
Distributed Shared Memory with

Versioned Objects

Michael J. Feeley and Henry M. Levy

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195

Technical Report 92-03-01

To appear in the Proceedings of the Conference on

Object-Oriented Programming Systems, Languages, and Applications (OOPSLA)

October 1992

Abstract

Distributed Object Memory (DOM) is an abstrac-

tion that represents a distributed-memory system

as a single shared container of language-level ob-

jects. The goal of DOM is to simplify program-

ming of parallel applications for such systems. All

accesses to shared memory are made relative to ob-

jects that reside in one or more node-local mem-

ories. For example, in Amber, a DOM system

for a network of workstations, remote references

are transparent at the language level and are im-

plemented using either remote procedure call or

object replication and migration. While DOM

can greatly simplify distribution for many appli-

cation classes, it is not well suited for all domains

(parallel-scienti�c codes, in particular).

To address the shortcomings of DOM for such

domains, we introduce Versioned DOM (VDOM).

In VDOM a version number is associated with each

object. Multiple versions of objects can coexist and

may be cached in local memories as needed to in-

This work was supported in part by the National Sci-

ence Foundation under Grants No. CCR-8619663 and CCR-

8907666, by the Washington Technology Center, and by the

Digital Equipment Corporation Systems Research Center

and External Research Program.

crease concurrency. Object coherence is driven by

synchronization methods implicitly associated with

each object. Explicit versioning is used as the ba-

sis for a memory consistency model that facilitates

e�cient �ne-grain sharing of objects. The units

of VDOM coherence are fragment objects, from

which language-level objects are constructed; this

fragmentation solves the false-sharing problem for

language-level objects. The performance of VDOM

primitives compared to standard DOM coherence

is presented along with speedup results for two par-

allel applications implemented using VDOM.

1 Introduction

For a multiprocessor to scale to even a moder-

ate number of processors, the ideal of a hardware-

implemented uniform-access memory must typi-

cally be abandoned. The reasons for this have

been well documented and are related in part to

the scalability of a shared bus in the face of mod-

ern processor performance. A multiprocessor based

upon distributed memory is one attractive solution

to this problem. In such a system (e.g., the In-

tel Hypercube, the Thinking Machines CM-5, or a

network of workstations), processors are grouped

into nodes ; each node has locally accessible mem-

ory and is connected to other remote nodes by

a network. Distributed-memory systems are dis-

tinguished from other scalable architectures, such

as non-uniform memory access systems (e.g., the

BB&N Buttery), in that they lack hardware sup-

port for direct access to remote memory. Instead,

remote data is examined or manipulated by explicit

message passing from one node to another.

The scalability of distributed-memory multipro-

cessors built from commodity parts makes them an

attractive platform for large-scale parallel process-

ing. However, programming a distributed system is

di�cult because the programmer must deal explic-

itly with communication. To represent data that

is remotely shared among a number of nodes, an

application stores a local copy of the data in the

memory of each node, and uses message-passing

operations such as send and receive to keep those

copies up to date. By explicitly managing the co-

herence of shared data in this way, the applica-

tion can be carefully coded for good performance.

The cost for this performance is (1) added com-

plexity and (2) inherent asymmetry between local

and remote sharing. Symmetry is an issue of both

conceptual clarity and performance. At the lan-

guage level, sharing in node-local memory should

be expressed in the same way as sharing across the

network, while the implementation should provide

e�ciency for both local and remote sharing.

One solution to these problems is to pro-

vide distributed applications with a software-

based, shared-memory abstraction. In Dis-

tributed Shared Memory (DSM) systems such as

Ivy [Li & Hudak 89], the application sees a single

shared virtual address space, as if shared mem-

ory were provided by the hardware. DSM systems

rely on standard memory management hardware

to control coherence at the granularity of a page.

In Ivy, pages that are read-shared among nodes

are replicated on-demand in node-local memories,

while a write access to a page causes a synchronous

invalidation of all but the writing processor's copy.

DSM greatly simpli�es the task of writing dis-

tributed applications but it has problems of its

own related to performance. Ideally, we want

to simplify distributed programming without sub-

stantially sacri�cing the performance of a care-

fully coded message-passing version of the pro-

gram. There are two fundamental problems that

keep DSM systems from achieving these goals.

� DSM coherence, and therefore distribution,

is at the granularity of a page, which may

not match the granularity of data distribu-

tion and sharing. The problems of granularity

and placement of shared data must be solved

by the application in order to avoid increased

coherence overhead and unnecessary network

messages associated with false sharing.

� The DSM coherence mechanism that is repli-

cating and invalidating pages operates blindly

without information from the application

about data access patterns. Since coherence

is driven strictly in an on-demand fashion, op-

timizations such as prefetching and relaxed

memory consistency are less e�ective.

Thus, the central problem in DSM is the gap be-

tween the coherence protocol that manages distri-

bution and sharing, and the application that knows

best how to manage its data. Fundamentally, DSM

lacks a programming model to aid the programmer

in expressing the program's needs with respect to

data, computation and distribution.

In contrast, Distributed Object Memory (DOM)

provides a shared-memory abstraction without

the problems caused by page-level granularity in

DSM. In DOM systems [Jul et al. 88, Liskov 88,

Chase et al. 89, Bal & Tanenbaum 88], coherence

is at the granularity of an object | an instance of a

language type that encapsulates both data and op-

erations. A parallel computation is represented by

a set of objects that are placed by the application

in node-local memories to balance computational

load and to maximize reference locality. Access to

objects is uniform: at the language level, local and

remote objects are accessed in the same way.

