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Abstract

We de�ne runtime code generation (RTCG) as dynam-

ically adding code to the instruction stream of an exe-

cuting program. It has been in use since the 1940s, but

fell from favor because changing hardware and software

technologies made it less pro�tabile and its ad-hoc im-

plementation made it nonportable. In this paper we

argue for it's return. We base our arguments on on-

going changes in hardware technology, software tech-

nology, and workloads. Each of these changes brings

about circumstances in which dynamically optimized

code can execute fast enough to pay for the runtime

overhead of creating it. We support our analysis with

concrete examples. We compare static-code and RTCG

implementations of several applications and show that

RTCG leads to performance improvements.

Keywords: computer architecture; code generation;

compiler optimization; partial evaluation; performance

1 Introduction

We de�ne runtime code generation (RTCG) as dynam-

ically adding code to the instruction stream of an exe-

cuting program. For example, a user may interactively

enter an expression that is to be evaluated once for each

item in a data set, such as a regular expression to match

lines in a �le. An RTCG implementation dynamically

compiles the expression into a special-case function and

then calls the function once per datum. By comparison,

a static-code implementation translates the expression

to some intermediate form and then interprets it with

a statically-compiled interpreter.

In some systems the view of RTCG is strongly in-


uenced by the de�nition of \code". For example, the

The �rst two authors may be reached at Department of

Computer Science and Engineering, FR-35 University of Wash-

ington Seattle, Washington 98195. The third author may be

reached at Tera Computer Company 400 N. 34th Street, Suite

300, Seattle, Washington 98103.

This work was supported by NSF PYI Award #MIP-9058-439

and Sun Microsystems, Inc.

bytecodes for a virtual machine may be executed by a

program, by microcode, or directly by hardware. We

restrict ourselves to instructions that are executed di-

rectly by hardware: runtime generation of native ma-

chine code.

Runtime code generation has been in use since the

earliest programmable-store computers. In those days,

memory was tight and clever ad-hoc self-modifying code

sequences were often smaller and thus faster. Large

programs were run by overlaying memory. Later, in-

struction update was sometimes codi�ed. For example,

procedure linkage on the CDC 6600 was implemented

by patching the return instruction on procedure entry.

Changing technology reduced the demand for RTCG.

Memories grew, reducing the I/O component of mem-

ory access times. Text sharing made reentrant code

important. The proliferation of architectures and im-

plementations meant that portability became a major

issue. Portability was achieved using high-level lan-

guages, and most lacked ways of expressing the dynamic

generation of new code. Finally, monolithic compilers

encouraged a dichotomy between compile time and run

time, and compiler writers, architects and general users

gradually forgot that A's data is B's code, and that

nothing fundamentally prevented A and B from being

the same.

Why do we bring it up again? One reason is that de-

spite technology advances and bad press, RTCG is still

being used in a large number of research and produc-

tion systems. It is functionally required for incremen-

tal compilers [PS84], dynamic linkers [HO91, sys90],

and debuggers [Kes90]. Other systems use RTCG to

improve performance: high-performance virtual ma-

chines [DS84, May87], interactive systems that de-

mand good response time on repeated actions or inner

loops [PLR85, MP89], and database query optimiza-

tion [CAK

+

81]. Finally, at least one processor uses

runtime generation of microcode [DM87], and runtime

programming of gate arrays has been proposed [JFnt].

A second reason for reexamining RTCG is that hard-

ware implementations are changing in ways that may
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again favor it. When memories got larger, code size

became less important. However, small fast memo-

ries have been reintroduced as caches. Current trends

are for smaller �rst-level caches and larger penalties for

misses [Jou90, MBB

+

91]. In addition, implementation-

dependent compiler optimizations, such as loop un-

rolling, can a�ect cache performance substantially;

RTCG lets a program dynamically adapt to particular

implementations within a family of architectures.

Third, recent advances in software methods may

solve some portability and programability problems.

