
Lightweight Shared Objects in a

64-Bit Operating System

Je�rey S. Chase, Henry M. Levy, Edward D. Lazowska, and Miche Baker-Harvey

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195

Technical Report 92-03-09

March 1992

Revised June 1992

Abstract

Object-oriented models are a popular basis for sup-

porting uniform sharing of data and services in op-

erating systems, distributed programming systems,

and database systems. We term systems that use

objects for these purposes object sharing systems.

Operating systems in common use have nonuni-

form addressing models, making the uniform ob-

ject naming required by object sharing systems ex-

pensive and di�cult to implement. We argue that

emerging 64-bit architectures make it practical to

support uniform naming at the virtual addressing

level, eliminating a key implementation problem for

object sharing systems.

We describe facilities for object-based sharing of

persistent data and services in Opal, an operating

system we are developing for paged 64-bit architec-

tures. The distinctive feature of Opal is that object

This paper will appear in identical form in the proceed-

ings of the Conference on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA), October

1992. This work was supported in part by the National

Science Foundation under Grants No. CCR-8619663, CCR-

8907666, CCR-9200832, and CDA-9123308; by the Wash-

ington Technology Center; by the Boeing Corporation; and

by Digital Equipment Corporation through the Systems Re-

search Center, DECwest Engineering, the External Research

Program, and the Graduate Engineering Education Pro-

gram.

sharing is supported in a runtime library, above a

single virtual address space that maps all primary

and secondary storage in a local area network.

1 Introduction

The purpose of an operating system is to allow un-

trusting users to develop and execute applications.

These applications must be able to store and re-

trieve information, protect that information, and

share that information with other applications in

a distributed environment. An operating system

must be extensible, so it must allow new interfaces,

services, and languages to be implemented as ap-

plications, without a�ecting the underlying system.

The concept of abstract objects existing in a

uniform object name space has long been used

to achieve these goals. Because objects are self-

describing (their methods are dynamically bound),

applications can operate on objects encountered in

shared or persistent storage. Because objects are

encapsulated, they can represent protected services

whose use is restricted; a client must possess an

unforgeable object reference (a capability) for the

service, and can operate on the service only by in-

voking its methods. Because objects are abstract,

object method invocation is syntactically and se-

mantically independent of the object's location in

the system. These object properties make object-

oriented languages an attractive basis for language-

1



integrated and type-checked access to shared and

persistent data and services.

These ideas have been used in object-oriented

database systems, persistent object stores, and

distributed programming systems [Jul et al. 88,

Bal & Tanenbaum 88]. Most microkernel op-

erating systems (e.g., Mach [Young et al. 87],

Amoeba [Mullender & Tanenbaum 86], and Cho-

rus [Rozier et al. 88]) represent protected system

services as objects named by capabilities that

can be passed between applications. These

di�erent uses of objects have been combined

in operating systems that de�ne all interac-

tions between system components in terms of

objects [Marques & Guedes 89, Shapiro et al. 89].

The common theme in all of these e�orts is the use

of object models to de�ne and support sharing of

data and services between applications. We refer to

these systems generically as object sharing systems.

1.1 The Problem of Object Identity

Designers of object sharing systems face di�cult

choices regarding which level of the system should

support object sharing semantics. Object shar-

ing may be supported by runtime libraries, servers,

programming languages, the operating system ker-

nel, and/or the hardware. The choice of levels de-

termines the answers to critical questions about the

system. What is the cost of object support? Are

users who do not want the support forced to pay

for it? Are multiple object models supported? Can

new models be de�ned?

The choice of levels is driven by the key prop-

erty of objects important for object sharing sys-

tems { the uniform object name space extending

across the scope of the sharing. This property of

object identity [Khosha�an & Copeland 86] allows

object names (pointers or capabilities) to retain

their meaning when they are stored in databases

and passed between applications. In most object

sharing systems today, object identity is imple-

mented by translating object names in software

or special-purpose hardware as data moves around

the system; this translation is complex and expen-

sive, and it requires knowledge of where names are

stored and how they are used. Systems always

choose the cheapest naming solution that meets

their sharing needs:

� Most programming language implementations

- with no support for sharing - name objects

with virtual addresses, avoiding the expense of

software pointer translation.

� Object-oriented database systems use surro-

gate pointers translated to virtual addresses by

the runtime system. Surrogates are sometimes

called soft pointers or persistent pointers.

� Schemes for distributed objects and protected

services may involve the operating system ker-

nel, since the name binding must be unique

across network or protection boundaries.

This leads to a proliferation of incompatible

shared object implementations of varying expense

and complexity.

1.2 Large Address Spaces

We believe that the impending arrival of machines

with large virtual address spaces will allow us to

unify these di�erent styles of shared objects in a

simple and e�cient way. The DEC Alpha [Dig 92]

and the MIPS R4000 [MIP 91] are recent examples

of wide-address architectures.

Wide-address architectures remove the basic re-

strictions underlying the problem of nonuniform

naming in computer systems. Existing operating

systems have impeded the development of object

sharing systems { in fact, they do not support shar-

ing well in any form, because their basic addressing

models are nonuniform; every application executes

in a private virtual address space, and long-term

storage is placed outside of these address spaces.

This nonuniformity is both the primary motivation

for object-based approaches to sharing and the pri-

mary implementation problem for object sharing

systems. The cause of this nonuniformity is the

small address spaces of today's architectures, on

which virtual addresses are a scarce resource that

must be multiply allocated and are therefore am-

biguous. We believe that the need for this ambigu-

ity will soon disappear. A full 64-bit address space

can map 16 billion gigabytes of data; if consumed

at the rate of 100 megabytes per second this ad-

dress space would last for nearly 5000 years.

We are building a new operating system called

Opal [Chase et al. 92a, Chase et al. 92b] that ex-

ploits the wider virtual addresses of these emerging

architectures by de�ning a single virtual address

space that includes data on long-term storage and

2



across a local area network. Hardware-based mem-

ory protection exists within this uniform address

space; programs execute in protection domains that

restrict their access to global virtual storage. Our

goal in this paper is not to explain or justify this

system (we refer you to [Chase et al. 92a] for a dis-

cussion of the system and its relationship to previ-

ous work). Nor is our purpose to argue for 64-bit

hardware; we assume that wide-address hardware

will become widely available. The purpose of this

paper is to explore the e�ect of Opal's uniform vir-

tual address space on object sharing systems.

