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Abstract

Directed s-t connectivity is the problem of detecting whether there

is a path from vertex s to vertex t in a directed graph. We present the

�rst known deterministic sublinear space, polynomial time algorithm

for directed s-t connectivity. For n-vertex graphs, our algorithm can

use as little as n=2

�(

p

logn)

space while still running in polynomial

time.

1 Introduction

The s-t connectivity problem is a fundamental one, since it is the natural

abstraction of many computational search processes, and a basic building

�
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block for more complex graph algorithms. In computational complexity the-

ory, it has an additional signi�cance: understanding its complexity is a key

to understanding the relationship between deterministic and nondetermin-

istic space bounded complexity classes. In particular, the s-t connectivity

problem for directed graphs (stcon) is the prototypical complete problem

for nondeterministic logarithmic space [7]. Both stcon and the undirected

version of the problem, ustcon, are DLOG-hard | any problem solvable

deterministically in logarithmic space can be reduced to either problem [4, 7].

Establishing the deterministic space complexity of stcon would tell us

a great deal about the relationship between deterministic and nondeter-

ministic space bounded complexity classes. For example, showing a de-

terministic log space algorithm for directed connectivity would prove that

DSPACE(f(n)) = NSPACE(f(n)) for any constructible f(n) = 
(log(n))

[7]. Unfortunately, this remains a di�cult open problem. A fruitful inter-

mediate step is to explore time-space tradeo�s for stcon: the simultaneous

time and space requirements of algorithms for directed connectivity. No non-

trivial lower bounds are known for general models of computation (such as

Turing machines) on either the space, or on the simultaneous space and time

required to solve stcon, although Cook and Racko� [3] and Tompa [8] have

obtained lower bounds for restricted models. This paper presents new upper

bounds for the problem.

The standard algorithms for connectivity, breadth- and depth-�rst search,

run in optimal time �(m + n) and use �(n log n) space. At the other ex-

treme, Savitch's Theorem [7] provides a small space (�(log

2

n)) algorithm

that requires time exponential in its space bound (i.e., time n

�(logn)

). Cook

and Racko� show an algorithm for their more restricted \JAG" model that

is similar to, but more subtle than Savitch's; it has essentially the same time

and space performance.

Recent progress has been made on the time-space complexity of ustcon.

Barnes and Ruzzo [1] show the �rst sublinear space, polynomial time algo-

rithms for undirected connectivity. Nisan [5] shows that O(log

2

n) space and

polynomial time su�ce. Nisan et al. [6] show the �rst ustcon algorithm

that uses less space than Savitch's algorithm (O(log

1:5

n) vs. �(log

2

n)).

Prior to the present paper, there was no corresponding sublinear space,

polynomial time algorithm known for stcon, and there was some evidence
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suggesting that none was possible. It has been conjectured [2] that no de-

terministic stcon algorithm can run in simultaneous polynomial time and

polylogarithmic space. Tompa [8] shows that certain natural approaches to

solving stcon admit no such solution. Indeed, he shows that for these ap-

proaches, performance degrades sharply with decreasing space: space o(n)

implies superpolynomial time, and space n

1��

for �xed � > 0 implies time

n


(logn)

, essentially as slow as Savitch's algorithm.

The main result of our paper is a new deterministic algorithm for directed

s-t connectivity that achieves polynomial time and sublinear space simultane-

ously. While not disproving the conjecture of [2], it shows that the behavior

elicited from certain algorithms by Tompa is not intrinsic to the problem.

Our algorithm can use as little as n=2

�(

p

logn)

space while still running in

polynomial time. As part of this algorithm, we present an algorithm that

�nds short paths in a directed graph in polynomial time and sublinear space.

The short path problem is a special case of stcon that retains many of the

di�culties of the general problem, and seems particularly central to design-

ing small space algorithms for stcon. We are not aware of any previous

algorithms that solve this problem in sublinear space and polynomial time.

Interestingly, our algorithm for the short path problem is a generalization of

two well-known algorithms for stcon. In one extreme it reduces to a variant

of the linear time breadth-�rst search algorithm, and in the other extreme it

reduces to the O(log

2

n) space, superpolynomial time algorithm of Savitch.

Our algorithm to solve stcon in polynomial time and sublinear space

is constructed from two algorithms with di�erent time-space tradeo�s. The

�rst performs a modi�ed breadth-�rst search of the graph, while the second

�nds short paths. Alone, neither algorithm can solve stcon in simultane-

ous polynomial time and sublinear space. In the following two sections, we

present the breadth-�rst search algorithm and the short path algorithm. Sec-

tion 4 shows how the two algorithms can be combined to yield the desired

result. Section 5 presents some notes and concluding remarks.
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2 The Breadth-First Search Tradeo�

Consider the tree constructed by a breadth-�rst search beginning at s. The

tree can contain n vertices, and thus requires O(n log n) space to store. In-

stead of constructing the entire tree, our modi�ed breadth-�rst search gen-

erates a fraction of the tree.