Machine-dependencies can be encapsulated in a re-

targetable code generator, while instruction space

coherency and protection can be hidden using a

portable interface [Kep91]. In addition, partial eval-

uation [JSS89] may be useful in automatically deriving

runtime compilers that are optimized for the particular

application.

Two original and major problems still remain. First,

many systems use RTCG in ad-hoc ways, so their gen-

erality and portability su�er. Second, although the

large number of existing systems suggest that RTCG

can be pro�table, there are few comparisons of RTCG

and statically-compiled alternatives. There are no mod-

els or metrics to decide when designers should manually

apply RTCG, nor are there algorithms to do so auto-

matically. Only intuition and experience guide its use.

Despite these problems, RTCGmerits serious investi-

gation. There is still a functional need for it in some sys-

tems, changing hardware may favor its use, and chang-

ing software may make it easier to use. These factors

compel us to undertake empirical studies, develop bet-

ter models, and search for ways to apply it automati-

cally and portably.

In this paper, we discuss factors that led to the dis-

missal of RTCG from the programmer's toolkit (x2) and

recent advances in hardware and software that may now

make it more useful (x3). We then present a cost model

that compares static and runtime compiling and con-

sider tradeo�s between dynamic compile costs and code

quality (x4). We examine several applications that use

RTCG pro�tably, and discuss reasons for the improve-

ment (x5). Finally, we discuss some of the open RTCG

issues (x6).

2 The Fall From Favor

Runtime code generation was used in early systems,

but lost popularity as practices changed and as other

concerns became more important.

In older systems, memory space was always tight.

RTCG was used in a variety of ways to build programs

that �t in small memories. For example, self-modifying

sequences were sometimes smaller. Parts of the pro-

gram could be overlaid and moved to and from disk.

Fast executable code could be generated on demand

from a compact representation. As �rst-level memories

became larger, program size became relatively unim-

portant to program performance. It was possible to

expend memory, statically generating many specialized

alternatives of a general procedure. Thus, RTCG be-

came less pro�table.

Portability became an issue with the proliferation

of architectures and implementations, and the cost of

writing and maintaining software for each platform.

Many portability problems were solved by switching

to high-level languages, but most high-level languages

lack constructs for specifying RTCG. Therefore, RTCG

was often done with a template compiler that \patches

together" machine-code fragments at runtime. Such

RTCG implementations had good performance, but

had to be written partly in assembly language. As an

alternative, running programs could generate source for

a high level language, feed that source to a traditional

\heavyweight" compiler, then dynamically link the gen-

erated object code with the running program. However,

invoking the \heavy" compiler was so expensive that it

was far less likely RTCG would be pro�table.

Portability between implementations of one architec-

ture was also a problem. A program might run correctly

on one implementation and fail on another. For exam-

ple, a machine without an instruction cache or prefetch

will \see" instruction space changes immediately, while

an implementation with caches may not see changes

until the old instruction is knocked out of the cache.

Debugging RTCG was di�cult because many uses

were unstructured. Unstructured RTCG makes it hard

to predict how and when the code changes, making it

di�cult to reason about the program. Further, it is not

obvious how to debug code that is generated dynami-

cally. Thus, static code was cheaper since it was easier

to reason about.

Finally, few comparative studies demonstrated

RTCG's performance bene�ts, so it was di�cult to

determine which programs were appropriate for an

RTCG implementation. For example, it is reported that

database queries are much faster if the query is dynam-

ically optimized and compiled [CAK

+

81]; yet there are

no published quantitative analyses of when, how much,

and why it is faster.

3 Changes In Technology

Recent changes in hardware and software make RTCG

more likely to be useful. Some changes, such as caches,

recreate the initial motivations for self-modifying code,

and others, such as portable code generator interfaces,

solve previous problems.
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3.1 Hardware Technology

Large memories made program performance indepen-

dent of code size. However, caching, especially the cur-

rent trend of smaller �rst-level caches and growing miss

penalties [Jou90, MBB

+

91], has reintroduced the size

cost.

