which are the set of literals

on the unique path from the literal to the root of the PSG. The ancestors of a PSG node n

represent the set of subgoals prodigy would generate before subgoaling on the literal at n.

PSG expansion is terminated at n if and only if:

� No operators can achieve the literal at n.

� The literal is identical to one of its ancestor literals (I refer to this condition as a goal

cycle).

� The literal uni�es with, but is not identical to, one of its ancestors (I say that the

literal recurs).

� The literal is necessarily satis�ed, given that its ancestors are subgoals waiting to be

achieved. In the holding PSG, for example, (on V1 V) is labeled holds because, to

reach it, prodigy subgoals on (holding V) and (clear V) and, if a block is neither

clear nor held, then there must be some block on it.

9

An algorithm that derives PSGs from problem space de�nitions appears in [11].

The semantics of PSG nodes can be de�ned relative to prodigy's problem solving. A

literal node appears in the PSG if and only if there is a world state in which the problem

9

The (arm-empty) nodes are labeled holds to keep the PSG's depiction compact. The label is justi�ed

by noting that put-down can invariably achieve (arm-empty).



4 THE STRUCTURAL THESIS 18

solver subgoals on an instance of that literal in trying to achieve its current goal. An operator

node appears in the PSG if and only if there is a world state in which prodigy will back-

chain on an instance of the operator in trying to achieve its current goal. A literal node has

an or-link to an operator node if and only if the operator matches the literal. An operator

has an and-link to a literal if and only if the literal is a precondition to the operator.

4.2 The Correspondence of PSGs to EBL's Proofs

The notion of representing programs (or problem spaces) as graphs is well-known in computer

science (see, for example, [24, 58]). It is interesting to note, however, that prodigy/ebl's

proofs correspond to PSG subgraphs.

10

prodigy/ebl's failure proofs, for example, have the following avor: an operator cannot

be executed because one of its preconditions cannot be achieved. A precondition cannot be

achieved because all of the operators that could potentially achieve it cannot be executed and

so on. Each proof \explains" a failure by an alternating series of existentially and universally

quanti�ed statements about the relevant preconditions and operators. Success proofs are

analogous, but the quanti�ers are reversed. These alternating sequences correspond to the

alternating sequences of operator and precondition nodes in the PSG.

For example, unstack fails because one of its preconditions, (on V V2), cannot be

achieved in the context of (holding V). On cannot be achieved because all of the relevant

operators (stack is the only one) cannot be executed. stack cannot be executed because

trying to achieve one of its preconditions, (holding V), results in a goal cycle. That is, the

problem solver subgoals on (holding V) in the process of trying to achieve (holding V),

which leads to an in�nite loop. The PSG subgraph in Figure 7 is a representation of this

proof. The weakest precondition of the proof can be determined by analyzing the subgraph.

In this case, the goal cycle occurs when the goal is (holding V) and the precondition (on V

V2) is not true in the current state, leading prodigy to back-chain on the operator stack

in order to satisfy the precondition. This proof yields the rejection rule that appears in

Table 2, Section 2.1.

(holding V)
UNSTACK (on V V2) STACK (holding V)
failure failure failure goal-cycle

Figure 7: The PSG subgraph corresponding to the proof that unstack fails to achieve

holding.

The example illustrates the general correspondence between PSG subgraphs and

prodigy/ebl's proofs. This relationship is not surprising if we consider that, by con-

struction, the PSG explicitly represents the failure and success of di�erent problem-solving

paths which is precisely the subject matter of EBL's proofs. See [10] for a more detailed

description of the mapping between PSGs and EBL's proofs.

10

The recursive expansions in prodigy/ebl's recursive proofs are represented as leaf nodes.



5 CHOOSING WHAT PROOFS TO LEARN FROM 19

The correspondence described above facilitates traversing the PSG searching for sub-

graphs corresponding to nonrecursive proofs (i.e. subgraphs none of whose leaves are labeled

recurs) and deriving control rules based on these subgraphs. That is precisely what the

static program does. A complete description of static's algorithms appears in [11].

4.3 Scope of the Structural Thesis

Although the structural thesis applies to many existing EBL problem solvers (e.g., [27, 1, 52])

its scope is limited for a number of reasons. First, although most commonly-used target

concepts (success, failure, etc.) map naturally to PSG subgraphs, other target concepts

(e.g., state cycles) do not. Second, PSGs have only been developed for backward-chaining

problem solvers. Developing a PSG representation for forward-chaining problem solvers is a

topic for future research. Finally, consider a domain theory that augments and transcends

the problem space de�nition. For example, consider a domain theory that contains inference

rules which can assess the outcome of a complex problem space recursion using a simple

reasoning process.

11

When the domain theory and the problem space are divorced in this

manner, the structural thesis is false. However, a sibling thesis may be formulated linking

a graph representation of the domain theory to EBL's proofs. Ultimately, determining the

precise scope of the thesis is an empirical enterprise. Further analysis of a variety of EBL

problem solvers, domain theories, and target concepts is required to determine whether the

thesis applies or not.

5 Choosing What Proofs to Learn From

An EBL system can have access to a wide variety of target concepts, and there are many

di�erent ways to prove that a given training example is subsumed by a particular target

concept. Each such proof yields a di�erent control rule, some of which are considerably

more useful than others. When analyzing a training example, EBL merely computes the

weakest precondition of a particular proof. It is by no means guaranteed to �nd \the best"

control rule, or even an e�ective one [14]. Indeed, EBL frequently derives ine�ective control

knowledge in practice.

Based on the complexity analysis in Section 3, this section presents heuristics that help

EBL to overcome this problem by indicating which proofs EBL should learn from. The

complexity analysis does not prove that the heuristics are appropriate in every case. In fact,

it is easy to manufacture cases in which the heuristics are inappropriate; I discuss such cases

in Sections 5.2 and 5.1. Nevertheless, the experiments in Section 6 show that the heuristics

are valuable in practice.

The heuristics are attractive because they constitute an a priori basis for generating

e�ective control knowledge. A number of researchers have developed post hocmechanisms for

11

Imagine a Blocksworld domain theory that speci�ed the Cartesian coordinates of each block. Determining

whether one block is above another, while recursive in the problem space, merely requires comparing X-

coordinates in the domain theory.



5 CHOOSING WHAT PROOFS TO LEARN FROM 20

evaluating control knowledge by measuring its e�ectiveness on a sample of problems [19, 20,

32, 54]. The advantage of post hoc approaches is that they \consider" problem distribution,

whereas a priori approaches do not. Sample-based approaches have several disadvantages,

though. First, the complex interactions between di�erent control rules mean that individual

control rules cannot be tested in isolation. As a result, the post hoc mechanisms rely on

hill climbing to incrementally (and heuristically) evaluate sets of control rules. Second, the

mechanisms' performance is sensitive to the composition and ordering of their sample. With

some probability, a randomly-generated sample will not accurately represent the population

from which it is drawn. When this is the case, the performance of a sample-based mechanism

is arbitrarily bad. Large sample sizes ensure that the probability of this event is low but,

to provide such guarantees, the mechanisms proposed in [19, 20, 54] typically require their

problem solver to solve literally thousands of problems. Even the ad hoc rule-evaluation

mechanism used by prodigy/ebl [32] accounts for a signi�cant fraction of prodigy/ebl's

learning time [10, chapter 8]. Finally, sample-based rule selection is distribution-dependent.

If the problem distribution changes, the rule selection algorithm has to be invoked again, on

a fresh sample, to ensure that an appropriate rule set is chosen. Thus, as recognized by [19],

a priori heuristics for generating e�ective control rules have distinct advantages.

5.1 The Nonrecursive Heuristic

The nonrecursive heuristic can be stated as follows:

Learn from nonrecursive proofs.