Remote references are handled by one of the co-

herence mechanisms supported by DOM, either by

RPC-like [Birrell & Nelson 84] function shipping ,

or by restricted forms of data shipping . With func-

tion shipping, an operation on a remote object is

completed by moving the invoking thread of con-

trol to the object's local node, where it performs

the operation. Data shipping, on the other hand,

maintains a local copy of the object using either a

migration or a replication strategy. When a repli-

cated object is modi�ed, consistency is maintained

using a synchronous operation either to invalidate

or to update all other copies of the object.

DOM closes the gap between the coherence pro-

tocol and the application; objects provide the pro-

grammer with a natural way to convey informa-

tion to the runtime system about the units of co-

herence (i.e., objects) and the coherence policy for

their use [Carter et al. 91]. This is a key advan-

tage of DOM over page-based systems. Since the

object is an encapsulation of data and all refer-

ences to it, coherence can be implicitly associated

with each object's external interface, while DSM

systems must rely on run-time detection of remote

data references.

The advantages of the DOM model derive from

the fact that it de�nes a particular model for dis-

tributed programming. This in turn places restric-

tions on the class of applications that are suitable

for DOM.

� In DOM, language-level objects are the unit

of coherence. Thus, it is assumed that there

is a natural decomposition of the application

into objects that can be distributed and shared

atomically.

� DOM function-shipping and data-shipping co-

herence mechanisms involve synchronous net-

work communication. As a result, remote

sharing is assumed to be coarse grained.

A number of applications �t well into this model,

conforming to these restrictions and bene�ting

from DOM. However, there are many parallel appli-

cations for which these restrictions are too strong.

In this paper, we present an extension to DOM

with the idea of o�ering the bene�ts of object-based

shared memory to a larger class of applications.

We are particularly interested in scienti�c applica-

tions that su�er performance problems on standard

DOM systems.

1.1 Versioned DOM

Versioned Distributed Object Memory (VDOM) is

a new model for parallel-distributed programming

that extends the application domain of DOM to in-

clude certain parallel-scienti�c codes, such as grid-

based data-parallel applications. These applica-

tions are characterized by their decomposition for

parallel (and distributed) computation; a uniform

global data structure is sub-divided into an overlap-

ping decomposition of subproblems. The fact that

subproblems overlap contradicts the two DOM re-

strictions listed above.

To illustrate this problem, consider the example

shown in Figure 1. This application performs some

computation over a two dimensional grid of points.

For parallel execution, the grid is divided into rect-

angular subregions that are distributed among the

processors. In each step of the computation, new

values are computed for all points based upon the

values of neighboring points. This means that

when updating the value on the boundary of a sub-

grid, it will be necessary to read values from one or

more neighboring sub-grids, which may be stored

on other nodes.

A natural object-oriented decomposition of this

problem is to represent a sub-grid as an object.

However, a sub-grid object is not suitable as the

atomic unit of coherence, a violation of DOM as-

sumptions, because parts of it | the edges | are

shared with other, possibly remote subproblems.

This re-introduces the false-sharing problem asso-

ciated with DSM pages, this time at the object

level. Figure 1 shows this by dividing the subre-

gion into the actual units of coherence: the inte-

rior, which is private to the sub-grid, and the edges

and corners, which are shared with neighbors. The

edges of neighboring sub-grids are shown shaded.

A second problem with representing these shared

edges in DOM is the way that they are shared.

Elements from a remote neighbor's edge (shaded

rectangle) are accessed point-by-point along with

elements from local parts of the sub-grid. This

precludes the use of function-shipping coherence

to resolve these remote references, because \ping-

ponging" would result, with a separate remote pro-

cedure call needed to access each element. The

Figure 1: Fragment Objects for Grid-Based Application

only way to provide this sharing e�ciently is to

use data-shipping coherence to obtain a copy of the

entire edge, so that its elements can be accessed

through local memory. However, DOM provides

only limited data-shipping coherence in the form of

either object migration or replication. Using either

of these mechanisms to shared grid edges requires

run-time synchronization among sharing nodes and

synchronous network communication to move the

objects and to invalidate replicas. The network la-

tency associated with these operations makes them

unsuitable for the type of �ne-grain sharing found

in data-parallel applications such as this grid-based

example.

VDOM addresses these limitations by extending

standard DOM in two fundamental ways.

� Fragment objects are introduced to solve the

problem of false sharing of objects. In VDOM,

a language-level object can be composed from

any number of fragment objects. Fragment

objects are the fundamental units of VDOM

coherence. The individual rectangles in Fig-

ure 1 are fragment objects.

� We introduce a new model of sharing called

version consistency (VC) that supports e�-

cient �ne-grain sharing of objects. VC is based

upon multi-version immutable objects; an up-

date to an object logically creates a new ver-

sion of the object. Specifying which version of

an object is to be accessed coordinates sharing

without the need for costly remote synchro-

nization; multiple versions provide increased

concurrency and eager data shipping to reduce

the impact of network latency. These points

are discussed in the following section.

1.2 Organization of this Paper

This paper describes VDOM, a new model for dis-

tributed programming. VDOM is an extension

of DOM that is motivated by the desire to sup-

port certain parallel-scienti�c applications that are

poorly suited to standard DOM. In Section 2, we

provide an overview of VDOM, how it is used and

how it is implemented. Our memory consistency

model, version consistency, is presented in Sec-

tion 3. Performance results of our implementation

are discussed in Section 4 along with information

about two applications written using VDOM. Re-

lated work and alternative approaches to the sim-

pli�cation of e�cient distributed programming are

briey discussed in Section 5. Section 6 summa-

rizes our contributions.