Implementations of the same architecture may have

caches whose size and miss penalties vary by more than

an order of magnitude. Statically-compiled binaries

must run well on all members of an architectural family.

So, for example, loops can be unrolled statically only

for the smallest cache size in the target family, but can

be unrolled dynamically for any cache con�guration.

A specialized routine produced by RTCG may be

smaller than its statically-compiled general-purpose

counterpart and may �t into a cache where the larger

one will not. For example, a dynamically compiled

bitblt routine may be one-quarter the size of the

static-code version [PLR85]. In-cache execution can

increase the instruction issue rate and reduce out-of-

cache tra�c. Dynamically-generated code may also

have fewer branches than the static code, thus improv-

ing prefetching performance. Finally, dynamic special-

ization may eliminate dynamically dead code and place

dynamically-adjacent code adjacent in the cache, reduc-

ing cache con
icts.

Variables that are constant over a dynamically-

compiled routine's life (runtime constants) may be used

as immediate literals in the dynamically-compiled code,

just as normal constants are literals in static code.

This has several bene�ts. Immediates in the instruc-

tion stream may be prefetched into the cache. The cost

for accessing the immediates may be less than an ex-

plicit load. Finally, values may be read simultaneously

from instruction and data caches, increasing the e�ec-

tive memory bandwidth.

Another hardware trend is that CPUs are getting

faster relative to the memory hierarchy. Thus, it may be

pro�table to expend CPU time to alleviate other bot-

tlenecks. For example, it might sometimes be better

to generate code at runtime than to page in statically-

compiled code [DS84, SC91]

3.2 Software Technology

Several trends in software technology may also con-

tribute to RTCG's utility. First, as optimizers have

improved, interest has turned from data-independent

optimizations to data-dependent optimizations. For

example, pro�les are used to improve branch predic-

tion and drive code placement. However, a pro�le rep-

resents an execution that might not be typical of a

given execution [Wal91, McF91]. By comparison, data-

dependent optimizations done at runtime use the pro-

gram's real data values and real behavior. Dynamic

compilation would also allow the choice of data place-

ment algorithms for a particular layout to be made at

runtime [SC91].

Second, retargetable compilers should allow RTCG

problems to be stated in a machine-independent way

without sacri�cing either the quality of the machine-

dependent code or the speed of generating it. Tradi-

tionally, implementors could either use a fast but non-

portable template compiler, or use a portable compiler

and su�er long dynamic compile times. Current auto-

matic code generator generators can build code gener-

ators that rival hand-written code generators in both

speed and code quality, and should be able to produce

object code directly from a portable intermediate rep-

resentation, executing as few as a few hundred instruc-

tions per instruction generated [FH91], a rate that is

comparable to hand-written code generators. In some

circumstances, dynamic compiler performance can be

improved even further using a template compiler (to be

discussed in x4.3). The extra specialization makes code

generation even faster, though perhaps at the expense

of code quality. One of our experiments (x5.3) shows

that templates can be derived automatically from a

machine-independent speci�cation, and that code gen-

eration can still be done in a few tens of instructions

executed per instruction generated.

Third, using a code generator hidden behind a good

interface will hide the details of instruction space

changes. That will then allow instruction caching is-

sues to be encapsulated in a portable interface, solving

instruction cache portability problems [Kep91].

Finally, partial evaluation may be able to derive

fast special-purpose compilers automatically from their

general-purpose counterparts plus the source code for

the routine to be compiled. Although partial evaluation

itself is a well-established technique used in compiler

transformations [Har77], our initial experiments with

Similix [JSS89] lead us to believe that partially evalu-

ating a program as large and complex as a conventional

compiler or code generator is not yet possible. However,

RTCG will clearly bene�t from advances in the practice

of partial evaluation.

3.3 Workload Changes

A third change is in workload composition. RTCG's

(typically) large startup times mean that for small

datasets, it is often more expensive. However, for larger

datasets, the cost of compilation can be amortized over

more invocations of the code, so RTCG can have asymp-

totically better performance.

