
How to Use a 64-Bit Virtual Address Space

Je�rey S. Chase, Henry M. Levy, Miche Baker-Harvey, and Edward D. Lazowska

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195

Technical Report 92-03-02

Abstract

Most operating systems execute programs in private address spaces communicating through messages

or �les. The traditional private address space model was developed for 16- and 32-bit architectures, on

which virtual addresses are a scarce resource.

The recent appearance of architectures with at 64-bit virtual addressing opens an opportunity to

reconsider our use of virtual address spaces. In this paper we argue for an alternative addressing model,

in which all programs and data reside in a single global virtual address space shared by multiple protection

domains. Hardware-based memory protection exists within the single address space, providing �rewalls

as strong as in conventional systems.

We explore the tradeo�s in the use of a global virtual address space relative to the private address

space model. We contend that a shared address space can eliminate obstacles to e�cient sharing and

exchange of data structures that are inherent in private address space systems. The shared address

space o�ers advantages similar to some capability-based computer systems, but can be implemented

on standard page-based hardware, without the performance costs and restricted data model typical of

capability-based systems.

We introduce Opal, an operating system to support this model on paged 64-bit architectures. The

key feature of Opal is a at virtual address space that includes data on long-term storage and across the

network.

1 Introduction

The rapidly increasing demands of software (both applications and operating systems), together with in-

creasing VLSI densities, have brought us to the verge of a major architectural change: the move from a

32-bit to a 64-bit virtual address space. This trend can be seen, for example, in the architectures of the HP

PA-RISC [Lee 89], and the IBM RS/6000 [Groves & Oehler 90]. The MIPS R4000 [MIP 91] and Digital's

recently announced Alpha family [Dobberpuhl et al. 92] are the �rst architectures with unsegmented 64-bit

address spaces.

Unlike the move from 16- to 32-bit addressing, a 64-bit address space could be revolutionary instead of

evolutionary with respect to the way operating systems and applications use virtual memory. Consider that

40 bits can address a terabyte, two orders of magnitude beyond the primary and secondary storage capacity

of all but the largest systems today. More signi�cantly, a full 64-bit address space, consumed at the rate of

100 megabytes per second, will last for nearly 5000 years. Such large address spaces eliminate the need to

reuse addresses in order to supply each executing program with su�cient name space, invalidating a basic

assumption that has driven operating system design since the 1960s.

The purpose of this paper is not to argue in favor of the architectural change to 64-bit addressing; we

simply assume that wide-address architectures will appear, independently of how operating system designers

decide to use them. Instead, our purpose is to argue that operating systems should take advantage of these

wider addresses by supporting a single global virtual address space that maps all data in the system. The

This work is supported in part by the National Science Foundation under Grants No. CCR-8619663, CCR-8907666, CCR-

9200832, and CDA-9123308; by the Washington Technology Center; by the Boeing Corporation; and by Digital Equipment

Corporation through the Systems Research Center, DECwest Engineering, the External Research Program, and the Graduate

Engineering Education Program.

1



\system" could be a distributed memory computer or even a large network, though we do not explicitly

discuss distribution issues in this paper.

In this paper, we explore the costs and bene�ts of this model (the uniform-address model) by comparing

and contrasting it with the memory addressing model used in most operating systems today (the process-

based model). Both models de�ne the concepts of address space, the virtual addresses used by an executing

processor to name operands in memory, and protection domain, an execution context that restricts the

processor's access to memory.

1

They di�er only in their view of the relationship between these concepts:

� Process-based systems, or private address space systems, equate the notions of protection domain and

address space, combining them into a single concept known as a process in Unix or Multics, a task in

Mach, and an actor in Chorus. In these systems every protection domain has its own address space.

� Uniform-address systems, or single address space systems, execute all protection domains in a common

paged virtual address space containing all data. The notions of address space and protection domain

are fully independent.

As an example of the uniform-address model, we introduce Opal, a distributed operating system that we

are building. An Opal protection domain is in many ways the analog of a Unix process or Mach task: for

example, there is typically one protection domain per executing application, containing some private data,

threads, and RPC connections to other domains. The di�erence is that an Opal domain has a private set of

access privileges for globally addressable pages rather than a private virtual naming environment. Domains

may grow, shrink, or overlap arbitrarily by sharing or tranferring page permissions among themselves. Opal's

at virtual address space includes data on long-term storage and across the network. In general, a given

piece of data appears at a �xed virtual address independent of where it is stored or which domains access it.

No special hardware support for Opal is assumed or required. Our architectural assumptions are: (1) an

unsegmented paged virtual address space, (2) 64-bit virtual addresses with 40 or more meaningful bits, (3)

e�cient sparse use of the address space, (4) support for multiple protection domains that control access to

data on a page granularity, and (5) no constraints on virtual address usage within a protection domain. These

conditions could be met by simply extending the addressing widths on a conventional paged architecture with

a software-loaded translation bu�er, such as the MIPS R3000. We believe that Opal could run e�ciently on

DEC Alpha and MIPS R4000 processors.

1.1 Why a Single Address Space?

The key property of a uniform-address system is that virtual addresses are context-independent { the

meaning of a virtual address is independent of the entity issuing that address. We have noted else-

where [Koldinger et al. 91] that context-independent addressing frees processor hardware from the need

to support multiple sets of address translations, allowing optimizations in the memory system, notably the

trouble-free use of a virtually addressed data cache. In the software, context-independent addressing sim-

pli�es the sharing, storage, and retrieval of data, especially structured data containing embedded pointers.

It is this improved support for sharing that we are concerned with in this paper. This section previews the

main points of our argument.

Our notion of sharing is quite general: sharing occurs whenever a domain uses data or code that is

created by some other domain. By this de�nition sharing is common. Sharing can be sequential as well as

concurrent, so it encompasses data transfer fromone domain to another through messages or �les. Distributed

communication and long-term storage are special cases of sharing between domains, in which the domains

are physically separated by a network or their lifetimes are disjoint.

Process-based systems intertwine naming and protection in a way that limits their ability to support

sharing e�ciently. The problem is that each domain chooses addresses for shared data independently of

other domains; in general, this means that the producer and consumer of data use names inconsistently.

1

We also use the term protection domain informally to denote the collection of data that is accessible from such an execution

context, or to refer to a processor executing in the context.

2



Section 2 will show that these naming problems cause extra overheads when data is shared, such as excessive

data copying and software pointer translation. Programs may be structured to make unnecessary cross-

domain (RPC) calls because sharing is di�cult to implement.

A single address space system separates naming and protection, simplifying sharing in two ways. First,

virtual addresses can be passed between domains; any byte of data can be named with the same virtual

address by any protection domain that has permission to access it. Second, domains can import data

containing embedded virtual addresses, without risk of a name conict with other data already in use by the

domain. These properties make it easier to implement sharing as direct sharing of a single copy of the data.