As pointed out earlier, control knowledge represents a tradeo� between reduced problem-

space search and increased match cost. Proposition 6 suggests that this tradeo� may be

favorable when learning from nonrecursive proofs. In general, learning from nonrecursive

proofs is not guaranteed to be e�ective for several reasons. The analysis in Section 3.3

presupposes an exponential search. If unguided search is polynomial in s, for example, then

the nonrecursive heuristic can easily result in a signi�cant average slowdown. In addition,

although the per-node match cost of nonrecursive control rules increases only polynomially

with state size s, their total match cost overhead can still be exponential when the number

of nodes expanded by the problem solver, after learning, is exponential (Proposition 5).

Finally, due to the a priori nature of the nonrecursive heuristic, it is easy to de�ne problem

distributions where nonrecursive control rules are rarely applicable and thus ine�ective. The

experiments reported in [19, 42] demonstrate this point.

Despite the caveats enumerated above, the experiments described in Section 6 demon-

strate the value of the nonrecursive heuristic in practice. Additional work is required to

precisely identify the classes of problems in which it is e�ective. Augmenting the heuris-

tic with a variety of example-based and sample-based approaches as suggested in [10] and

investigated in [19, 42] is a worthwhile direction for future work.



5 CHOOSING WHAT PROOFS TO LEARN FROM 21

5.1.1 Bounded-Depth Recursion

Bounded-depth recursive proofs are distinct from nonrecursive proofs. When the size of a

recursive proof is bounded, the analysis used to derive Proposition 6 applies, and the cost of

matching the proof's WP is polynomial in the state size s. One might be tempted to conclude

that a nonrecursive proof is merely \a recursive proof unfolded to depth zero." This is not the

case. Consider, for example, the PSG displayed in Section 4.1.1. The subgraph containing

the root, (holding V), the operator unstack, and unstack's preconditions, corresponds to

a depth-zero recursive proof that unstack can achieve (holding V). In contrast to the WP

of a nonrecursive proof, this proof's WP is recursion-depth-speci�c; it does not apply when V

is covered by one or more blocks. Each recursive invocation of unstack, aimed at achieving

(clear V), results in a deeper recursive proof with a longer recursion-depth-speci�c WP.

In contrast, the PSG subgraph displayed in Figure 7 corresponds to a \true" nonrecursive

proof. The proof is not derived from a recursive proof schema; the same proof can be used

to explain the failure of unstack regardless of the number of blocks in the problem, the

recursive depth of the problem solver's plan, etc. See Figure 8 (Section 6.1.3) for another

example of a nonrecursive proof.

5.1.2 Fortuitous Recursion

The e�ectiveness of the nonrecursive heuristic is enhanced by a structural feature of problem

spaces I refer to as fortuitous recursion. I introduce this idea using a Blocksworld example.

Consider a plan to achieve (holding block-1) when block-1 is at the bottom of a three-

block tower: block-3, block-2, block-1. In order to grasp block-1, the problem solver

has to achieve the subgoal (clear block-1). To achieve (clear block-1), it has to achieve

(clear block-2) and so on. The plan is generated by expanding a recursive plan schema.

The depth of the expansion is determined by the height of the block tower.

Proving that a recursive plan succeeds gives rise to a recursive proof. However, in some

cases, we can prove that a recursive plan fails using a nonrecursive proof. Consider achieving

(holding block-1) using the unstack operator which is shown in Table 1 in Section 2.1.

A nonrecursive proof shows that the plan fails, for our three-block tower, because using

unstack requires subgoaling on its (on block-1 block-Y) precondition, which leads to

a goal cycle. The proof is described in Section 4.2, and its PSG representation appears in

Figure 7 in that section.

The proof yields a su�cient condition for the failure of unstack that is the basis of the

operator rejection rule in Table 2, Section 2.1. The rule rejects unstack, when its antecedent

is matched, but does not necessarily guarantee that unstack will achieve its goal when the

rule's antecedent is not matched. When the antecedent is not matched (i.e. (on block-1

block-Y) holds in the current state), the success of unstack depends on whether its other

preconditions, (clear block-1) and (arm-empty), can be achieved.

In fact, it turns out that (arm-empty) is easily achieved by putting down any block that

is being held and that, invariably, there is some recursive plan that will succeed in achieving

(clear block-1). The Blocksworld turns out to have a fortuitous property: whenever (on



5 CHOOSING WHAT PROOFS TO LEARN FROM 22

block-X block-Y) is matched, unstack will achieve (holding block-X). Thus, the rule

for rejecting unstack de�nes a condition that turns out to be both necessary and su�cient

for failure; if the applicability conditions of the rejection rule in Table 2 are not matched,

plans to achieve holding via unstack are guaranteed to succeed. This property is not

guaranteed by EBL. It is a structural feature of the Blocksworld.

The above example shows how a nonrecursive proof of failure can yield a necessary and

su�cient condition for the failure (or, equivalently, success) of an operator. In this example,

EBL need not form a recursive proof in order to eliminate backtracking. The essential feature

of the example is that the success of a nonrecursive portion of a recursive plan (namely, (on

block-X block-Y)) guarantees the success of the entire plan. When this is the case for

all plans in which the recursion appears, the recursion is said to be \fortuitous." In the

Blocksworld, the recursion required to clear a block is fortuitous.

Clearly, fortuitous recursion enhances the e�ectiveness of nonrecursive proofs of failure.

When all problem-space recursions are fortuitous, and EBL is trained appropriately, EBL can

eliminate backtracking by learning solely from nonrecursive proofs. Given a �nite rule set,

the number of distinct nonrecursive proofs is �nite. Thus, by Proposition 6 in Section 3.3.3,

it follows that EBL is guaranteed to achieve polynomial-time problem solving and average

speedup in this case.

5.2 The Recursive Heuristic

The recursive heuristic is a negative heuristic that complements the nonrecursive one:

Do not learn from recursive proofs.

Proposition 4 shows that, in the limit, learning from recursive proofs trades an exponential

search for an exponential match. Furthermore, as argued in Section 3.3.1, for any �xed set of

recursive control rules there are problem distributions on which the set results in exponential

overhead and average slowdown of the problem solver.

Again, it is easy to manufacture cases in which the recursive heuristic is inappropriate,

and learning from recursive proofs is actually bene�cial. Essentially, when the depth of a

certain recursion is bounded in a given problem distribution, then the recursive depth of

proofs that unfold this recursion (and no others) is bounded, and the asymptotic analysis of

nonrecursive proofs in Section 3.3.3 applies to these \bounded-depth" recursive proofs. In

general, it is impossible to anticipate a priori that a recursion will have bounded depth in the

absence of precise a priori knowledge of the problem distribution.

12

Furthermore, bounds

on the depth of recursive unfolding can change with the problem distribution whereas the

bound on nonrecursive unfolding is �xed in any given problem space. Thus, the recursive

heuristic remains the best a priori heuristic we can formulate.

The recursive heuristic is particularly important because of the practice of training EBL

on relatively simple problems that exhibit shallow recursions. As pointed out in [14], this

practice often helps EBL �nd simpler and more compact explanations of its problem solver's

12

See [27, 46] for exceptions in certain special cases.



5 CHOOSING WHAT PROOFS TO LEARN FROM 23

behavior. However, in the case of recursive proofs, the practice can lead to a disparity

between the shallow recursions in training examples and deep recursions on test cases. As

Section 3.3.1 indicates, such disparity leads to exponential overhead due to EBL.

5.2.1 The Recursive Heuristic In Practice

Experimental inquiries have shown that control knowledge learned from recursive proofs

can be e�ective when a tight bound is imposed on recursive depth in domains such as the

Eightpuzzle [26, 55], or on highly skewed problem distributions [47, 56], but is ine�ective in

many other cases [10], even in the presence of generalization-to-N [52]. Determining exactly

how skewed the distribution of problems has to be for a problem solver to bene�t from

recursive EBL proofs depends on the speci�c search space, problem solver, and matcher

involved. [52] estimated this parameter empirically using recursive macro rules learned by

BAGGER2 [47] in a circuit synthesis domain. They report that \unless the percentage of

problems in the future queries that are solvable by the macro rules alone exceeds 60 percent

for input expressions of arity 3..and 80 percent for arity 5, BAGGER2 style macro rules are

not useful."