RTCG can also be used to 
atten indirection needed

by some new workloads. For example, traditional cache

simulators had a small number of parameters describ-

ing the con�guration of a single cache, such as cache

and block size and associativity. Newer multi-cache
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simulators have over a hundred con�guration parame-

ters describing, in addition to the previous characteris-

tics, each cache's latency, bandwidth, and relative miss

costs. The cache parameters vary from run to run, but

are �xed over any given run. Thus, a runtime compiler

can optimize the simulator for each run, compiling the

cache parameters into the code as constants [PHH88].

4 Performance Opportunities

Runtime code generation can lead to better perfor-

mance simply because a compiler can generate better

code when it has more information, and all information

is available at runtime. For example, if a variable be-

comes a runtime constant, then it can be propagated,

triggering constant folding and dead code elimination;

if an array is known at runtime to be small, then itera-

tions may be fully unrolled. The crux of the argument

is that, although it costs something to run the compiler

at runtime, RTCG can sometimes produce code that is

enough faster to pay back the dynamic compile costs.

(We assume that most code is noncritical and is com-

piled statically; it is, therefore, reentrant and sharable.

Only the small part of the code that is a bottleneck is

compiled dynamically.)

A static compiler can generate code using one of three

strategies. It can generate generic code that works for

all input values but which may be ine�cient. Alter-

natively, it can generate fully-cased code with a pro-

logue that dispatches to a di�erent optimized fragment

for each input value; however, there may be a huge

code size explosion. Third, the compiler can generate

common-cased code, with a generic routine plus a spe-

cialized fragment for each common case; unfortunately,

it may be hard to identify the common cases.

In comparison, RTCG can generate code that is spe-

ci�c to the particular data values of a particular invoca-

tion. Thus, every case can get code that is as specialized

as the fully-cased code, but the static compiler does not

need to generate code for every possible alternative.

We could take this too far. Note that all data is avail-

able at runtime, so the dynamic compiler could con-

sume all input data and produce the �nal result. This

is equivalent to simply running the statically generated

code. Our goal is to �nd a balance point where the

runtime compiler consumes some but not all input data,

does little work, produces substantially better code, and

then runs the improved code on the remaining data.

4.1 Bitblt: An Example

We now examine bitblt, a bit-transfer operation

used frequently in the core of raster graphics systems

[PLR85]. The example is used to show how runtime

j = dst.left

mask = lmask

a = src[src.left]

for i = src.left+1 to src.right do

b = src[i]

m = (a << ls) | (b >> rs)

case (op) of

AND: dst[j]=dst[j]^((~m&dst[j])&mask)

NOT: dst[j]=dst[j]^mask

OR: dst[j]=dst[j]|(m&mask)

... 13 more cases ...

end case

j = j + 1

... end-of-line tests ...

end for

Figure 1: Prototypical bitblt Inner Loop

data can be used to improve performance and moti-

vates the cost model presented in x4.2.

bitblt merges a source rectangle with a destination

rectangle, using operations such as and, or, xor, etc.

It is general, being able to merge rectangles of all sizes

and alignments, using any merge operator. That same

generality makes it di�cult to implement e�ciently.

The outer loop of bitblt executes once per horizon-

tal line in the source rectangle. The inner loop reads

the source rectangle one machine word at a time and

combines it with a word of the destination according to

a speci�c operator. The inner loop is complicated, be-

cause the source and destination may start at arbitrary

bit boundaries, need not be aligned with each other and

may overlap. Consequently, each source word must be

aligned with its destination word, and some of the left-

most and rightmost bits of each destination line may

be una�ected.