Suppose we want our modi�ed tree to contain at most n=k vertices. We

can do this by only storing (the vertices in) every kth level of the tree.

Number the levels of the tree 0, 1, : : : , n�1, where a vertex is on level l if its

shortest path from s is of length l. Divide the levels into equivalence classes

C

0

; C

1

; : : : ; C

k�1

based on their number mod k. Besides s, the algorithm

stores only the vertices in one equivalence class, C

j

, where j is the smallest

value for which C

j

has no more than the average number of vertices, n=k.

The algorithm constructs this partial tree one level at a time. It begins

with level 0, which consists of s only, and generates levels j, j+k, j+2k, : : : ,

j+k �bn=kc. Given a set S of vertices, we can �nd all vertices within distance

k of S in time n

O(k)

and space O(k log n) by enumerating all possible paths

of length at most k and checking which paths exist in G. This can be used

to generate the levels of the partial tree. Let V

i

be the vertices in levels 0, j,

j + k, : : : , j + ik. Consider the set of vertices that are within distance k of

a vertex in V

i

. Clearly, this set contains all the vertices in level j + (i+ 1)k.

However, it may also contain vertices in lower numbered levels. The vertices

in level j + (i+1)k are those vertices in the set that are not within distance

k � 1 of a vertex in V

i

. Thus, to get V

i+1

we add to V

i

all vertices that are

within distance k but not k � 1 of V

i

.

Pseudocode for the algorithm appears in Figure 1. Note that to �nd an

equivalence class with at most n=k vertices, the algorithm just tries all classes

in order, discarding a class if it generates too many vertices.

Referring to Figure 1, assuming that k �

p

n, the algorithm's space

bound is dominated by the number of vertices in S and S

0

, which is never

more than n=k+1, so it uses space O(

n

k

log n). The time bound is dominated

by repeatedly testing whether a vertex is within distance k of a vertex in S.

Using a straightforward enumeration of all paths, this requires n

O(k)

time.

This algorithm is not su�cient for our purposes. In particular, if k is
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Algorithm Bfs (integer: k);

fremember every kth level of the breadth-�rst search treeg

for j = 0 to k � 1 do begin f�rst level to remember (apart from level 0)g

S = fsg.

for all vertices, v do begin

if v within distance j of s and v not within distance j � 1 of s then

if jSj > n=k then try next j.

fDon't store more than n=k vertices, + vertex sg

else add v to S.

end;

for i = 1 to dn=ke do begin

if t within distance k of a vertex in S then

return (Connected);

S

0

= ;.

for all vertices, v do begin

if v within distance k of some vertex in S and

v not within distance k � 1 of any vertex in S then

if jSj+ jS

0

j > n=k then try next j.

else add v to S

0

.

end;

S = S [ S

0

.

end;

return (Not Connected);

end;

end Bfs.

Figure 1: Details of the breadth-�rst search algorithm

asymptotically greater than a constant, the algorithm uses superpolynomial

time. If we restrict our input to graphs with bounded degree, there is a slight

improvement: in a graph where the outdegree is bounded by d, the number

of paths of length k from a vertex is at most d

k

, so for these graphs, k can

be O(log n), and the algorithm will run in polynomial time. Note that the

overall algorithm still does not use sublinear space in this case, even though
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the subroutine for �nding paths of length k does.

The problem with this algorithm is its method of �nding vertices within

distance k: explicitly enumerating all paths is not very clever, and uses too

much time. There is hope for improvement, though, in the fact that this

method uses very little space: O(k log n), compared to O(

n

k

log n) for the

rest of the algorithm. Indeed, in the next section we give an algorithm that

uses more space but runs much faster.

3 The Short Path Tradeo�

Consider the short path problem, which is to detect whether there is a path

from s to t of length f(n), for a given f(n) = o(n). The short path problem

is a special case of stcon that seems to encapsulate many of the di�culties

of the general problem. It is particularly interesting given the breadth-�rst

search algorithm above, because a more e�cient method of �nding short

paths would clearly lead to an improvement in that algorithm's time bound.

Our second tradeo� is an algorithm that solves the short path problem

in sublinear space and polynomial time for many f(n). As will become

clear, we will eventually want f(n) = 2

�(

p

logn)

, but to simplify the following

discussion, we begin with the more modest goal of �nding a sublinear space,

polynomial time algorithm for the short path problem with f(n) = log

c

n,

for constant c � 1.