The above discussion suggests that, due to insu�cient pruning, EBL will fail to achieve

average speedup when learning from recursive proofs on su�ciently uniform problem dis-

tributions. Additional work is required to precisely characterize \su�ciently uniform" dis-

tributions and to formally analyze the relationship between distributional skew and the

e�ectiveness of EBL when learning from recursive proofs.

5.3 Complementary Target Concepts

Learning from the success of a recursive plan yields a recursive proof. Although I have

argued against learning from recursive proofs, I have also argued that EBL can be e�ective in

recursive problem spaces. Indeed, most of the plans in prodigy/ebl's benchmark problem

spaces are recursive, yet prodigy/ebl is quite e�ective in these problem spaces [30]. This

paradox is resolved by observing that prodigy/ebl learns from failure and goal interaction

in addition to learning from success. As the Blocksworld example in Section 5.1.2 illustrates,

proving that a plan will fail can be nonrecursive even when the plan itself is recursive. In

fact, �ve failure proofs yield all the control rules necessary to make appropriate operator and

bindings choices on any Blocksworld problem. The failure proofs are nonrecursive, yielding

rules that are compact, general, and cheap-to-match.

I refer, informally, to target concepts (e.g. failure) whose proofs are not direct transla-

tions of the problem solver's plans as complementary target concepts. When recursive plans

abound, complementary target concepts are EBL's primary means of �nding nonrecursive

proofs. It follows that such target concepts will enhance EBL's e�ectiveness in many cases.

Practical considerations suggest another argument for learning from complementary tar-

get concepts. Even after analyzing a large number of training examples, EBL's coverage

is often incomplete in practice|it is unable to guide the problem solver on every control

decision in every problem. As a result, the problem solver frequently departs from the path



6 EXPERIMENTAL VALIDATION 24

to a solution. When backtracking chronologically (as in prodigy or Prolog), the problem

solver exhausts all the available alternatives at a node before backtracking from the node.

Thus, in the absence of control rules that curtail backtracking, departing from a solution

path often results in extensive backtracking. Control rules learned from success (\success

rules") attempt to keep the problem solver on a solution path. Unfortunately, success rules

will never �re at a node that is not on any solution path relative to the current goal, because

the state at such a node can never match the weakest preconditions of a successful plan.

Thus, once the problem solver has diverged from a solution path, the only control rules that

can curtail backtracking are control rules learned from complementary target concepts. It

follows that complementary target concepts are particularly useful.

Most existing EBL systems (e.g., [5, 47, 52]) and partial evaluators (e.g., [60, 46, 27]) do

not use complementary target concepts. Thus, as Minton [30] argues, prodigy/ebl's use of

multiple (and, in particular, complementary) target concepts is an important extension of the

EBL method. The structural theory supports and elaborates Minton's contention, yielding

an operational recommendation to the designers of EBL problem solvers: use complementary

target concepts.

5.4 Conclusion

This section described two a priori heuristics for choosing what proofs to learn from in EBL.

The heuristics yield a simple criterion for proof choice: learn only from nonrecursive proofs.

To increase the number of nonrecursive proofs available to EBL, I recommend developing a

host of complementary target concepts, concepts (e.g. failure in prodigy/ebl) whose proofs

do not mirror the problem solver's plans. I describe a number of cases in which this criterion

is imperfect, and others have appeared in the literature [19, 42]. The following section argues

that, though imperfect, the heuristics formulated above are valuable in practice.

6 Experimental Validation

This section reports on an array of experimental results that are explained, informally, using

the structural theory. In particular, the theory explains prodigy/ebl's success in Minton's

experiments [30] as well as the experimental results listed in Section 1.2.

6.1 Explaining PRODIGY/EBL's Success

\It is rare that one sees an AI system evaluated carefully by anyone other

than its creator."[2]

To demonstrate the explanatory power of the structural theory, this section utilizes it to

explain prodigy/ebl's success in Minton's experiments. Each of prodigy/ebl's bench-

mark problem spaces exhibits several structural features that facilitate prodigy/ebl's suc-

cess. The section discusses these features abstractly, and explains how the features account



6 EXPERIMENTAL VALIDATION 25

for prodigy/ebl's success in each space. Table 4, at the end of the section, summarizes

the explanation using the terms de�ned below.

Problem Distribution Minton's problem distributions play an important role in ex-

plaining his results. First, the problem distributions determine the recursive depths of

prodigy/ebl's proofs. Second, the distributions determine the aspects of each problem

space that prodigy is exposed to. Each of the problem spaces contains some recursive

structure that prodigy/ebl is unable to learn about e�ectively (see Section 6.1.1 for an

example). prodigy/ebl's success in Minton's experiments is due, in part, to the paucity

of problems that exercise this recursive structure.

Short Nonrecursive Proofs of Failure. Failure, in prodigy/ebl's problem spaces,

is often explainable by nonrecursive proofs. As it turns out, the depth and the branching

factor of prodigy/ebl's nonrecursive failure proofs are small, yielding compact control rules

whose applicability conditions contain no more than two or three literals in many cases. As

a result, control rules learned from failure are both general and cheap-to-match making the

tradeo� between increased match cost and search reduction favorable even for relatively

small problems; prodigy/ebl relies heavily on learning from failure.

Fortuitous Recursions Many of the recursions in prodigy/ebl's problem spaces are

fortuitous (see Section 5.1.2) which means that plans containing the recursions will succeed

if the nonrecursive portions of the plans succeed. This facet of the problem spaces makes

learning from nonrecursive failure proofs particularly potent.

Nonrecursively Serializable Subgoals A set of subgoals is said to be serializable if there

exists an ordering of the subgoals such that, if the subgoals are achieved in that order, once

a subgoal is satis�ed it need never be violated in order to achieve the remaining subgoals [23,

page 39]. A problem is said to be serializable when the subgoals that comprise the problem's

goal conjunction are serializable. Since the appropriate goal ordering may depend on the

initial state, serializing di�erent problems may require distinct goal orderings. prodigy's

goal ordering control rules enable it to serialize its goals on a variety of di�erent problems.

A problem is said to be nonrecursively serializable if control rules that serialize its goals can

be learned from nonrecursive proofs of goal interactions. Most of the problems in Minton's

experiments are nonrecursively serializable, which enhances the coverage and reduces the

match cost of prodigy/ebl's goal-ordering rules.

Using the terms introduced above, I now consider each of prodigy/ebl's benchmark

problem spaces in turn.

6.1.1 The Blocksworld

prodigy's Blocksworld is a standard encoding of the Blocksworld problem space based

on the encoding in [41]. The Blocksworld exhibits short nonrecursive failure proofs, and



6 EXPERIMENTAL VALIDATION 26

fortuitous recursions for each subgoal in the space. As a result, prodigy/ebl is able to form

low-cost operator and bindings choice rules that obviate backtracking in achieving individual

subgoals. Thus, after prodigy/ebl learns from the appropriate examples, prodigy can

achieve any individual subgoal without search on every possible problem. Search is still

required to �nd the appropriate subgoal ordering.

There are �ve Blocksworld goal predicates. Most Blocksworld problems can be solved

without backtracking if the subgoals are achieved in the following order:

1. Achieve any on-table subgoals.

2. Achieve any clear subgoals.

3. Build any desired towers from the bottom up (on goals).

4. Achieve holding or arm-empty, if necessary.

prodigy/ebl is able to approximate this goal ordering strategy by learning goal-ordering

control rules from nonrecursive proofs of goal clobbering. As Minton points out, however,

prodigy/ebl is unable to learn the rule \build towers from the bottom up" in its full

generality, because the rule requires knowing which blocks are constrained to be below each

other in the goal, and prodigy/ebl can only determine this using recursive proofs whose

generality is limited [32, page 385]. Thus, not all Blocksworld problems are nonrecursively

serializable.