Consider the prototypical inner loop from bitblt,

shown in a C-like language in Figure 4.1. The param-

eter op is constant over the entire call. Thus, for any

one invocation of bitblt, the case statement selects

the same alternative each time through the loop. Inter-

changing the for loop and the case statement elim-

inates the case on each iteration of the inner loop,

but at the expense of replicating the inner loop sixteen

times, once for each alternative in the case. Similarly,

variables ls and rs are constant over the inner loop,

enabling optimizations of shifts and masks. The code

can be further optimized for overlapping rectangles. Al-

though each of the optimizations can be done statically,

each requires replicating the code. Fully-casing may

lead to an implementation as large as 1MB [PLR85].

Common-casing is hard, since a one-pixel change in the

rectangles' positions or size can a�ect half a dozen op-
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Figure 2: Startup and Asymptotic Costs

timizations.

A RTCG implementation dynamically compiles a

custom inner loop on entry to bitblt. For any given

invocation, the dynamic compiler performs all the op-

timizations listed above, and, in addition, can perform

optimizations that the static compiler cannot. For ex-

ample, the loop may be unrolled for the speci�c line

length, which is pro�table for short inner loops.

For large rectangles, the optimizations more than pay

for the compile time. A straightforward RTCG ver-

sion of bitblt is about 10 times faster than a straight-

forward static-code implementation [Mir87]. An opti-

mized RTCG bitblt runs twice as fast as machine-

dependent static code and four times as fast as

portable C code that has been partially but not fully

cased [Loc87]. The dynamic compiler is substantially

smaller than the statically optimized bitblt, 2.8KB in-

stead of 8.0KB [Loc87].

bitblt illustrates how RTCG can improve code qual-

ity and also demonstrates that the bene�t is data-

dependent: for small rectangles, the compile time would

always be larger than any savings from dynamic compi-

lation. Thus, small rectangles are handled by statically-

generated code [PLR85, Loc87].

4.2 Cost Model

We now generalize several performance factors exposed

in the bitblt example. We model execution time using

a simple linear model, cost = startup +m�N , where

the total execution time (cost) is a function of some

startup cost (startup), the marginal cost per data item

(m) and the number of data items (N). Figure 4.2

shows a simple model of the execution cost of several

implementations of a hypothetical code fragment.

When running static code, such as a loop, over some

dataset, the total cost is the cost to enter and exit the

loop (startup

s

), plus a cost per data item (m

s

). An

unrolled static-code loop has a lower marginal cost per

data item. However, it has extra code to handle a num-

ber of iterations that is not a multiple of the unrolling

factor, and thus a higher startup cost.

Similarly, running dynamic code has two costs:

startup

d

is the cost to dynamically compile the code,

plus the cost to enter and exit the code; m

d

is the cost

per data item. Invoking the compiler at runtime in-

creases the startup time compared to static code. How-

ever, the RTCG optimizer knows more and so may gen-

erate better code (smaller m

d

). The breakeven point

occurs when the costs of the static and dynamic code

are the same for a given N .

There is also a tradeo� between compile time and

overall execution time. A runtime compiler with a bet-

ter optimizer may take longer to run but produce better

code. The result has worse performance on small data

sets but better performance on large data sets.

Finally, we de�ne the granularity of code generation

as the number of instructions executed between changes

to the instruction space. Self-modifying code is �ne-

grained. We expect that most contemporary uses of

RTCG will be coarse-grained, so that the costs of code

generation and instruction space manipulation can be

amortized over many instructions.

4.3 Runtime Compilers

Compilation speed is crucial to RTCG's performance.

Runtime compilers can be faster than conventional

compilers because the runtime compiler does not need

to compile arbitrary programs, but only certain con-

structs. Thus, some compiler phases may be discarded,

while others may be specialized for the particular pro-

gram. Both optimizations reduce startup

d

.

For compiling a �xed source program,

1

all steps in

the front end of the compiler, as well as some in the

back end, can be run statically. The remaining phases

can sometimes be collapsed or specialized in a program-

dependent way. For example, if a routine R never makes

function calls, then a specialized compiler for R can be

ignorant of function calling concerns.

Many systems do the specialization manually, using

statically generated templates, which are application-

speci�c machine-code sequences that contain \holes".