2 Overview of VDOM

VDOM provides a multi-version abstraction of

shared object memory based on fragment objects

and version consistency. Objects are shared by

caching them in local memories with coherence

driven by synchronization operations associated

with each object. The fundamental atomic units

of coherence in VDOM are fragment objects, from

which language-level objects are assembled. Ob-

jects are immutable; when an object is changed, a

new version of it is created. Increased concurrency

is achieved by allowing multiple versions of an ob-

ject to coexist; old versions of an object can be

read while a new version is being created. In a dis-

tributed system, versioning also provides a means

of latency hiding for eager updating of cached ob-

jects. The idea of using immutable objects to in-

crease concurrency is exploited by both the Cedar

distributed �le system [Schroeder et al. 85] and the

Cosmos distributed software development environ-

ment [Walpole et al. 89].

2.1 Fragment Objects

VDOM uses fragmented objects to solve the object-

level false-sharing problem. The term \fragmented

object" was introduce in another context as a way

of representing a language-level object that is sub-

divided into parts that may be distributed in di�er-

ent ways [Shapiro et al. 90]. In VDOM, fragment

objects are the basic atomic units of coherence.

Language-level objects may be composed from any

number of these fragment objects. For example,

recall the sub-grid decomposition shown in Fig-

ure 1. The entire sub-grid, including the shaded

edges of its neighbors, is represented by a single

language-level object. This object is physically al-

located as a number of fragment objects: the in-

terior matrix, the sub-grid's edge vectors (North,

South, West and East) and corners, and the neigh-

boring subregion's edges and corners. Since the

edges of subregions overlap each other, the shaded

fragment objects are actually allocated only once

as part of their own sub-grid; the language-level

object contains pointers to these neighboring-edge

fragment objects.

The application never references a fragment ob-

ject directly. When de�ning a language-level class,

the application speci�es distribution and sharing

information for objects of that class. This infor-

mation is used by the class's constructor method

to allocate constituent fragment objects. The

application-de�ned class inherits a generic super-

class that handles fragment object allocation and

reference, hiding fragmentation from the applica-

tion. For example, SOR and WaTor, the two sam-

ple applications discussed in Section 4.2 and Sec-

tion 4.3, are implemented using a generic 2-d sub-

grid class. A library of generic classes could be de-

�ned for various geometries and sharing paradigms.

The external interface of a language-level object

is una�ected by the fragmentation of the object;

references to elements of a composite object are

translated by superclass methods to access the ap-

propriate fragment object. For example, the sub-

grid superclass might have a method valueAt that

returns the value of a point given its x and y coor-

dinates. To the application, the sub-grid looks like

a two dimensional matrix. However, valueAt trans-

lates the coordinates given to it by the application

into a reference to one of the sub-grid's fragment

objects. In SOR and WaTor a method called index

is used that returns a pointer to an element given

its coordinates. We expect that compiler optimiza-

tion could be used to make this translation of coor-

dinates as e�cient as direct access to a contiguous

array, however, these optimizations were done by

hand in our implementation.

2.2 Programming in VDOM

Our implementation of VDOM is built as an exten-

sion of the Amber DOM system [Chase et al. 89,

Feeley et al. 91], providing programmers with an

additional set of prede�ned C++ classes. Shared

objects in an application inherit a superclass that

Operation Version Number

AcquireRead optional

AcquireWrite required

AcquireWriteOnly required

ReleaseRead no

ReleaseWrite no

Table 1: VDOM Operations

supports the VDOM synchronization primitives

shown in Table 1. These operations are used to

drive the coherence protocol that keeps local mem-

ories up to date as new versions of objects are re-

leased. Before an object can be accessed, it must

be acquired by making a call to either AcquireRead,

AcquireWrite, or AcquireWriteOnly.

The �rst time that a remote object is acquired,

a call is made to the object's owner node to re-

quest that the object be cached in the caller's local

memory. The object's owner is determined from

the virtual address that names the object (possibly

following forwarding addresses left by the object if

it moves). Once it is cached, all new versions of

the object will be eagerly sent to that node as soon

as they are produced. Thus, subsequent attempts

to acquire the object on that node will complete

locally.

To acquire a particular version of an object, the

application speci�es the object's version number as

a parameter to the acquire. For AcquireRead, the

version number is optional; not specifying it will

acquire an arbitrary version of the object (in fact,

the latest version stored on that node). The acquire

returns a pointer to the requested version of the ob-

ject, blocking when necessary to wait for that ver-

sion to be produced. Once a version is in a node's

local memory, attempts to acquire it will complete

immediately, without any other synchronization.

When acquiring an object for writing, the appli-

cation speci�es the version number that it intends

to create. The AcquireWrite completes as soon as

the preceding version of the object is present in

node-local memory. Mutual exclusion for the up-

date is guaranteed implicitly, without inter-node

synchronization, as part of the version consistency

memory model discussed in Section 3. The Ac-

quireWriteOnly operation is optimized so that it

does not copy the current value of an object when

creating a new version; it is useful when the update

writes the entire object.

After an object is modi�ed, ReleaseWrite is used

to signal the coherence protocol to update the local

memory of all nodes that are sharing the object.

The new version of the object is sent to these nodes

asynchronously; the writer does not wait for it to

propagate across the network.

