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Abstract

Recent microprocessor announcements show a trend to-

ward wide-address computers: architectures that sup-

port 64 bits of virtual address space. Such architectures

facilitate fundamentally new operating system organi-

zations that promote e�cient data sharing and cooper-

ation, both between complex applications and between

parts of the operating system itself. One such organi-

zation is the single address space operating system, in

which all processes run within a single global virtual

address space; protection is provided not through con-

ventional address space boundaries, but through pro-

tection domains that dictate which pages of the global

address space a process can reference.

This paper focuses on the architectural implications

of single address space operating systems, speci�cally

the interaction between the memory system architec-

ture and the operating system's use of addressing and

protection. Our purpose is to explore certain architec-

tural opportunities created by single address space sys-

tems by evaluating two protection models that support

them. The �rst provides protection on a per-page, per-

domain basis; we de�ne the protection lookaside bu�er,

a hardware structure that implements this model. The

second provides protection on a page-group basis; this

model is implemented in the Hewlett-Packard PA-RISC

architecture.

This paper will appear in identical form in the Proceedings of

the ACM Conference on Architectural Support for Programming

Languages and Operating Systems, October 1992. This work

was supported in part by by the National Science Foundation

under Grants No. CCR-8619663, CCR-8907666, CDA-9123308,

CCR-9200832 and MIP-9058-439, by the Washington Technol-

ogy Center and by the Digital Equipment Corporation Systems

Research Center and External Research Program.

1 Introduction

The rapidly increasing demands of software (both appli-

cations and operating systems), together with increas-

ing VLSI densities, have brought us to the verge of a

major architectural change: the move from a 32-bit to a

64-bit virtual address space. This trend can be seen, for

example, in the segmented architectures of the HP PA-

RISC [Lee 89] and the IBM RS/6000 [Groves & Oehler

90] and ESA/370 [Scalzi et al. 89], and the at archi-

tectures of the MIPS R4000 [MIP 91], SPARC Version

9 [SPA 92], and Digital's Alpha family [Dig 92].

Unlike the move from 16- to 32-bit addressing, a 64-

bit address space will be revolutionary instead of evolu-

tionary with respect to the way operating systems and

applications can use virtual memory. Consider that 40

bits can address a terabyte, two orders of magnitude

beyond the primary and secondary storage capacity of

all but the largest systems today, and that a 64-bit ad-

dress space, consumed at a rate of 100 megabytes per

second, would last �ve thousand years.

Large address spaces remove a basic assumption that

has driven operating systems since the 1960s, namely,

that virtual addresses are a scarce resource that must

be multiply allocated in order to supply each execut-

ing program with su�cient name space. The small ad-

dress spaces of current architectures cause most oper-

ating systems (e.g., Unix

1

) to execute each program

in a private virtual address space. While private ad-

dress spaces facilitate protection, they interfere with

sharing and cooperation between applications, because

virtual addresses in shared data are ambiguous; that is,

their interpretation depends on the process using the

address.

Next-generation operating systems can utilize the

1

Unix is a trademark of Unix Systems Laboratories, Inc.
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wider virtual addresses of emerging 64-bit architectures

by exploiting the concept of a single virtual address

space [Carter et al. 92, Chase et al. 92a, Chase et al.

92b, Okamoto et al. 92, Scott et al. 90]. In such a

system, addresses are unique and context-independent:

an address has the same meaning and translation, inde-

pendent of the process that issues it. Hardware-based

memory protection still exists within this single address

space, however; programs execute in protection domains

that control their access to virtual memory. A protec-

tion domain de�nes the private data, code and stacks

that an application can access, along with any data

shared with other domains. In many ways it is the ana-

log of the address space of a Unix process or Mach task:

the primary di�erence is that it de�nes a private set of

access privileges to globally addressable pages, rather

than a private virtual naming environment. Thus, the

single virtual address space separates the concepts of

translation and protection. We call a system with this

addressing model a single address space operating sys-

tem. We are currently building one, called Opal [Chase

et al. 92a, Chase et al. 92b]. Examples in this paper

use Opal terminology, although many of the concepts

(such as protection domains) will be common to other

single address space systems.