As a result, prodigy/ebl's ability to serialize prodigy's goals in the Blocksworld de-

pends on prodigy's problem distribution. prodigy/eblwill be e�ective when the problems

encountered by prodigy are covered by a small number of tower-height-speci�c rules, or

when the problems are nonrecursively serializable. In fact, most of the problems in Minton's

experiment were nonrecursively serializable. Thus, prodigy/ebl's ability to avoid goal

clobbering in the experiment was due both to the Blocksworld's structure and to Minton's

problem distribution.

The features of the Blocksworld discussed above enabled prodigy+ebl

13

to solve

Minton's Blocksworld test problems with little to no backtracking. Without backtracking

prodigy expands 2L+2 nodes to produce a solution of length L in each problem. The total

length of prodigy+ebl 's solutions is 650 steps, and the total number of problems is 100.

Thus, the minimal number of nodes prodigy+ebl could expand to produce its solutions

is (2 � 650 + 2 � 100) which is 1500. In fact, prodigy+ebl expanded 1689 nodes which is

only 1.13 times the minimal node count. In contrast, prodigy's minimal node count is 1400

(since it found shorter solutions to some problems) but it expanded 217,948 which is 155.67

times its minimal node count.

6.1.2 The Stripsworld

prodigy's Stripsworld is an extended version of the strips robot-planning problem

space [16]. The Stripsworld also exhibits nonrecursive failure and goal-clobbering proofs.

13

Recall that prodigy+ebl denotes prodigy guided by prodigy/ebl's rules.



6 EXPERIMENTAL VALIDATION 27

Thus, prodigy's primary challenge in the Stripsworld is �nding its way through each prob-

lem's room con�guration. Since prodigy has no \sense of direction," it �nds room con�gu-

rations di�cult to navigate. Furthermore, since the doors to di�erent rooms may be locked,

necessitating the retrieval of keys from rooms whose doors may themselves be locked and so

on, navigation can be quite di�cult in general.

prodigy's plans to move from one room to another invariably contain recursive calls

to the operator go-thru-dr. As a result, its proofs of both successful and failed paths

are recursive and thus path-length-speci�c. Potentially, therefore, the Stripsworld could

present a severe challenge for prodigy/ebl. In Minton's experiments, prodigy/ebl is

aided considerably by the fact that each of the problems takes place in one of three simple

room con�gurations (See [30, page 182]). As a result, the rules prodigy/ebl learns from

recursive proofs, which enable it to look ahead along certain paths, turn out to be reasonably

compact and frequently applicable. Although expensive to match, the rules are useful since

prodigy only encounters one of three room con�gurations.

6.1.3 The Schedworld

prodigy's Schedworld is a simpli�ed process planning and machine-shop scheduling prob-

lem space. prodigy/ebl speeds up prodigy in the Schedworld in two ways: by quickly

detecting unsolvable problems and by ordering top-level goals to avoid goal interactions.

While prodigy+ebl is almost four times faster than prodigy on Minton's test-problem

set, it is only 1.6 times faster when the top-level node rejection rules (which detect unsolvable

problems) and goal ordering rules are removed from the prodigy/ebl's rule set. The di�er-

ence in the number of nodes expanded is more striking. prodigy+ebl expands only 5,401

nodes compared with prodigy's 181,938 nodes in the Schedworld. With the node rejection

and goal ordering rules removed prodigy+ebl expands 110,611 nodes, demonstrating the

value of the removed rules.

Virtually all of the removed rules can be derived via nonrecursive proofs of failure or goal

interaction. Consider, for example, the goal of painting an object. Only two operators are

available for painting an object: spray-paint and immersion-paint. An object cannot

be painted if prodigy does not have-paint-for-immersion and the required paint is not

sprayable. This observation su�ces to prove that any problem that matches this description

is unsolvable. A graphical depiction of this nonrecursive proof of failure appears in Figure 8.

(PAINTED V10 V11)
IMMERSION-PAINT

(HAVE-PAINT-FOR-IMMERSION V11)

SPRAY-PAINT
(SPRAYABLE V11)

UNACH

UNACH

Figure 8: The PSG subgraph corresponding to the proof that an object cannot be painted,

using a certain paint, when neither sprayable nor have-paint-for-immersion hold for

that paint.

Remarkably, scheduling conicts rarely arise in Minton's problems. Thus, learning about



6 EXPERIMENTAL VALIDATION 28

such conicts, which would require analyzing recursive interactions, was not required for

success in Minton's experiment.

Blocksworld Stripsworld Schedworld

Nonrecursive failures: All subgoals Most All

Fortuitous recursions: All operators Few Most

Additional recursions: Goal interactions Room con�gs. Scheduling conicts

Nonrec. Serializable: Most goals Some Almost all

Table 4: A summary of the structural explanation of prodigy/ebl's success in Minton's ex-

periments. Note that in all problem spaces the \additional recursions," which are potentially

intractable for prodigy/ebl, appeared very infrequently due to the problem distributions

used.

6.2 The Power of Static PSG Analysis

The static program is a natural product of the structural theory. static learns by ana-

lyzing PSG subgraphs that correspond to nonrecursive proofs; it does not construct logical

proofs, analyze training examples, or even utilize an explicit domain theory. Instead, static

symbolically back-chains on prodigy's operator schemas to construct the PSG represen-

tation of a problem space. static traverses its PSGs, annotating each node with a label

indicating which operators and subgoals will succeed or fail, and a logical expression indi-

cating under what conditions the label holds. Finally, static derives control rules based on

this annotation. See [11] for a complete description of static's algorithms.

The previous section suggested that, on prodigy/ebl's benchmark tasks, e�ective con-

trol knowledge can be derived from nonrecursive proofs. The experiment described below

supports this claim by comparing the impact of static, prodigy/ebl, and control rules

written by human experts on prodigy/ebl's benchmark tasks.

Experimental Methodology In each problem space prodigy was run on one hun-

dred randomly generated problems. prodigy was run under three experimental conditions:

guided by static's rules, guided by prodigy/ebl's rules, and guided by control rules writ-

ten by human experts. prodigy/ebl's rules, the \human control rules," and the randomly

generated problem sets, were taken from Minton's experiments.

14

The experiments were run in Allegro Common Lisp on a SUN-4 workstation. prodigy's

problem-solving time, on each problem was bounded by 150 CPU seconds. A time bound

is necessary for the experiments to complete in reasonable time. This time bound is less

14

The prodigy system, control rules, benchmark problem spaces, and problem sets are publicly available

by sending mail to prodigy@cs.cmu.edu.



6 EXPERIMENTAL VALIDATION 29

restrictive than Minton's, and the machine used is faster. Thus, relative to Minton's ex-

periments, more problems were solvable within the time bound, more nodes were expanded

within the time bound, the average time per node was smaller, and the problem-solving time

per problem was smaller. This change does not inuence the experimental results because

all the comparisons made below are between data sets obtained on the same machine, under

the same time bound.

Data Presentation Figure 9 shows the total time (in CPU seconds) spent tackling

Minton's test problem set (Y-axis) graphed against a bound on CPU time (X-axis). The

Y-coordinate of a point on a curve in Figure 9 represents the amount of time spent by a

system summed over all the problems, given the time bound in the X-coordinate. When all

the problems are solved, the total problem-solving time (Y-axis) does not change as the time

bound increases (X-axis). Thus, when all the problems are solved the curve is horizontal

and its slope is zero.

The departure from Minton's cumulative graphs format is motivated by Segre et al.'s

argument that, when some problems are unsolved within the CPU time bound, changing the

bound can inuence the graphical relationship between systems being compared using the

cumulative graphs format [45]. The graphs used here are speci�cally designed to address this

problem, showing how the relative performance of the systems scales on larger and larger

CPU time bounds. Segre et al. also argue that the experimenter's choice of time bound can

bias the results of the experiment. To address this problem, Etzioni and Etzioni [13] develop

statistical hypothesis tests designed to analyze speedup learning data that is \truncated" due

to the use of time bounds. The tests show that the di�erences between prodigy+static

and prodigy+ebl are statistically signi�cant.