2.3 Immutable Objects

An important bene�t of VDOM is that coherence is

maintained asynchronously. This is true not only

of the ReleaseWrite operation as discussed above,

but also on the receiving end of an update. A

new version of an object can be copied directly into

the local memory of any node (making it available

for the next Acquire there) without synchronizing

with any thread on that node. If VDOM allowed

threads to update objects \in-place", this concur-

rency would not be possible, because sending an

update might conict with other accesses to that

object on the receiving node. With immutable ob-

jects, any thread accessing the object on the re-

ceiving node must be accessing an older version,

thus there can be no such conict. In addition to

eliminating costly remote synchronization, multi-

versioned memory also supports concurrent read-

ing and writing. Versioning of objects is useful in

another way; version numbers are used as the basis

for VDOM's memory consistency model, version

consistency.

2.4 Summary

The key features of VDOM that distinguish it from

other DOM systems are summarized as follows:

� Fragment objects provide a �ner grain of co-

herence than language-level objects.

� Object coherence is driven by synchronization

accesses implicitly associated with each ob-

ject.

� Objects are immutable and multiple versions

of an object can coexist.

� Version consistency is a new memory model

that is used to express several forms of sharing,

maintaining coherence without costly inter-

node synchronization.

3 Version Consistency

A memory consistency model is a contract between

an application and the mechanism that implements

shared memory (for VDOM this is the runtime sys-

tem). The model de�nes certain restrictions on the

use of shared objects; applications that adhere to

these restrictions are given guarantees about the

coherence of those objects. In a strict consistency

model, every read of a data item returns the value

last written; this requires a system-wide synchro-

nization on every write. Strict consistency can be

unnecessarily costly in performance, because for

predictable results, reads and writes to shared data

must still be managed through critical sections. In

a weak consistency model [Gharachorloo et al. 90,

Adve & Hill 90], the application makes synchro-

nization requests (acquire and release) visible to

the hardware or runtime system. The runtime sys-

tem can then use this information to minimize the

number and frequency of messages between shar-

ing nodes by providing the minimum coherence re-

quired to meet the actual needs of the program.

In return, the application agrees to abide by the

contract and examine the shared data only at ap-

propriate times.

Version consistency (VC) is a weak model based

upon the following two restrictions on access to

shared objects.

1. Objects are immutable; modifying an object

creates a new version.

2. Each access selects a speci�c version of an ob-

ject on which to operate.

With version consistency, the application pro-

vides information about the relative order of all

accesses to a shared object by specifying a version

number with each Acquire.

1

The runtime system

1

As stated previously, an AcquireRead can omit the ver-

sion number if it is unimportant which version of the object

is to be accessed.

uses this information to optimize coherence and

synchronization for the object. In DOM, where or-

dering information is not available, coherence can

only be maintained at runtime using costly network

operations to synchronize sharing nodes and to in-

validate (or update) local caches. Version consis-

tency provides this synchronization implicitly. For

a VC program to be correct, the sequence of all

accesses to a shared object must contain only one

AcquireWrite for each version of the object. Thus,

permission to update version i of a object can be

passed with the release of version i to each shar-

ing node. The distinguished thread that issues the

acquire to produce version i+ 1 proceeds, without

further synchronization, when it �nds version i in

its local memory.

This model is useful for applications that have

an explicit or implicit ordering on all accesses to a

shared object. Much of the sharing found in data-

parallel applications is of this form. For example,

both producer consumer and write sharing have

this characteristic, as we will discuss in the next

section. These applications often have an iteration

or step number that can be used naturally as the

basis for the version numbers it speci�es.

3.1 Sharing Found in Data-Parallel Ap-

plications

Data-parallel applications exhibit two types of �ne-

grain sharing that are not easy to express e�ciently

in DOM systems, as described below. Support for

both classes of sharing can easily be built using

version consistency.

� Producer consumer is a style of sharing where

one thread (the producer) updates an object

to be read by one or more other threads (the

consumers). In this style of sharing it is often

important that each update (or new version)

is consumed exactly once, or once by each con-

sumer.

� Write sharing is another common style of

sharing where there are multiple threads that

alternate updating an object. In this case, it

is important to ensure mutually-exclusive ac-

cess to the object and to give threads a way

Processor Y

EB B

Processor X

A EA

EB
A

-> AcquireRead(i-1)
-> AcquireWrite(i)
-> AcquireWrite(i)EA

produce new version of A and EA

EB -> ReleaseRead()
A -> ReleaseWrite()

-> ReleaseWrite()EA

EA
B

-> AcquireRead(i-1)
-> AcquireWrite(i)
-> AcquireWrite(i)EB

produce new version of B and EB

EA -> ReleaseRead()
B -> ReleaseWrite()

-> ReleaseWrite()EB

Figure 2: Example of Producer Consumer with VC

of determining an ordering on the updates to

the objects. In data-parallel applications, it is

usually important that threads update an ob-

ject in a speci�c order, or sometimes that all

threads have updated once before any thread

updates it again.

3.2 Producer Consumer with VC

Figure 2 shows an example, of how producer-

consumer sharing is supported in VDOM. In this

example, threads on two processors (either with

shared or distributed memory) are sharing two edge

objects E

A

and E

B

and accessing private interior

objects A and B. This is a simpli�ed version of

the type of sharing found in grid-based applications

similar to SOR (Section 4.2).