1.2 Sharing and Trust

Improved support for direct sharing is bene�cial even if there is no explicit interaction between protection

domains. For example, an Opal domain can dynamically attach to shared code modules in any combination,

without runtime linking (Section 3.3). More importantly, direct sharing can bene�t domains that are coop-

erating in some way. Why do protection domains need to cooperate or share data? We generally think of

each domain as executing a self-contained application, but in fact there are several reasons why interacting

software components might run in separate protection domains:

� Providing a service to multiple users. Servers are protected from their clients, to prevent a client from

interfering with service to other clients.

� Accessing a database shared by multiple users. Tools for directly accessing a common database execute

with separate protection identities that reect the access privileges of their users.

� Program continuity. By de�nition, a protection domain cannot survive a system restart. However a

new domain may be created after a restart that picks up where an earlier one left o�.

� Distribution. By de�nition, a protection domain cannot span nodes in a distributed system. However,

domains on di�erent nodes (perhaps executing di�erent parts of the same application) may interact

through message-passing or distributed shared memory.

� Composing programs. In most systems, code that is packaged as an executable program can be executed

only by creating a new protection domain for it to run in. If we want to join the output of one program

to the input of another, we connect two domains with a mechanism such as a Unix pipe.

� Enforcing modularity. A large application may be decomposed into multiple protection domains for

software engineering reasons, e.g., to aid debugging by limiting the propagation of errors.

All of these arrangements are familiar in today's computing environments, and all of them involve di�erent

privilege and trust relationships between the cooperating domains. Composed programs could be fully

trusting; if so, they might just as well be executed in the same protection domain, which is di�cult to

achieve in process-based systems but easy to achieve in Opal. Partial trust relationships are also common.

For example, a server never trusts its clients, but each client must trust the server to some degree. A child

domain always trusts its parent, though the parent never fully trusts the child. Database tools are mutually

trusting to the extent that their user's access privileges overlap.

Opal provides several mechanisms to allow even untrusting domains to share a physical copy of data

safely: (1) readonly access, (2) sequential sharing using transfers of access permissions, and (3) system-

enforced page-level locking. Domains may use concurrently shared pages in restricted ways, validating the

data before use or relying on language-level protection. Variations of these mechanisms are useful when

there is partial trust. Section 3.4 outlines some of the possibilities.

Current software and architectural trends motivate more creative use of direct sharing. Data copying

and protection domain switches have increased in cost relative to integer performance on recent proces-

sors [Ousterhout 90, Anderson et al. 91b]. At the same time, software systems are growing in complexity,

3



encouraging decomposition into multiple protection domains. The recent move toward server-structured

microkernel operating systems is one important example of this trend. Also, CAD systems and other data

modeling applications are frequently structured as groups of cooperating database tools.

1.3 Related Work

Like much research in operating systems, the Opal project is driven by improvements in hardware technology.

Uniform-address systems have been built before on the claim of improved support for sharing, but these

systems su�ered from the limitations of their hardware platforms. Only now is hardware advancing to the

point that it is practical to organize a general-purpose operating system in this way.

Cedar [Swinehart et al. 86] and its predecessor Pilot [Redell et al. 80] used a single virtual address space

on hardware that supported only one protection domain. These were viewed as single-user systems because

there was no hardware-based memory protection; both systems relied solely on defensive protection from

the name scoping and type rules of a special-purpose programming language. Our proposal generalizes this

model to multiple protection domains.

The term \uniform addressing" was introduced in Psyche [Scott et al. 90], which also has a single virtual

address space shared by multiple protection domains. Psyche uses cooperating protection domains primar-

ily as a means of separating di�erent components of a single parallel application with di�erent models of

parallelism and di�erent scheduling needs. We are interested in more general sharing relationships, leading

to some di�erences in our system abstractions. More importantly, we extend uniform addressing to encom-

pass data on long-term storage and across multiple autonomous nodes in a network. Psyche restricts its

address space to data in active use on a single computer, partly because the system runs in a 32-bit address

space. However, most of the bene�ts claimed for context-independent addressing in Opal apply equally to

non-persistent storage in Psyche.

Systems with segmented addressing (e.g., Multics [Daley & Dennis 68]) have some of the properties of

uniform-address systems. The �rst phase of address translation on segmented architectures concatenates a

global segment identi�er with a segment o�set, yielding a long-form address from a global virtual address

space. The segment identi�er is retrieved from one of a vector of segment registers associated with the

current domain. Domains de�ne a local view of portions of the global address space by overlaying global

segments into their private segment registers. Segmented architectures support uniform sharing in some

cases, but with some or all of the following restrictions: (1) cross-segment pointers are not supported, (2)

multiple pointer forms exist that must be treated di�erently by applications, and (3) application software

must coordinate segment register usage to create an illusion of a single address space.

The Hewlett-Packard Precision [Lee 89] di�ers from other segmented architectures in that it allows appli-

cations to specify long-form virtual addresses directly. Thus the Precision could support a uniform-address

operating system. However, long-form pointer dereference requires a sequence of four instructions, so most

software for the Precision uses segmented addressing.

Most capability-based architectures [Organick 83, Levy 84] support uniform sharing of data structures.

However, it is now possible to achieve these bene�ts using conventional page-based hardware, without the

problems common to capability-based systems: (1) restricted data model, (2) poor performance, and (3)

lack of support for distribution.

1.4 Organization of the Paper

The remaining sections develop the argumentmore fully in the followingway. Section 2 is a detailed treatment

of the obstacles to sharing in process-based systems, and the costs of some popular software workarounds.

Section 3 outlines the basic abstractions of Opal, explains how Opal's uniform-address model eliminates the

sharing problems of process-based systems, and suggests some examples of how direct sharing can be used

e�ectively by software. In Section 4 we answer some common objections to uniform addressing. That section

focuses on the apparent bene�ts of context-dependent addressing, which are sacri�ced in Opal and other

uniform-address systems. Section 5 summarizes our conclusions.

4



2 Sharing in Process-Based Systems

Most operating systems in use today are based on the traditional model of processes executing in private

virtual address spaces. The process model evolved at a time when address bits were in short supply and

programs were assumed to be independent and competing for resources. The purpose of the operating system

was seen as arranging for equitable sharing of physical resources, while isolating each executing program from

its competitors. In this environment private address spaces serve three purposes:

� Contiguity. Each process sees an abstraction of a dedicated machine with a contiguous linear address

space.

� Isolation. An executing program cannot even name data that does not belong to it, since all names

are interpreted in the context of its private address map.

� Reclamation. Storage reclamation is trivial from the perspective of the operating system; when a

process terminates, its storage is reclaimed. No pointers to the data can exist outside of the terminating

process.

Despite these apparent bene�ts, the multiple name spaces of process-based systems present inherent

obstacles to data sharing and cooperation between programs. The problem is that a stored pointer has

no meaning beyond the boundaries of the process that stored it; information containing pointers is not

easily shared because the pointers may be interpreted di�erently by each process that uses the data. Data

structures are easily shared by threads in the same process, but not across processes.