1.3 Sharing in a Global Address Space

In this paper we argue that a uniform virtual ad-

dress space is the right level of operating system

kernel support for object sharing systems. Our

basic thesis is that object sharing, object persis-

tence, and capability-based service protection can

and should be implemented outside of the operat-

ing system kernel, without name translation, and

that this can be done simply and e�ciently when

the operating system provides appropriate virtual

memory support, particularly a uniform virtual ad-

dress space.

To illustrate these points, we describe a runtime

support package layered above Opal's basic system

abstractions. This package supports shared and

persistent data objects, and protected objects that

represent system services isolated from their clients

by memory protection boundaries. Our discussion

focuses on system issues relating to naming, bind-

ing, and protection of objects, sidestepping lan-

guage issues such as the type model or the pro-

grammer's view of concurrency. The goal is to un-

derstand the opportunities of a 64-bit address space

and to raise new questions about the relationship

between shared objects and virtual memory.

The paper is organized as follows. In the next

section we outline the basic Opal abstractions. Sec-

tion 3 describes our object model and presents our

views on the relationship between language-level

objects and the underlying kernel and hardware

abstractions. Section 4 explains how Opal's vir-

tual memory model allows data objects to be per-

sistent and/or passed/shared between applications,

and outlines some assumptions and tradeo�s of our

approach. In Section 5 we describe the use of ob-

jects to represent protected services, focusing on

the relationship between hardware-protected ser-

vice objects and language-protected data objects.

Section 6 presents our conclusions.

2 The Opal Operating System

In this section we outline the basic Opal abstrac-

tions at a level of detail su�cient to understand

the object sharing issues discussed in the rest of

the paper. As previously stated, Opal de�nes a

single virtual address space that maps all data in

the system, including persistent data. This simply

means that virtual address usage is coordinated so

that shared data is addressed with the same names

by all programs that access it. Memory protec-

tion is independent of this global name space. No

special hardware support (other than wide virtual

addresses) is needed for our approach.

Opal is designed for a distributed environment

composed of one or more nodes connected by a mes-

sage network. Each node contains physical mem-

ory, one or more processors attached to that mem-

ory, and possibly some long-term storage (\disk").

We assume that the processors are homogeneous.

The global address space is extended across the

network by placing servers on each node that main-

tain a partitioning of the address space, both to

ensure global uniqueness and to allow data to be

located from its virtual address. The problems are

similar to those faced by other systems for dis-

tributed name management.

2.1 Opal System Model

Listed below are the four basic facilities that oper-

ating systems provide, and the Opal abstractions

that represent them. Opal's abstractions are simi-

lar to the abstractions of other microkernel operat-

ing systems, with some crucial di�erences that will

become clear later. The central point of this pa-

per is that all object support should be built above

these basic abstractions; no explicit kernel support

for shared objects is necessary or desirable.

� Execution. A thread is an executing stream

of instructions and its procedure call stack.

An executing application may contain multiple

threads. Threads are multiplexed on proces-

sors, and di�erent threads may execute in par-

allel on di�erent processors. A thread can be

suspended (e.g., for blocking synchronization

3



Node A

Node B

memory

disk

memory

disk

Segment 2

Segment 1

Figure 1: Virtual and Physical Storage

or timeslicing) and resumed later, possibly on

another processor. Threads are implemented

in a runtime library using techniques described

in [Anderson et al. 91].

� Data Storage. All data (including exe-

cutable code) is stored in virtual segments, se-

quences of virtual pages occupying a contigu-

ous range of virtual address space (Figure 1).

We say that segments are \virtual" because

the operating system transparently manages

some aspects of the physical storage backing

them: (1) when data is �rst written into a vir-

tual page, the system allocates a physical page

to back it, (2) the system may move a physi-

cal page between node memories and disk, or

it may make multiple copies of the page, (3)

when a thread references a virtual page a copy

of the page is faulted into the memory of the

thread's node.

� Protection. Untrusting applications must be

prevented from damaging each other's inter-

nal data. Threads execute within protection

domains that limit their access to storage; typ-

ically, all of the threads of an executing appli-

cation run within the same domain. A thread

cannot complete a reference to a virtual page

unless the segment containing that page is at-

tached to the thread's domain (Figure 2). In

general, each domain has permission to attach

only a small subset of segments of the global

virtual store, with some combination of read,

write, and execute privilege.

4



Node A Node BVirtual Address Space

Domain A

Domain B

Domain C

Domain D

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

Figure 2: Protection Domains and Virtual Segments

� Communication. Domains can communi-

cate implicitly by reading and modifying data

in shared segments. In addition, control can

be transferred between domains through por-

tals. A portal is an entry point to a domain,

uniquely identi�ed by a 64-bit value. Any

thread that knows the value of a portal identi-

�er can make a kernel call that transfers con-

trol into the portal's domain. Conceptually,

the calling thread switches into the portal's

domain and begins executing at a virtual ad-

dress chosen by the owner of the portal.

Portals are the basis for a cross-domain proce-

dure call abstraction (also called remote procedure

call or RPC). The model for an RPC call is that

a thread in a client domain switches to a server

domain to execute a protected procedure call, then

returns to the client domain when the operation

completes. This can be thought of as passing a

message and receiving a response; in fact, the im-

plementation uses messages if the client and server

are on di�erent nodes. If the client and server are

colocated, arguments and results can be passed

through a small segment called a channel that is

shared by the client and the server (this technique

for lightweight RPC is described in [Bershad 90]).

2.2 Segments and Addressing

In most operating systems, including segmented

systems such as Multics [Daley & Dennis 68], each

protection domain has a private virtual address

space; a segment may be mapped to a di�erent vir-

tual address range by each domain that attaches it.

In contrast, Opal has a single virtual address space

shared by all protection domains. Each Opal seg-

ment occupies a �xed range of virtual addresses,

assigned when the segment is created, and disjoint

from the address ranges occupied by all other seg-

5



ments. Domains that attach to a given segment

name it with the same virtual addresses. This

means that linked pointer structures within and

across segments are always meaningful to any do-

main that attaches them.