A dynamic compiler is written by hand for the partic-

ular application. The compiler is retargeted by rewrit-

ing the machine-code templates. The runtime compiler

concatenates templates and �lls in the holes with values

computed at runtime. The latter approach is similar to

generating code using machine-dependent virtual ma-

chine instructions automatically derived from a train-

ing suite [Hen87], but in most existing RTCG systems

1

When the source code is not known statically, RTCG can

still be pro�table, since the user input will be translated to some

intermediate representation anyway [Tho68], and code genera-

tion may be but a small part of the total cost [CAK

+

81].
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the templates are derived manually. With a template

compiler, nearly all the compilation is static, including

some parts of code generation, assembly, and linking.

Thus, runtime compilation can be done in just a few

tens of instructions per instruction generated.

5 Measured Performance

We now examine three applications that use RTCG to

improve performance: a virtual machine interpreter, a

data decompression algorithm and a record comparator.

A common feature of these programs is that they use

indirection to allow runtime 
exibility, but the target of

the indirection changes rarely and only in well-de�ned

places. Consequently, the RTCG versions were faster

than their statically-compiled counterparts.

5.1 Virtual Machines

A virtual machine is a program that simulates the ac-

tions of some real or imagined machine. A virtual ma-

chine interpreter has a primitive for each instruction in

the virtual machine's instruction set. Simulating each

virtual machine instruction with a static-code inter-

preter requires four steps: dispatch (to the primitive),

load operands, execute, and store operands.

An RTCG implementation collects a sequence of vir-

tual machine instructions and compiles them to native

machine code. Dispatching is done during compilation

and the machine code is cached, so both compiling and

dispatching costs can be avoided on reexecution. Also,

the dynamic compiler can optimize across several vir-

tual machine instructions.

The Smalltalk-80 byte-coded virtual machine has

both static-code and RTCG implementations. Fast

static-code implementations [Mir87] interpret the byte

codes using a threaded code interpreter. An RTCG

implementation that does simple optimizations [DS84]

is 40% faster than fast static-code implementations

[Mir91]. Better RTCG optimization would cause longer

compile times but yield code asymptotically 5-10 times

faster than the static code [CU91].

Another virtual machine, g88, is a statically-compiled

88000 simulator that translates instructions to threaded

code [Bed89]. It runs on the 68000 and takes, on aver-

age, about twenty 68000 machine instructions to simu-

late one 88000 instruction. Simulating only user-mode

code would drop the ratio to ten to one [Bed91]. shade

is a SPARC simulator and instruction-level pro�ler that

runs on a SPARC and uses RTCG [CK91]. On the

gcc and doduc benchmarks from the SPEC suite, shade

spends about 10% and 0.1% of its total runtime doing

compilation, respectively. The ratio of real instructions

to simulated instructions ranged from only 3.3 to 6.2,

and these ratios could be further reduced by removing

shade's pro�ler capabilities.

2

5.2 Fast Decompression

Pardoz is a compression algorithm that trades o� com-

pression ratios and compression rates to boost decom-

pression rates. It achieves its fast decompression by

using byte-width rather than variable bit-width com-

pression codes. An escape code indicates that the next

code appears literally in the output. All other com-

pressed codes are used as indicies into a table of variable

length strings that are simply appended to the output.

As a baseline, the C implementation of pardoz decom-

presses at roughly four times the rate of uncompress,

a standard implementation of Lempel-Ziv decompres-

sion [Wel84].

The stream of compressed data codes can be viewed

as a program for an interpreter with one primitive

for each string length and one for the escape. We

implemented a threaded-code interpreter for pardoz

in assembly language, with unrolled loops and hand-

scheduled loads and stores. On both SPARC and

MIPS-based systems, it was twice as fast as the C im-

plementation.