As noted before, we already have a sublinear space, polynomial time

algorithm that searches to distance log n on bounded degree graphs: because

there are a constant number of ways to leave each vertex, we can enumerate

and test all paths of length log n in polynomial time. In a general graph, this

approach will not work, because there can be up to n � 1 possible outedges

from a vertex, and explicit enumeration can yield a superpolynomial number

of paths of length log n. We can avoid this problem by using a labeling

scheme that limits the number of possible choices at each step of the path.

Suppose we divide the vertices into k sets, according to their vertex num-

ber mod k. Then, every path of length L can be mapped to an L + 1 digit

number in base k, where digit number i has value j if and only if the ith

vertex in the path is in set j. Conversely, each such number de�nes a set of
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possible paths of length L.

Given this mapping, our algorithm is straightforward: generate all pos-

sible (L+ 1)-digit k-ary numbers, and check for each number whether there

is a path in the graph that matches it. For a given k-ary number, the algo-

rithm uses approximately 2n=k space to test for the existence of a matching

path in the graph, as follows. Suppose we are looking for a path from s to

t, and want to test the L-digit number hs mod k; d

1

; d

2

; : : : ; d

L�1

; t mod ki.

We begin with a bit vector of size dn=ke, which corresponds to the vertex

set d

1

. Zero the vector, and then examine the outedges of s, marking any

vertex v, in set d

1

(by setting the corresponding bit in the vector) if we �nd

an edge from s to v. When we are �nished, the marked vertices in the vector

are the vertices in d

1

that have a path from s that maps to the �rst two

digits of the number. Using this vector, we can run a similar process to �nd

the vertices in d

2

that have a path from s that maps to the �rst three digits

of the number, and store them in a second vector of size dn=ke. In general,

given a bit vector of length dn=ke representing the vertices in d

i

with a path

from s that maps to the �rst i + 1 digits of the number, we use the other

vector to store the vertices in d

i+1

with a path from s that maps to the �rst

i+ 2 digits. Pseudocode for the algorithm appears in Figure 2.

The algorithm uses space O(n=k) to store the vectors, and O(L log k) to

write down the path to be tested. For all steps in each path, we do at most

O(n=k + (n=k)

2

) work zeroing the vector and testing for edges from d

i�1

to

d

i

, so the algorithm runs in O(k

L

L(n=k)

2

) = O(k

L

n

3

) time to test all L

steps on each of the k

L

paths. Unfortunately, this does not quite achieve

our goal of polynomial time and sublinear space when L = log

c

n. With

a distance as small as log n, the time is only polynomial if k is constant,

which does not yield sublinear space. We can achieve polynomial time and

sublinear space by reducing L. For example, if L = log n= log log n, k can be

log

c

n for any constant c, and the algorithm will run in O(n= log

c

n) space

and O(n

3

(log n)

c logn= log logn

) = O(n

c+3

) time.

The algorithm can be improved by invoking it recursively. Consider the

loop in the algorithm that tests for edges between one set of vertices and the

next. This loop, in e�ect, �nds paths of length one from marked vertices in

the �rst set to vertices in the second set. Instead of �nding paths of length

one, we can use the short path algorithm to �nd paths of length L, yielding
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Algorithm SP (integer: k, L; vertex s, t);

fTest for a path of length L between s and t using space O(n=k)g

Create V

0

and V

1

, two dn=ke bit vectors.

for all (L+ 1)-digit numbers in base k,

hd

0

= s mod k; d

1

; : : : ; d

L�1

; d

L

= t mod ki do begin

Set all bits in V

0

to zero, and mark s (set the corresponding bit to 1).

for i = 1 to L do begin

Set all bits in V

i mod 2

to zero.

fFind edges from d

i�1

to d

i

g

for all u in d

i�1

marked in V

(i�1) mod 2

and all v in d

i

do begin

if (u; v) is an edge then

mark v in V

i mod 2

.

end;

end;

if t is marked in V

Lmod 2

then return (Connected);

end;

return (Not Connected);

end SP.

Figure 2: Details of the short path algorithm

an algorithm that uses twice as much space, but �nds paths of length L

2

.

In general, by recurring r times, the improved algorithm can �nd paths of

length L

r

using O(r(n=k + L log k)) space and O(n

3r

k

rL

) time. A further

re�nement improves the time bound to O(n

3

k

rL

) | one recursive call will

�nd all vertices in d

i

reachable from any reachable vertex in d

i�1

.

