
A Performance Study of

Memory Consistency Models

Richard N. Zucker and Jean-Loup Baer

Department of Computer Science and Engineering

University of Washington

Technical Report No. 92-01-02

January 1992

A Performance Study of Memory Consistency Models

�

Richard N. Zucker

y

and Jean-Loup Baer

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195

Abstract

Recent advances in technology are such that the speed of processors is increasing faster than memory

latency is decreasing. Therefore the relative cost of a cache miss is becoming more important. However,

the full cost of a cache miss need not be paid every time in a multiprocessor. The frequency with which

the processor must stall on a cache miss can be reduced by using a relaxed model of memory consistency.

In this paper, we present the results of instruction-level simulation studies on the relative performance

bene�ts of using di�erent models of memory consistency. Our vehicle of study is a shared-memory

multiprocessor with processors and associated write-back caches connected to global memory modules

via an Omega network. The bene�ts of the relaxed models, and their increasing hardware complexity, are

assessed with varying cache size, line size, and number of processors. We �nd that substantial bene�ts

can be accrued by using relaxed models but the magnitudes of the bene�ts depend on the architecture

being modeled, the benchmarks, and how the code is scheduled. We did not �nd any major di�erence

in levels of improvement among the various relaxed models.

1 Introduction

Recent advances in technology are such that the speed of processors is increasing faster than memory

latency is decreasing. Therefore the relative cost of a cache miss is becoming more important, since

processors are left idle for a greater number of cycles. This performance loss is even more noticeable in

multiprocessors because of the higher miss rates [11] and because memory access times are increased by

the latency of and contention for the interconnect that links processors and memory modules.

We can alleviate the high cost of cache misses by reducing the frequency with which the processor must

stall on a cache miss. In the case of multiprocessors, one approach is to use relaxed models of consistency.

Under such models, the hardware is not required to stall every time there is an outstanding memory

reference. However, for correct executions parallel programs must not exhibit data races and primitive

synchronization operations must be visible to the hardware. In return the system appears sequentially

consistent [21] and is generally faster than a truly sequentially consistent machine.

In this paper we present the results of simulation studies of shared-memory multiprocessors that indicate

the relative performance bene�ts of various implementations of systems that are sequentially consistent,

weakly ordered, and release consistent. Our studies show that relaxed models of consistency provide perfor-

mance improvements from 1% to 36% over sequentially consistent systems. The magnitude of improvement

depends mostly upon the benchmark and cache parameters (line and cache sizes). The single best predictor

of the level of bene�t provided by the relaxed models is the cache hit rate, but it is not always an accurate

�

This is a more complete version of a paper that appeared in the 19th International Symposium on Computer Architecture.

y

Supported by a DARPA/NASA Research Assistantship in Parallel Processing administered by the Institute for Advanced

Computer Studies, University of Maryland

This work was supported in part by NSF Grants CCR-9101541, CCR-8904190 and CCR-8702915.

1

predictor. We also observed that programs may need to be written or compiled di�erently to obtain the

highest performance on machines with di�erent memory models.

Section 2 de�nes the various memory models, gives the rules that these models impose on programmers,

and indicates how more freedom is allowed in the sequencing of memory accesses as the models become

more relaxed (for a more in depth explanation of memory models, see [2]). The simulated architecture,

the choices made in the implementations of the various models, and the selected benchmarks are described

in section 3. In section 4 we present the results of our study. We analyze both the characteristics of

the benchmarks for which there is clearly a performance gain in using a relaxed memory model and the

hardware features that yield the most bene�ts. In section 5 various architectural variations are considered

and results presented as well as compile-time improvements. Section 6 compares our results to a previous

study of relaxed consistency models based on a simulation of DASH [14]. As will be seen, our results are

qualitatively in agreement with those of that previous study. The quantitative di�erences can be explained

by the architectural features being simulated. Section 7 concludes with an assessment of the performance

gains that can be exploited by building shared-memory multiprocessors with relaxed models of memory

consistency.

2 Consistency Models

2.1 Sequential Consistency

Memory models impose rules on programs which must be observed in order to ensure correct executions.

On a uniprocessor, the implicit model is that of sequential consistency (SC), which is so intuitive that

programmers who implicitly follow it do not even realize that they are adhering to a model's rules. SC is

de�ned as [21]:

[A system is sequentially consistent if] the result of any execution is the same as if the

operations of all the processors were executed in some sequential order, and the operations of

each individual processor appear in this sequence in the order speci�ed by its program.

In a sequentially consistent multiprocessor the result of the program must be the same as if each shared

access had completed before the next shared access is started; these accesses are executed in program

order. If this order is not maintained, then communication between processes, that is, synchronization,

using loads and stores (e.g. Dekker's Algorithm [9]) may not work correctly.

Until recently sequential consistency had been the usual model of memory access for multiprocessors.

However, SC's strict ordering rules can lead to performance ine�ciencies. For example, there is (very)

limited use of write bu�ers and the execution of memory accesses must be in program order. Because of

SC's restrictions, other memory access models have been proposed. In the following sections, we review

those models that we will consider in our performance evaluations.

2.2 Weak Ordering

In systems using relaxed memory models, not all memory accesses need to be sequentially consistent; only

the synchronization operations do, which allows for greater freedom in the ordering of memory accesses.

The �rst proposed relaxed memory model was weak ordering, which is de�ned in [10] as:

1. accesses to global synchronizing variables are strongly ordered and

2. no access to a synchronizing variable is issued in a processor before all previous global data accesses

have been performed and

3. no access to global data is issued by a processor before a previous access to a synchronizing variable

has been performed.

2

For our purposes, strongly ordered and sequentially consistent accesses can be considered as synonymous

(distinctions are examined in [1]). The formal de�nition of \performed" is given in [10]. Basically a store

is performed when the value stored by the processor executing the instruction can be seen by all other

processors. A load is performed when the value to be returned by the load has been set and cannot be

changed.

Under this weak ordering model, writing parallel programs, already a di�cult task, becomes even more

di�cult. However, it has been shown that weakly ordered hardware can appear sequentially consistent to

programs with minimal constraints [2], only two of which are signi�cant: programs must not contain data

races and all synchronization operations must be visible to the hardware. The �rst condition is not much

of a restriction since a data race is usually an error in a sequentially consistent program (chaotic relaxation

is an exception). The second condition is not a signi�cant restriction either since most multiprocessors

already provide hardware support for synchronization (e.g., Test-and-Set), and these primitives are those

generally used for synchronization.

In a weakly ordered system there are minimal restrictions on on the order in which the hardware can

perform non-synchronizing memory references. The access order must obey the program's own data and

control dependencies. Also, the second and third rules of weak ordering say that whenever a synchroniza-

tion operation is performed, all references to shared data must be performed and no new references to

shared data may be issued until the synchronization has completed (this explains why in [2] it was said

that programs on weakly ordered machines must use synchronization operations that are visible to the

hardware). Except for these restrictions, the accesses may be performed in any order. Thus an order that

maximizes system performance may be used. This relaxation of access order lets reads take precedence

over writes, memory references overlap, data be prefetched, instructions issue or complete out of order,

and cache coherence invalidation signals be delayed until after the write to a line in the cache has been

performed.

2.3 Release Consistency

In [16], Gharachorloo et al. proposed the release consistency model. As in weak ordering, the release

consistency model has minimal restrictions on the ordering of the performing of normal accesses. There

are some restrictions on the ordering of synchronization accesses.

In release consistency synchronizing accesses are categorized as either acquire or release operations.

An acquire indicates that a processor needs to \see" the latest values for the next part of its program.