Segments appear to clients as protected objects

named by capabilities (see Section 5) that support

the operations Attach and Detach. However, it

is misleading to think of a segment itself as an ob-

ject; threads in a domain can access an attached

segment with load and store instructions, violat-

ing object encapsulation. A segment is a container

for raw data; a segment object is a control block

representing that container.

There are two ways that domains can attach to

segments. First, domains can pass capabilities for

segment objects and attach them explicitly. Sec-

ond, the system can transparently locate and at-

tach a segment in response to a segment fault gen-

erated by a reference to an unattached segment. In

this case access control lists are used to determine

permission.

Opal segments subsume �les in conventional sys-

tems. Like Unix �les, segments have active and

passive reference counts that determine when they

are reclaimed. If a segment has a nonzero passive

count (e.g., there is a symbolic name for it in the

name server) then the segment persists across sys-

tem restarts.

2.3 Managing the Global Address Space

Our description leaves many aspects of the system

model unspeci�ed. How is access to segments de-

termined? How are physical pages managed so as

to provide a coherent view of global virtual stor-

age, and recoverability after a system crash? When

can physical storage be deallocated? Who manages

segment reference counts? The answers to these

questions are policies chosen on a segment basis

according to the desired semantics and how much

the user is willing to pay for them. We will return

briey to these questions in Section 4.3, where we

discuss the role of objects in implementing these

policies. For the moment we ask that the reader

suspend disbelief and assume that the system can

transparently manage storage in this distributed

and persistent virtual address space.

3 Objects In Opal

We now turn our attention to the nature of ob-

ject support in Opal. But �rst we point out that

an object-oriented data model is not necessary to

support sharing above a global virtual store. One

goal of an object sharing system is to allow data

structures (composed of objects linked by point-

ers) to be passed between applications, or stored on

disk and transparently retrieved on pointer deref-

erence. In principle, Opal's global virtual address

space supports these properties by default, inde-

pendent of object-orientation. A major reason

for the current popularity of object-oriented ap-

proaches to sharing is that they create well-formed

pointer graphs whose structure can be determined

with help from the type system, and are therefore

amenable to pointer translation. These constraints

are no longer necessary in a uniform virtual address

space.

However, we believe that object-oriented data

models continue to be valuable for organizing and

controlling sharing. Domains sharing data must

have a common understanding of its internal struc-

ture and usage, best formalized as a common set

of types. The purpose of Opal's object support

package is to allow the code that implements ob-

ject methods to be located and bound dynamically

given an object reference, and to ensure that all

domains operating on the data use the same im-

plementations of those types. Dynamic binding

also allows an application to use objects created

by a di�erent application and passed to it in shared

storage, and new versions of a type can be intro-

duced without a�ecting existing stored instances of

old versions of the type. In addition, objects are

a convenient granularity for distributed coherency,

stable storage updates, and garbage collection.

In this section we describe our object model and

the runtime representation of objects. The basic

model is of passive �ne-grained objects invoked

by synchronous procedure calls from concurrent

threads of control. The object representation is

matched to a restricted form of the C++ program-

ming language. This should be viewed as a \hy-

pothetical" object sharing system; the restrictions

are merely to simplify our exposition and prototyp-

ing e�ort. The premise is that a more comfortable

language model would not signi�cantly a�ect the

underlying system issues.

6



dynamic table{ }heap free list

dynamic table ptr

dynamic table ptr

(instance of A)

Procedure A1

Procedure A2

Procedure A3

Procedure B1

Procedure B2

Type A

Code Segment (Module)Data Segment

address n

address m

address m+k

address n+k

dynamic table{ }

Type B

object1

(instance of B)
object2

Figure 3: Objects and Types

3.1 Objects and Types

Our terminology and object representations fol-

low [Shapiro et al. 89]. In this paper we use the

term object to mean an elementary object that con-

tains no internal linked data structures. This is a

de�nition rather than a restriction. An object may

contain pointers to other objects, so elementary ob-

jects can be linked together to form composite ob-

jects of arbitrary complexity.

For our purposes, an object is a contiguous se-

quence of bytes that is an instance of a language

type.

1

Its size and internal structure are statically

determined by its type, and known only to the type

implementation. An object reference is the virtual

address of the �rst byte of the object.

The runtime representation of a type is a group

of method procedures, and a vector of pointers to

those procedures called the dynamic table. Types

reside in segments called modules that can be at-

tached readonly to any domain that trusts them.

The �rst �eld of each object is a pointer to the dy-

namic table for the object's type (Figure 3). Callers

of an object method are assumed to have static

1

We will occasionally refer to elementary objects as lan-

guage objects or data objects.

knowledge of the desired procedure index and call

signature. This assumes a simple type system with

no inheritance. A richer type system might result

in a more complex object representation, but this

is not important.

3.2 Segments Are Containers

A data segment is a virtual segment with a self-

contained heap. Objects are allocated from a heap

with calls to a runtime library (C++ new and

delete). Each elementary object is entirely con-

tained within a data segment, though composite

objects can span data segments. To allocate or free

an object, a thread must be executing in a domain

that has the object's data segment write-attached.

When a thread allocates an object it must specify

which data segment to use. Opal's thread package

associates a default heap for object allocations with

each thread; multiple threads can share a heap, and

the default heap is inherited across thread creation.

A thread's default heap can be changed with a call

to the runtime system.

Our use of data segments as heaps for allo-

cating objects makes them similar to clusters in

Oisin [Cahill 88]. In contrast, the original COOL

7



system [Abrossimov et al. 90] viewed objects as

composed of one or more segments; the COOL de-

signers have pointed out that COOL objects are

too expensive to represent most language objects.

From COOL we learn that a general-purpose object

sharing system must support small objects cheaply.

3.3 Concurrency and Synchronization

Concurrency is formalized as active threads syn-

chronously invoking methods of passive objects. If

an object is invoked by multiple threads then there

is logical concurrency within the object, and pos-

sibly physical concurrency if the node has multi-

ple processors. This concurrency is inherent in our

passive object model. We assume that all type im-

plementations are reentrant and thread-safe.