This paper focuses on the architectural implications

of single address space operating systems, speci�cally

the interaction between the memory system architec-

ture and the operating system's use of addressing and

protection. A key issue is how to represent the pro-

tection information in the cache structures. Protec-

tion domains are supported in the architecture by tag-

ging cache structures with protection information and

matching the tags with protected register state in the

processor on each memory reference. The choice of

where the tags are stored and what they represent de-

termines the actions that the operating system must

take to implement common operations, especially those

that change a protection domain's access to data. Since

protection operations are becoming more frequent and

expensive (i.e., they involve trapping to the kernel and

possibly invalidating useful cache entries), these choices

can have a substantial e�ect on performance [Anderson

et al. 91, Appel & Li 91].

The paper is organized as follows. The next sec-

tion discusses the advantages of single address space

operating systems and their architectural implications.

Section 3 describes the problems with current mem-

ory system architectures with respect to single address

space operating systems, and presents two alternative

protection models, each with a representative imple-

mentation, that support these systems better. First,

we present a new memory system mechanism called the

Protection Lookaside Bu�er, which separates protection

from translation and caches protection mappings on a

per-domain, per-page basis. The PLB is a natural coun-

terpart to a virtually indexed, virtually tagged cache in

single address space systems, and permits relocation of

the translation bu�er to a second level, o� the criti-

cal path. The second alternative is a slight variation of

the Hewlett-Packard PA-RISC architecture [Hew 90], in

which each executing protection domain has access to

one or more page-groups. (A page-group is a set of pages

treated as a unit for the purpose of access control.) Sec-

tion 4 evaluates the two model implementations with

respect to the needs of single address space operating

systems, focusing on how the operating systems' use of

protection interacts with architectural design choices in

the virtual memory system. Section 5 looks at similar

work, and Section 6 summarizes our presentation.

2 Implications of Single Ad-

dress Space Operating Sys-

tems

Single address space operating systems have two broad

architectural implications. First, they encourage shar-

ing of memory between protection domains; existing

architectures designed to run private address systems

do not always support this sharing e�ciently. Second,

since they de�ne a unique mapping between virtual and

physical addresses, they introduce a new constraint that

can be exploited in the architecture. This simpli�es the

use of high-performance virtually indexed data caches,

and allows address translation to be removed from the

critical path of processor memory references.

2.1 Support for Sharing

The principal advantage of single address space systems

is that virtual addresses have a globally unique inter-

pretation { a given piece of data appears at the same

virtual address regardless of where it is stored or which

domains access it. This context-independence simpli�es

sharing in two ways. First, virtual addresses (pointers)

can be passed between domains, and linked data struc-

tures stored in the global address space are meaningful

to any protection domain that can access them. Second,

a domain can address any piece of shared data without

risk of name conicts with other data. This property

is essential to supporting dynamic sharing patterns, in

which shared data and procedures can be passed e�-

ciently by reference.

The enhanced support for sharing can be used to im-

prove the structure and performance of both applica-

tions and the operating system by reducing the need

for explicit communication between programs execut-

ing in separate protection domains. This is impor-
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tant, because the communication mechanisms popular

today (e.g., RPC) are based on data copying and pro-

tection domain switches, both of which have increased

in cost relative to integer performance on recent pro-

cessors [Anderson et al. 91, Ousterhout 90]. At the

same time, software systems are growing in complex-

ity, encouraging decomposition into multiple protection

domains. The recent move toward server-structured,

kernelized operating systems (e.g., Mach [Golub et al.

90], Chorus [Rozier et al. 92], Amoeba [Mullender &

Tanenbaum 86] and Windows NT) is one example of

this trend.

2

2.2 Virtually Indexed Caches

Virtually indexed caches typically provide faster ef-

fective access than physically indexed caches, because

they do not require address translation before the ac-

cess [Knapp 85, Smith 82, Wood 90].

3

Furthermore,

compilers can predict and control data placement in

the cache, which is di�cult or impossible in physically

indexed caches in which placement depends on dynam-

ically determined virtual-to-physical mappings [Lam

et al. 91].