The graphs in Figure 9 show that prodigy+static is faster than prodigy+ebl in each

of prodigy/ebl's problem spaces. Problem-solving time is a function of the match cost and

the number of nodes pruned by the learned control rules. How does the number of nodes

expanded by prodigy+ebl compare with the number of expanded by prodigy+static?

Figure 10 graphs the total number of nodes expanded on all problems (Y-axis) against an

increasing bound on the number of nodes expanded in each problem (X-axis).

15

The node-

bound graphs in �gure 10 show that static's ability to curtail search, measured by the

number of nodes pruned, rivals prodigy/ebl's in each of prodigy/ebl's problem spaces.

6.3 PRODIGY/EBL is Foiled in the ABworld

Section 1.1 showed how a seemingly minute modi�cation to the Blocksworld, creating the

ABworld, foiled prodigy/ebl. This section explains this observation using the structural

theory. Before reporting in detail on the experiment, I explain how the ABworld was con-

structed. The presence and location of recursion is sensitive to problem space encoding.

A problem space can be \robbed" of nonrecursive proofs of failure by inserting operators.

Since all operators have to fail if a given subgoal is to fail, inserting an operator means that

15

The maximal node bound chosen was 120 nodes per problem.



6 EXPERIMENTAL VALIDATION 30

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

T
o

ta
l C

P
U

 T
im

e 
(B

lo
ck

sw
o

rl
d

)

0 20 40 60 80 100 120 140 160
Time Bound

Prodigy+STATIC
Prodigy+EBL
Prodigy+HUMAN

0.00

50.00

100.00

150.00

200.00

250.00

300.00

S
tr

ip
sw

o
rl

d

0 20 40 60 80 100 120 140 160
Time Bound

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

S
ch

ed
w

o
rl

d

0 20 40 60 80 100 120 140 160
Time Bound

Figure 9: Total problem-solving time in prodigy/ebl's problem spaces.



6 EXPERIMENTAL VALIDATION 31

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

T
o

ta
l N

o
d

es
 (

B
lo

ck
sw

o
rl

d
)

0 20 40 60 80 100 120
Node Bound

Prodigy+STATIC
Prodigy+EBL
Prodigy+HUMAN

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

S
tr

ip
sw

o
rl

d

0 20 40 60 80 100 120
Node Bound

0.00

500.00

1000.00

1500.00

2000.00

2500.00

S
ch

ed
w

o
rl

d

0 20 40 60 80 100 120
Node Bound

Figure 10: Total number of nodes expanded in prodigy/ebl's problem spaces.



6 EXPERIMENTAL VALIDATION 32

an and-node is necessarily added to any proof that the subgoal fails. When the inserted

operator results in a recursion, its addition transforms a nonrecursive proof into a recursive

one.

In the Blocksworld, the failure of any operator can be explained by a nonrecursive proof.

When explaining the success of an operator is recursive, explaining the failure of its sibling

operators is not. In the ABworld, by way of contrast, recursion occurs both on the route

to failure and to success. Consider, for example, choosing unstack to achieve the goal

(holding V) when the block is on the table. This path is doomed to failure in both problem

spaces. In the Blocksworld, the failure can be explained nonrecursively since trying to achieve

on leads to a goal cycle immediately (Figure 7, Section 4.2).

In the ABworld, in contrast, on can be achieved by the grasp-second-block macro-

operator. The macro-operator allows prodigy to grasp the block that's second-from-the-top

of a tower. The top block lands on the block that is third-from-the-top as a side e�ect (see

Figure 2, Section 1.1). Thus, prodigy has another means of achieving on which does not

immediately cause a goal cycle. Since prodigy explores the recursive path that begins

with the macro-operator before failing, prodigy/ebl is forced to analyze that path in

order to explain prodigy's failure. Consequently, explaining the failure of unstack in

the ABworld is recursive. The PSG representation of (a fragment of) this proof appears in

Figure 11. Contrasting the fragment with Figure 7 shows how adding the grasp-second-

block macro-operator to the Blocksworld makes explaining the failure unstack recursive.

(HOLDING V)
UNSTACK (ON V V2)

STACK (HOLDING V)

GRASP-SECOND-BLOCK

(CLEAR V)

(ON V V4)

(ON V4 V2)

(ARM-EMPTY)

recurs recurs

failure goal-cycle

recurs

recurs

recurs

recurs

holds

Figure 11: A fragment of the PSG subgraph corresponding to the proof that unstack fails

to achieve holding in the ABworld. For brevity, the recursive subgraph below the node

(clear V) is not shown. The subgraph leads the node (clear V) to be labeled recurs.

The above discussion explains how adding a macro-operator to the Blocksworld led to

prodigy/ebl's lackluster performance in the ABworld. In essence, the ABworld robs



6 EXPERIMENTAL VALIDATION 33

prodigy/ebl of key nonrecursive proofs, forcing it to analyze a complex and unwieldy

recursion. Much of the work on recursive proofs (e.g., the work on generalization-to-N dis-

cussed in Section 3.3.2) has focused on simple tail recursions of the sort found when clearing

a block in the Blocksworld. The ABworld recursions are far more complex. For example, in

the ABworld prodigy expands over eight-thousand nodes in the process of trying to grasp

the block at the bottom of a three-block tower. In order to learn, prodigy/ebl is forced to

analyze the resulting problem-solving trace with dire consequences.

Several additional aspects of the experiment are worth noting. First, not all ABworld

proofs are recursive as evidenced by the fact that static was able to learn several control

rules in this space. Second, the problem distribution used is highly skewed in that no problems

with more than �ve blocks or goal conjuncts were used. Third, all of the Blocksworld

predicates are unique attributes so that the cost of matching prodigy/ebl's control rules

scales linearly with the state size. Finally, prodigy/ebl's impact was signi�cantly improved

by its use of utility evaluation.

16

Despite all these factors (which aid EBL) prodigy/ebl

still failed to be e�ective in the ABworld demonstrating the di�culty of analyzing complex

recursions, even in relatively simple Blocksworld problems.

Experimental Methodology In the ABworld prodigy was tested on the �rst 30 prob-

lems of Minton's Blocksworld test-problem set. The massive searches required to solve

the larger problems in Minton's test set exhausted the machine's memory. Figure 3, in

Section 1.1, shows that prodigy/ebl was foiled in this problem space. Comparing Fig-

ure 3 with Figure 1, which shows prodigy/ebl's impact in the Blocksworld, demonstrates

that prodigy/ebl's impact in the ABworld did indeed degrade signi�cantly relative to the

Blocksworld.

6.4 Modi�ed Problem Distributions

Section 6.1 argues that prodigy/ebl is e�ective in the Blocksworld due to the nonrecursive

proofs found by prodigy/ebl. An important advantage of learning from nonrecursive

proofs is the ability to acquire control rules that are e�ective across changes in problem

distribution. I illustrate this point by showing how the rule set learned by prodigy/ebl

in the Blocksworld remains e�ective across two problem distributions that are very di�erent

from Minton's original distribution.

Experimental Methodology A Blocksworld problem consists of an initial state and a

goal conjunction. A distribution of Blocksworld problems is de�ned by a problem generator

which determines the initial state and the goal. Blocksworld states can be characterized by

the number of blocks, the height and number of towers, and whether the robot is holding a

block. Blocksworld goal conjunctions can be characterized by the length of the conjunctions

and their composition. I drastically modi�ed the distribution de�ned by Minton's problem

16

The results reported in this experiment and in all others are for prodigy/ebl using utility evaluation.



6 EXPERIMENTAL VALIDATION 34

generator, randomly generating �fty problems using the new distribution, and comparing

prodigy+ebl problem-solving time with prodigy's on the randomly generated problems.