A release indicates to the system that some values have been updated and can now be \seen" by other

processors. For example, a lock/unlock pair corresponds to an acquire/release operation; a barrier is a

release followed by an acquire. The processor treats acquire and release operations di�erently. An acquire

causes the processor to stall until the acquire has completed, since the processor must be certain that it is

\seeing" the new values before it continues. However, unlike a weakly ordered system, it is not necessary

that all of its previous accesses have been performed before the acquire is issued. A release cannot be

performed until all outstanding accesses have been globally performed. However, the processor does not

need to stall until the release is completed. Only the release operation itself needs to be delayed, so that

it can be certain that other processors see the new values. The �nal di�erence between weak ordering and

release consistency follows from this. There can be an outstanding release operation when an acquire is

issued (assuming no data dependency). Gharachorloo et al. also showed that under program restrictions

similar to those mentioned above for weak ordering, a release consistent system behaves in a sequentially

consistent manner [13].

3

3 Methodology

��

��

��

��

M C M C

�

�

C

C

�

�

C

C

P P

? ?? ?

t t t

��

��

��

��

M C M C

�

�

C

C

�

�

C

C

P P

? ?? ?

Switch Switch

t t t

?

H

H

H

H

H

H

H

H

H

Hj

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Pq

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Xz

A

A

A

AU

@

@

@

@R

�

�

�

��

�

�

�

�	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�9

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�)

�

�

�

�

�

�

�

�

�

���

?

Switch Switch

t t t

�

��

�

��

�

��

�

��

M M M M

? ? ? ?

t t t

�

��

�

��

�

��

�

��

M M M M

? ? ? ?

Processors

Caches and

Private Memory

Main Memory

Figure 1: Model Architecture

3.1 Base Architecture

The architecture that we simulated is a typical \dance-hall" architecture (see Figure 1). It consists of a

number of processors, each with a local memory for private data and its own cache, and a number of memory

modules for global memory that contain shared data. Processors and global memory are connected via

two identical Omega networks, one for the processor requests to memory and one for memory's responses.

Cache coherence is enforced by a full directory scheme [6].

We used the Cerberus instruction-level simulator [5] for our simulation studies. The processor it

simulates is a RISC processor similar to the Ridge 32 [24]. The caches are two-way set associative and use

a write-back write-allocate policy; we experimented with a range of cache and line sizes. The caches are

only for shared data. We assume that there are no instruction cache misses and that the private data can

be accessed from local memory. We con�gured the simulator to use 4 � 4 switches in the interconnection

networks. There is a four element bu�er between the processor and the request network as well as between

the memory and the response network. The memory latency (no contention) for the fetching of the �rst

word of the line is 18 cycles for 16 processors and 20 cycles for 32 processors. The memory latency

is independent of the line size due to the pipelined nature of the network and of the memory accesses.

However, the length of time that the response network and the memory are busy is proportional to the

line size. Each stage of the network takes one cycle for every eight bytes. The memory access takes seven

cycles to initiate, after which the �rst word is available and put onto the network. The rest of the line

follows and the memory is kept busy for as many cycles as there are words in the line. If the requested line

is dirty in other caches or clean in other caches and requested for write, then the latency is correspondingly

higher due to the need to send coherence messages and wait for the corresponding acknowledgments.

3.2 Model Implementations

We simulated �ve system types. Two are sequentially consistent, two are weakly ordered, and one is release

consistent. A summary is given in Table 1.

4

System Major Features

SC1 sequentially consistent, non-blocking loads

SC2 SC1 + hardware directed non-binding prefetch at stalls

WO1 SC1 + hw visible synchronization operations, no stalls

on memory access while outstanding references

WO2 WO1 + bypassing of pending messages by loads

RC WO1 + no stalling while a release completes

no stalling for oustanding accesses at an acquire

Table 1: Summary of Implementation Features

Sequentially Consistent 1 - SC1 SC1, a sequentially consistent implementation, is our baseline sys-

tem. The programmer has complete freedom for the scheduling of inter-processor communication and

synchronization. The hardware does not allow a subsequent memory access

1

if one access is already out-

standing. However, we allowed one optimization, namely non-blocking loads. Therefore, the processor only

stalls if it tries to read from a register that is the destination of an uncompleted load or it attempts another

memory access. Since there can be only one outstanding reference at a time, lockup-free caches [19] are

not necessary; however, some form of register interlock or scoreboarding is needed for the correctness of

register-register operations. In the case of a cache hit, the loads are delayed loads, and the value is not

available for four cycles (Our simulator forced us to use a (arguably long) delay of four cycles. We have

since repeated the experiments with a smaller delay and found the absolute bene�ts of the models to be

roughly the same. See section 5.3). The processor also does not stall in the case of a write miss. The value

to be written is sent to the cache where the write is performed when the line is received from memory. At

the same time the source register may be overwritten by a register-register operation.

Sequentially Consistent 2 - SC2 A more aggressive version of SC that does not change the program-

mer's view of the system was also simulated. Non-binding prefetches on stalls, as suggested in [15], were

added to SC1. The processor still stalls when there is an outstanding memory reference and another mem-

ory reference is about to be made. But a request for this second access is nonetheless sent to the cache.

If the access to the corresponding cache line results in a miss, the line is prefetched into the cache. Note

that this prefetch is non-binding; the contents of the prefetched line are still visible to the cache coherence

mechanism since no value has been loaded into a register in the case of a load, nor has a new value been

written into the line in the case of a store. The performance advantage brought upon by this prefetch is

that the miss rate, or at the very least the perceived memory latency, is reduced since the memory accesses

are pipelined.

For SC2 the cache is more complicated. The cache controller must be able to handle a prefetch request

while there is an outstanding reference. SC1 only needed to distinguish between coherence requests and

a line returning from memory, of which there could be only one. SC2 must be able to determine which

of its (two) outstanding requests is returning from memory, and whether or not the processor can now be

unstalled.

Weakly Ordered 1 - WO1 The �rst relaxed memory model we simulated obeys the de�nition for weak

ordering given in section 2. With a WO1 implementation the programmer is limited to synchronization

that is visible to the hardware. WO1 provides special synchronization instructions in the lock and barrier

routines. The programmer also has the option of using a SYNC instruction to indicate a synchronization

point, such as when writing into a shared
ag. With respect to the hardware, the processor must now stall

1

All references to memory accesses and locations mean shared memory.

5

at each synchronization point until all outstanding memory references complete. Except for that restriction,

memory accesses are allowed to complete in any order as long as the data and control dependencies are

observed.

With WO1 several memory references can be outstanding at a time and hence the cache must be

lockup-free. Information on each outstanding reference must be maintained in a miss information/status

holding register (MSHR) [19] (we simulate �ve MSHR's). The MSHR's will cause the processor to stall

when it makes a reference which must be delayed due to data dependency requirements. In a WO1-like

system, the non-blocking loads can be especially useful since several loads can be initiated successively,

even in the absence of intervening register-register operations. The overlap of the memory accesses can

hide some of their latency (Both read and write latency are hidden here. In section 5.1 we use blocking

loads, and determine how much of the hidden latency is due to reads and how much is due to writes).

The hardware costs of WO1 can be signi�cant. The cache must be lockup-free; its MSHR's must be

(associatively) consulted when requests return from memory, for cache coherence messages, and each time

the processor issues a reference (in order to check for an outstanding reference to that line and for data

dependencies). Hardware recognizable synchronization instructions are required. The processor must stall

when it encounters such an instruction if there are any outstanding references and be able to restart when

all references have completed. This requires the use of a counter and an associated stall/restart mechanism.

Weakly Ordered 2 - WO2 WO2 is the same as WO1 except that it allows some bypassing of stores

by loads. Bypassing does not change the programmer's view of the hardware. It is done because the

completion of a load is more important than the completion of a store since in relaxed consistency systems

the loaded value generally will be required sooner than the global performing of the store. Bypassing is

limited to the bu�er that serves as an interface between the processor and the interconnection network.

Bypassing is not simulated in the Omega network switches since the speed at which they must operate

seems to prevent such an optimization (moreover, since the requests would come from di�erent processors,

it is not certain that the priority argument still holds).