Synchronization is managed with explicit lock-

ing primitives. Threads and synchronization

are implemented in a concurrency library similar

to [Faust & Levy 90], providing mutexes, condition

variables, and spinlock types. Threads and locks

are objects allocated from data segment heaps.

Lock objects contain ag words that are set and

cleared with atomic instructions (e.g., test-and-

set). Thread objects include a runtime stack, con-

trol information, and register state. This register

state is loaded into a processor when the thread

is scheduled to run, and written back to memory

when the thread blocks.

4 Shared and Persistent Objects

As previously stated, the properties of object shar-

ing and persistence derive directly from Opal's

shared and persistent virtual address space. Ob-

jects are contained within segments, and segments

can be shared between domains and made persis-

tent, as described in Section 2. The single address

space ensures object identity for objects in shared

and persistent segments, because the virtual ad-

dress at which an object appears is independent of

(1) the location of the physical page, and (2) the

protection domain referencing it. The dynamic ta-

ble pointers have a globally unique interpretation

for the same reason. Transparent dereference and

dynamic code loading for shared and persistent ob-

jects is driven by ordinary page faults. Caching of

persistent data is managed by the virtual memory

system, avoiding two-level caching problems.

Synchronization is independent of sharing and

persistence. Like all objects, lock objects can

be stored on disk and retrieved, and invoked by

threads from di�erent domains. User-level (rather

than kernel-level) support for threads and synchro-

nization is essential for this property. This means

that sharing and persistence are transparent to

properly synchronized types, and most type imple-

mentations can be written without concern for how

instances of the type are shared.

4.1 Shared Objects in Virtual Storage

Our proposal supports shared data objects above

the virtual memory system by clustering objects

into segments, and allowing domains to attach seg-

ments and directly address the objects they con-

tain. There are several tradeo�s inherent in this

approach. We view these tradeo�s as essential for

high-performance object sharing on page-based ar-

chitectures. Indeed, these tradeo�s are the de�ning

characteristics of object-oriented database systems.

� Object encapsulation for shared data is en-

forced by the type system rather than by hard-

ware. In principle, any domain that is given

permission to write-attach a segment is free

to misuse its objects, violate synchronization

conventions, or even corrupt the heap man-

agement structures. Once access to a seg-

ment has been granted, the customer relies on

strong typing in the programming language

to prevent damage. The performance win is

that language protection is much cheaper than

hardware-based memory protection.

� Access control is based on segments, not ob-

jects. The system can restrict attach-access to

an entire segment but not to individual objects

within a segment. Object-grain access control

can be bought by placing each object in a pri-

vate segment, but this is wasteful of memory

for small objects because the minimum seg-

ment size is a page. Segment-grain access con-

trol is not a signi�cant restriction because data

objects are usually used in clumps; applica-

tions operate on a graph structure rather than

individual objects within that structure.

� Applications must manage the assignment of

objects to segments. If an application is using

more than one data segment, it must choose

8



which segment to allocate each new object

from. The choice must be made carefully; if

two objects reside in the same segment it is

impossible to grant attach-access to one but

not the other.

4.2 Object Referencing With Virtual

Addresses

The key point is that a uniform virtual address

space permits the use of unencoded virtual ad-

dresses as object references in shared and persis-

tent data. This is because each object resides at a

unique and �xed virtual address, even if it is not in

active use by any application. In contrast, virtual

address bindings for shared objects are unstable

in conventional operating systems, for two reasons:

(1) each protection domain has a separate virtual

address space, and (2) virtual addresses for objects

in persistent storage are bound late. For this rea-

son, today's persistent object systems use surrogate

pointers rather than virtual addresses as object ref-

erences.

Surrogate pointers require special support from

the compiler in order to insulate the application

from the need to manage two pointer forms. Also,

software must use mapping tables to translate sur-

rogates into virtual addresses before dereferencing

them. This translation is expensive, even in sys-

tems that carefully localize and cache the mapping

tables [Moss 90]. Swizzling is a technique to amor-

tize this cost over multiple dereferences of the same

pointer, by overwriting the surrogate in place with

the virtual address after the �rst translation. The

main drawbacks of swizzling are:

� It adds to the overhead of pointer translation

because it requires copying the data as well

as translating the pointers. Swizzled pointers

must be translated in both directions, on out-

put as well as input.

� It interferes with virtual memory caching be-

cause it dirties pages that are never modi�ed

by the application.

� It inhibits sharing because each domain must

maintain a separate copy of the data, since

the pointers are swizzled to di�erent virtual

addresses in each protection domain.

� It needs help from the compiler to locate point-

ers stored in the data.

Furthermore, systems that use swizzling must

choose between \eager" and \lazy" variants, each

of which has additional disadvantages. Eager swiz-

zling (e.g., [Wilson 91]) translates all pointers as

data is read into memory; it further increases

the overhead of translation because it unneces-

sarily translates pointers that are never used by

the application. Faster processors cannot reduce

this cost proportionately, because eager swizzling

is memory-intensive rather than CPU-intensive.

In contrast, lazy swizzling translates pointers on

�rst use; it requires additional support from the

language implementation to trap dereferences of

unswizzled pointers, and the translation latency

cannot be overlapped with I/O.

Surrogates and swizzling are necessary com-

promises for narrow-address machines, but they

should not be viewed as satisfactory solutions to

the problem of uniform object referencing. Vir-

tual address pointers are simpler and more e�cient,

and they can be used directly as object references

given wide-address hardware and proper operat-

ing system support for a uniform virtual address

space. [Copeland et al. 90] outlines a similar pro-

posal, and presents a case for the use of virtual

addresses as persistent object references.

One disadvantage of virtual address pointers is

that moving an object to a di�erent part of the ad-

dress space invalidates all references to it. Objects

may need to be moved to compact storage or im-

prove clustering properties, particularly since the

address space contains persistent data. This need

can be met (when it exists) by (1) using one or more

levels of pointer indirection for object addressing,

or (2) leaving forwarding records for objects that

have moved, but both of these solutions introduce

new problems and add to the cost of pointer deref-

erence. Alternatively, virtual page protections can

be used to trap references to old copies of objects

that have moved [Appel et al. 88].