The number of blocks in Minton's problem set ranged from three to twelve, and the

number of goal conjuncts ranged from one to ten. In the �rst experiment, the number

of blocks was increased to twenty and number of goal conjuncts was uniformly ten. The

results of the experiment on this problem distribution appear in Figure 12. Prodigy, running

with no control rules, was unable to solve any of the large Blocksworld problems within the

time bound (150 CPU seconds). Hence, the curve representing prodigy's problem-solving

time appears linear, and the di�erence between prodigy+ebl's problem-solving time and

prodigy's is understated. prodigy+ebl was able to solve all of the large Blocksworld

problems within the time bound.

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

T
o

ta
l C

P
U

 T
im

e

0 20 40 60 80 100 120 140 160
Time Bound

Prodigy
Prodigy+EBL

Figure 12: prodigy/ebl's impact on large Blocksworld problems. Due to the size of the

problems prodigy was unable to solve any of the problems within the time bound.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

T
o

ta
l C

P
U

 T
im

e

0 20 40 60 80 100 120 140 160
Time Bound

Prodigy
Prodigy+EBL

Figure 13: prodigy/ebl's impact on a modi�ed Blocksworld problem distribution.



7 RELATED WORK 35

Minton reports on three parameters used to determine the nature of his Blocksworld

problem set: the probability that a block was being held in the initial state, that a block was

on the table (as opposed to on another block) in the initial state, and the probability that

a goal conjunct was in fact satis�ed in the initial state. To modify the problem distribution

in the second experiment, the three parameters were changed from 1/3 to 2/3, from 1/3 to

1/2, and from 1/3 to 1/6. The intended impact of the change was to make towers in the

initial state shorter and to increase problem di�culty by requiring more goal conjuncts to

be actively achieved. The results of the experiment on this problem distribution appear in

Figure 13. In both cases, as in Minton's experiments, prodigy+ebl remained signi�cantly

faster than prodigy.

6.5 Complementary Target Concepts are Essential

We might hypothesize that, although prodigy/ebl relies strongly on the failure and goal

interaction target concepts in Minton's experiments, it might be able to compensate for

their absence by relying more heavily on learning from success. This hypothesis is important

because many EBL (and partial evaluation) systems rely exclusively on learning from success.

If the hypothesis were true, these systems would not need to be extended to cover a wider

range of target concepts. The structural theory suggests that this hypothesis is false due to

the arguments in Section 5.3. Briey, learning only from success in recursive problem spaces

will yield recursive proofs which, by the recursive heuristic, are unlikely to be useful. In

addition, once the problem solver has diverged from a solution path, the only control rules

that can curtail backtracking are control rules learned from complementary target concepts

such as failure and goal interaction.

To test the hypothesis prodigy/ebl was run, using the training procedure in Minton's

thesis, with its failure and goal interaction target concepts \turned o�." prodigy/ebl

only learned from success. I refer to prodigy guided only by learning from success as

prodigy+success. Figure 14 contrasts prodigy+success with prodigy+ebl and with

prodigy in prodigy/ebl's problem spaces. In all cases, prodigy+success was close to

prodigy, and much slower than prodigy+ebl. This observation invalidates the hypothesis

suggested above; the experimental results support the structural theory which argues that

complementary target concepts enhance the e�ectiveness of EBL.

This section relied on the structural theory to account for prodigy/ebl's success in

Minton's experiments and to informally explain several additional experimental results orig-

inally reported in [10]. The experiments, and their analysis, provide a degree of con�rmation

for the structural theory.

7 Related Work

A number of attempts have been made to analyze EBL's performance [6, 21, 28, 30, 44, 50].

Most of these analyses are very di�erent from the analysis in this paper, and are discussed



7 RELATED WORK 36

0.00

500.00

1000.00

1500.00

2000.00

2500.00

T
o

ta
l C

P
U

 T
im

e 
(B

lo
ck

sw
o

rl
d

)

0 20 40 60 80 100 120 140 160
Time Bound

Prodigy
Prodigy+EBL
Prodigy+SUCCESS

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

S
tr

ip
sw

o
rl

d

0 20 40 60 80 100 120 140 160
Time Bound

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

S
ch

ed
w

o
rl

d

0 20 40 60 80 100 120 140 160
Time Bound

Figure 14: prodigy/ebl's performance when learning only from success.



7 RELATED WORK 37

only briey below. One analysis [52, 53] independently reaches a conclusion that is closely

related to the recursive heuristic, and is discussed at greater length. No analysis of EBL has

derived conclusions akin to the nonrecursive heuristic or the structural thesis.

Mahadevan, Natarajan, and Tadepalli [28] present a formal model of learning as im-

proving problem-solving performance based on the framework in [39]. Based on the model,

Tadepalli [55] argues that EBL relies on structural constraints (e.g. serial decomposability)

and that, like inductive learning, EBL can be analyzed using Valiant's PAC framework [59].

Although Tadepalli's model is di�erent from my own, the spirit of the two approaches is

similar: we both seek to identify classes of problem spaces in which EBL results in tractable

problem solving. Cohen [6] describes a solution-path caching mechanism that operates in

polynomial time and provably improves performance (see also [5]). Both Cohen and Tade-

palli make useful connections between Valiant's framework and the learning of search control

knowledge.

Minton's thesis contains a thorough analysis of prodigy/ebl. Minton's focus, however,

is on the impact of prodigy/ebl's components on its performance. His thesis does con-

sider how problem space characteristics inuence the e�cacy of learning, but the discussion

is, by and large, qualitative and informal. For example, Minton points out that a prob-

lem space's \solution density and distribution" inuences the utility of di�erent learning

strategies. Minton himself concedes that \we have not adequately characterized the types

of domains for which the learning method produces good results." [32].

Greiner and Likuski [21] model EBL as adding redundant rules to a set of inference rules.

They report that, in general, �nding the optimal inference strategy in a redundant search

space is NP-hard. However, if a single EBL rule is added to a nonconjunctive, nonrecursive,

and irredundant rule set, then a simple extension to Smith's algorithm [51] can still yield an

optimal inference strategy in linear time. Most of the issues considered in this paper (e.g.

recursion and complementary target concepts) do not arise in Greiner and Likuski's model.

Subramanian and Feldman [52, 53] extend Greiner and Likuski's model to cover recursive

and conjunctive rule sets. Adopting Minton's utility criterion [33] they show that, relative to

an arbitrary probability distribution and theory, adding a redundant rule m can be justi�ed

exactly when

p

m

> C

mf

=(C

mf

+ C

d

�C

ms

)

where p

m

is the probability that m applies, C

mf

is the average cost of determining that m

does not apply, C

d

is the average cost of answering queries using the theory, and C

ms

is the

average cost of using m to answer a query. Subramanian and Feldman argue that estimating

the various costs and probabilities required to apply their inequality can be done by sampling

(in a manner similar to prodigy/ebl's utility evaluation module, perhaps). They go on to

show that \unless we make very strong assumptions about the nature of the distribution of

future problems, it is not pro�table to form recursive macro-rules via EBL."

Thus, based on an entirely di�erent model, Subramanian and Feldman reach a conclu-

sion similar to the recursive heuristic. Although a simple complexity analysis su�ces to

argue against learning from recursive proofs via EBL (the overhead of utilizing rules learned

from such proofs is exponential in the depth of the recursions encountered and the rules are



8 CONCLUDING REMARKS 38

recursion-depth-speci�c), they rely on a more elaborate cost model of horn-clause theorem

proving. This detailed model is motivated by their broader project which seeks to \quan-

titatively estimate" the cost of inference. The formal analysis in their paper is supported

by experiments using Shavlik's [47] circuit synthesis domain theory, providing further con-

�rmation of the value of the recursive heuristic. Subramanian and Feldman did not reach

conclusions akin to the nonrecursive heuristic, or the structural thesis.

8 Concluding Remarks

I conclude with a critique of the structural theory and a discussion of directions for future

work.

8.1 Critique of the Structural Theory

Although the structural theory has been tested extensively on several problem spaces using

the prodigy system, additional experiments using di�erent problem solvers, problem spaces,

and target concepts are necessary to further test and re�ne the theory. Several directions

for investigation are particularly intriguing:

� Can we substitute \short" for \nonrecursive" and \long" for \recursive" in the struc-

tural theory?