This recursive algorithm meets our goal of �nding a sublinear space, poly-

nomial time algorithm that detects paths of polylogarithmic length. For ex-

ample, for L = log n= log log n, k = log

r

n, and constant r � 2, the algorithm

searches to distance L

r

= !(log

r�1

n) in timeO(n

3

k

rL

) = O(n

r

2

+3

) and space

O(rn= log

r

n).
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4 Combining the two algorithms

As an immediate consequence of the previous two sections, we have an algo-

rithm for stcon using sublinear space and polynomial time: use the modi�ed

breadth-�rst search algorithm to �nd every (log

c

n)-th level of the tree (for

constant c � 2), with the recursive short path algorithm as a subroutine to

�nd the paths between levels. With careful choices of the parameters k, L

and r, however, the algorithm can use even less space while still maintaining

polynomial time.

In general, the breadth-�rst search algorithm �nds every (L

r

)-th level of

the tree, and the short path algorithm searches to distance L

r

. The total

space used by this algorithm is

O(n log n=L

r

+ r(n=k + L log k)); (1)

where the �rst term corresponds to the space used by the partial breadth-�rst

tree, and the second to the space used to �nd short paths. The short paths

subroutine is called O(n

3

) times, and thus the running time of the algorithm

is O(n

6

k

rL

).

We want to �nd the minimum amount of space required while still main-

taining a polynomial running time. Let x = log k. Then, to maintain poly-

nomial time we must have xLr = O(log n).

For simplicity, we bound expression (1) from below as

O(n=L

r

+ n=2

x

): (2)

(That is, we omit the log n factor in the �rst summand and the r factor in

the second summand, and leave out the third summand altogether.) Given

that xLr = c

1

log n for some constant c

1

, expression (2) is minimized when

L is constant. The expression can therefore be written as

O(n=2

(c

2

logn)=x

+ n=2

x

) (3)

for some constant c

2

. By taking the derivative with respect to x, we �nd that

the minimum of this expression is given when x

2

= �(log n), and the space

is n=2

�(

p

logn)

.
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Plugging these same values (r =

p

log n, k = 2

�(

p

logn)

, and constant L)

into the actual space bound expression (1) yields the same asymptotic space

bound of n=2

�(

p

logn)

. Since this matches the minimum for the simpli�ed

expression, we cannot do any better, and this must be the minimum space

bound for the algorithm when using polynomial time.

5 Conclusions and Future Work

The obvious open problem raised by this work is to improve our algorithm

to use less space while maintaining polynomial time. There is good reason to

believe that this is possible. First of all, the current bound of simultaneous

n=2

�(

p

logn)

space and polynomial time is not aesthetically appealing. More

concretely, our algorithm was devised using a small collection of simple but

useful ideas for trading time for space while searching a graph. Any new

tradeo�, when combined with the old ones, may yield a substantial improve-

ment in the space bound.

Of the two, the breadth-�rst search tradeo� seems more open to improve-

ment or even replacement. If we view our algorithm as operating on the

breadth-�rst search tree of s, then it becomes apparent that it uses breadth-

�rst search to slice the graph into pieces, and the short paths algorithm to

explore these pieces. Partitioning the graph into sets of vertices with a cer-

tain property seems a reasonable approach to solving stcon in small space

(in our case, the property relates to the length of the shortest path from s to

the vertices in the set). However, it is not clear that viewing the graph as a

breadth-�rst search tree yields the best algorithm. Even if we do �x on the

breadth-�rst search tree, it is not clear that remembering a fraction of the

levels in the tree is the most e�cient way to partition the vertices.

The short paths problem seems more central to solving stcon in sub-

linear space. Many of the di�culties one faces when designing small space

stcon algorithms exist for the short paths problem as well. Note that our

so-called \short paths" algorithm is actually a general algorithm for s-t con-

nectivity, with behavior and performance similar to the best-known previous

algorithms. If we let k = 1, L = n, and r = 1, the algorithm is a somewhat in-

e�cient variant of breadth-�rst search that uses O(n) space and O(n(n+m))
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time. Savitch's algorithm is just the special case of this algorithm where

k = n, L = 2, and r = dlog ne. Any improvement to the short paths algo-

rithm would probably be very useful in designing future small space stcon

algorithms.

Our algorithm for stcon does not perform nearly as well as the recent

sublinear space algorithms for ustcon by Barnes and Ruzzo [1], Nisan [5],

and Nisan et al. [6]. This may be due to a fundamental di�erence between

connectivity on directed and undirected graphs. The results of both Barnes

and Ruzzo, and of Nisan et al. exploit the symmetry of undirected graphs

to group many vertices into one vertex that has the same connectivity prop-

erties. Nisan and Nisan et al. use techniques based on a random walk on a

graph, a process that is surprisingly e�cient for discovering connectivity in

undirected graphs, but woefully inadequate on directed graphs. Generaliz-

ing these algorithms to directed graphs, or �nding a directed graph property

that can be similarly exploited, might yield an improved algorithm for stcon

(and ustcon). In the absence of such shortcuts, it seems likely that future

algorithms must also rely on enumerating all possible paths in limited time

and space.
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