Bypassing introduces additional hardware complexity. The cache must treat load and store misses

di�erently when sending them to the network. Loads must be sent to the head of the bu�er while the

stores must be able to enter in the normal FIFO manner. Unlike a system with blocking loads, where only

one load can be outstanding, the capability of dealing with multiple loads bypassing stores must exist. In

our implementation, a bypassing load could bypass a load that is at the front of the bu�er. This could

be prevented if an entry could be inserted into the bu�er after the last load but before the �rst store,

or if we had two FIFO bu�ers, one for loads and one for stores and a priority scheme always favoring

the former. We will discuss in section 4.2.3 why our results are still valid despite our simple, but slightly

awed, implementation.

Release Consistent - RC In the release consistent system the acquire and release synchronization

operations are treated di�erently, thus requiring the programmer to be aware of the type of synchronization

needed. However, the need to make this distinction will not usually be a problem if system-provided

synchronization routines are used. Under our simulated RC, when an acquire operation is attempted,

the processor stalls until the acquire completes. It does not matter if there are any outstanding memory

accesses.

There are several possible situations which can occur when a release operation is encountered in the

instruction stream. In all cases though, the processor continues executing past that point in the program.

The release operation can be issued if there are no outstanding accesses. However, the release cannot

proceed immediately if the locations it operates on are not in the cache. In that case the request to do

the release is sent to the cache which will delay issuing the operation until the necessary lines arrive from

memory. If there are outstanding references when a processor encounters a release operation, then a special

bit is set in all the valid MSHR entries and a counter is set equal to the number of such entries. Whenever

6

an outstanding reference is resolved, this bit in the corresponding MSHR entry is checked. If it is set, the

counter is decremented. When the counter is decremented to zero, the pending release operation is issued.

This scheme requires an extra bit in the MSHRs, a counter for the number of references still outstanding

from the time of the release operation (as opposed to a general counter of outstanding references as in

WO1), and the ability to keep track of the pending release operation since the processor has continued

executing past the location in the instruction stream where the release was encountered.

3.3 Benchmarks

The benchmark programs used to compare the various memory models are all written using PCP [4],

a simple parallel extension to C. They were compiled to the simulator's machine code and linked using

Cerberus's compiler. Due to compiler limitations there is no static allocation of private data. Any variable

allocated globally is a shared variable and resides in a shared memory module. The only private data are

variables declared in functions. Since the architecture supports non-blocking loads, the compiler attempts

to schedule the code so that loads to registers are issued far enough ahead of their use so that the processor

will hopefully not have to stall if there is a cache miss.

Program References Hit Rate (%) by line and cache size

(1,000's) 16K cache 64K cache

Reads Writes 8 bytes 16 bytes 64 bytes 8 bytes 16 bytes 64 bytes

Gauss 1074 314 64.3 80.9 94.4 95.9 97.4 98.8

Qsort 1171 310 70.2 73.8 81.8 73.2 76.0 82.3

Relax 2132 329 78.8 89.3 97.0 79.6 89.7 97.2

Psim 1827 319 88.4 88.6 90.7 89.5 89.6 91.3

Table 2: Benchmark Statistics for SC1 for 16K and 64K caches

References are averages per processor and are in 1,000's.

16K caches

8 16 64

Line Size (bytes)

15

20

25

30

35

40

Run-time

in millions

of cycles

�

..........................

Gauss

�

..........................

Qsort

?

..........................

Relax

.

..........................

Psim

.

.

.

.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.
.
.

..

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

�

�

�

......
.................................

..............
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
..

�
�

�

.

..
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
....
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...

?

?

?

.
.....
......
.....
.....
......
.....
.....
.....
......
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

64K caches

8 16 64

Line Size (bytes)

15

20

25

30

35

40

Run-time

in millions

of cycles

�

..........................

Gauss

�

..........................

Qsort

?

..........................

Relax

.

..........................

Psim

..
..........
...........

..........
...........

..
..................�

� �

......
............

.............
............

..........
...
...
...
...
...
...
...
...
...
....
...
...
...
...
...
...

�

�

�

.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
....
..
...
..
...
..
...
..
...
..
...
..
..
...
..
...
..
...
..
...
..

?

?

?

...
.....
.....
.....
.....
.....
.....
.....
.....
......
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2: Performance by Line Size for SC1

Our four benchmark programs are described below. Table 2 shows statistics on the benchmarks for 16

processors for various cache and line sizes under SC1 and their run-times are given in Figure 2 (there are

more detailed statistics in Appendix A). The exact number of memory references can change based upon

the consistency model, and this can impact the hit rates.

7

Gauss Gauss [8] performs the gaussian elimination of a 250 � 250 matrix. This program exhibits a large

amount of spatial locality, as can be seen from the 16K cache data in Table 2 and Figure 2. The larger

line sizes result in large performance gains: the 64 byte line con�guration shows a speed-up over 8 byte

lines of almost 50% and over 16 byte lines of almost 25%. This gain is to be expected since the hit ratios

increase from 64% for 8 byte lines to 81% for 16 bytes and to 94% for 64 bytes. However, when 64K caches

are used the hit ratios are uniformly high and the run-times vary very little with the line sizes. Clearly

the data set of each processor �ts in a 64K cache, but not in a 16K one.

Qsort Qsort [18] executes a parallel quicksort of 500,000 integers. It is dynamically scheduled, unlike

the other benchmarks which are statically scheduled. Units of work are pushed onto and popped o� of a

shared stack and allocated to processors on a FCFS basis. Since any change in the architecture in
uences

the relative rate of execution of each processor, the order in which tasks are pushed onto and popped

o� the stack can change and thereby a�ect the way the work is partitioned as well as the size of the

partitions [18]. In one case, when we changed the implementation from WO1 to WO2, we found that the

number of synchronization operations increased by a third, thereby demonstrating the e�ect of dynamic

scheduling. This natural variability prevents us from reaching general conclusions from a single run of

the benchmark. Because of the severe load on CPU time brought upon by instruction-level simulations,

we have not yet had the time to repeat this experiment with di�erent seeds and to compute appropriate

con�dence intervals. We will not discuss the generally small variations in performance we observed, since

we cannot isolate the likely causes due to the dynamic nature of the program.

As shown in Table 2, the hit ratios of Qsort are fairly low (69-81%). This is to be expected due to

its sequential access pattern. Also, when partitioned among the 16 processors, each processor's data set is

still too large to �t into even the 64K cache. As long as the cache capacity is too small, we see very little

variation for a given line size in Qsort's hit ratio between 16K caches and 64K caches. The line size does

matter though. With 8 or 16 byte lines the run-times are roughly the same. However, the systems with

64 byte line caches are the slowest in spite of the higher hit rates.

At �rst we found the low write hit ratios we observed curious. In our previous study [3] we found that

Qsort had a write hit ratio of close to 100%. This is because before values are swapped, they must be

compared. So, they are always read before being written, and hence, are already in the cache. However,

in this study we found write hit ratios of around 70-80%. We �nally realized that this was because we

changed the way write hits are counted due to the di�erent cache coherence protocol. In our earlier study

we simulated a bus-based system. When a line is brought into the cache, even if it is just for read, it could

be written once the other lines were invalidated, a fairly simple operation on a bus-based system and one

that still counts as a write-hit. However, in our system, a line is requested for read or write. If it has been

brought in for read and then there is a write, the current copy of the line is invalidated, and a new copy

with write permission fetched. So, this is a write miss, and the cause of the lower write hit ratio. It is not

strictly necessary to invalidate the read-only line. However, it makes the protocol simpler at the expense of

consuming some additional network bandwidth. Regardless, the request still needs to be sent to memory,

and may need to wait for invalidations to be done.