17

Although short rules are guaranteed to have low-match cost per node,

Proposition 5 (Section 2.3) shows that short rules will not necessarily yield average

speedup. In fact, static's nonrecursive proofs resulted in control rules of widely-

varying lengths demonstrating that the terms \short" and \nonrecursive" are not co-

extensive. Furthermore, as explained in Section 5.1.1, the \short heuristic" would lead

EBL to learn from bounded-depth recursive proofs forbidden by the recursive heuristic.

While the long/short dichotomy is clearly distinct from the recursive/nonrecursive

one, it is worth investigating the performance of an EBL system restricted to acquiring

only short rules. To study this issue, the terms \long" and \short" would have to be

de�ned precisely. Does a \short" proof have the same length in all problem spaces?

Or is \short" a function of problem-space parameters such as the number of operators

and predicates?

� Recall that complementary target concepts are concepts, such as failure in

prodigy/ebl, whose proofs are not direct translations of the problem solver's

plans. The structural theory advocates learning from complementary target concepts

in order to obtain nonrecursive explanations of the problem solver's behavior. In

prodigy/ebl's benchmark problem spaces, all but one of static's rules were learned

from complementary target concepts. Is it possible that learning from complemen-

tary target concepts, rather than learning from nonrecursive proofs, is actually the

key to the success of EBL? To test this conjecture we need to identify tasks where

17

This insightful question was posed by Paul Rosenbloom and Prasad Tadepalli.



8 CONCLUDING REMARKS 39

complementary target concepts yield recursive proofs, and compare the e�ectiveness

of EBL, learning from complementary concepts, to its e�ectiveness learning only from

nonrecursive proofs.

� Problem space Graphs (PSGs) are de�ned for backward-chaining problem solvers. It

is not entirely clear what the corresponding notion is for forward-chaining problem

solvers. Consequently, determining the precise scope of the structural thesis remains

an open question.

� Can the recursive heuristic be re�ned to exclude cases in which EBL will succeed

when learning from recursive proofs? When will EBL be e�ective on problem spaces

with bounded recursive depths such as the Eightpuzzle or the three-disk Tower of

Hanoi? How will EBL fare when generalization-to-N methods (seeking broad coverage

for EBL's knowledge) are applied to unique-attribute problem space (ensuring low local

match cost for EBL's weakest preconditions)?

8.2 Task Encoding and EBL

In some cases EBL is e�ective and in others it is not. The structural theory explains this

observation in two steps. First, the theory exhibits a correspondence between EBL's proofs

and the PSG, a graph representation of problem spaces. Second, the theory shows how

certain subgraphs (corresponding to nonrecursive proofs) aid EBL whereas other subgraphs

(corresponding to recursive proofs) hinder EBL. Thus, structure of the PSG is a major factor

inuencing the e�ectiveness of EBL.

The PSG representation changes with the problem space encoding. In practice, problem

space encoding is often modi�ed and tweaked repeatedly until EBL generates e�ective control

knowledge. As Letovsky [27] put it: \It is not the case that EBG systems can take any, or

even most, ine�cient encodings of a task and turn out e�cient versions; rather it is sometimes

the case that there exists some encoding of a task for which an EBG system can do something

reasonable." Today, successfully applying EBL is something of a black art. If EBL is to be

more broadly useful, this art needs to mature into a well-understood body of knowledge.

Given a task, the ideal theory would recommend an appropriate problem space encoding,

problem solving method, and \brand" of EBL (Which target concepts? What operationality

criterion? Macros versus control rules? etc.). The structural theory of EBL is only a �rst

step in this direction. The theory does, however, provide an account of EBL's performance

that is based on problem-space characteristics, providing a problem-space designer with a

principled basis for making representational choices.

Whether a problem space yields recursive or nonrecursive proofs depends, in part, on

the problem space's PSGs. Since minor modi�cations to the problem space's representation

can result in major changes to its PSG, the problem-space designer has to understand the

impact of di�erent representational choices on the PSG. For example, reordering operator

preconditions has no appreciable impact on the PSG, suggesting that this transformation

will not aid EBL. Changing problem-space predicates, in contrast, can rid the problem space



REFERENCES 40

of troublesome recursions. In the Blocksworld, for example, deciding whether one block is

above another block requires a recursive computation. If the Cartesian coordinates of each

block are speci�ed, however, determining whether one block is above another merely requires

comparing the X-coordinates of the blocks, ridding the PSG of a recursion. Thus, the theory

suggests a general methodology for understanding the impact of problem space encoding on

EBL: catalog the impact of representational transformations on the location and presence of

recursion in PSGs.

Acknowledgments

This paper is based on my Ph.D. dissertation at Carnegie Mellon University, which was

supported by an AT&T Bell Labs Ph.D. Fellowship. Thanks are due to my advisor, Tom

Mitchell, to the members of my committee, Jaime Carbonell, Paul Rosenbloom, and Kurt

Vanlehn, and to Allen Newell for their impact on the dissertation. Special thanks are due

to Steve Minton|whose thesis work made studying prodigy/ebl possible. Steve Hanks,

Craig Knoblock, Phil Laird, Neal Lesh, Alicia P�erez, Prasad Tadepalli, Dan Weld and the

anonymous reviewers provided helpful comments on earlier drafts.

References

[1] Neeraj Bhatnagar and Jack Mostow. Adaptive search by explanation-based learning

of heuristic censors. In Proceedings of the Eighth National Conference on Arti�cial

Intelligence, 1990.

[2] Daniel G. Bobrow. Retrospectives: A note from the editor. Arti�cial Intelligence, 23,

1984.

[3] Henrik Bostrom. Generalizing the order of goals as an approach to generalizing number.

In Proceedings of the Seventh International Conference on Machine Learning. Morgan

Kaufmann, 1990.

[4] P. Cheng and J. G. Carbonell. The FERMI system: Inducing iterative macro-operators

from experience. In Proceedings of the Fifth National Conference on Arti�cial Intelli-

gence, pages 490{495, 1986.

[5] William W. Cohen. Concept Learning Using Explanation Based Generalization as an

Abstraction Mechanism. PhD thesis, Rutgers University, 1990.

[6] WilliamW. Cohen. Using distribution-free learning theory to analyze chunking. In Pro-

ceedings of the Eighth Biennial Conference of the Canadian Society for Computational

Studies of Intelligence. Morgan Kaufmann, 1990.

[7] R. Davis. Meta-rules: reasoning about control. AI, 15:179{222, 1980.



REFERENCES 41

[8] G. F. Dejong and R. J. Mooney. Explanation-based learning: An alternative view.

Machine Learning, 1(1), 1986.

[9] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cli�s, N.J.,

1976.

[10] Oren Etzioni. A Structural Theory of Explanation-Based Learning. PhD thesis, Carnegie

Mellon University, 1990. Available as technical report CMU-CS-90-185.

[11] Oren Etzioni. Acquiring search-control knowledge via static analysis. Technical Report

92-04-01, University of Washington, 1992.

[12] Oren Etzioni. An asymptotic analysis of speedup learning. In Proceedings of the Ninth

International Conference on Machine Learning. Morgan Kaufmann, 1992.

[13] Oren Etzioni and Ruth Etzioni. Statistical methods for analyzing speedup learning

experiments. Submitted for publication., 1992.

[14] Oren Etzioni and Steven Minton. Why EBL produces overly-speci�c knowledge: A

critique of the PRODIGY approaches. In Proceedings of the Ninth International Con-

ference on Machine Learning. Morgan Kaufmann, 1992.

[15] Oren Etzioni and Tom M. Mitchell. A comparative analysis of chunking and decision-

analytic control. In The Soar Papers: Research on Integrated Intelligence. MIT Press,

Cambridge, MA, 1992. To Appear.

[16] R. Fikes, P. Hart, and N. Nilsson. Learning and executing generalized robot plans.

Arti�cial Intelligence, 3(4), 1972.