The algorithm iterates through a number of

steps. On each step, a thread reads the most re-

cently generated version of its neighbor's edge ob-

ject, and then generates a new version of its own

edge, also updating its own interior object. On step

i, the thread on processor X will issue the three

VDOM acquire primitives shown in the �gure; the

thread thus gains read access to the previous ver-

sion of E

B

(version i� 1), and write access to new

versions of A and E

A

(version i). The thread im-

plicitly acquires read access to version i � 1 of A

and E

A

. When the thread on processor X issues

the call ReleaseWrite on E

A

, version i of E

A

is im-

mediately sent to the local memory of processor

Y , so that it will be there on the next step when

the thread on processor Y tries to acquire it. So

long as there is su�cient work in computing the

new values of the interior of B before Y acquires

E

A

, the network latency of the update of E

A

will

be completely hidden from the application.

2

Recall

that since multiple versions of a shared object can

coexist, version i of E

A

can arrive in processors Y 's

local memory while a thread on that node is in the

process of reading version i� 1.

2

In the real implementation, Y's AcquireRead of E

A

oc-

curs after it has computed the interior region, B.

Processor Y

EB B

Processor X

A EA

EB

A

-> AcquireWrite(2i)

-> AcquireWrite(i)
-> AcquireWrite(2i)EA

produce new version of A, EA, and EB

EB -> ReleaseWrite()

A -> ReleaseWrite()
-> ReleaseWrite()EA

EB

B
-> AcquireWrite(2i+1)
-> AcquireWrite(i)

-> AcquireWrite(2i+1)EA

produce new version of B, EA, and EB

EB -> ReleaseWrite()
B -> ReleaseWrite()

-> ReleaseWrite()EA

Figure 3: Example of Write Sharing with VC

3.3 Write Sharing with VC

Figure 3 shows an example of write sharing. As in

the previous example, this �gure also shows threads

on two processors sharing two objects E

A

and E

B

.

The di�erence is that now, the threads must gain

write access to both objects on each step. The

WaTor application discussed in Section 4.3 utilizes

this type of sharing.

On each step of the algorithm, threads alternate

updating the shared edge objects E

A

and E

B

; this

alternation is explicit in the algorithm. Work on

the computation of interior values in A and B is

used to overlap with the communication associated

with this sharing. The code fragment shown in the

�gure is all that is needed to coordinate the write-

shared behavior of the two threads.

On step i, the thread on processor X is the �rst

to acquire E

A

and E

B

, creating version 2i. When

that thread issues the ReleaseWrite of the edges,

version 2i is sent to processor Y . As soon as it

arrives, the thread on processor Y is allowed to ac-

quire the edges to create version 2i+ 1. When the

thread on processor Y releases the edges, version

2i + 1 is sent back to processor X so that on it-

eration 2i+ 1, the thread there can create version

2(i+ 1).

3.4 Advantages of Version Consistency

Version consistency supplies a memory model that

is well suited to the �ne-grain sharing exhibited by

many data-parallel applications. This model has a

number of bene�ts, related both to expressiveness

and to e�ciency. These bene�ts are summarized

below.

� Synchronization between threads that are

sharing an object is achieved using VC, with-

out the need for any other synchronization

mechanisms. A thread wishing to access ver-

sion i of an object will automatically wait,

blocking if necessary, until that version is

made available by the thread that updates ver-

sion i�1. This eliminates the need for barriers

or other forms of global synchronization that

can be particularly costly in a distributed sys-

tem.

� Writing to a shared object is controlled implic-

itly without any synchronization and without

the need to invalidate old copies of the object

that may be cached in the local memories of

other processors. Having version i�1 of an ob-

ject is necessary and su�cient for any thread

on that processor to acquire it for writing, pro-

ducing version i.

� Mutual Exclusion is guaranteed by the order-

ing of write accesses. This is part of the con-

tract the application enters into in order to

use the memory model. Since all accesses are

explicitly ordered, the application guarantees

that an AcquireWrite to a particular version of

an object will occur at most once during the

execution of the program.

� Increased Concurrency is achieved, because

threads may be reading version i of an object

while another thread is updating it, producing

version i+1. This also allows a new version to

be disseminated to other nodes without need-

ing to synchronize with any thread that might

be reading an older version of the object.

� Latency Hiding is automatic. Following a Re-

lease of an update to an object, the new ver-

sion of the object is eagerly sent to all proces-

sors that currently have that object cached,

anticipating the next Acquire of that object.

In this way, Acquire operations on remotely

shared objects will complete locally whenever

possible.

3.5 Version Consistency and Message

Passing

Version consistency shares some of the charac-

teristic bene�ts of the message-passing program-

ming paradigm [Tomlinson & Scheevel 89]. By us-

ing version numbers, the program achieves the

same implicit synchronization found with message-

passing; the consumer of a message can synchro-

nize with its producer by issuing a blocking Re-

ceive that waits for the producer to Send the mes-

sage. However, VC provides this synchronization

directly with shared data objects, instead of mes-

sage ports (the typical end-points of communica-

tion in a message-passing system). It also knows

which processors should received updates, sending

them without waiting for the next Acquire. Do-

ing this in a message-passing system would require

that the application have knowledge of all proces-

sors that are sharing the object. Finally, version

consistency works in local shared-memory just as

well and in the same way as remotely, over the net-

work. This provides the symmetry between local

and distributed parallelism discussed above.

4 Performance

We have implemented VDOM as an extension of

Amber. Amber is a DOM programming model that

extends C++ with a set of classes providing objects

with mobility primitives, light-weight threads, and

synchronization primitives such as spinlocks, moni-

tors, condition variables, and barriers. Amber runs

on a network of Firey multiprocessor worksta-

tions [Thacker et al. 88] running the Topaz operat-

ing system. All measurements were made on a net-

work Fireies connected by a 10-megabit/second

Ethernet. Each workstation consists of four (3

MIP) C-VAX processors.