This case does demonstrate the usefulness of a read with ownership request. However, the compiler

would need to be able to recognize the situation where this would be useful. It is not automatically useful

in Qsort as written. During the partition phase, which is done in parallel, a processor references every nth

element. The locations are not strip-mined so that each processor references all the locations in a given

cache line (for the shared-bus system for which the program was written [18], the overhead of doing this

was found to remove any bene�t it would have otherwise generated. However, this may be di�erent in the

case of a higher latency system such as the one we are simulating). Since there is a great deal of sharing

during this phase, it would not be useful to do a read with ownership, which might not be needed if there

was no swapping done by that processor. Later, when each processor is sorting its own partition, then it

is worthwhile.

8

-

j

?

i

i,j

X

X - cache miss

for i = 2 to n do

for j = 2 to n do

<do relaxation>

Figure 3: Relax access pattern

Relax Relax is an iterative relaxation procedure using a nine point stencil over a 514 x 514 matrix. Its

main computation consists of summing the values of nine grid points laid out in a square. Its access pattern

can be described by using Figure 3. The nine point stencil is moved to the right as j is incremented. When

i is incremented, the stencil is moved back to the �rst column, but one row further down. References to

the top two rows in the stencil will always result in cache hits at this point since they were used while

processing the previous row. Also, for a line size of eight bytes and a matrix of doubles (so each element

takes up a single line), after the �rst two relaxations for this value of i, references to locations (i+ 1,j� 1)

and (i + 1,j) will also be hits since they were referenced in the previous iteration as locations (i + 1,j)

and (i+ 1,j + 1). The reference to (i+ 1,j + 1) will miss every time and only that reference will miss on

any given relaxation (except at the beginning of a new row or when there is cross or self-interference [20]).

There will also be one write miss per relaxation since Relax writes the result of each relaxation into a

temporary matrix (if the line size is 16 bytes, then the read of location (i+ 1,j + 1) is a miss once every

two relaxations as is the write of the result. For 64 byte lines, it is a miss once every eight relaxations

for both the read and the write). Once all the processors have completed the relaxation phase for a given

iteration, then the relaxed values are copied back into the main matrix. During this phase there will be

one read miss and one write miss per element as each value must be read from the temporary matrix and

written into the main matrix.

If the compiler produces code that loads a value and adds it into the sum before loading the next value,

the processor will stall whenever it tries to add in a value whose loading is still pending because of a cache

read miss, and this will happen regardless of the consistency model. However, after the write, there are

a number of register-register operations which hide the latency of the memory access even in SC1. Our

compiler does schedule all the loads before all the additions (this is discussed further in section 4.1.3).

This computation pattern dominates Relax so much that the memory access pattern is extremely

regular. The cache hit rates and the number of references are almost the same for all processors. In fact,

the access patterns are so regular that the observed cache hit rates match up almost exactly with those

we predicted. As long as the cache is large enough to hold three rows or columns of the sub-matrix the

processor is processing (whether it is a row or column depends upon the loop structure), then the hit rates

can be calculated ahead of time very easily. Any di�erences are due to self or cross-interference [20] or

coherence e�ects due to sharing at the edges of the sub-matrices (although given the right matrix size

relative to the cache size, the self-interference of row i� 1 and row i could be very signi�cant).

There was a case overlooked in what was mentioned above about the cache hit pattern. If the two

previous rows do not �t in the cache, then the hit rate will drop signi�cantly. However, as long as those

two rows are still in the cache, the hit rate is independent of the size of the data set. So, unlike Gauss, the

data set size would need to be signi�cantly larger for there to be a large change in the cache hit rate.

Psim Psim is the simulator of the multi-stage network that the simulator itself uses (Cerberus is written in

9

PCP). It simulates a 64 processor network using 4 � 4 switches with each processor issuing 513 references.

Psim di�ers from the other benchmarks in various ways. We observe that 70% of its cache misses are

invalidation misses, which is indicative of a high level of sharing. This increases the tra�c on the Omega

network. Also, Psim's accesses to memory are not spread out evenly across the memory modules. The

utilization of the modules varies by as much as a factor of six, which produces some minor hot spots. Both

of these factors result in a much higher actual memory latency in Psim. The latency is proportional to the

line size, and as seen in Figure 2, can have a major performance impact. The data set of Psim is fairly

small and �ts into a 16K cache. So, its performance is fairly insensitive to the cache size. The hit rate (but

not the run-time) is also insensitive to the line size. Finally, Psim has the highest synchronization rate of

any of the benchmarks (over 80,000 synchronizations per processor).

4 Simulation Results

Gauss

SC2 WO1WO2 RC

Memory Model

0

9

18

27

36

% Performance

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

....
...
...
....
...
...
....
...
....
...
...
....
...
....
....
....
...
....
...
...
....
...
....
...
...
....
...
...
....
.

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.............
..................

..................
......
..................

..................
............

�

�

�

�

.

.

.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
............................

....................................
...........................

............

.

.
.

.

Qsort

SC2 WO1WO2 RC

Memory Model

0

5

10

15

20

% Performance

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
....
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........
................

...............
............

...
..
...
..
...
...
..
...
..
...
..
...
..
...
...
..
...
..
...
..

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
...
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.

.

.

.

.

Relax

SC2 WO1WO2 RC

Memory Model

0.0

1.2

2.5

3.8

5.0

% Performance

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
...
...
..
...
..
...
..
...
..
...
...
..
...
..
...
..
...
..
....
..
...
..
...
..
...
..
...
...
..
...
..
...
..
...
..
...
...
..
..

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
....
....
...
....
....
....
...
....
....
....
....
...
......
...
....
....
....
....
...
....
....
....
...
....
....
...

�

�

�

�

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

...

.

. . .

Psim

SC2 WO1WO2 RC

Memory Model

-3.3

0.0

3.3

6.7

10.0

% Performance

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..

�

� �

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.......
.......
.......
.......
.......
.......
.......
.

�

� �

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....
.......
.......
.......
.......
.......
.......
.......
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...

.

.

.

.

Figure 4: 16 processors, 16K caches

The performance improvement is relative to SC1 for that line size.

Note that the scale of the y axis in each graph is di�erent.

Our experiments were instruction-level simulations of 16 processor systems for all benchmarks and of

32 processor systems for Gauss only because of time limitations. We ran the simulations with cache line

sizes of 8, 16 and 64 bytes and two cache sizes: 16K and 64K bytes. The results for 16 processors and 16K

caches are shown in Figure 4, the results for 16 processors and 64K caches are shown in Figure 5, and the

results for Gauss with 32 processors are shown in Figure 6. In these �gures, each graph has plots for each

10

Gauss

SC2 WO1WO2 RC

Memory Model

0.0

0.4

0.8

1.2

1.6

% Performance

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

�

� � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...
..
..
...
..
...
..
...
..
...
..
...
..
...
..
..
...
..
...
..
...

�

�

� �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
...
..
...
..
...
..
..
...
..
...
..
...
..
...
..
...
..
..
...
...
...
..
...
..
...
..
...
..
..
...
..
...
..
...
..
...
..
...
..
...

.

.

.

.

Qsort

SC2 WO1WO2 RC

Memory Model

1.2

4.6

8.0

11.3

14.7

% Performance

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
....
..
...
..
..
...
..
..
..
...
..
..
...
..
..
...
..
..
..
...
..
..
..

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..

�

� �

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.......
.......
.......
.......
......
.......
.......
...

.

.

. .

Relax

SC2 WO1WO2 RC

Memory Model

0

1

2

3

4

% Performance

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
......
......
......
......
......
......
......
......
....
......
......
......
......
......
......
......
......
.

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

�

� � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

...

.

. . .

Psim

SC2 WO1WO2 RC

Memory Model

-3.3

0.0

3.3

6.7

10.0

% Performance

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........
.....................

........................
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
...
..

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.......
.......
.......
.......
.......
.......
......

�

� �

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
.....
......
.....
.....
.....
......
.....
.....
.....
..
..
..
...
..
..
...
..
...
..
..
...
..
..
...
..
...
..
..
...
..
..
..

.

.

.

.

Figure 5: 16 processors, 64K caches

The performance improvement is relative to SC1 for that line size.