4.3 Summary

In this section we have described support for shared

and persistent data objects in Opal. The high-

lights of our approach are: (1) clustering of data

objects within segments, (2) use of segment attach-

ment and direct virtual memory access as the basic

9



mechanism for object sharing, and (3) object nam-

ing and code binding using unencoded virtual ad-

dresses. However, several aspects of sharing and

persistence have not been addressed in this dis-

cussion. These are active research areas, in which

knowledge of the partitioning of data into objects

can be exploited by the system.

� Garbage collection. We recognize that garbage

collection is essential for a fully general object

sharing system. We rely on explicit deletion

at all levels in our prototype, but this is error-

prone and does not work for unpredictable

sharing patterns. Opal supports multiple pro-

tected reference counts on segments, for di-

rect use by applications or by a garbage col-

lector integrated with the programming lan-

guage (and presumably running in a privileged

domain that attaches all segments from a par-

ticular language environment). We claim that

garbage collection is no more di�cult than

ever if appropriate programming languages are

used, that the system can use accounting to

encourage reclamation just as conventional op-

erating systems do, and that the protection

mechanisms prevent untrusting domains from

harming each other with reclamation errors.

These are untested hypotheses.

� Consistency of distributed and persistent seg-

ments. Several approaches to the problems

of consistency and recoverability (transaction

support) have been developed. There are

pure page-based solutions (e.g., Ivy [Li 86] and

Camelot [Eppinger 89]), pure object-based so-

lutions (e.g., Am-

ber [Chase et al. 89, Feeley & Levy 92] and

Argus [Liskov et al. 87]), and interesting hy-

brid solutions (e.g., Munin [Carter et al. 91]

and Avalon [Detlefs et al. 88]). Our initial

prototype uses primitive mechanisms, but any

of these approaches could be used to ensure

consistency and/or recoverability of an Opal

segment.

These are existing problems that we have failed

to resolve rather than new problems that we have

introduced. Our basic approach to these issues is

to build a framework that is exible enough to ac-

commodate the various solutions that have been

developed, and to allow multiple solutions to coex-

ist. That is, we believe that the question of how

storage is managed is largely independent of the

way that storage is named; the latter is the pri-

mary focus of this project.

5 Protected Service Objects

Until now we have mostly been concerned with sup-

porting shared and persistent data. Objects can

also be used to represent protected services whose

clients are not trusted to attach them directly. In

this section we review the use of object models for

protected services, and describe support for object-

oriented servers in Opal.

The key object property for services is encapsu-

lation, which has two aspects:

� Enforced Integrity. A client cannot mali-

ciously or accidentally corrupt the service be-

cause it cannot operate on it except by invok-

ing its methods. The method code is chosen

by the implementor of the service rather than

by the client.

� Object-grain access control. A client cannot in-

voke a service unless it holds a reference for the

object that implements the service. A client

cannot hold a reference unless another entity

with access to the service passed it a reference.

Access checking occurs when the reference is

�rst passed to the client, but is unnecessary

on subsequent calls.

Programming languages enforce object encapsu-

lation through the type system. In system environ-

ments, where unsafe programming languages may

be used, encapsulation is enforced by two means:

(1) the object is separated from the client by a

hardware-enforced memory protection boundary,

and (2) the system or the hardware supports spe-

cial object references called capabilities [Fabry 74]

that cannot be forged; the client must hold a ca-

pability for the object in order to invoke it with a

cross-domain (RPC) call. An object that is encap-

sulated in this way is called a protected object or a

service object. We speak of a service as a service

class or type (e.g., the �le service), and a service ob-

ject as an instance of the type (e.g., a �le). Recent

microkernel operating systems (e.g., Mach, Chorus,

and Amoeba) represent all system abstractions as

service objects named by capabilities.

10



portal virtual check
identifier address field

Figure 4: An Opal Protected Pointer

Systems that support protected service objects

are extensible because they make it easy for appli-

cations to de�ne new services, simply by creating

objects and passing capabilities to clients. Useful

properties are automatically inherited by each new

service without the implementor reinventing mech-

anisms for these properties (e.g., object-grain ac-

cess control and uniform naming across a network).

In addition, capability-based protection limits the

trust that a client must place in the implementor

of a service. When the client invokes a service, it

passes capabilities for other objects (e.g., segments)

that it wants the service to operate on, and only

those objects. The client trusts the service to be-

have correctly, but if the service fails it is restricted

in the damage that it can do to the client. That

is, protected services have no inherent privilege; in

particular they do not run as \superuser". This use

of object-orientation was originally emphasized in

Hydra [Wulf 75] and capability-based computer ar-

chitectures (surveyed in [Levy 84]).

5.1 Protected Pointers

An Opal service object is simply a language object

that is internal to a server protection domain. By

\internal" we mean that the object resides in a seg-

ment that the server has permission to attach, but

the client domains do not; they can only operate

on the object by making RPC calls to the server.

Clients name service objects with protected point-

ers, based on capabilities in the Amoeba system

(Chorus uses a similar scheme). An Opal protected

pointer is a 256-bit quantity composed of four 64-

bit �elds, only three of which are important for the

purposes of this paper (Figure 4):

� The name of a portal in the server domain.

Portals are described in Section 2.1.

� The virtual address of the service object.

� A 64-bit check �eld whose value is chosen by

the server, and allows the server to validate

the protected pointer by matching with a cor-

responding check �eld stored with the object's

representation.

A thread in a client invokes a service object by

making an RPC call through the portal named in

the protected pointer, passing the pointer and a

procedure index (see Section 3) as arguments. This

causes the thread to begin executing within the

server domain at a virtual address chosen by the

server, typically the �rst instruction of a standard

code sequence to validate the check �eld and in-

voke the service object by making a procedure call

through the appropriate entry in its dynamic table.

Protected pointers are di�cult to forge because

the value of the check �eld is probabilistically im-

possible for a client to guess, and there is no way

to determine if a guess is correct except by ask-

ing the server. For this reason they are sometimes

called sparse capabilities or password capabilities,

but we di�erentiate them from true capabilities for

the following reasons:

� They are not impossible to forge.

� They can be revoked by changing the value of

the check �eld.