In this section we present the results of perfor-

mance measurements. We �rst compare the over-

head and latency of the primitive coherence oper-

ations for three systems: Amber DOM, our imple-

mentation of VDOM, and a page-based DSM inte-

grated into a version of Amber [Habert 90]. Fol-

lowing this, we present performance results for two

applications implemented in VDOM.

4.1 Micro Performance

This section presents performance data for the ba-

sic operations of our implementation of VDOM.

Table 2 shows the performance of the coherence

mechanisms of three systems: (1) standard Am-

ber DOM, (2) our implementation of VDOM, and

(3) a page-based DSM integrated into a version of

Amber.

System Operation Latency (ms)

Amber local invoke/return 0.012

remote invoke/return 8.320

object move 12.430

ReadRun (local) 0.250

ReadRun (remote) 21.050

WriteRun (local, no invalidate) 0.210

WriteRun (remote, no invalidate) 19.120

WriteRun (remote, one invalidate) 28.540

VDOM AcquireRead (local) 0.017

AcquireRead (blocking) 0.233

AcquireWrite 0.023

ReleaseWrite (no update) 0.044

ReleaseWrite (signal one waiter) 0.300

ReleaseWrite (one remote update) 0.390

remote update 4.180

DSM read fault (remote) 11.690

write fault (local, one invalidate) 8.254

write fault (remote, no invalidate) 7.680

write fault (remote, one invalidate) 14.770

invalidation 6.570

Table 2: Performance of Coherence Operations (Amber, VDOM, DSM)

The performance for each system is discussed be-

low. None of these systems are highly optimized,

and the performance of each of them could be im-

proved; thus, these �gures should not be taken

as lower bounds. However, it should be clear

that some operations are qualitatively more com-

plex than others, because they involve one or more

global synchronizations and message exchanges.

Amber: The �rst set of data is for standard Am-

ber DOM system. Remote invocation is Amber's

function-shipping (i.e., RPC-oriented) coherence

mechanism. The time of 8.320 msec shown is the

time for a synchronous call/return from a thread

on one node to a object on another node, and

involves round-trip network latency and schedul-

ing overhead. The overhead associated with Am-

ber's object migration data-shipping coherence is

the 12.430 msec show for an object move. The

performance of Amber's invalidation-based object-

replication coherence mechanism [Faust 90] follows

this in the �gure. Accesses to a replicated object

are from within either a ReadRun or a WriteRun.

A ReadRun completes locally if the object is al-

ready cached in local memory (0.250 msec). If

the object is not local, then 21.050 msec are re-

quired to enter a ReadRun. Before a thread enters

a WriteRun on an object, all replicas of the object

are synchronously invalidated. If there are no repli-

cas this takes 0.210 msec, while if there is a single

replica it takes 28.540 msec. To enter a WriteRun

on a remote object requires 19.120 msec.

VDOM: The performance of VDOM's data-

shipping coherence is a signi�cant improvement

over the standard DOM mechanisms. A key ob-

servation to make when comparing VDOM per-

formance to the other systems listed is that un-

like the others, VDOM operations hide network la-

tency. To Acquire a local object for reading takes

only 0.017 msec. If an Acquire must block until

the requested version arrives in local memory, the

Number of Processors

S
pe

ed
up

1 3 5 7 9 11 13
1

3

5

7

9

11

Figure 4: VDOM SOR Performance (288�288 Grid)

overhead increases to 0.233 msec (plus the receive

time). To Acquire a local object for writing is only

0.023 msec, a three order of magnitude improve-

ment over DOM synchronous invalidation. The

Release following an update of an object will take

0.300 msec if there is a local thread waiting to Ac-

quire the new version, 0.390 msec if there is a single

remote replica of the object, or 0.044 if neither is

true. A total of 4.180 msec are needed to send a

new version from the writer node to the local mem-

ory of another node. This is about half the time of

remote invocation, and a third the time of object

migration. The reason for this improvement is that

the Release is asynchronous to threads on both the

sending node and on the receiving node.

DSM: The �nal set of performance results were

obtained from a page-based DSM system built into

Amber [Habert 90] and are presented for rough

comparison to the object-based systems. It takes a

total of 11.690 msec to replicate a remote page fol-

lowing a \read fault". When a \write fault" occurs,

it takes 8.254 msec to invalidate a single remote

page, 7.680 msec if the page is remote but no in-

validation is needed, or 14.770 to do both. A single

invalidation of a local page requires 6.580 msec.

4.2 Application 1: SOR

Successive Over Relaxation (SOR) computes the

steady-state temperature of a rectangular plate

given the temperature at its edges. The plate is

represented as a two-dimensional array of oating-

point temperature. The algorithm proceeds for

a number of iterations where on each iteration,

Laplace's equation is used to compute the new

value of an element of the array from its old value

and the average of its North, South, East and West

neighbors.

To decompose the problem for parallel computa-

tion, the grid is divided into sub-grids, one for each

processor. A subregion updates its temperatures

by reading the edges of each of its four neighbors.

This application is an example of producer-

consumer sharing as described in Section 3.2. Fig-

ure 4 shows the speedup achieved with a VDOM-

Number of Processors

S
pe

ed
up

1 3 5 7 9 11 13
1

3

5

7

9

11

Figure 5: VDOM WaTor Performance (288�288 Grid)

based implementation of SOR with a 288�288 grid,

on from 1 to four nodes each using from 1 to 3 pro-

cessors. Speedup is very nearly linear, which means

VDOM operations successfully hid network latency

and provided su�cient concurrency.