In practice, sharing of data structures can be achieved in process-based systems with some additional

software overhead. A process can address shared data if it �rst imports that data into its private naming

context. To do this, it allocates a range from its virtual address space and attaches the data to the range in

some way. A translation procedure then converts pointer references in the shared data to virtual addresses

that are meaningful in the process naming context. Broadly, this importing and translation of data can be

done in two ways. One is to make a private copy of the data and translate the pointers in the copy, leaving

the original undisturbed. The other is to map a single copy of the data into any process that uses it and

interpret pointers in software each time they are dereferenced. This section highlights the weaknesses of

several common variations of these approaches. For the moment we assume that the private address spaces

of processes are in fact managed independently. In the presence of sharing this is frequently not the case, as

discussed in Section 2.4

2.1 Copy-Time Translation

The standard technique for sharing data structures in process-based systems is to recursively linearize them

for exchange through a �le, pipe, or message [Herlihy & Liskov 82]. This technique was originally developed

for gathering data into a message bu�er (marshaling), but it has also been used to represent data structures

on secondary storage (pickling). Pickles have been used e�ectively for self-contained structures that are used

in their entirety, e.g., a program reading a small private data base on startup [Birrell et al. 87].

Linearizing has serious limitations as a general-purpose mechanism for translating data structures from

one address space to another. Linearized data must be packed by the sender and unpacked by the receiver;

both must traverse and copy the entire structure. Transmitted data is copied from as few as two times (for

optimized local RPC implementations [Bershad et al. 90]) to as many as four times or more (for transmission

through Unix pipes, �les, messages, or sockets). Also, there is no way to represent a pointer to data outside

of the package, thus it cannot be used to store or transmit a fragment of a larger structure, and a process

cannot fetch pieces of a linearized data structure on demand.

5



2.2 Reference-Time Translation

One alternative to linearizing is to translate pointers in shared or copied data at reference time. The

\pointers" in this case are not virtual addresses, but are encoded as pointer surrogates de�ned in some

external naming context and interpreted by software, either the application itself or code emitted by a special-

purpose compiler. The simplest scheme is to represent pointers as o�sets into a �le or memory segment.

A variety of complex schemes for surrogates have been developed, using one or more levels of indirection

through mapping tables. This approach is used by persistent object stores [Moss 89, Hornick & Zdonik 87]

and commercial object-oriented database systems. The pointer indirection in these systems allows objects

to be easily moved to a di�erent part of the address space, to compact storage or to improve clustering

properties.

Reference-time translation has a heavy runtime cost. O�set-based pointers can increase the cost of

dereference by as much as 50%, not including the cost of saving and restoring segment base pointers.

2

For

some object-based schemes the penalty is much higher. Depending on the locality and frequency of surrogate

pointer dereferences, this can signi�cantly impact execution time.

Another problem with reference-time translation of surrogates is that there are generally two forms for

stored pointers, forcing the application or language processor to keep track of which form to expect on each

dereference. A third pointer form may be needed to represent pointers to data outside of whatever naming

context the surrogates are de�ned in. Examples include cross-segment pointers in a segmented architecture,

or cross-database pointers in some persistent object stores [Cockshot et al. 84]. If there is no globally uniform

name space for pointers, the reference may be quali�ed by a symbolic name (e.g., a �le name). Symbolic

names are designed for human consumption, and are inappropriate for use as pointers. They need special

interpretation that is (1) slow, (2) nonuniform, and (3) possibly incorrect, since a human may change the

binding, being unaware that a stored reference exists.

2.3 Swizzling

Some systems that use surrogate pointers attempt to reduce the cost of interpreting pointers by caching

the result of a translation, overwriting the surrogate in place with the virtual address. This technique,

called swizzling, is based on the assumption that the cost of the translation can be amortized across multiple

dereferences of the same pointer. Swizzling is usually managed by a runtime package. It must be integrated

with the programming language implementation to locate stored pointers in the data.

One problem with swizzling is that it forces each process using the data to make a private copy, since the

swizzled pointers are speci�c to a particular address space. In most systems, this means that each process

will allocate virtual backing store even for data that is never modi�ed. Also, if multiple programs have tight

interaction through the shared data (say, a design editor and a design checker in a CAD environment) then

swizzling will incur runtime overhead to keep the copies consistent.

Swizzling has other problems inherited from its ancestor, overlays. First, swizzled pointers must be

\unswizzled" back into surrogates before data is passed outside of the process boundaries (e.g., for co-

herency tra�c, or committing updates to a database). This further increases runtime overhead, and the

implementation must know how to translate pointers in both directions. The unswizzling is typically done

in yet another copy of the data to avoid unswizzling the pointers in place and losing any additional bene�t

from the e�ort expended to swizzle them. Second, virtual pages cannot be reassigned to new data without

some means of ferreting out stale swizzled pointers to the data that previously occupied those virtual pages;

when a virtual page is reassigned, every swizzled pointer must be revalidated before it can be used again.

It has recently been suggested that a swizzling paging system could be used to support programs that

demand more than 32 bits of address space, as a software alternative to wide-address hardware. Wil-

son [Wilson 91] proposes a system that uses wide pointers in a disk representation of the data, swizzled to

2

The dereference sequence needs an add instruction as well as the usual two loads from memory. Note that o�set-based

pointers are di�erent from the (register + displacement) addressing universally used in RISC architectures. The di�erence

is that with o�set-based pointers the displacements are not known statically.

6



32-bit pointers at page fault time so that only the narrow pointers appear in memory. One problem with

this approach, sometimes called eager swizzling, is that it translates all imported pointers, even those that

are never used. Eager swizzling is also complicated by the need to swizzle pointers whose targets have not

been imported and therefore do not yet have virtual addresses assigned. For this reason, Wilson's approach

allocates virtual pages not just for imported data but also for the targets of all imported pointers. This

increases the risk that virtual memory will be �lled, forcing an expensive reassignment.

Swizzling was designed to allow a single process to access stored data structures with restricted usage

patterns. It works well if the process can establish a working set in memory and operate on it independently.

It is less e�ective in cases involving concurrent sharing or signi�cant I/O activity.

2.4 Summary

In process-based systems, sharing of data structures between processes requires pointer translation from one

name space to another, at import time, at reference time, or on �rst use. There are three problems common

to these translation schemes: (1) they are complex, and require support from the language interpreter and/or

the application itself, (2) they restrict the scope of pointers in shared data, and (3) translation and copying

have a signi�cant runtime cost. The translation cost may be reduced by copying the data and translating

the pointers in place, but this wastes storage and incurs copying and coherency overhead. In the next section

we argue that these problems can be avoided in a uniform-address system by using direct virtual addresses

as pointers in shared data.

We recognize that a direct virtual address may not be the best way to represent a reference, particularly

if late binding of the reference is needed for some reason. The intent of this section is to show that translation

schemes have a cost that is too high to pay when late binding of references is not needed. Furthermore,

we claim that late binding can always be achieved with one or more levels of pointer indirection, that the

underlying representation of a reference is always in terms of virtual addresses, and that these more complex

schemes can also bene�t from uniform addressing.