Note that the scale of the y axis in each graph is di�erent.

of the three line sizes. The y-axes show the relative (percent) performance improvements of the various

memory models over the SC1 system for that line size. Note that the scales of the y-axes are di�erent for

each benchmark.

In the following sections we discuss the results for each benchmark and then compare the results for

the various memory models. This will allow us to draw some conclusions on the relative merits of each

hardware addition.

4.1 Analysis of Benchmarks

4.1.1 Gauss

The greatest performance improvement from using relaxed models is attained in the Gauss benchmark. In

the case of 16K caches with 8 byte lines the systems implementing relaxed models show a performance gain

of over 35%. With 16 byte lines the gain is about 20% and with 64 byte lines it is 8%. The greater gain

for 8 byte lines is due to the lower hit ratios since cache misses provide the opportunity to draw bene�ts

from the relaxed models. With the relaxed models there is also less of a gap between the performance of

the di�erent line sizes. Under WO1 there is only a 16% and 10% improvement for 64 byte and 16 byte

lines over the 8 byte line versus the 50% and 25% mentioned earlier for SC1.

11

16K caches

SC2 WO1 RC

Memory Model

0

10

20

30

40

% Performance

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

�

�
�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.........................
...........................

�

�
�

.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.....................................

...............

.

.
.

64K caches

SC2 WO1 RC

Memory Model

0.00

0.50

1.00

1.50

2.00

% Performance

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

�

� �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
.

.

.

.

Figure 6: 32 processors, Gauss

The performance improvement is relative to SC1 for that line size.

Note that the scale of the y axis in each graph is di�erent.

The case of the 64K cache is quite di�erent. As mentioned above, the cache hit rates for 64K caches

are quite high. Therefore we cannot expect much gain from the relaxed models; the bene�ts never reach

2%.

The 32 processor results show the same trends that are seen with 16 processors. The data set still does

not �t in the cache when 16K caches are used. The performance bene�t for each line size is slightly higher

than was observed with 16 processors. This is to be expected since the memory latency is higher due to

the extra level needed in the network. Despite the slight increase in memory latency, the speed-up with

32 processors was good. The system was faster by 80-86% with one instance of 76%. The relaxed models

showed a 1-4% better speed-up than SC1 did when using the same cache structure. We did not do studies

of 32 processors for WO2. The reason is explained in section 4.2.3.

One should not reach undue conclusions from the 64K cache experiment. Recall that the data set was

of a size that made it amenable to be run on a simulator. A 250 � 250 matrix of doubles occupies only half

a megabyte of memory. Gaussian elimination on such a matrix takes about 10 CPU seconds on a modern

workstation. The problems we expect to run on a real parallel processor will be much larger. The data

sets will probably be too large for the cache and the hit ratios will be more like those recorded for the 16K

cache.

4.1.2 Qsort

The performance of Qsort is signi�cantly improved by the implementation of relaxed models. The bene�ts

range from 13% to 18% and are realized for both cache sizes. These improvements stem from a moderately

low hit rate (69-81% for both cache sizes since neither cache has the capacity to store the program's

working set) accompanied by memory access patterns that allow overlapping. As mentioned in section 3.3,

the variability of results for the various line sizes and models is caused by dynamic scheduling e�ects.

4.1.3 Relax

As can be seen in Figures 4 and 5, Relax obtains very little bene�t from the relaxed models. The largest

gain is 5%. Part of the reason for the lack of improvement is Relax's high cache hit rate, from 79% to

98% depending mostly on the line size. Note that the 79% hit rate is comparable to Qsort's and for that

latter benchmark the relaxed models yield better improvements. The compounding reason for Relax's

12

low improvement is its access pattern. The relaxed models cannot hide much of the memory latency. As

described in section 3.3, most of it is already hidden in the case of a write miss (in all implementations) by

the network access bu�er and the register-register operations following the write, or it cannot be hidden

in the case of a read miss that causes a stall almost immediately when the destination register is used as

described in section 3.3

This analysis of Relaxmade us realize that how the program is written or compiled for peak performance

depends upon the memory model to be used. If the compiler can rearrange the code to schedule all the

loads at the top of loop, then there may be some bene�t from the relaxed models for Relax for 8 byte lines.

The access that will cause the miss (see section 3.3) should be done �rst among the nine loads, thereby

allowing the main memory access to be done while loading the other eight registers from cache. For larger

lines with high hit rates (over 90%), we expect the e�ect of this optimization, for this size data set, to be

minimal. Note that even in SC1 the code can be rearranged to minimize the memory access penalty. All

the loads should again be done at the top of the loop, but the one that causes the miss should be done

last. Otherwise the processor will stall when attempting a load after the miss. While the line is being

fetched from memory, the other eight values can be summed so that by the time the register whose value

was coming from main memory is added into the sum, the line has arrived from memory (rearranging the

additions can also be done for the relaxed models). The optimizer in our compiler does reorganize the code

so that all the loads are at the top of the loop. However, it is not smart enough to realize which load will

miss in the cache and schedule the code accordingly. We conducted some experiments where we manually

scheduled the code taking this e�ect into account. The results are in Section 5.2.

4.1.4 Psim

Psim has a moderate (8-10%) performance improvement from the relaxed models which is to be expected

given its hit rate of approximately 90%. Since Psim has a much higher average memory latency due to its

high level of sharing and skewed memory access distribution, it gets greater bene�t than Relax.

4.2 Relative Performance of the Consistency Models

4.2.1 Relaxed Model Bene�ts

As a general rule, the relaxed models show a non-negligible performance improvement as long as the cache

hit rates are not too high. If hit rates are in the high nineties, then the memory access times are less

important and, as could be expected, the use of sequential consistency won't degrade performance. In the

case of lower hit rates, the bene�ts of relaxed models can be mitigated if either a single non-blocking load

(as in SC1) or store allows a substantial overlap of memory access and computation, or, conversely, if a

fetch for some value is almost immediately followed by its use. In the latter situation, it is likely that the

code could be reorganized to take better advantage of the relaxed models, especially if the architecture

supplies a su�cient number of registers. We further discuss the general bene�ts of the relaxed models in

section 6.2.

4.2.2 RC versus WO1

In all of the runs RC and WO1 performed in a similar manner. If there was any di�erence, RC's improve-

ment over SC1 was slightly better. The largest instance, less than 1% better relative to SC1, occurred

for Psim, the program with the most synchronizations. Recall that RC and WO1 di�er only in the way

acquires and releases are implemented. Under RC when a release is encountered the processor does not

stall either for outstanding references or for the release to complete, whereas under WO1, the processor

does stall for the references to complete and then for the release to complete. Also, for an acquire it

does not stall while outstanding memory accesses complete. Clearly neither of these events were frequent

enough for the processor to spend a signi�cant portion of its time stalling at releases in the WO1 system.

13

From these benchmarks there is nothing to indicate that it is worthwhile implementing RC instead of WO1

if implementing RC would in any way be more costly or detrimental to the processor's cycle time.

4.2.3 WO2 - Bypassing

Overall, it appears that bypassing of stores by loads is not worthwhile with lockup-free write-back caches.

Recall that our implementation of bypassing is such that loads bypass waiting stores and waiting loads.

On the average only one request was bypassed. In only one of the benchmarks, Psim, was the bypassed

request usually a write and this benchmark had the most bypasses, 125,000 (roughly one every 200 cycles).

However, as can be seen in Figures 4 and 5 this produced no di�erence in performance. In the other cases

the number of bypasses of writes was insigni�cant. Note that even if a read bypasses a write, the odds are

that the request is going to a di�erent memory module. Bypassing does not help a read to get preferred

treatment at the memory module where it is contending with requests from other processors. Therefore

the only advantage is for the read to be on the network �rst, i.e., gain a cycle in the case of no or low

contention. The slight drop in performance for Gauss and Relax was probably due to our implementation

since those two benchmarks showed a small number of bypasses of reads by reads. Qsort showed both

a performance gain and a loss which is mostly due to variability. It almost never had a write bypassed

by a read. Since the WO2 experiment was su�ciently convincing, we do not see any reason to consider

implementing bypassing in a release consistent system or studying it with 32 processors.