4.3 Application 2: WaTor

WaTor [Fox et al. 88] is a simulation of an ocean

populated by minnows and sharks. The ocean is

represented by a two dimensional grid of points.

Each point may be empty or it may contain either

a minnow or a shark. The algorithm proceeds in

an iterative fashion. On each step, �sh move one

cell in a randomly chosen direction, and may breed;

sharks can eat minnows (or die of starvation).

This problems demonstrates write-shared ob-

jects, since on an iteration, a �sh might move from

the edge of one subregion to the edge of a neighbor-

ing subregion, requiring that that subregion have

write access to its own edges and its neighbor's

edges as in Figure 3. Figure 5 shows the speedup

achieved with a VDOM-based implementation of

WaTor using write-shared edges. The size of the

grid was 288�288 points and data was collected

for con�gurations of from 1 to 4 nodes using from

1 to 3 processors per node.

5 Comparison to Related Work

A number of systems have been designed and

built to provide some form of Distributed Shared

Memory in order to make distributed program-

ming easier. Among these are page-based sys-

tems [Li & Hudak 89, Carter et al. 91] and object-

based systems (DOM) [Liskov 88, Jul et al. 88,

Bal & Tanenbaum 88, Chase et al. 89]. Page-

based DSM provides the illusions of shared-

memory but without providing a programming

model that gives the programmer a way to eas-

ily express data decomposition and access patterns.

As a result, the coherence mechanisms of these sys-

tems typically must operate without this informa-

tion, and as a result can su�er poor performance

resulting from false sharing.

In Munin [Carter et al. 91], the user annotates

data objects with type information that is used to

select from one of eight di�erent coherence policies

through appropriate settings of seven coherence at-

tributes. As with other DSM systems, distributed

programming in Munin is simpli�ed, because the

user is not directly involved in data layout. Aside

from type annotation, data structures are declared

without regard to how they will be distributed or

shared. Munin solves the false-sharing problem us-

ing a page copy/compare strategy based upon re-

lease consistency [Gharachorloo et al. 90]. Shared

data is replicated on the granularity of a page. The

�rst reference to a remote page causes a copy of the

page to be saved. All read and write operations

to the page following this access complete locally

until a release synchronization operation is issued

by the thread; then the updated page is compared

with the saved copy and the di�erences are sent

synchronously to nodes that are sharing the page.

VDOM achieves similar performance to Munin for

a wide range of sharing interactions without re-

quiring a page fault, copy and compare, expen-

sive operations whose performance will not scale

with improvements in processors [Ousterhout 90].

VDOM, on the other hand, requires a bit more

care in declaring shared data, but the application

can avoid the need for costly run-time, on-demand

coherence overhead.

Object-based models are naturally adapted to

distributed systems. Examples of DOM systems

include Amber [Chase et al. 89, Feeley et al. 91],

Argus [Liskov 88], Emerald [Jul et al. 88] and

Orca [Bal & Tanenbaum 88]. In contrast to these

other distributed systems, the goal of Amber is to

execute a single application that performs a paral-

lel computation. However, all of these systems have

provided memory consistency at the level of a lan-

guage object. Many systems provide only function

shipping while others also provide data shipping in

a limited form. VDOM extends this model by pro-

viding object-based coherence using fragment ob-

jects and a data-shipping model of sharing called

version consistency. The addition of these ca-

pabilities makes object-based distributed memory

models more appropriate for many types of data-

parallel applications.

VDOM provides a multi-versioned abstraction of

shared object memory. Doing this increases con-

currency and provides a basis for the version con-

sistency sharing model. Using multiple versions

to improve the performance of read-only trans-

actions is discussed in [Weihl 87]. Using version

numbers as the basis for synchronization is simi-

lar to [Reed & Kanodia 79], where it is shown that

any high-level synchronization mechanism can be

built from primitives based on eventcounts. VDOM

builds upon this idea to incorporate synchroniza-

tion directly with the data being shared. This not

only provides a natural, object-oriented synchro-

nization mechanism but also allows synchroniza-

tion operations to be used to direct memory coher-

ence.

6 Conclusion

We have described Versioned Distributed Object

Memory (VDOM), an extension of traditional Dis-

tributed Object Memory systems that is tuned to

the needs of a large class of scienti�c numerical ap-

plications. The important aspects of VDOM that

distinguish it from other DOM systems include:

� Shared objects are cached in local memories

with coherence driven by Acquire and Release

synchronization methods associated with each

object. All accesses to a shared object are

bracketed with an Acquire/Release pair. This

makes data shipping a �rst-class citizen along

side of function shipping that is featured in

DOM.

� Objects are immutable; a write operation log-

ically creates a new version of an object. Mul-

tiple versions of an object can coexist in one

or more local memories as needed to increase

concurrency.

� E�cient �ne-grain sharing is achieved using

version consistency, a weak memory consis-

tency model in which an Acquire can request

access to a speci�c version of an object. VC

supplies a data-oriented means for synchro-

nization and ordering of accesses to shared ob-

jects.

� A language-level object can be represented by

a composition of fragment objects, in order to

achieve a �ner grain of distribution and shar-

ing. This is in contrast with DOM where

language-level objects are the indivisible units

of coherence.

Our measurements show the inherent perfor-

mance advantage of the VDOM mechanisms

through their reduction in the frequency of system-

wide synchronizations; this is particularly use-

ful in certain producer-consumer and write-shared

programming styles. VDOM permits object-

oriented programming of grid-based parallel appli-

cations, with the concurrency and latency-hiding

advantages that typically require carefully- and

painfully-coded asynchronous message passing.