The RTCG version dynamically compiles the inner

loop of the decompressor, using a block of instructions

for each code. Output strings are embedded as immedi-

ate constants, and blocks of instructions are aligned to

speed dispatch. On a Sun 4/490, the RTCG version of

pardoz runs 40% faster than the fastest static code ver-

sion. On a DECstation 5000, however, RTCG provides

only a 2% performance improvement. We suspect the

SPARC is faster because it makes good use of indexed

addressing and annulled branches, and because RTCG

eliminates relatively slower 4/490 loads from a uni�ed

cache.

This example illustrates that RTCG can improve per-

formance, but with very di�erent improvements, even

on similar architectures. That in turn underscores the

need for a better understanding of which architectural

factors are important for good RTCG performance.

5.3 Record Comparison

The last application sorts a collection of �xed-format

records. The sort routine takes a set of records and a

sort vector describing the order in which to compare

�elds.

A static implementation compares �elds in the or-

der speci�ed by the sort vector. Individual �eld com-

parisons are fast, so dispatching to the next �eld to

2

Simulating a SPARC on a SPARC could give a performance

advantage over cross-machine simulation. For example, 
oating-

point operations could be executed using hardware, where they

might be simulated in cross-machine simulation. However, g88

makes the same optimizations to get its performance [Bed89].
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test is a large overhead. It is impractical to fully-

case the code, since a record with F �elds can have

F ! cases. Common-casing can exploit record and sort

vector statistics, but is only as good as the statistics.

The RTCG alternative is to delay �nal compilation un-

til the sort vector is known. The RTCG code has no

dispatching and removes the indirection of the sort vec-

tor. RTCG needs only space for the runtime compiler,

plus one instance of the sort routine.

We wrote two RTCG implementations of record sort-

ing. The �rst builds sort predicates using a tem-

plate compiler, built by \tricking" a version of the

GNU C compiler into producing fragments of position-

independent code. The sort vector is dynamically com-

piled by concatenating the resulting templates. The

second implementation translates the sort vector to C

code that is compiled using a standard compiler. The

resulting object code is then dynamically linked into

the sort program.

We ran the static code and two dynamic code ver-

sions over a collection of randomly generated records

executing on VAX 3500, Motorola 68020, Intel 80386

and MIPS R2000 platforms. Not all implementations

worked on all platforms. The results are summarized in

Figure 5.3. The breakeven point when using the tem-

plate compiler is from 100 to 500 sorted records; with

the heavyweight compiler, from 20,000-50,000 records.

Overall speedups ranged from 10% to 80%. On the

MIPS-based platform, the dynamically-linked RTCG

version of the program was 30% faster than static code

compiled with the same degree of optimization. How-

ever, the highest level of optimization (-j) cannot be

used with dynamically-linked code. Still, the RTCG

version at a lower optimization was more than 10%

faster than the static code with the best optimization.

This experiment demonstrates that it is possible to

do RTCG using existing retargetable compilers, and

that (in at least some cases) the retargetable compilers

build fast dynamic compilers. In addition, it shows that

having more de�nite information available at runtime

can be more bene�cial than having a better optimizer.

6 Open Issues

We have argued that runtime code generation is a tech-

nology that deserves further study. To advocate it's

widespread use would be premature, because it is un-

clear a-priori when it will be pro�table, and because

useful technologies such as fast retargetable compilers

or partial evaluation have yet to be applied. In this

section we outline some of the open research issues.

Machine-Dependent Pro�tability Analysis: Architec-

tural and implementation design choices a�ect the costs

associated with RTCG and thus the point at which it

becomes pro�table. Timings for many operations are

well-reported, but timings for some, such as cache 
ush-

ing, need to be reported more carefully.

Architectural designs should not unnecessarily penal-

ize RTCG. To pick on a single example, the SPARC

Applications Binary Interface (ABI) requires programs

to update the instruction space using the iflush in-

struction. Each iflush updates only a few bytes and

may cause a trap. Performance is generally good on

small regions, but there may be thousands or millions

of traps when 
ushing large regions. No architectural

change is needed to improve the interface. For example,

a better interface would use a system call, which would

cause a single trap, independent of the region size.