There are two principal problems with using virtually

indexed caches in systems with multiple address spaces:

synonyms (also called aliases) and homonyms. The syn-

onym problem occurs when a physical page is mapped

into two or more di�erent virtual pages. Reference to

an item through di�erent virtual addresses causes that

item to appear simultaneously in multiple cache lines,

creating a coherency problem on writes. Many solu-

tions to this problem have been devised, such as alloca-

tion restrictions (as in Sun OS [Cheng 87]), sharing on

segment boundaries only (SPUR [Wood et al. 87] and

the IBM RISC processors [Chang & Mergen 88, Groves

& Oehler 90]), ushing the cache on process switches

(as required by the i860 [Int 89]), lazily ushing aliased

pages from the cache [Wheeler & Bershad 92], or hard-

ware support for synonyms [Goodman 87, Wang et al.

89]. The �rst two solutions restrict the generality of the

system, the third discards potentially useful cache state

and adds to the cost of process switches, the fourth com-

plicates the operating system, and the �fth complicates

the hardware.

The homonym problem occurs when each address

space has a di�erent translation of the same virtual ad-

dress; for example, every address space can have its own

2

The software implications of single address space systems,

including incompatibilities for programs written under the mul-

tiple address space model, are discussed in more detail in Chase,

et al. [Chase et al. 92a].

3

Organizations in which a physically indexed cache is accessed

in parallel with address translation are comparable in speed,

but su�er from restrictions in cache size or memory mapping

exibility.

address 100, but each instance of that address refers to

a di�erent physical location. Homonyms can be elim-

inated by ushing the cache on process switches, ex-

tending the virtual address with an address space iden-

ti�er or using physical (rather than virtual) tags in the

cache. All techniques have drawbacks: ushing exacer-

bates the cold-start problemwhen returning from a pro-

cess switch; address extension requires additional bits

in each cache line, and introduces the synonym prob-

lem when di�erent address spaces use the same virtual

address to refer to the same location [Smith 82]; virtu-

ally indexed, physically tagged caches are also vulner-

able to the synonym problem, because the same phys-

ical address can still reside in multiple locations in the

cache [Wheeler & Bershad 92].

Neither synonyms nor homonyms need exist on a sin-

gle address space system. Synonyms, typically used to

facilitate sharing between address spaces or by the op-

erating system, do not cause problems, because write-

shared data always appears at the same virtual ad-

dress in each process (protection domain) that uses it.

4

Homonyms cannot occur on a single address space sys-

tem, because by de�nition only one translation exists

for any address. Thus, by alleviating these problems,

a single address space system removes several imped-

iments to the use of a virtually indexed cache, which

is the most attractive caching organization for perfor-

mance reasons. Furthermore, the virtually indexed

cache can be supported without ushing on process

switches and without the need for additional address

space identi�er bits.

3 Protection Architectures

This section presents two alternative models of protec-

tion for single address space systems and representa-

tive implementations for their caching structures that

contain protection information. First, however, we be-

gin by examining conventional, multiple address space

architectures and their relationship to single address

space operating systems. In particular, we discuss TLB

contents and their handling.

3.1 Conventional Architectures and

Single Address Spaces

Most current architectures are designed to support mul-

tiple virtual address spaces, which are required by com-

mon operating systems like Unix and VMS.

5

These ar-

4

Note that this does not prevent the use of copy-on-write opti-

mizations. Copy-on-write uses read-only synonyms which do not

have to be kept coherent. As soon as a write occurs to one copy

of an address, the page is copied, and the synonym no longer

exists.

5

VMS is a trademark of Digital Equipment Corporation.
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chitectures could support a single address space operat-

ing system, but in doing so they may incur unnecessary

performance costs. For example, the VAX [Dig 81] and

SPARC [Cyp 90] store virtual-to-physical mappings in

linear page tables maintained separately for each pro-

tection domain. This organization causes two problems

for single address space systems. First, protection do-

mains in such a system have a sparse view of the global

address space; that is, each domain would typically ref-

erence small and widely scattered pieces of the address

space. Linear page tables cannot represent such sparse

sets of mappings compactly. Second, translation map-

pings for shared pages must be duplicated in the page

tables for each domain; this wastes space and forces the

kernel to keep the duplicated mappings consistent.