[17] Michael R. Garey and David S. Johnson. Computers And Intractability A guide to the

Theory of NP-Completeness. Freeman, New York, NY, 1979.

[18] M.R. Genesereth. An overview of meta-level architecture. In Proc. AAAI, Washington,

D.C., August 1983. AAAI.

[19] Jonathan Gratch and Gerald Dejong. Composer: A probabilistic solution to the utility

problem in speed-up learning. In Proceedings of AAAI-92, 1992.

[20] Russell Greiner. A solution to the ebl utility problem. In Proceedings of AAAI-92, 1992.

[21] Russell Greiner and Joseph Likuski. Incorporating redundant learned rules: A pre-

liminary formal analysis of EBL. In Proceedings of the Eleventh International Joint

Conference on Arti�cial Intelligence, 1989.

[22] Kevin Knight. Uni�cation: A multidisciplinary survey. Computing Surveys, 21(1),

March 1989.



REFERENCES 42

[23] R. E. Korf. Macro-operators: A weak method for learning. Arti�cial Intelligence,

26:35{77, 1985.

[24] Robert A. Kowalski. A proof procedure using connection graphs. Journal of the ACM,

22:572{595, 1974.

[25] J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: An architecture for general intelli-

gence. Arti�cial Intelligence, 33:1{64, 1987.

[26] J. E. Laird, P. S. Rosenbloom, and Newell A. Chunking in Soar: The anatomy of a

general learning mechanism. Machine Learning, 1(1):11{46, 1986.

[27] Stanley Letovsky. Operationality criteria for recursive predicates. In Proceedings of the

Eighth National Conference on Arti�cial Intelligence, 1990.

[28] Sridhar Mahadevan, B. K. Natarajan, and Prasad Tadepalli. A framework for learning as

improving problem-solving performance. In Proceedings of the AAAI Spring Symposium

on Explanation-Based Learning, 1988.

[29] Steven Minton. EBL and weakest preconditions. In Proceedings of the AAAI Spring

Symposium on Explanation-Based Learning, pages 210{214, 1988.

[30] Steven Minton. Learning E�ective Search Control Knolwedge: An Explanation-Based

Approach. PhD thesis, Carnegie Mellon University, 1988. Available as technical report

CMU-CS-88-133.

[31] StevenMinton. Quantitative results concerning the utility of explanation-based learning.

In Proceedings of the Seventh National Conference on Arti�cial Intelligence. Morgan

Kaufmann, 1988.

[32] StevenMinton. Quantitative results concerning the utility of explanation-based learning.

Arti�cial Intelligence, 42(2-3), March 1990.

[33] Steven Minton, Jaime G. Carbonell, Oren Etzioni, Craig A. Knoblock, and Daniel R.

Kuokka. Acquiring e�ective search control rules: Explanation-based learning in the

Prodigy system. In Proceedings of the Fourth International Workshop on Machine

Learning, 1987.

[34] Steven Minton, Jaime G. Carbonell, Craig A. Knoblock, Daniel R. Kuokka, Oren Et-

zioni, and Yolanda Gil. Explanation-based learning: A problem-solving perspective.

Arti�cial Intelligence, 40:63{118, 1989. Available as technical report CMU-CS-89-103.

[35] Steven Minton, Craig A. Knoblock, Daniel R. Kuokka, Yolanda Gil, Robert L. Joseph,

and Jaime G. Carbonell. Prodigy 2.0: The manual and tutorial. Technical Report

CMU-CS-89-146, Carnegie Mellon University, 1989.



REFERENCES 43

[36] Tom M. Mitchell. Version Spaces: An Approach to Concept Learning. PhD thesis,

Stanford University, December 1978. also Stanford CS report STAN-CS-78-711, HPP-

79-2.

[37] Tom M. Mitchell, John Allen, Prasad Chalasani, John Cheng, Oren Etzioni, Marc

Ringuette, and Je�rey C. Schlimmer. Theo: A framework for self-improving systems.

In K. VanLehn, editor, Architectures for Intelligence. Erlbaum, 1991.

[38] Tom M. Mitchell, Rich Keller, and Smadar Kedar-Cabelli. Explanation-based general-

ization: A unifying view. Machine Learning, 1(1), 1986.

[39] B. K. Natarajan and Prasad Tadepalli. Two new frameworks for learning. In Proceedings

of the Fifth International Conference on Machine Learning, 1988.

[40] Allen Newell and Herbert A. Simon. Human Problem Solving. Prentice Hall, 1972.

[41] Nils J. Nilsson. Principles of Arti�cial Intelligence. Tioga Publishing, 1980.

[42] M. Alicia P�erez and Oren Etzioni. DYNAMIC: a new role for training problems in EBL.

In Proceedings of the Ninth International Conference on Machine Learning. Morgan

Kaufmann, 1992. An expanded version available as technical report CMU-CS-92-124.

[43] A. E. Prieditis. Discovery of algorithms from weak methods. In Proceedings of the

international meeting on advances in learning, pages 37{52, 1986.

[44] Paul Resnick. Generalizing on multiple grounds: Performance learning in model-based

troubleshooting. Master's thesis, M.I.T., 1988. Available as AI Lab Technical Report

1052.

[45] Alberto Segre, Charles Elkan, and Alex Russell. A critical look at experimental evalu-

ations of EBL. Machine Learning, 1991. forthcoming methodological note.

[46] Peter Sestfot. Automatic call unfolding in a partial evaluator. In D. Bjorner, A. P.

Ershov, and N. D. Jones, editors, Partial Evaluation and Mixed Computation. Elsevier

Science Publishers, 1988. Workshop Proceedings.

[47] Jude W. Shavlik. Acquiring recursive concepts and iterative concepts with explanation-

based learning. Machine Learning, 5(1), 1990.

[48] Jude W. Shavlik and G. F. DeJong. Building a computer model of classical mechanics.

In Proceedings of the Seventh Annual Conference of the Cognitive Science Society, pages

351{355, 1985.

[49] Peter Shell and Jaime G. Carbonell. Towards a general framework for composing dis-

junctive and iterative macro-operators. In Proceedings of the Eleventh International

Joint Conference on Arti�cial Intelligence, 1989.



REFERENCES 44

[50] Je� Shrager, Tad Hogg, and Bernardo A. Huberman. A graph-dynamic model of the

power law of practice and the problem-solving fan-e�ect. Science, 242:414{416, 1988.

[51] David E. Smith. Controlling Inference. PhD thesis, Stanford, 1986. Available as

technical report STAN-CS-86-1107.

[52] Devika Subramanian and Ronen Feldman. The utility of EBL in recursive domain

theories. In Proceedings of the Eighth National Conference on Arti�cial Intelligence,

1990.

[53] Devika Subramanian and Ronen Feldman. The utility of EBL in recursive domain

theories. An extended version of the AAAI 1990 paper., 1991.

[54] Devika Subramanian and Scott Hunter. Measuring utility and the design of provably

good ebl algorithms. In Working Notes of the AAAI Spring Symposium on Knowledge

Assimilation, Menlo Park, CA, 1992. AAAI Press.

[55] Prasad Tadepalli. A formalization of explanation-based macro-operator learning. In

Proceedings of the Twelveth International Joint Conference on Arti�cial Intelligence,

1991.

[56] M. Tambe, Newell A., and P. Rosenbloom. The problem of expensive chunks and its

solution by restricting expressiveness. Machine Learning Journal, 5(3):299{348, 1990.

[57] Milind Tambe and Paul Rosenbloom. Eliminating expensive chunks by restricting ex-

pressiveness. In Proceedings of the Eleventh International Joint Conference on Arti�cial

Intelligence, 1989.

[58] Je�rey D. Ullman. Database and Knowledge-base systems, volume II. Computer Science

Press, 1989.

[59] Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11), 1984.

[60] Frank van Harmelen and Alan Bundy. Explanation-based generalisation = partial eval-

uation. Arti�cial Intelligence, 36, 1988. Research Note.