We described an experiment in x5.2 in which

there was substantial performance improvement on the

SPARC architecture but a negligible amount on the

MIPS. While we can attribute this to speci�c factors

for this speci�c decompression algorithm (addressing

modes, cache organization and access times), general

models could determine how these and other architec-

tural factors a�ect RTCG's pro�tability.

Machine-Independent Pro�tability Analysis: The

pro�tability of RTCG depends on the application. For

example, our studies show that the performance of NFA

regular expression pattern matching is improved us-

ing RTCG, but DFA regular expression pattern match-

ing is not; and that the performance of the textbook

Boyer-Moore string matching is improved with RTCG,

but that the fast version is not. We need machine-

independent pro�tability models.

Code Generator Performance: Compiler speed and

code quality also a�ect RTCG's pro�tability (x4.2).

Thus, a complete pro�tability analysis also requires

detailed models for describing code generator perfor-

mance, both running time and code quality.

Automatic Discovery: If RTCG is used as an opti-

mization technique, it would be best if we could discover

opportunities in existing source code automatically. To

do so requires a mechanism for discovering candidates,

the pro�tability analysis described above, and a tech-

nique for transforming source language constructs into

RTCG counterparts.

Speci�cation: In the absence of automatic techniques

for discovering RTCG candidates, RTCG hints could be

speci�ed directly by the programmer. Some languages

can describe the creation of \new code", such as LISP

with eval, but lack any way of saying whether a static

or dynamic code implementation is preferred. Other

languages need to be augmented to include constructs

for describing the dynamic creation of code.

Debugging: Debugging is beyond the scope of this pa-

per, but we note that some RTCG debugging problems

can be removed if the use of RTCG is well-structured

and the debugger views it as dynamic change of rep-

resentation. For example, breakpoints may be set in
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Machine VAX 68000 80386 R2000

Startup: Template Compiler 6.4 5.6 4.38 {

Startup: Generic Compiler 750 { { 1700

Speedup: Template Compiler 1.4 1.8 1.7 {

Speedup: Generic Compiler 1.4 { { 1.1/1.3

Template Breakeven (N) 500 500 100 {

Generic Breakeven (N) 20,000 { { 50,000

Figure 3: Startup Dilation, Asymptotic Speedup, and Breakeven Point for RTCG Record Comparison

nonexistant code by introducing the breakpoint just af-

ter the dynamic compiler is run. Alternatively, debug-

ging can use an equivalent, if slower, static-code imple-

mentation, Then, the breakpoint can be re-phrased in

terms of static code.

7 Summary

Several important factors led to dynamic code tech-

niques being dropped from favor: expanding memo-

ries, portability and debugging problems, and a lack of

proven performance. However, hardware and software

is changing in ways that may improve RTCG's util-

ity: smaller memories are being reintroduced as caches,

there is an increasing demand for data-dependent opti-

mizations, there are better abstractions for code genera-

tion and modi�cation, partial evaluation may be able to

extract specialized compilers automatically, and faster

computers make it possible to run more data-intensive

applications. Finally, although RTCG's use is depre-

cated, it continues to be used. This leads us to believe

that it is sometimes pro�table and that what is needed

is better models and methodology for determining when

it is pro�table.

In this paper we have analyzed RTCG as an optimiza-

tion technique. A runtime compiler can generate better

code because it has more speci�c information about the

particular execution. In some cases, the dynamically-

generated code can be fast enough to pay for the cost of

runtime compilation. To support our analysis, we com-

pared static-code and dynamic-code versions of several

applications: virtual machines, a data decompression

algorithm, and record comparison. Each ran faster,

but the performance bene�t depended on factors such

as machine architecture, compiler technology and work-

load.

Although modern architectures have \dropped"

RTCG, current designs do not need to be changed to

support it. The next step is to apply the software tech-

nologies and perform further empirical studies. From

this experience we can hope to devise models and met-

rics and determine more concretely and reliably when

RTCG is applicable.
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