4.2.4 SC2 versus SC1

In general there is very little bene�t in prefetching one line when a processor is stalled due to a cache miss.

In fact, in one case (Psim, 64 byte lines) prefetching was detrimental because it increased the congestion in

the network. As noted earlier, that benchmark has a high level of network tra�c due to coherence e�ects

and the network tra�c was exacerbated by the large line size. SC2 causes a clustering of memory requests

that further saturate the network, resulting in a net rise in the memory latency, the opposite of what we

sought. The probable cause for the general lack of performance gain in SC2 is that the opportunity for it

to be of any help, i.e., to have consecutive cache misses to di�erent lines without an intervening register

interlock causing a processor stall, is rare. This paucity of limited prefetches increases for programs with

good locality.

5 Architectural Variations and Results

5.1 Blocking Loads

With our implementations of the relaxed models, both read and write latencies are overlapped with

computation. However, we do not know how much of the hidden latency is due to reads and how much

is due to writes. Therefore, we modi�ed two of our implementations to use blocking loads and compared

our results with those we already had. With blocking loads, when there is read miss, the processor stalls

until the requested line returns from memory. So, none of the read latency is hidden. Since there was little

variation among the sequentially consistent implementations and among the relaxed consistency ones, the

only two implementations that we modi�ed were SC1 and WO1. The versions with blocking loads are

designated bSC1 and bWO1. Graphs showing the performance of SC1, bWO1 and WO1 relative to bSC1

are in Figures 7 and 8.

Non-blocking loads appear to have no signi�cant e�ect for the two systems that are sequentially con-

sistent. The performance of bSC1 and SC1 are basically the same (di�erences for Qsort are still due

to its dynamic nature). However, non-blocking loads can still provide some bene�t in such systems (see

section 5.2).

14

Gauss

SC1 bWO1WO1

Memory Model

0

9

18

27

36

% Performance

gain

over bSC1

�

.............................

8 bytes

�

.............................

16 bytes

.

.............................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
...
..
...
..
...
..
...
..
...
..
..
...
..
...
..
...
..
...
..
...
..
...
..

�

�

�

.

..
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.........
..........

..........
...........

..........
.........

.

.

.

Qsort

SC1 bWO1WO1

Memory Model

-5

0

5

10

15

% Performance

gain

over bSC1

�

.............................

8 bytes

�

.............................

16 bytes

.

.............................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

�

� �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......
....
....
.....
....
....
.....
....
....
.....
....
.....
....
..

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..

.

.

.

Relax

SC1 bWO1WO1

Memory Model

0.0

1.2

2.4

3.6

4.8

% Performance

gain

over bSC1

�

.............................

8 bytes

�

.............................

16 bytes

.

.............................

64 bytes

...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� �

�

..
........
........
........
.........
........
........
........
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

.

.....
.........
........
........
........
.........
........
...
.
.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.
.
.
.

.

.

.

.
.

.

.

.

.

.

.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.
.

.

.

.

.

.
.
.
.

.

.

.

.
.

.

.

.

Psim

SC1 bWO1WO1

Memory Model

0

3

6

9

12

% Performance

gain

over bSC1

�

.............................

8 bytes

�

.............................

16 bytes

.

.............................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.

.

.

.

Figure 7: 16 processors, 16K caches, blocking loads

The performance improvement is relative to bSC1 for that line size.

Note that the scale of the y axis in each graph is di�erent.

The e�ect of blocking loads in relaxed models varies with the benchmarks. In the case of Relax there is

almost no di�erence between bSC1, SC1, and bWO1 regardless of line or cache size. There is a signi�cant

di�erence however for WO1 for which the non-blocking loads are important. Because of the structure of

the Relax program, it is clear that another memory access must occur shortly after loads that are missing;

this causes a stall in SC1 and bWO1. Thus, almost all the latency hidden by WO1 for Relax is read latency.

In the case of Psim, a weakly ordered system with blocking loads provides 75-85% of the performance

improvement that is obtained with non-blocking loads. This shows that although most of the latency being

hidden is write latency, there is de�nitely a noticeable amount of read latency which is hidden as well.

For Gauss with 16K caches it is mostly write latency which is overlapped with computation (however,

the scale of the y axis in Figure 7 is misleading). There would be a noticeable loss of performance in some

cases if blocking loads were used. In the case of 64K caches there appears to be a great deal of variability

in Gauss' behavior (cf. Figure 8). However, the di�erences are actually so small as to be unimportant.

5.2 Hand Scheduled Relax Code

In section 4.1.3 we described how simply moving all the loads to before all the
oating point adds, as our

compiler did, would not automatically improve the e�ect of using relaxed models of memory consistency as

much as possible. The order of the loads is important. In order to test the importance of the scheduling of

15

Gauss

SC1 bWO1WO1

Memory Model

0.0

0.5

1.0

1.5

2.0

% Performance

gain

over bSC1

�

.............................

8 bytes

�

.............................

16 bytes

.

.............................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..

�

�

�

...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.
.
.
.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.

.

.

.

Qsort

SC1 bWO1WO1

Memory Model

-5

0

5

10

15

% Performance

gain

over bSC1

�

.............................

8 bytes

�

.............................

16 bytes

.

.............................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
...
..
..
..
..
...
..
..
..
...
..
..
..
..
...
..
..
..
...
..
..
..
..
.

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
.

.

.

.

Relax

SC1 bWO1WO1

Memory Model

0

1

2

3

4

% Performance

gain

over bSC1

�

.............................

8 bytes

�

.............................

16 bytes

.

.............................

64 bytes

....
.......
.......
.......
.......
.......
......
.......
.......
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

....
.......
.......
.......
.......
.......
......
.......
.......
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

......
.......
.......
......
.......
.......
.......
.......
.....
.
.

.

.

.
.
.
.
.

.

.

.

.

.
.

.

.

.

.
.
.
.

.

.
.
.
.
.

.
.
.
.
.
.

.

.

.

.
.
.
.

.

.
.
.
.
.

.
.
.
.
.
.
.

.

.

.
.
.
.

.

.
.
.
.
.
.

.

.

.

.

.
.

.

.

.
.
.
.

.

.

.

Psim

SC1 bWO1WO1

Memory Model

0

3

6

9

12

% Performance

gain

over bSC1

�

.............................

8 bytes

�

.............................

16 bytes

.

.............................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
.

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.

.

.

.

Figure 8: 16 processors, 64K caches, blocking loads

The performance improvement is relative to bSC1 for that line size.

Note that the scale of the y axis in each graph is di�erent.

the loads, we manually scheduled the code in a more e�cient order, with one schedule for the SC systems

and one for the WO systems. As we described in section 4.1.3, we took into account the knowledge of

which load (if any) would miss in the cache and scheduled the loads and additions so that there would be

the maximum amount of time between the load and operations dependent upon the load (in the SC case

this also meant guaranteeing that there were no other memory access between those instructions). We also

manually scheduled the code in such a way to produce a deliberately bad schedule given the knowledge of

which load would miss. These schedules were equally likely to have been produced by the compiler given

its lack of knowledge of the architecture.

In Figure 9 we show the relative performance of the codes manually scheduled for good and bad

performance compared to the optimizer's default schedule. We see that there is a noticeable di�erence

(up to 8%) in performance. Normally the manual scheduling of the code will be impractical. However,

compiler scheduling can perform some of these optimizations [7].