Acknowledgments

We would like to thank Je� Chase, Kathy Faust,

Sabine Habert, Chris Hebert, Ed Lazowska, and

Bill Lee for their helpful comments. Special thanks

to Chris Hebert for producing the diagrams. We

would also like to thank the DEC Systems Research

Center for providing the Firey workstations and

the Topaz operating system software.

References

[Adve & Hill 90] Adve, S. V. and Hill, M. D.

Weak ordering - a new de�nition. In

Proc. 17th Annual Symposium on Com-

puter Architecture, Computer Architec-

ture News, pages 2{14. ACM, June 1990.

[Bal & Tanenbaum 88] Bal, H. E. and Tanen-

baum, A. S. Distributed programming

with shared data. In Proceedings of the

International Conference on Computer

Languages, pages 82{91, October 1988.

[Birrell & Nelson 84] Birrell, A. D. and Nelson,

B. J. Implementing remote procedure

calls. ACM Transactions on Computer

Systems, 2(1):39{59, February 1984.

[Carter et al. 91] Carter, J. B., Bennett, J. K., and

Zwaenepoel, W. Implementation and

performance of Munin. In Proceedings

of the Thirteenth Symposium on Operat-

ing Systems Principles, pages 152{164.

ACM, October 1991.

[Chase et al. 89] Chase, J. S., Amador, F. G., La-

zowska, E. D., Levy, H. M., and Little-

�eld, R. J. The Amber system: Parallel

programming on a network of multipro-

cessors. In Proceedings of the 12th ACM

Symposium on Operating Systems Prin-

ciples, pages 147{158, December 1989.

[Faust 90] Faust, K. An empirical comparison of

object mobility mechanisms. Master's

thesis, Department of Computer Science

and Engineering, University of Washing-

ton, April 1990.

[Feeley et al. 91] Feeley, M. J., Bershad, B. N.,

Chase, J. S., and Levy, H. M. Dy-

namic node recon�guration in a parallel-

distributed environment. In Proceedings

of the Third ACM SIGPLAN Symposium

on Principles and Practice of Parallel

Programming, pages 114{121, July 1991.

[Fox et al. 88] Fox, G. C., Johnson, M. A.,

Lyzenga, G. A., Otto, S. W., Salmon,

J. K., and Walker, D. W. Solving

Problems on Concurrent Processors, vol-

ume I. Prentice-Hall, Englewood Cli�s,

New Jersey, 1988.

[Gharachorloo et al. 90]

Gharachorloo, K., Lenoski, D., Laudon,

J., Gibbons, P., Gupta, A., and Hen-

nessy, J. Memory consistency and event

ordering in scalable shared-memory mul-

tiprocessors. In Proc. 17th Annual Sym-

posium on Computer Architecture, Com-

puter Architecture News, pages 15{26.

ACM, June 1990.

[Habert 90] Habert, S. Distributed shared memory

in Amber. Technical report, University of

Washington, December 1990.

[Jul et al. 88] Jul, E., Levy, H., Hutchinson, N.,

and Black, A. Fine-grained mobility

in the Emerald system. ACM Trans-

actions on Computer Systems, 6(1):109{

133, February 1988.

[Li & Hudak 89] Li, K. and Hudak, P. Memory

coherence in shared virtual memory sys-

tems. ACM Transactions on Computer

Systems, 7(4):321{359, November 1989.

[Liskov 88] Liskov, B. Distributed programming

in Argus. Communications of the ACM,

31(3):300{312, March 1988.

[Ousterhout 90] Ousterhout, J. K. Why aren't op-

erating systems getting faster as fast as

hardware? In Proceedings of the Summer

1990 USENIX Conference, pages 247{

256, June 1990.

[Reed & Kanodia 79] Reed, D. P. and Kanodia,

R. K. Synchronization with eventcounts

and sequencers. Communications of the

ACM, 22(2):115{123, February 1979.

[Schroeder et al. 85] Schroeder, M. D., Gi�ord,

D. K., and Needham, R. M. A caching

�le system for a programmer's worksta-

tion. In Proceedings of the 10th ACM

Symposium on Operating Systems Prin-

ciples, pages 25{35, December 1985.

[Shapiro et al. 90] Shapiro, M., Gourhant, Y.,

Habert, S., Mosseri, L., and Valot, C.

SOS: An object-oriented operating sys-

tem { assessment and retrospectives.

Computing Systems, 1990.

[Thacker et al. 88] Thacker, C. P., Stewart, L. C.,

and Satterthwaite, Jr., E. H. Firey:

A multiprocessor workstation. IEEE

Transactions on Computers, 37(8):909{

920, August 1988.

[Tomlinson & Scheevel 89] Tomlinson, C. and

Scheevel, M. Concurrent object-oriented

programming languages. In Kim, W.

and Lochovsky, F. H., editors, Object-

Oriented Concepts, Databases, and Ap-

plications, chapter 5, pages 79{124. ACM

Press, New York, New York, 1989.

[Walpole et al. 89] Walpole, J., Blair, G. S., Ma-

lik, J., and Nicol, J. R. A uni�ng model

for consistent distributed software devel-

opment environments. In Proceedings

of the ACM SIGSOFT/SIGPLAN Soft-

ware Engineering Symposium on Practi-

cal Software Development Environments,

pages 183{190, February 1989.

[Weihl 87] Weihl, W. E. Distributed version man-

agement for read-only actions. IEEE

Transactions on Software Engineering,

SE-13(1):55{64, January 1987.