Architectures with software-loaded TLBs, such as the

MIPS processors [Kane & Heinrich 92] or the DEC Al-

pha [Dig 92], are better suited to supporting single ad-

dress space systems. Without a hardware-enforced page

table structure, the operating system can choose the

most convenient representation for its virtual memory

data structures, such as a single table of translations

that is shared by all domains and a separate protection

table for each domain, (similar to the inverted page ta-

ble on the IBM 801).

If the TLB is tagged with an address space identi-

�er [Kane & Heinrich 92], it can function as a protection

domain identi�er. Sharing of a page by multiple do-

mains causes replication of TLB protection entries, even

though each replicated entry has the same translation

information. The duplication reduces the e�ectiveness

of the TLB as sharing increases. The system also needs

to ensure that all TLB entries for a page are coherent

when mapping changes take place. Inconsistencies can

be avoided by purging the TLB on protection domain

switches (process switches) or mapping changes; how-

ever, this is undesirable, because purging removes not

only the protection information, which is di�erent for

the newly scheduled domain, but also the translation

information, which is the same for all domains.

3.2 Protection Organizations for Single

Address Spaces

Memory protection can be implemented di�erently in

single address space architectures. Since all protec-

tion domains reside in the same virtual address space,

any program can attempt to reference any virtual

page. Virtual-to-physical translations are global, but

the hardware must represent page access permissions

separately for each protection domain.

In this section we present two models for supporting

protection in single address space systems. Both sepa-

rate protection from translation. At a high level, the

two alternatives are:

� The domain-page model, which speci�es access

rights explicitly for each (domain,page) pair, in-

dependent of the other domains and pages. This is

the model used by most current systems; it can be

implemented in single address space architectures

by removing protection domain tags from the TLB

and placing them in a separate protection lookaside

bu�er that contains no translation information.

� The page-group model, which de�nes logical group-

ings of pages called page-groups. Each page is a

member of a single page-group, and a protection

domain is de�ned by the set of page-groups that it

can access. Each page within a group has access

rights that are used by all domains with access to

the group. Page-groups are used in the Hewlett-

Packard PA-RISC.

The next two subsections discuss implementations

of these two models, the protection lookaside bu�er

(PLB) for the domain-page model, and a variant of the

Hewlett-Packard PA-RISC for the page-group model.

3.2.1 The Protection Lookaside Bu�er

The domain-page model can be implemented by a new

memory system protection cache, called the protection

lookaside bu�er, or PLB. The PLB caches protection

mappings on a per-domain, per-page basis; that is, each

PLB entry contains the protection information (the ac-

cess rights) granted to one protection domain for one

speci�c virtual page. If two domains each have access

rights to the same virtual page, and both domains have

recently accessed that page, then the PLB is likely to

have two entries for that page, one for each domain.

Figure 1 shows the high-level organization of the

PLB and a virtually indexed, virtually tagged cache.

On each memory reference the PLB is accessed by the

virtual page number (VPN), which is extracted from

the virtual address, and by the current protection do-

main identi�er (PD-ID). A processor control register,

changed on domain switches, provides the current PD-

ID used in a PLB lookup, just as some processors pro-

vide an address space identi�er to virtually indexed

caches or TLBs. If a match occurs on both the VPN

and the PD-ID, the protection information is extracted

directly from the entry in the PLB. If no match occurs,

a PLB miss is signaled, and the PLB must be loaded

with the appropriate protection mapping.

Note that in this scheme, VPN bits are used for both

the cache and the PLB lookups. Thus, the cache and

PLB searches can occur completely in parallel, because

the cache lookup is not dependent on information pro-

vided by the PLB. If the cache lookup succeeds, the

PLB-provided information indicates whether the mem-

ory reference has permission to proceed. If the cache
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Figure 1: System with a Protection Lookaside Bu�er and a virtually indexed, virtually tagged cache. Numbers

shown indicate �eld widths, assuming 64 bit addresses and 4Kbyte pages. The VPN bits assume a fully associative

PLB; fewer would be needed with a direct-mapped or associative organization.

lookup fails, there are two possible situations. If the

PLB indicates that the reference is illegal, an exception

will be generated. Otherwise, a cache miss occurs, and

a translation must be provided by the TLB, so that

data can be loaded into the cache.