5.3 Two Cycle Load and Branch Delays

Due to limitations of our simulator, our initial studies used a load and branch delay of four cycles. It can

be argued that this is overly long (although superpipelined machines may have long delays as well). We

duplicated our studies of SC1 and WO1 with load and branch delays of two cycles (this includes the load

16

SC1, 16K

8 16 64

Line size (bytes)

-2

0

2

4

6

8

% Performance

gain

over default

optimal

bad

WO1, 16K

8 16 64

Line size (bytes)

-4

-2

0

2

4

6

% Performance

gain

over default

optimal

bad

SC1, 64K

8 16 64

Line size (bytes)

-2

0

2

4

6

8

% Performance

gain

over default

optimal

bad

WO1, 64K

8 16 64

Line size (bytes)

-4

-2

0

2

4

6

% Performance

gain

over default

optimal

bad

Figure 9: E�ect of improved code scheduling

The y axis is the change in run-time when using the default schedule

and a deliberately bad schedule compared to the compiler's default.

delay for loads of private data). The performance of the systems with this new parameter is shown in

Tables 3 through 6. These results are consistent with those obtained with a four cycle delay and do not

bring any further insight.

6 Related Work and Comparisons

6.1 Methodology

Simulation performance studies of relaxed consistency models have been done for two di�erent architectures:

a shared-bus multiprocessor [3] and a mesh connected multiprocessor based on DASH, an experimental

system being built at Stanford [14, 23]. Our previous study [3] should not be compared to this one due to

the modest number of processors (nine to twelve), the low memory latency, and the limitations of its trace-

driven nature. However, the Stanford study, which used instruction-level simulation, is similar in scope to

our current study but their architectural framework and memory model implementations are signi�cantly

di�erent.

The Stanford study is based on a variant of the DASH [22] architecture with 16 processors connected

17

Cache Delay 8 byte lines 16 byte lines 64 byte lines

Size Absolute Relative Absolute Relative Absolute Relative

16K Two cycles 7,938 46.8 3,528 22.9 855 6.1

Four cycles 7,278 36.2 3,705 20.2 1,075 6.2

64K Two cycles 308 2.4 239 1.9 157 1.2

Four cycles 281 1.7 219 1.3 172 1.1

Table 3: Gauss, absolute and relative bene�ts

Cache Delay 8 byte lines 16 byte lines 64 byte lines

Size Absolute Relative Absolute Relative Absolute Relative

16K Two cycles 2,348 16.0 2,671 18.9 2,109 13.9

Four cycles 2,530 15.9 2,544 15.9 3,042 18.4

64K Two cycles 2,261 16.5 1,860 13.0 2,337 15.1

Four cycles 2,347 15.3 2,247 14.3 2,232 13.4

Table 4: Qsort, absolute and relative bene�ts

in a mesh-like fashion. Memory is globally distributed with a portion of global memory being associated

with each processor and forming its local, or home, memory; the remainder of the global memory is the

remote (for that processor) memory. Each processor has a two-level cache hierarchy with a write-through

�rst level cache and a write-back second level cache. There is a write bu�er between the two caches and

if a relaxed consistency model is being implemented, loads can bypass the stores that are in the write

bu�er. The �rst level cache has a one word line size and a fetch size on read misses of four words [12].

Cache coherence is enforced by a hardware full directory scheme with the directories being associated

with the home memories. The memory latency depends upon the type of memory reference (read, write,

synchronization), the memory location of the missing line (home or remote), and the state of the line (clean

or dirty). The memory latencies range from 20 to 80 cycles in the case of no contention on the interconnect.

Gharachorloo et al. [14] studied a number of consistency models including: two forms of sequentially

consistent systems, a weakly ordered system, and a release consistent system. The major di�erence between

the systems involved the selection of events that led to processor stalls. Speci�cally:

� In all four cases, after the issue of a read or an acquire the processor stalls until the operation

completes, i.e., blocking loads are used.

� In all systems except the release consistent one, all writes have to be performed before an acquire or

a release is issued.

� In the release consistent system, releases are delayed until all writes are performed but the processor

Cache Delay 8 byte lines 16 byte lines 64 byte lines

Size Absolute Relative Absolute Relative Absolute Relative

16K Two cycles 1,651 6.3 993 4.1 543 2.3

Four cycles 1,466 5.2 836 3.2 416 1.6

64K Two cycles 1,256 4.8 779 3.2 435 1.9

Four cycles 1,080 3.9 624 2.3 306 1.2

Table 5: Relax, absolute and relative bene�ts

18

Cache Delay 8 byte lines 16 byte lines 64 byte lines

Size Absolute Relative Absolute Relative Absolute Relative

16K Two cycles 2,229 10.6 2,555 12.0 3,037 9.3

Four cycles 2,383 9.0 2,806 10.6 4,387 11.6

64K Two cycles 2,137 10.3 2,484 11.9 2,916 9.1

Four cycles 2,267 8.7 2,711 10.3 4,211 11.3

Table 6: Psim, absolute and relative bene�ts

Bene�ts of WO1 over SC1 for load and branch delays of two and four cycles.

Absolute is in 1,000's of cycles, relative is in percent improvement.

is not stalled. Pending writes do not cause the processor to stall at an acquire.

� Upon issue of a write, either:

{ the processor stalls until the writes are performed (base sequentially consistent)

{ writes are sent to the write bu�er but reads won't be allowed until writes are performed (ag-

gressive sequentially consistent)

{ writes are sent to the write bu�er and the processor continues on (weak ordering, release con-

sistency)

Note that since blocking loads are used, no read latency is being overlapped with computation. Only write

latency is.

6.2 Results and Comparisons

Our experiments show that a relaxed memory model (WO1) using non-blocking loads, lock-up free caches,

synchronization primitives visible to the hardware, and stalls on all synchronization points when outstand-

ing memory references are present is worthwhile. Performance improvements over an aggressive sequential

consistency model can reach 35%. However, with high cache hit rates the bene�t is limited.

The trends observed in the Stanford study were the same as ours, but their maximum reported per-

formance gain, 40% over their base system in the case of the most aggressive models, was higher. There

are several reasons for the quantitative di�erences. First, the memory latencies for the Stanford study are

much larger, thus giving a greater advantage to relaxed memory models. Second, the cache structures that

were used are di�erent. In the Stanford study the �rst level cache is direct-mapped and write-through

(although write hits in the second level cache take only two cycles). Therefore, writes are not performed

as quickly as in our write-back cache and consequently the relaxed models have more opportunity to gain

since all writes take several cycles to complete. Also, while simulating several cache organizations, we

showed that the bene�t could vary greatly depending upon the cache and line size; it would be interesting

to see whether this is true too of a DASH-like architecture.

There was one case where we reached di�erent conclusions about the bene�t of one of the models.

In the Stanford study one benchmark, Pthor, was found to have signi�cant performance improvement

when run on RC compared to when run on WO1. In our comparable benchmark, Psim, which had a

similar hit rate and a high level of synchronization, although still only a third of Pthor's, the bene�ts of

RC and WO1 were essentially the same. We believe that there are three main reasons for the di�erence

in the level of improvement: (i) Pthor's higher synchronization rate and, as observed earlier, the more

frequent synchronization, the greater the opportunity to bene�t from RC, (ii) the higher memory latency

in the DASH-like system results in a greater likelihood of a write being outstanding at a release (it is not

expected that a read would be outstanding at a release since its value would need to have been used before

the release), and (iii) even though the write hit rates are roughly the same, the number of write misses per

19

unit time of Pthor is over double that of Psim, thereby increasing the chances of a write being outstanding

at a release. All three factors provide RC with a greater opportunity for a bene�t over WO1.

7 Conclusions

We have studied the performance bene�ts of several implementations of models of relaxed memory consis-

tency in shared-memory multiprocessors where each processor has a private cache and the interconnect is

a multistage network. Using instruction-level simulations, we have shown that under di�erent and more

aggressive architectural choices the performance bene�ts that might arise from using relaxed models of

consistency depend signi�cantly on the cache structure and on the program characteristics and much less

so on the sophistication of the model implemented.

Our results are qualitatively similar to those presented in a simulation of the DASH architecture.