� The server may choose not to grant access even

if a client presents a valid protected pointer.

For the purposes of this paper, the key di�er-

ence from Amoeba capabilities is that the service

object name embedded in the capability is a vir-

tual address rather than an object surrogate that

must be translated by the server. In addition, the

naming and semantics of Opal portals di�ers from

the corresponding notion of a port in Amoeba. The

uniqueness of Opal portal names is assured by allo-

cating them from the global address space, whereas

11



Amoeba chooses its port names randomly from a

large space, making collisions unlikely but not im-

possible. Furthermore, the node serving a given

Opal portal can be determined by calling the ad-

dress space service, which is assumed to be secure

and reliable. A node cannot masquerade as the

server for a portal; if a compromised node claims

to serve portals from a range of the address space

that has not been assigned to it, other nodes sim-

ply will not believe it. In contrast, Amoeba lo-

cates server nodes by broadcasting their names on

the network; nodes are prevented from illegally re-

sponding to such a request through the use of cryp-

tographic techniques that require a physically se-

cure network and special hardware support in the

network interface.

5.2 On the Duality of Data and Services

Some systems treat service objects as special

and distinct from language objects. For ex-

ample, in early object-oriented operating sys-

tems, notably Clouds [Allchin & McKendry 83]

and Eden [Almes et al. 85], service objects are

coarse-grained, meaning that they are one-to-one

with protection domains. More recently, Mach has

supported protected objects directly in the kernel

through its port abstraction. Like an Amoeba port,

a Mach port is a message queue that clients send

messages to and a server receives messages from.

However, Mach views service objects as one-to-one

with ports; a Mach capability is a handle to a ker-

nel data structure that enables the holder to send

messages to a particular port.

2

A Mach server al-

locates a port for each protected object it serves,

and interprets all messages posted to that port as

calls to the object; a client cannot call the object

unless it holds a capability to send a message to

the object's port.

Protection domains and communication end-

points (ports or portals) are heavyweight entities

because they must be created and destroyed by the

kernel. We envision systems with large numbers

of service objects, and therefore reject approaches

that use these abstractions directly to represent

service objects. Furthermore, these kernel-based

2

In the Mach terminology, a capability is referred to as a

\send port". Note that a send port is not itself a port, but

only a name for a port (i.e., any number of send ports can

exist for a given message queue).

schemes force protection domains to call the ker-

nel in order to exchange capabilities; in particular,

capabilities cannot be stored in shared memory.

In contrast to these systems, Opal makes no dis-

tinction between data and services; an Opal ob-

ject is a \protected object" only from the per-

spective of a client that is insu�ciently privileged

to attach the object and invoke it with an ordi-

nary procedure call. Any number of service ob-

jects may be clustered within the same protection

domain and served through the same portal, reduc-

ing the cost of protection and communication. Like

ordinary pointers, protected pointers are context-

independent and can be passed between domains in

shared memory (e.g., as arguments to a lightweight

RPC call). Any domain that knows the value of a

protected pointer can use it.

Note that kernel-controlled capabilities have

some advantages over the approach used in Opal,

Amoeba, and Chorus: kernel-controlled capabili-

ties cannot be forged or stolen, and they can be

reference-counted or garbage-collected by the op-

erating system.

5.3 Persistent Services

Opal supports persistent service objects whose ca-

pabilities can be stored on disk and used after a

system restart. This only requires that the sys-

tem allow servers to restart and reregister the same

portal names. As previously stated, portal names

are allocated from the global address space and

never reused, making them unique in space and

time. Permission to reregister a portal name is it-

self represented by a capability; a privileged service

(the Portal Service) maintains records of allocated

portal names. The Portal Service restarts an idle

server when a client attempts to call through one of

its portals; to do this, it creates a fresh protection

domain and restores the portals and segments that

were active in the server at the time of the crash or

shutdown. It is the server's responsibility to ensure

that its segments are properly recoverable.

Given this facility, a service can be made per-

sistent by making its service object(s) persistent.

Opal's uniform address space ensures stable vir-

tual address bindings for persistent data objects;

therefore bindings for protected pointers to service

objects are stable as well. Since persistent ob-

jects are activated by simple page faults, stored

service objects are fetched from disk as a side ef-

12



fect of validating the object's check �eld, with no

special action on the part of the server. In con-

trast, Mach capabilities are invalidated by a system

restart; Mach servers with persistent data must im-

plement a secondary naming scheme for persistent

objects, and do not bene�t from the access control

and reference-counting provided by Mach capabil-

ities.

5.4 Proxies

Creation and use of shared service objects should

be integrated with programming languages, just as

shared data. However, most systems do not di-

rectly support transparent access to services, nor

should they: in capability-based computer archi-

tectures, all objects are named by protected capa-

bilities, making shared data as expensive as shared

services. In Opal, as in most systems today, ca-

pabilities look di�erent from data object pointers,

and the client must handle RPC calls di�erently

from ordinary procedure calls. Thus data objects

are cheap and service objects are protected.

The details of accessing a service can be hidden

from the application with language and runtime

support for proxy objects [Shapiro 86]. A proxy is

a local data object in the client whose interface is

identical to the service interface, but whose meth-

ods are marshaling stubs.

3

A similar proxy exists

on the server side to unpack and validate argu-

ments to a service object call; the object address

in a protected pointer is actually the address of

the server-side proxy, rather than of the protected

object itself. This organization is depicted in Fig-

ure 5.

Note that a protected object may have several

proxies on the server side, each with a di�erent

check �eld. For example, multiple proxies can be

used to represent di�erent sets of access rights for

the same object.

5.5 Summary

This section described how the mechanisms for

shared and persistent data outlined in Section 4

3

Opal's uniform address space also accommodates

Shapiro's more general notion of a proxy, in which the server

chooses the code that runs in the proxy. The server simply

passes a pointer to the proxy type along with the capabil-

ity. Of course, the client must trust the server to execute

arbitrary code in the client's protection domain.

are extended to encompass shared and persistent

services named by protected pointers (capabilities).

Opal has a uni�ed view of data and services; ser-

vice objects are simply language objects invoked

through a portal. Any domain can act as a server

for any objects attached to it. A server can ex-

port a new service simply by creating an object

and passing a protected pointer to a client.