As mentioned above, when pages are shared across

domains, the PLB contains multiple entries for the

page, one per domain. If both protection and trans-

lation data were stored in the PLB (comparable to a

traditional TLB), each entry for a page could contain

di�erent access rights, but identical translation infor-

mation. Separating the two avoids this duplication and

allows the PLB to be used in conjunction with a virtu-

ally indexed, virtually tagged cache. (One drawback of

this cache organization should be noted: that because of

the wide addressing, more bits are needed for the tags,

relative to a virtually indexed, physically tagged cache.

For example, in a system with 64-bit virtual addresses,

36-bit physical addresses and 32 byte cache lines, a vir-

tually tagged cache would be about 10% larger.)

As with all virtually indexed, virtually tagged caches,

address translation is required only on the small per-

centage of accesses that either miss in the cache or re-

quire a writeback. The TLB can therefore be moved out

of the critical path of the processor, and even o� the

processor chip; an obvious organization would place the

TLB along with the cache controller for the second-level

cache (similar to the design in Wang et al. [Wang et al.

89]). An advantage of moving the TLB o�-chip is that

it permits a larger TLB than that typically found in

microprocessors. The PLB would still reside on the mi-

croprocessor chip, but with di�erent con�guration con-

straints than the TLB it replaces. Although it has fewer

�elds, more entries are required when pages are shared.

Note that since protection information for each do-

main is stored in the PLB, the TLB need contain only

the VPN/PFN mapping and the dirty and reference

bits.

6

Furthermore, the TLB requires only one entry

for each virtual-to-physical page mapping; therefore, a

purge is required only on the change of a virtual-to-

physical translation. Protection domain switches do not

require a purge of either the PLB or the TLB.

3.2.2 The Hewlett-Packard PA-RISC

The page-group model has been implemented in the

Hewlett-Packard PA-RISC architecture. In the PA-

RISC, the TLB entry for a page includes a set of access

rights (the Rights �eld in Figure 2), and a �eld called

an access identi�er, or AID, that contains a page-group

number, in addition to translation information. On a

memory reference, the TLB is indexed with the virtual

page number, returning the physical address translation

and the AID for the page.

The processor must then determine if access to the

page-group speci�ed in the AID is permitted to the

6

See Koldinger et al. [Koldinger et al. 91] for a discussion of

their management.
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currently executing protection domain (process). The

set of page-groups accessible to the current domain is

stored in a set of four page-group registers (called PIDs).

In addition, there is a page-group that is global to all

domains (group 0). If the page-group number in the

AID matches one of the PIDs or the AID �eld is zero,

then the exact access rights allowed are determined by a

combination of: (1) access rights speci�ed for the page

in the Rights �eld of the TLB entry, (2) the current pro-

cessor privilege level (PL in Figure 2) and (3) a write-

disable bit in the PID register (D in Figure 3). The last

allows disabling writes from a protection domain to an

entire page-group, regardless of the value in the Rights

�eld in the TLB. The Rights �eld may specify di�erent

access rights for di�erent processor privilege levels (e.g.,

user, kernel, etc.), but we ignore this detail.

If the page-group number in the AID does not match

any of the PIDs or the access allowed is insu�cient to

complete the memory reference, then an access viola-

tion is signaled and the operating system kernel is in-

voked. The kernel may respond by modifying the TLB

or page-group registers and restarting the instruction,

or it may deliver an exception to the protection domain

that issued the instruction.

The current PA-RISC architecture, with only four

page-group registers, limits the number of page-groups

that a domain can e�ciently access at a time; in addi-

tion, it provides no information (such as LRU informa-

tion) to help the operating system manage the loading

of the page-group registers. Thus, for the purposes of

our discussion in the next section, we replace the PA-

RISC's page-group registers with a cache of permitted

page-groups, with support for LRU replacement (sug-

gested by Wilkes and Sears [Wilkes & Sears 92]).

Because the page-group model requires only one set

of access rights per page (and therefore one entry in

the protection cache), protection and translation infor-

mation can be combined in a TLB without duplicating

translation data. Since the TLB must be accessed on

each memory reference to obtain the protection infor-

mation, the implementation includes an on-chip TLB.