We have assumed until now that the private address spaces of processes are managed independently, as is

generally the case. Processes sharing data can avoid the cost and complexity of translation by coordinating

their address space usage so that the sharing partners attach each shared page to the same virtual page,

a reserved area of overlap in their otherwise independent name spaces. Pointers within shared pages can

then be represented as unencoded virtual addresses. For example, virtual addresses can be saved directly

in a mapped �le if that �le is always mapped at the same address by any program that uses it; this is the

approach used by Camelot [Eppinger 89] to support databases with pointers in them.

The problem with this solution is that the overlapping address ranges are negotiated ad hoc, so naming

conicts will occur if sharing patterns are not known statically. Furthermore, the mix of shared and private

regions introduces dangerous ambiguity. If process A stores a pointer to private data into an area shared

with process B, not only is it impossible for B to arrange access to the target, but it cannot even detect the

error { it simply interprets the pointer incorrectly. We believe that this approach is basically correct, but that

the system rather than the applications should coordinate the address bindings, in order to accommodate

dynamic sharing patterns in a uniform way. This is the essence of the uniform-address model.

3 Sharing in a Uniform-Address System

The fundamental problem with the process-based model is that it de�nes a �xed relationship between

naming and protection. The model provides no means to create a protection domain without creating a new

name space, so interacting software components cannot be placed in separate protection domains without

introducing nonuniform naming of shared data. Furthermore, executable code typically is linked to assume

that it will execute in a private name space; since there is also no way to create a new name space without

creating a new protection domain, it is impossible to execute a program image without creating a new domain

for it to run in.

7



Uniform-address systems avoid these problems because they view naming and protection as independent.

Sharing is simpler and more e�cient than in process-based systems, because separate protection domains

can address the same physical storage with the same names.

In this section we illustrate these points by discussing some features of Opal, a uniform-address system

that we are designing. The discussion focuses on Opal's memory addressing model, particularly the notion of

virtual segments, the relationship between segments and protection domains, uniform addressing of persistent

storage, and the treatment of code modules. We avoid other aspects of the system, such as execution

structures, cross-domain control transfers (RPC), and storage management.

3.1 Protection Domains and Virtual Segments

An Opal protection domain is an execution context that controls access to pages in a global virtual address

space. A domain identi�er is part of the register state of every executing processor, and a processor may

switch from one domain to another with a privileged instruction that loads a new domain identi�er from

memory.

3

Each protection domain has some (possibly empty) subset of fread, write, executeg permission for

each virtual page. Multiple processors may be executing concurrently in the same domain. Any protection

domain may create a new protection domain, attach code and data to it, and start threads in it. Threads

in the same domain have the same protection identity.

To simplify access control and virtual address assignment, the global address space is partitioned into

virtual segments, each composed of a variable number of contiguous virtual pages that contain related data.

Opal segments are similar to segments in Multics and other segmented systems. The key di�erence is that

each Opal segment is named by a virtual address range that is assigned when the segment is created and

�xed until it is destroyed. An Opal segment cannot grow beyond the address range allotted to it when it is

created. The address ranges assigned to di�erent segments are always disjoint, and all memory references

use a fully quali�ed at virtual address. This means that stored pointers in Opal have a globally unique

interpretation, so any domain with su�cient privilege can operate on linked data structures in any segment,

without name conicts or pointer translation. Pointer structures can also span segments, so di�erent access

controls can be placed on di�erent parts of a connected data structure.

Before a domain can complete a memory reference to a segment, it must establish access to it with an

explicit attach operation. A memory reference to an unattached segment is reected back to the domain

as a segment fault to be handled by a standard runtime package. One way to resolve a segment fault is to

dynamically attach to the segment. This might be useful if the application is navigating a pointer graph

spanning a large number of segments. In simpler cases, when an application can anticipate what storage

resources it needs, segments can be attached eagerly. In this case, segment faults are used to trap and report

references to data outside of the application's established set of storage resources; they serve as a �rst line

of defense against unexpected behavior or costly resource searches caused by a stray memory reference.

3.2 Persistent Memory

A persistent segment continues to exist even when it is not attached to any domain. A recoverable segment

is a persistent segment that is backed on nonvolatile storage and can survive system restarts. All Opal

segments are potentially persistent and recoverable. The policies for managing persistence and recovery vary

according to a segment type, and are beyond the scope of this paper. Reclamation is discussed in Section 4.2.

Persistent virtual memory can be viewed as a replacement for a traditional �lesystem. Recoverable

segments share many of the characteristics of mapped �les. The operating system faults pages into memory

transparently on reference, eliminating the programming cost and runtime overhead of copying read and

3

If you think of a protection domain as corresponding to a value for the \address space identi�er" (ASID) register in the

MIPS architecture, you won't go wrong. Translation bu�er entries are tagged with the contents of this register when they are

created; a load or store cannot hit a TB entry unless the entry's tag matches the current ASID in the processor. Despite its

name, the ASID has little to do with address spaces.

8



write calls. Also, the integration of �le cache management with the virtual memory system avoids two-level

caching problems, such as double paging and unnecessary consumption of swap space [Stonebraker 81].

Since persistent segments are assigned virtual address ranges in the same way as other segments, Opal

supports a true single-level store with uniform addressing of data in long-term storage.

4

A domain can name

a segment by the address of any piece of data that lies within it, even if the segment is not yet attached. In

essence, this allows pointers between �les; a �le can be mapped without specifying a symbolic name, simply

by dereferencing a pointer. A symbolic name space for data exists above the shared virtual address space,

to be implemented by one or more name servers that associate symbolic names with arbitrary pointers.

3.3 Code Modules

Opal stores executable code in persistent segments called modules that each contain a group of related

procedures. Modules are independent of protection domains; a module can be attached by multiple domains,

and the domain of a thread is in no way determined by the module that the thread is executing. Modules

are also decoupled from the data they operate on; a given module might be called by di�erent domains to

operate on data in many di�erent segments. These properties distinguish Opal modules from the notion of

a realm in Psyche.

A pure module is a module that: (1) contains no self-modifying code, and (2) makes no static assumptions

about the load address of any data that it operates on, unless that data is to be shared by all users of the

module. In general, we expect that modules will be pure (see Section 4.3). Pure modules in Opal are

statically linked into the global address space. Globally linked modules can be attached to any protection

domain without risk of name conicts in the code references, because each module resides at a �xed address,

the same address in any domain.

There are two distinct bene�ts from global linking of code modules. First, domains can dynamically load

modules without the overhead of linking at runtime. There is no need to know at domain creation time

what code will run in the domain; any domain can call any procedure it has access to, simply by knowing

its address, even if the code was compiled after the domain was activated. For example, a domain can call

through procedure pointers passed to it in shared data. Dynamic loading is driven by ordinary page faults.

Opal can avoid dynamic linking for pure modules because its address space includes persistent memory; in

uniform-address systems without a single-level store all modules must be dynamically linked.