Programs with high cache hit rates, little sharing, and good locality will not bene�t much, as expected,

from relaxed consistency. The line and cache sizes, which are very important factors in determining the hit

rates, will also greatly in
uence the utility of relaxed consistency. When the hit rates are lower, relaxed

models will usually be advantageous. However, our study shows that the gains are proportional to the

memory latency and the rate of misses per unit time as well as being dependent upon the ability of the

compiler to schedule the code to take advantage of the relaxed models.

The main hardware features that allow relaxed models to be bene�cial are non-blocking loads and

lockup-free caches. Prefetching of one line when there is already an outstanding miss, and extra
exibility to

prevent the processor from stalling at some synchronization points had only minimal secondary e�ects. As

memory latency increases, it will clearly be worthwhile to develop multiprocessors with lock-up free caches

and hardware visible synchronization points so that some form of relaxed consistency can be implemented.

Relaxed consistency should be implemented in conjunction with other memory latency reducing techniques

such as more sophisticated prefetching, speculative execution, fast context-switching or multithreaded

architectures [17].

The e�ect of relaxed consistency on the programmer and the compiler needs to be investigated. We

have shown, through an example, how the optimal code reordering depends upon the model of consistency

implemented. Although we know what the constraints of relaxed consistency models are to the writer of

correct parallel programs, the impact of these relaxed models on programming for e�ciency is an open

area of study.

We could not close this paper without a word of caution. Both our study and the Stanford study used

time-consuming instruction-level simulations which limited the size of the benchmarks. It is unclear what

the performance of a full size data set would be. It is also unclear what other methodology should be

used, if any, to avoid the overbearing consumption of CPU resources. For example, limiting the cache size

proportionally to the data set size might be an approach but we have shown that not all benchmarks (e.g.,

Qsort) would have been sensitive to that e�ect. This methodological question is one that certainly deserves

further study.

AcknowledgementsWe would like to thank the MPCI Project of Lawrence Livermore National Labs

for hosting the �rst author and providing the Cerberus Simulator and some of the benchmarks. Simon

Kahan wrote Qsort and was of great help in explaining its intricacies. We thank Craig Anderson and Tien-

Fu Chen for various forms of assistance, the UW architecture lunch, and Cathy McCann in particular, as

well as Sarita Adve and Kourosh Gharachorloo, for numerous and excellent comments on earlier versions

of this paper. Diane Gorenberg provided assistance with the writing style and overall readability.

20

References

[1] Sarita V. Adve and Mark D. Hill. Implementing sequential consistency in cache-based systems. In

1990 International Conference on Parallel Processing, pages I{47{50, 1990.

[2] Sarita V. Adve and Mark D. Hill. Weak ordering - A new de�nition. In 17th Annual International

Symposium on Computer Architecture, pages 2{14, 1990.

[3] Jean-Loup Baer and Richard N. Zucker. On synchronization patterns of parallel programs. In 1991

International Conference on Parallel Processing, pages II{60{67, 1991.

[4] Eugene D. Brooks III. PCP: A Parallel Extension of C that is 99% Fat Free. Technical Report

UCRL-99673, Lawrence Livermore National Laboratory, 1988.

[5] Eugene D. Brooks III, Tim S. Axelrod, and Gregory A. Darmohray. The Cerberus multiprocessor

simulator. In G. Rodrigue, editor, Parallel Processing for Scienti�c Computing, pages 384{390. SIAM,

1989.

[6] Lucien M. Censier and Paul Feautrier. A new solution to coherence problems in multicache systems.

IEEE Transactions on Computers, C-27(12):1112{1118, December 1978.

[7] Tien-Fu Chen and Jean-Loup Baer. Reducing memory latency via non-blocking and preloading caches,

1992. submitted to Fifth International Conference on Architectural Support for Programming Lan-

guages and Operating Systems.

[8] Gregory A. Darmohray. Gaussian techniques on shared-memory multiprocessors. Master's thesis,

University of California, Davis, April 1988.

[9] Edgar W. Dijkstra. Cooperating Sequential Processes. In F. Genuys, editor, Programming Languages.

Academic Press, 1968.

[10] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory access bu�ering in multiprocessors.

In 13th Annual International Symposium on Computer Architecture, pages 434{442, 1986.

[11] Susan J. Eggers and Randy H. Katz. The e�ect of sharing on the cache and bus performance of parallel

programs. In Third International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 257{270, 1989.

[12] Kourosh Gharachorloo. personal communication.

[13] Kourosh Gharachorloo, Sarita Adve, Anoop Gupta, John Hennessy, and Mark Hill. Programming

for di�erent memory consistency models. Journal of Parallel and Distributed Computing, 13(2), June

1992.

[14] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Performance evaluation of memory consis-

tency models for shared-memory multiprocessors. In Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 245{257, 1991.

[15] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Two techniques to enhance the perfor-

mance of memory consistency models. In 1991 International Conference on Parallel Processing, pages

I{355{364, 1991.

[16] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and John

Hennessy. Memory consistency and event ordering in scalable shared-memory multiprocessors. In

17th Annual International Symposium on Computer Architecture, pages 15{26, 1990.

21

[17] Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd Mowry, and Wolf-Dietrich Weber. Com-

parative evaluation of latency reducing and tolerating techniques. In 18th Annual International Sym-

posium on Computer Architecture, pages 254{263, 1991.

[18] Simon Kahan and Larry Ruzzo. Parallel quicksand: Sorting on the sequent. Technical Report 91-01-01,

Department of Computer Science, University of Washington, January 1991.

[19] David Kroft. Lockup-free instruction fetch/prefetch cache organization. In 8th Annual International

Symposium on Computer Architecture, pages 81{87, June 1981.

[20] Monica Lam, Edward E. Rothberg, and Michael E. Wolf. The cache performance and optimizations

of blocked algorithms. In Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 63{74, 1991.

[21] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess pro-

grams. IEEE Transactions on Computers, C-28(9):690{691, September 1979.

[22] Dan Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. The

directory-based cache coherence protocol for the DASH multiprocessor. In 17th Annual International

Symposium on Computer Architecture, pages 148{159, 1990.

[23] Todd Mowry and Anoop Gupta. Tolerating latency through software-controlled prefetch in shared-

memory multiprocessors. Journal of Parallel and Distributed Computing, 12(2):87{106, June 1991.

[24] Ridge Computers. Ridge 32 User's Guide.

22

A Read/Write Statistics

Program Reads Hit Rate (%) by line and cache size

16K cache 64K cache

8 bytes 16 bytes 64 bytes 8 bytes 16 bytes 64 bytes

Gauss 1074 75.9 87.0 96.1 95.8 97.5 98.9

Qsort 1171 73.3 76.4 84.0 75.7 78.2 84.3

Relax 2132 87.2 93.4 98.1 88.1 94.0 98.4

Psim 1827 92.8 92.9 94.0 93.8 93.8 94.6

Table 7: Benchmark statistics for reads for SC1 for 16K and 64K caches

Reads are averages per processor and are in 1,000's.

Program Write Hit Rate (%) by line and cache size

16K cache 64K cache

8 bytes 16 bytes 64 bytes 8 bytes 16 bytes 64 bytes

Gauss 314 21.1 59.2 88.3 96.4 97.1 98.2

Qsort 310 58.8 64.0 73.5 64.1 67.8 74.7

Relax 329 24.6 62.1 89.9 24.6 62.1 90.0

Psim 319 62.6 64.0 68.4 64.6 65.7 69.4

Table 8: Benchmark statistics for writes for SC1 for 16K and 64K caches

Writes are averages per processor and are in 1,000's.

Program Cycles between references

16K caches 64K caches

Reads Writes Reads Writes

Gauss 19.6 70.0 15.4 52.8

Qsort 16.1 59.5 15.5 57.6

Relax 12.8 83.5 12.7 82.9

Psim 16.0 92.0 15.8 90.8

Table 9: Read and write frequency for SC1 for 16K and 64K caches with 16 byte lines

Frequencies are the number of cycles between references on average.

23