Services in Opal can be persistent, and protected

pointers can be passed between domains in shared

and persistent memory. Persistence of services de-

rives directly from persistence of virtual storage.

Similarly, the context-independence of protected

pointers derives directly from the same property

in the global address space.

6 Conclusions

We have described Opal, an operating system with

a persistent, distributed virtual address space. We

have outlined an object sharing package above this

uniform address space that supports three inde-

pendent and composable properties for language

objects:

� Sharing. A single copy of an object can be

shared between applications running in sepa-

rate protection domains, either concurrently,

or sequentially by transferring segment per-

mission from one domain to another (object

migration).

� Persistence. Objects can be stored on disk and

retrieved transparently on pointer dereference.

� Protection. A server can construct protected

pointers for its internal objects and pass them

to its clients. A protected pointer allows the

client to operate on the object by making pro-

tected RPC calls to the server, but not to at-

tach the object directly.

The key point we wish to make is that there is

no explicit kernel support for these object proper-

ties, nor should there be. Objects are a policy in

Opal; their semantics and structure are imposed

by a programming language and are unknown to

the operating system kernel. This allows multiple

object models to coexist and new object models to

be developed. Nobody pays for features they do

not want.

13



stubs

stubs

portal x

check field

client proxy
server proxy

check field

server

client B

client A

portal x

resource
object

proxy

proxy

Figure 5: Service Objects and Proxies.

Furthermore, we assert that this approach

promises the best performance. Opal objects are

created and deleted without kernel involvement;

object references can be passed and shared with-

out kernel involvement. The fundamental mecha-

nisms for accommodating object sharing are shared

memory, page-based memory protection, virtual

page faulting, lightweight user-level concurrency

and synchronization, and high-performance RPC.

The performance behavior of all of these features

has been intensively studied and optimized.

To summarize, here are the elements of our phi-

losophy for building object sharing systems:

� Bring the language down to the system rather

than bringing the system up to the language.

The kernel interface is not the programmer

interface. Implement object semantics in the

language and runtime system unless the oper-

ating system forces you to do otherwise.

� Cluster objects to improve performance when-

ever possible. Our implementation uses clus-

tering in the following ways: (1) shared and

persistent data objects are grouped into seg-

ments that are the granularity of access con-

trol, (2) passive persistent objects are faulted

into memory in groups of virtual pages, (3)

service objects that are related can be served

from the same protection domain, and (4) ser-

vice objects in the same server can be multi-

plexed through a single RPC communication

14



channel.

� Use virtual memory. Fetch data with page

faults. Let the virtual memory system manage

object caching. Use shared memory whenever

possible.

� Do not constrain application use of protec-

tion boundaries. Determine use of hardware-

enforced protection according to which domain

is invoking an object, not the object itself. Use

cheap protection from a language type system

whenever possible.

The recurring theme in all of these points is that

support for object sharing and persistence should

be built as an application-level runtime package

that imposes object structure on untyped virtual

storage. This is di�cult to achieve because the

virtual storage model presented by most operating

systems is nonuniform; the virtual addresses used

to name storage vary according to the physical lo-

cation of that storage and which domain is refer-

encing it, and there are many possible interpreta-

tions of a given virtual address. We believe that

a uniform virtual storage abstraction, made possi-

ble by emerging 64-bit architectures, will have far-

reaching implications for object sharing systems.

7 Acknowledgements

Ashutosh Tiwary reviewed early drafts and con-

tributed greatly to the organization of the paper.

Participants in the prototype e�ort include Mike

Feeley, Val�erie Issarny, and Ted Romer, who have

also provided valuable comments. Chris Hebert

helped with the diagrams. Thanks also to Brian

Bershad, Craig Chambers, Eliot Moss, and Marc

Shapiro for carefully delivered criticisms.

References

[Abrossimov et al. 90] V. Abrossimov, S. Habert,

and L. Mosseri. COOL: Kernel sup-

port for object-oriented environments. In

Proceedings of the ACM Conference on

Object-Oriented Programming Systems,

Languages, and Applications, October

1990.

[Allchin & McKendry 83] J. Allchin and M. McK-

endry. Synchronization and recovery of

actions. In Proceedings of the 2nd ACM

Symposium on Principles of Distributed

Computing, pages 31{44, August 1983.

[Almes et al. 85] G. T. Almes, A. P. Black, E. D.

Lazowska, and J. D. Noe. The Eden sys-

tem: A technical review. IEEE Trans-

actions on Software Engineering, SE-

11(1):43{59, January 1985.

[Anderson et al. 91] T. E. Anderson, B. N. Ber-

shad, E. D. Lazowska, and H. M. Levy.

Scheduler activations: E�ective kernel

support of the user-level management of

parallelism. In Proceedings of the 13th

Symposium on Operating System Princi-

ples, pages 95{109, October 1991.

[Appel et al. 88] A. W. Appel, J. R. Ellis, and

K. Li. Real-time concurrent garbage col-

lection on stock multiprocessors. SIG-

PLAN Notices (Proceedings of the SIG-

PLAN '88 Conference on Programming

Language Design and Implementation),

23(7), July 1988.

[Bal & Tanenbaum 88] H. E. Bal and A. S. Tanen-

baum. Distributed programming with

shared data. In Proceedings of the Inter-

national Conference on Computer Lan-

guages, pages 82{91, October 1988.

[Bershad 90] B. N. Bershad. High Perfor-

mance Cross-Address Space Communi-

cation. PhD dissertation, University of

Washington, June 1990. Department of

Computer Science and Engineering Tech-

nical Report 90-06-02.

[Cahill 88] V. Cahill. OISIN, the design of a dis-

tributed object-oriented kernel for CO-

MANDOS. Master's thesis, Department

of Computer Science, Trinity College

Dublin, 1988.

[Carter et al. 91] J. B. Carter, J. K. Bennett, and

W. Zwaenepoel. Implementation and

performance of Munin. In Proceedings

of the Thirteenth Symposium on Operat-

ing Systems Principles, pages 152{164.

ACM, October 1991.

15



[Chase et al. 89] J. S. Chase, F. G. Amador, E. D.