The second bene�t of global linking is that pure modules may be freely shared between domains. Within

a node, only one copy of each pure module is needed, on disk and in memory, even if many programs or

domains are executing it. Module-grain code sharing can substantially reduce storage demands and runtime

load latency, and it is increasingly important as: (1) runtime packages implementing high-level programming

abstractions (e.g., for graphics and user-interface support) continue to grow in size and popularity, and (2)

traditional operating system kernel functions (e.g., thread management [Anderson et al. 91a]) migrate into

runtime packages.

Of course, globally linked modules must be relinked if they contain references to some other module that

has been modi�ed. However, modules that have large numbers of references to them tend to be standard

runtime libraries that are modi�ed relatively rarely. A level of indirection (jump tables) can be used for

references to frequently modi�ed modules (e.g., during debugging).

Pure modules by de�nition make no assumptions about what other modules are loaded with them in

a domain. There is no distinction between a program and a module. Any accessible code module can be

invoked with or without creating a fresh domain for it to run in. Either the caller or callee may insist on a

new domain to protect itself from the other party; if neither cares, there is no need to create a protection

domain.

4

Access to persistent memory in Opal is fully transparent, though explicit operations may be used to commit or ush

modi�ed data in segments with strong failure recovery semantics.

9



3.4 Using Shared Memory

Uniform addressing introduces new possibilities for organizing software systems, using variations on the

general theme of shared memory. Shared memory can improve performance by reducing the need for explicit

cross-domain communication. Conventional wisdom says that \shared memory compromises isolation", but

we claim that some uses of shared memory are inherently no less safe than more expensive mechanisms for

cooperation. Components can limit their interaction by restricting the scope of the shared region and the

way it is used. Here are some interesting variations, assuming di�erent degrees of isolation and trust:

� Page Passing. A segment is shared sequentially, by detaching it from the sender and attaching it to

the receiver. The receiver can validate the data before use.

� Enforced Locking. Access to a concurrently shared segment is \sequentialized" through locking. It

is most e�cient to rely on voluntary compliance with locking protocols implemented in the runtime

system, but the system can also enforce locking at a coarse granularity by arbitrating page access

permissions within the segment. A similar scheme is described in [Chang & Mergen 88].

� Producer/Consumer. Data is passed through a segment that is writable by the producer but readonly

to the consumer. The producer is fully isolated, but the consumer trusts the producer to comply with

usage and synchronization conventions.

� Argument/Result. A parent domain shares a segment with its child. The parent leaves arbitrary data

structures in the shared segment as input to the child, and collects the child's output from the shared

segment after the child domain is destroyed.

� Open Server. Client domains have readonly access to a shared segment that is infrequently modi�ed.

Clients update the shared segment with protected calls to a privileged server domain with exclusive

write access to the segment. The clients trust the server to maintain the integrity of the structure.

� Deities. A privileged domain has direct access to segments attached to client domains that rely on

it for some service, e.g., supporting some aspect of the programming environment. The privileged

component might be a debugger, an external paging server [Young et al. 87], or a garbage collector or

transaction manager for data structures that span client domains.

� Soft Firewalls. A single application is structured as a group of partially trusting domains that concur-

rently share some but not all of their segments, to strike some useful balance between isolation and

performance. This assumes that there are some clean component boundaries within the program.

These uses of sharing could be largely transparent to properly written application code. Shared data

can be hidden behind a procedural abstraction just as if it were private to a separate server; cooperating

domains would generally use the same module to operate on a given piece of shared data. The module must

be reentrant, but it can be independent of whether or not the calling threads are executing from separate

protection domains.

4 The Costs of Uniform Addressing

Up to this point we have argued the case for context-independent virtual addressing of data with no

mention of the costs, if any, other than the need to pay for wide-address hardware. Our argument has

been that a global addressing context leads to an unambiguous and consistent interpretation of addresses,

facilitating sharing. Also, by enforcing a single mapping between virtual and physical addresses on each

processor, aliasing and homonyms are eliminated, allowing trouble-free use of a virtually addressed data

cache.

10



In this section we explore the bene�ts of private address spaces that are sacri�ced to uniform sharing in

Opal and other single address space systems. Section 2 listed some of these apparent bene�ts, all of which

stem from context-dependent addressing in process-based systems. The question we wish to answer is: what

will we lose if we build our operating systems with fully context-independent addressing?

Broadly, context-dependent naming has two useful properties [Saltzer 78].

� Free choice of names. Within a context, names can be assigned freely without danger of conict with

names used by other contexts (assuming no sharing occurs).

� Retargetable name bindings. It is sometimes useful for users to deliberately assign di�erent interpreta-

tions to the same name.

This section discusses examples of how private address space systems take advantage of these properties,

focusing on the lowest level of naming, the virtual addressing level. The goal is to defuse potential objections

to uniform addressing by identifying speci�c claimed bene�ts of context-dependent addressing, and arguing

one of the following for each one: (1) the context-dependent addressing is not useful, (2) context-dependent

addressing might be useful, but an acceptable or better alternative exists, or (3) context-dependent naming

is useful, but virtual addresses are the wrong level to apply the context-dependence. Our conclusion will be

that all context-dependence should appear at higher levels of naming interpreted by software (e.g., relative

to the registers of a particular thread) and mapped into a single context-independent virtual address space

interpreted by the machine.

4.1 Free Choice of Addresses

In a uniform address space, programs are not fully free to select addresses for the data they create, nor can

they statically determine what addresses will be chosen by the system. From the perspective of ordinary

user-level code, the e�ect is that the address space appears to be sparse and noncontiguous, not the neat

package familiar from process-based systems.

The �rst concern is that indexed memory structures (e.g. objects or structs, arrays, and linear code

sequences) must be stored so that they are virtually contiguous. Our premise is that the system can always

�nd a virtual address range that is large enough to store an indexed structure contiguously, assuming that

the structure does not grow beyond some reasonable maximum size known in advance. Consider that a

contiguous ten terabyte chunk consumes less than one millionth of a 64-bit address space. We anticipate

that there will be no problem with utilization or fragmentation even if the address space spans a network

of up to 10,000 nodes. A 10,000 node 64-bit address space would provide 1600 terabytes of name space per

node, plenty of room to allow for huge storage volumes or aggressive preallocation of the address space.

Although indexed structures must be allocated contiguously, pointers and branches between those struc-

tures have no dependency on their relative positions in the address space. Thus the loss of complete contiguity

is generally invisible to programs written in high-level languages. However, heap management packages must

tolerate noncontiguous expansion of the heap.

4.2 Reclamation

A related question is the issue of reclaiming address space. In process-based systems each protection domain

has a private naming context, so all names in the context are trivially reclaimed when the domain is destroyed

(i.e., the program exits). In a global addressing context, data may be referenced by any domain, so its lifetime

is no longer tied to the lifetime of any particular domain.

In a single address space, reclamation is only as complicated as the sharing patterns. If no sharing takes

place, as in process-based systems, then reclamation is no more di�cult than it was before: the system

reclaims address space simply by remembering which address ranges were allocated to which domains. Thus

the reclamation issue should not be viewed as a weakness of the single address space approach, but rather

as a complication that stems from its strength { support for arbitrary sharing patterns.

11



In Opal, the operating system does not track cross-segment references. It merely provides hooks to allow

servers and runtime packages that manage shared segments to plug in their own reclamation policies. Our

prototype implements one possible segment server that places active and passive reference counts on each

segment, and provides a means for clients to manipulate those reference counts in a protected way. It is the

responsibility of code in the clients (the runtime package and/or the language implementation) to use those

reference counts appropriately. If the clients do nothing then the resulting policy is exactly that of most

process-based systems: a segment is deleted i� it is unattached and there are no symbolic names for it in the

name server. Of course, clients may misuse the counts to prevent storage from ever being reclaimed; this is

an accounting problem.

This approach reects our view that reclamation should continue to be based on language-level knowledge

of pointer structures, application-level knowledge of usage patterns, and deletion of data by explicit user

command. The system only promises that domains cannot harm each other with reclamation errors unless

they are mutually trusting. This does not mean that we are punting the issue of reclamation: we cling to

the belief that support for simple but useful sharing patterns can be built relatively easily.

4.3 Private Static Data References in Shared Code

Uniform addressing leads us to restrict the use of certain addressing modes in shared code. In Section 3.3

we introduced the notion of a pure code module. A pure module is restricted in the modes that it can use

to address its private data. Data is private if it has separate instantiations for each caller of the module.

We are mostly concerned about references to private static data that is not allocated from a heap or thread

stack, speci�cally: (1) global variables declared in the module, and (2) linkage tables used for late binding of

external symbols referenced by the module. As an example of the second case, consider that di�erent users

of a module may want to use di�erent implementations of an interface imported by the module, e.g., one

user may want a special pro�ling version of the math library.

In process-based systems, private static data is typically addressed relative to the program counter, or

with absolute virtual addresses statically linked into the module. These pc-relative and absolute references

are e�cient and easy for language processors to implement. They resolve correctly even if the code is shared,

because each instantiation runs in a separate domain with a private address space. But in a uniform-address

system, code that names private data using these modes is impure; impure code is not prohibited in Opal,

but it has certain performance costs. First, impure code cannot be directly shared, because private data

references using those modes in shared code will always resolve to the same piece of data, which is not what

was intended. Second, code using absolute addresses for private data must also be dynamically relocated,

because each copy must be loaded at a di�erent virtual address.

To make modules pure, all private data references must be expressed as an o�set from a base register

whose value is passed in by the caller of the module. Indexing from a base register is the norm on some

architectures (e.g., MIPS), and generally has no additional cost, assuming the o�sets are statically known.

However, the di�culty of managing base pointers depends on the sharing granularity for code modules.

Many process-based systems, such as BSD Unix, allow only a single shared module (a complete executable

program) to be loaded into each process. If we were to make a similar restriction in Opal, there would be

only one base pointer per protection domain, and the implementation would be trivial. But if we allow more

than one shared module to be loaded into each protection domain, then each module must have its own base

pointer, and each module must retain (in its private data) the base pointers for the modules that it calls.

Base pointers must be saved and restored whenever control crosses module boundaries.

Our conclusion is that in order to allow fully general sharing of code modules in a uniform-address system,

we must limit the use of absolute and pc-relative addressing, and support per-module base pointers. This is

trivial in some languages (e.g., object-oriented languages) and more di�cult in others (e.g., C). However, once

we have paid this cost, fully general sharing and dynamic loading of code modules are achieved very easily,

without dynamic linking. In process-based systems, comparable support for shared libraries involves the same

restrictions on absolute addressing that we have made, and even with those restrictions, requires dynamic

linking and/or indirect addressing through linkage tables (e.g., for cross-module branches) [Sabatella 90].

12



4.4 The Trouble With Fork

The Unix fork operation is de�ned to clone the parent process execution context, including its private

address space, in the child process. The copy can be modi�ed independently of the original, hence the

cloning semantics of fork assume a private address space for each protection domain, and so cannot be

emulated in uniform-address systems.

We view fork as a historical artifact with little value even in process-based systems. Previously there

were two reasons to treat a child process as a cloned replica of the parent: (1) to create multiple asynchronous

processes executing the same program (e.g., to exploit parallelism or to overlap I/O), and (2) to allow code

from the parent to run in the context of the child, so that it can initialize that context (e.g. �le descriptors)

as a prelude to executing a new program in it. The use of fork for asynchrony has been superseded by the

thread abstraction, which is better suited to the purpose. Also, microkernel systems supply primitives to

initialize the execution context of a child domain without actually executing code in the child; this ability is

a prerequisite to implementing fork in a user-level Unix server. Thus, the only reason to implement fork at

all is to support existing Unix programs that use it. This is not one of our research goals, nor should it be

a dominant concern for operating systems in the future (note that most Unix programs do not make direct

use of fork).

We also note that fork is a source of complexity and ine�ciency in Unix systems. The majority of

the state cloned by a fork is not needed by the child, inspiring e�orts to improve performance by cloning

data lazily (e.g., copy-on-write) or avoiding the copy altogether (e.g., the vfork primitive in 4.2 BSD). The

cloning semantics of fork also interfere with support for threads [McJones & Swart 87].

Opal replaces fork with primitives to create and destroy protection domains, and initialize them by

attaching segments and installing RPC endpoints. The parent domain starts a thread in the child by making

a cross-domain call to it. We believe that these mechanisms are su�ciently general.

4.5 Copying and Grafting

Earlier we argued that many instances of data copying can be eliminated by de�ning a uniform address

space. In particular, data can be shared without the naming problems that may force unnecessary copying.

Obviously, not all instances of copying can be eliminated. Two closely related uses of copying remain:

� Messages. Some instances of message-passing could be reformulated as unmapping the message from

the sender and remapping it in the receiver. But if both domains need write access to the pages, yet

must be isolated from each other's changes, then the data must be copied. For example, data to be

passed may reside on pages containing other data that must be kept.

� Versions. A piece of data may be copied to create a new piece of data that starts as a clone of the

original but diverges from it in arbitrary ways.

When data is copied, pointers into the old copy must be translated if they are to point into the new copy.

In particular, internal pointers within the copied data must be translated. Pointers are translated using one

of the schemes described in Section 2.

In a process-based system, context-dependent addressing can sometimes be used to avoid translating

pointers in data copied from one process to another. The trick is to place the copied data into the same

virtual address range in the receiver process as it occupied in the sender. (Of course, it is then impossible

for either process to name both the copy and the original.) For lack of a better term, let us call this grafting.

Grafting is not possible in uniform-address systems; since there is only one naming context, the copy must

occupy di�erent virtual addresses from the original, and pointers must be handled specially.

Examples of grafting are rare in today's systems, although they do exist. It is sometimes used to make

copies of statically linked self-modifying code modules, or copies of writable private data segments (private

to shared code modules) that have been initialized with pointers. In practice, most copies of this type result

from fork, which we have already dispensed with.