Lazowska, H. M. Levy, and R. J. Little-

�eld. The Amber system: Parallel pro-

gramming on a network of multiproces-

sors. In Proceedings of the 12th ACM

Symposium on Operating System Princi-

ples, pages 147{158, December 1989.

[Chase et al. 92a] J. S. Chase, H. M. Levy,

M. Baker-Harvey, and E. D. Lazowska.

How to use a 64-bit virtual address space.

Technical Report 92-03-02, University of

Washington, Department of Computer

Science and Engineering, February 1992.

[Chase et al. 92b] J. S. Chase, H. M. Levy,

M. Baker-Harvey, and E. D. Lazowska.

Opal: A single address space system for

64-bit architectures. In Proceedings of

the Third Workshop on Workstation Op-

erating Systems, April 1992.

[Copeland et al. 90] G. Copeland, M. Franklin,

and G. Weikum. Uniform object man-

agement. In F. Bancilon, C. Thanos,

and D. Tsichritzis, editors, Advances

in Database Technology { International

Conference on Extending Database Tech-

nology 1990 (Lecture Notes in Computer

Science 416), pages 253{268. Springer-

Verlag, 1990.

[Daley & Dennis 68] R. C. Daley and J. B. Dennis.

Virtual memory, processes, and sharing

in MULTICS. Communications of the

ACM, 11(5):306{312, May 1968.

[Detlefs et al. 88] D. L. Detlefs, M. P. Herlihy,

and J. M. Wing. Inheritance of

synchronization and recovery proper-

ties in Avalon/C++. IEEE Computer,

21(12):57{69, December 1988.

[Dig 92] Digital Equipment Corporation, May-

nard, MA. Alpha Architecture Handbook,

1992.

[Eppinger 89] J. L. Eppinger. Virtual Memory

Management for Transaction Processing

Systems. PhD dissertation, Carnegie

Mellon University, February 1989. CMU-

CS-89-115.

[Fabry 74] R. S. Fabry. Capability-Based Ad-

dressing. Communications of the ACM,

17(7):403{412, July 1974.

[Faust & Levy 90] J. E. Faust and H. M. Levy.

The performance of an object-oriented

threads package. In Proceedings of

the ACM Conference on Object-Oriented

Programming Systems, Languages, and

Applications, October 1990.

[Feeley & Levy 92] M. J. Feeley and H. M. Levy.

Distributed shared memory with ver-

sioned objects. In Proceedings of the

Conference on Object-Oriented Program-

ming Systems, Languages, and Applica-

tions, October 1992. University of Wash-

ington CSE Technical Report 92-03-01.

[Jul et al. 88] E. Jul, H. Levy, N. Hutchinson, and

A. Black. Fine-grained mobility in the

Emerald system. ACM Transactions on

Computer Systems, 6(1):109{133, Febru-

ary 1988.

[Khosha�an & Copeland 86] S. N. Khosha�an and

G. Copeland. Object identity. In Pro-

ceedings of the Conference on Object-

Oriented Programming Systems, Lan-

guages, and Applications, pages 406{416,

1986.

[Levy 84] H. M. Levy. Capability-Based Computer

Systems. Digital Press, Bedford, Mas-

sachusetts, 1984.

[Li 86] K. Li. Shared Virtual Memory on Loosely

Coupled Multiprocessors. PhD disserta-

tion, Yale University, September 1986.

YALEU/DCS/RR{492.

[Liskov et al. 87] B. Liskov, D. Curtis, P. Johnson,

and R. Scheier. Implementation of Ar-

gus. In Proceedings of the Eleventh ACM

Symposium on Operating Systems Prin-

ciples, pages 111{122, November 1987.

[Marques & Guedes 89] J. A. Marques

and P. Guedes. Extending the operat-

ing system to support an object-oriented

environment. In Proceedings of the ACM

Conference on Object-Oriented Program-

ming Systems, Languages, and Applica-

tions, pages 113{122, September 1989.

16



[MIP 91] MIPS Computer Systems, Inc., Sunny-

vale, CA. MIPS R4000 Microprocessor

User's Manual, �rst edition, 1991.

[Moss 90] J. E. B. Moss. Working with persistent

objects: To swizzle or not to swizzle.

COINS Object-Oriented Systems Labo-

ratory Technical Report 90-38, Univer-

sity of Massachusetts at Amherst, May

1990.

[Mullender & Tanenbaum 86] S. Mullender and

A. Tanenbaum. The design of a

capability-based operating system. The

Computer Journal, 29(4):289{299, 1986.

[Rozier et al. 88] M. Rozier, V. Abrossimov, F. Ar-

mand, I. Boule, M. Gien, M. Guillemont,

F. Herrmann, P. Leonard, S. Langlois,

and W. Neuhauser. Chorus distributed

operating systems. Computing Systems,

1(4), 1988.

[Shapiro 86] M. Shapiro. Structure and encapsula-

tion in distributed systems: The proxy

principle. In Proceedings of the Sixth

International Conference on Distributed

Computing Systems, May 1986.

[Shapiro et al. 89] M. Shapiro, P. Gautron, and

L. Mosseri. Persistence and migration for

C++ objects. In Proceedings of the Third

European Conference on Object-Oriented

Programming, July 1989.

[Wilson 91] P. R. Wilson. Pointer swizzling at

page fault time: E�ciently supporting

huge address spaces on standard hard-

ware. ACM SIGARCH Computer Archi-

tecture News, 19(4), June 1991. Univer-

sity of Illinois at Chicago Technical Re-

port UIC-EECS-90-6, December 1990.

[Wulf 75] W. A. Wulf. Overview of the Hydra op-

erating system. In Proceedings of the 5th

Symposium on Operating Systems Prin-

ciples, pages 122{131, November 1975.

[Young et al. 87] M. Young,

A. Tevanian, R. Rashid, D. Golub, J. Ep-

pinger, J. Chew, W. Bolosky, D. Black,

and R. Baron. The duality of memory

and communication in the implementa-

tion of a multiprocessor operating sys-

tem. In Proceedings of the Eleventh ACM

Symposium on Operating Systems Prin-

ciples, pages 63{76, November 1987.

17