13



4.6 Copy-On-Write Optimizations

Uniform-address systems have one additional di�culty stemming from their inability to use the grafting

optimization described above. A process-based system can lazily evaluate a grafting copy using copy-on-

write, but a uniform-address system copying the same data could not use copy-on-write. This is because the

pointers in the data must be translated before the receiver can even read the data; copy-on-reference could

be used, but not copy-on-write.

We emphasize that grafting copies are the only case where a process-based system could use copy-on-write

but a uniform-address system could not. It might appear that copy-on-write is incompatible with uniform

addressing, because it introduces aliasing in the form of multiple virtual mappings to the same physical

page. But in fact, copy-on-write introduces only a restricted and benign form of aliasing called readonly

aliasing [Chao et al. 90]. Readonly aliasing is a hidden optimization that neither violates the consistent

interpretation of pointers nor interferes with the use of a virtually addressed data cache, leaving intact the

bene�ts we claim for uniform addressing. The problem introduced by more general forms of aliasing is that

the aliases will have separate entries in a virtual cache, and the cache hardware must keep these duplicate

entries consistent since they map to the same physical address. This problem does not occur with readonly

aliasing: if a write to either virtual address occurs, a new physical address is assigned to one of them,

destroying the alias and restoring a unique mapping. Thus the value of a cache line is never modi�ed in

a way that a�ects the value of another cache line. A more detailed discussion of the relationship between

uniform addressing and virtual data caches can be found in [Koldinger et al. 91].

Because readonly aliasing is harmless, a uniform-address system can use copy-on-write in every instance

that a process-based system can, except when pointers in the copied data must be translated. Most uses

of copy-on-write (apart from fork) in existing systems are to optimize message-passing, particularly to pass

large messages between I/O servers (e.g., �le or memory servers) and their clients. In these cases the data

either contains no pointers, or it is opaque to the server. (Of course, in this case, the server may not need

to retain access to the data after it is passed, so it might be better to unmap it; this is discouraged by the

process-based model because it creates a hole in the server's linear address space.)

4.7 Summary

We conclude that the loss of context-dependent addressing is generally painless. The only troubling use

of context-dependent addressing is to simplify copying, as opposed to physical sharing, of data containing

pointers. But this requires tricky coordination of address space usage (\grafting"), and we see no compelling

examples of it.

It is possible to construct a hybrid of the uniform-address and process-based models that allows some uses

of context-dependent addressing. In fact, our original proposal for global addressing suggested that a shared

address space on 64-bit architectures should be implemented as a policy in microkernel operating systems,

which make no assumptions about virtual address space usage by protection domains [Chase & Levy 91].

We are now pursuing the pure single address space model for two reasons. First, we believe that context-

dependent addressing introduces a dangerous non-uniformity to the system. Once it is present, programs

can no longer assume that a virtual address has the same meaning to another domain. Second, the policy

approach complicates the memory system hardware as well as the operating system software. For example,

cache lines for virtual addresses with multiple interpretations must be tagged.

5 Conclusions

We have presented a model for a uniform-address operating system called Opal. The key property of Opal

is a single at virtual address space encompassing all data in the system, across the network and on long-

term storage. Multiple protection domains (similar to processes in today's systems) coexist in this common

address space, providing a basis for virtual memory protection. Opal requires no special hardware support,

14



other than a su�cient number of virtual address bits. We have evaluated the costs and bene�ts of this

uniform-address model relative to process-based memory models.

The primary advantage of the uniform-address model over process-based systems is improved support for

sharing of linked data structures between protection domains. We described obstacles to sharing inherent

in the process-based model, and the runtime overheads of the data copying and pointer translation schemes

used to circumvent those obstacles. In contrast to the process-based model, Opal allows programs running

in separate protection domains to share or exchange data structures through shared memory regions, �les

(persistent memory), and messages, without additional software overheads. Opal code libraries can be

dynamically loaded and physically shared in a fully general way, without runtime relinking. The notion of

\executing a program" dissolves, since any procedure call can in principle be made to execute in a private

protection domain at the caller's discretion; the input and output of the procedure/program can be arbitrary

linked data structures.

The disadvantages of Opal relative to the process-based model are: (1) loss of the contiguous linear

addressing environment for executing programs, (2) inability to support the Unix fork abstraction, and (3)

inability to \graft" data structures from one address space to another. Also, by choosing an addressing

model that permits and encourages sharing, the system must cope with the di�culty of managing that

sharing. For example, it is not always clear when data can be deleted in a uniform-address system. However,

we believe that existing approaches to reclamation (e.g., based on language-supported garbage collection)

are applicable, and that the system can always prevent untrusting programs from harming each other with

reclamation errors.

Opal's goals are similar to those of earlier capability-based systems, but there are crucial di�erences in

the way those goals are achieved. Opal trades away the �ne-grained object protection of capability systems

in favor of a coarser but more e�cient page-based protection model. This model can be implemented in

software on \standard" 64-bit hardware, and can be extended to accommodate distribution.

To summarize, here are three ways of viewing the Opal project:

� As another step in the trend of decoupling concepts that are traditionally combined in the notion of a

\process". The original conception of a process (in Unix or Multics) combined addressing, protection,

execution, and communication { everything having to do with the relationship between an executing

program and the rest of the system. Unifying these ideas in a single abstraction was intuitively appeal-

ing given the assumptions in practice at the time. Since that time, physical storage has abstracted to

virtual memory, execution has abstracted to threads, and communication has abstracted to ports and

RPC endpoints. We now propose that address spaces be separated from processes as well. An Opal

domain is exactly a process stripped of everything but its protection identity.

� As a means of combining the uniformity of capability-based systems with the performance and gener-

ality of process-based systems. Capability-based computers were not widely accepted because of their

complexity, performance, and restrictive object-oriented data model. Opal strives for the same uniform

addressing of storage, but like process-based systems its addressing model is based on e�cient untyped

storage abstractions rather than objects.

� As one approach to reconciling current software and architectural trends. Operating systems and appli-

cations are increasingly decomposed into multiple cooperating protection domains. At the same time,

the trend in high-performance computer architectures is to penalize this decomposition by increasing

the relative cost of cooperation between domains. This is because cooperation in today's systems relies

on data copying and cross-domain calls, which are increasing in cost relative to integer performance.

Our approach encourages new mechanisms for cooperation based on shared memory, which will scale

with integer performance on next-generation architectures.

We are currently prototyping the ideas described in this paper. In addition to serving as a short-term

proof-of-concept, the prototype e�ort has two important long-term goals. First, we wish to explore the

e�ect of a shared address space on existing operating system abstractions and mechanisms. For example,

the presence of sharing a�ects strategies for thread management, processor allocation, and synchronization;

15



recent work in these areas has assumed that domains are self-contained, independent, and competing. A

broader research goal is to explore ways in which the shared address space can be used to improve the

structure and performance of applications and the operating system, by identifying uses of sharing that are

safe and can be handled e�ciently.

6 Acknowledgements

We would like to thank the many people in the operating systems community who have discussed these ideas

with us, singling out the following people for special thanks: Mike Burrows, Carla Ellis, Norm Hutchinson,

David Kotz, Richard LaRowe, Brian Marsh, Marc Shapiro, and John Wilkes. Many people at the University

of Washington have made valuable contributions, especially David Keppel, Eric Koldinger, Kevin Sullivan,

Chandu Thekkath, and John Zahorjan. Thanks also to Richard Korry and Robert Henry of Tera Computer.

References

[Anderson et al. 91a] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler activations:

E�ective kernel support of the user-level management of parallelism. In Proceedings of the 13th

Symposium on Operating System Principles, pages 95{109, October 1991.

[Anderson et al. 91b] T. E. Anderson, H. M. Levy, B. N. Bershad, and E. D. Lazowska. The interaction of

architecture and operating system design. In Proceedings of the Fourth Conference on Architectural

Support for Programming Languages and Operating Systems, pages 108{121, April 1991.

[Bershad et al. 90] B. Bershad, T. Anderson, E. Lazowska, and H. Levy. Lightweight remote procedure call.

ACM Transactions on Computer Systems, 8(1), February 1990.

[Birrell et al. 87] A. Birrell, M. Jones, and E. Wobber. A simple and e�cient implementation for small

databases. In Proceedings of the Eleventh ACM Symposium on Operating Systems Principles,

pages 149{154, November 1987.

[Chang & Mergen 88] A. Chang and M. F. Mergen. 801 Storage: Architecture and Programming. ACM

Transactions on Computer Systems, 6(1):28{50, February 1988.

[Chao et al. 90] C. Chao, M. Mackey, and B. Sears. Mach on a virtually addressed cache architecture. In

Usenix Mach Workshop Proceedings, pages 31{51, October 1990.

[Chase & Levy 91] J. S. Chase and H. M. Levy. Supporting cooperation on wide-address computers. Depart-

ment of Computer Science and Engineering Technical Report 91-03-10, University of Washington,

March 1991.

[Cockshot et al. 84] W. P. Cockshot, M. P. Atkinson, and K. J. Chisholm. Persistent object management

system. Software { Practice and Experience, 14(1), January 1984.

[Daley & Dennis 68] R. C. Daley and J. B. Dennis. Virtual memory, processes, and sharing in MULTICS.

Communications of the ACM, 11(5):306{312, May 1968.

[Dobberpuhl et al. 92] D. Dobberpuhl, R. Witek, R. Allmon, R. Anglin, D. Bertucci, S. Britton, L. Chao,

R. Conrad, D. Dever, B. Gieseke, S. Hassoun, G. Hoeppner, J. Kowaleski, K. Kuchler, M. Ladd,

M. Leary, L. Madden, E. McLellan, D. Meyer, J. Montanaro, D. Priore, V. Rajagopalan, S. Samu-

drala, and S. Santhanam. A 200mhz 64 bit dual issue CMOS microprocessor. In International

Solid-State Circuits Conference 1992, February 1992.

[Eppinger 89] J. L. Eppinger. Virtual Memory Management for Transaction Processing Systems. PhD

dissertation, Carnegie Mellon University, February 1989. CMU-CS-89-115.

[Groves & Oehler 90] R. D. Groves and R. Oehler. RISC system/6000 processor architecture. In M. Misra,

editor, IBM RISC System/6000 Technology, pages 16{23. International Business Machines, 1990.

16



[Herlihy & Liskov 82] M. Herlihy and B. Liskov. A value transmission method for abstract data types. ACM

Transactions on Programming Languages and Systems, 4(4):527{551, October 1982.

[Hornick & Zdonik 87] M. F. Hornick and S. B. Zdonik. A shared, segmented memory system for an object-

oriented database. ACM Transactions on O�ce Information Systems, 5(1), January 1987.

[Koldinger et al. 91] E. J. Koldinger, H. M. Levy, J. S. Chase, and S. J. Eggers. The protection looka-

side bu�er: E�cient protection for single-address space computers. Technical Report 91-11-05,

University of Washington, Department of Computer Science and Engineering, November 1991.

[Lee 89] R. B. Lee. Precision architecture. IEEE Computer, pages 78{91, January 1989.

[Levy 84] H. M. Levy. Capability-Based Computer Systems. Digital Press, Bedford, Massachusetts, 1984.

[McJones & Swart 87] P. R. McJones and G. F. Swart. Evolving the Unix system interface to support

multithreaded programs. Technical Report 21, DEC Systems Research Center, September 1987.

[MIP 91] MIPS Computer Systems, Inc., Sunnyvale, CA. MIPS R4000 Microprocessor User's Manual, �rst

edition, 1991.

[Moss 89] J. E. B. Moss. The Mneme persistent object store. COINS Technical Report 89-107, University

of Massachusetts at Amherst, October 1989.

[Organick 83] E. I. Organick. A Programmer's View of the Intel 432 System. McGraw-Hill, 1983.

[Ousterhout 90] J. K. Ousterhout. Why aren't operating systems getting faster as fast as hardware? In

Proceedings of the Summer 1990 USENIX Conference, pages 247{256, June 1990.

[Redell et al. 80] D. Redell, Y. Dalal, T. Horsley, H. Lauer, W. Lynch, P. McJones, H. Murray, and S. Purcell.

Pilot: An operating system for a personal computer. Communications of the ACM, 23(2):81{92,

February 1980.

[Sabatella 90] M. Sabatella. Issues in shared library design. In Proceedings of the Usenix Conference, pages

11{22, June 1990.

[Saltzer 78] J. H. Saltzer. Naming and binding of objects. In R. Bayer, R. M. Graham, and G. Seegmuller,

editors, Operating Systems: An Advanced Course (Lecture Notes in Computer Science 60), pages

99{208. Springer-Verlag, 1978.

[Scott et al. 90] M. L. Scott, T. J. LeBlanc, and B. D. Marsh. Multi-model parallel programming in Psyche.

In Proceedings of the Second ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 70{78, March 1990.

[Stonebraker 81] M. Stonebraker. Operating system support for database management. Communications of

the ACM, 24(7):412{418, July 1981.

[Swinehart et al. 86] D. Swinehart, P. Zellweger, R. Beach, and R. Hagmann. A structural view of the Cedar

programming environment. ACM Transactions on Programming Languages and Systems, 4(8),

October 1986.

[Wilson 91] P. R. Wilson. Pointer swizzling at page fault time: E�ciently supporting huge address spaces on

standard hardware. ACM SIGARCH Computer Architecture News, 19(4), June 1991. University

of Illinois at Chicago Technical Report UIC-EECS-90-6, December 1990.

[Young et al. 87] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky, D. Black,

and R. Baron. The duality of memory and communication in the implementation of a mulitpro-

cessor operating system. In Proceedings of the Eleventh ACM Symposium on Operating Systems

Principles, pages 63{76, November 1987.

17