Note that the con�guration used by the domain-page

model implementation, i.e., separate caches for protec-

tion and translation information, coupled with a vir-

tually indexed, virtually tagged cache and an o�-chip

TLB, could have been used here as well. Although the

choice of protection model and the con�gurations of

the protection, translation and data caches are orthog-

onal issues, separating the protection and translation

structures and coupling them with a virtually indexed,

virtually tagged cache and an o�-chip TLB is the more

natural con�guration for the domain-page model. In

this respect, the page-group model is the more exible

of the two, in that it works well with either.

4 Evaluation of the Protection

Models

In this section we compare the PLB-style protection

system (the domain-page model) and the PA-RISC-

style system (the page-group model) with respect to

tasks that we believe will be commonly performed by

single address space operating systems. The compar-

isons will focus on how the operating system manipu-

lates the primary hardware structures in each model,

and the performance implications of these structures.

A summary of this discussion appears in Table 1.

When we refer to the PA-RISC-style system, we as-

sume a slightly modi�ed architecture containing an

LRU cache of page-groups, as described in Section 3.2.2,

rather than the four page-group registers. We will re-

fer to this con�guration as the page-group implemen-

tation. In addition, to allow a fair comparison, we will

assume that the PLB and the page-group TLB (both

on-chip) have the same number of entries. In fact, there

may be several reasons for di�erences in the number

of entries. For example, the PLB requires multiple en-

tries for shared pages where the page-group TLB would

have only one. However, recall that PLB entries are

smaller than page-group TLB entries (about 25%, as-

suming the �eld sizes in Figure 1 and a physical address

of 36 bits), since they don't contain virtual-to-physical

translations, allowing more entries in the same amount

of space.

4.1 Operating System Tasks

4.1.1 Attaching and Detaching Segments

Single address space operating systems need a method

for allocating space to the various protection domains.

Our underlying model is based on virtual segments, the

mechanism used in Opal. Virtual segments are se-

quences of one or more contiguous virtual pages, oc-

cupying a �xed contiguous range of virtual addresses,

assigned when the segment is created and disjoint from

the address ranges occupied by all other segments. Vir-

tual segments are logical groupings of pages providing

access control and storage management; their bound-

aries are unknown to the hardware, and addressing is

independent. Virtual segments are the basic unit of

sharing; they are used to represent many types of ob-

jects, such as code, shared libraries, private and shared

data regions (heaps and stacks), mapped �les and RPC

communication channels [Bershad et al. 89, Bershad

et al. 90].

Before a program can access the pages that make up

a virtual segment, it must attach the segment to its

domain. We believe that once mechanisms exist to

facilitate sharing and cooperation, domains will typi-
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Figure 2: PA-RISC Protection Architecture

cally attach to multiple virtual segments; therefore, the

architecture should e�ciently support large numbers of

active segments. Segment attachment should also be

e�cient, since they will be attached whenever a new

�le is accessed, a code library is �rst touched or com-

munication is �rst established between a client and a

server.

If the system represents virtual segments as PA-RISC

style page-groups, attaching a new virtual segment is

trivial; the operating system merely adds the page-

group representing the segment to the set of groups

accessible to the current domain, possibly adding an

entry for it in the page-group cache. Similarly, detach-

ing a segment simply requires removing the appropriate

page-group identi�er from the set of page-groups acces-

sible to the current domain, and purging it from the

page-group cache. All domains with access to a partic-

ular page group use the same TLB entries for pages in

that group, and these entries are not a�ected by seg-

ment attach and detach operations.

In the domain-page model of the PLB, attaching seg-

ments is comparable in complexity to the page-group

implementation. The operating system simply marks

the segment as accessible by the protection domain; no

hardware structures need to be manipulated. The indi-

vidual PLB entries for each domain-page pair are lazily

faulted into the PLB as the pages are accessed. Detach-

ing, however, is more intricate. The operating system

must purge the PLB of any entries that map the de-

taching segment from the current protection domain.

In the worst case, this could require inspecting all the

entries in the PLB and eliminating those that match.

4.1.2 Manipulating Page Permissions

Applications that use the protection mechanism to en-

force particular memory semantics on segments will of-

ten need to manipulate a domain's access rights to in-

dividual pages. For example, virtual page protec-

tion may be used to support recoverable virtual mem-

ory (e.g., Camelot [Eppinger 89]), distributed shared

memory [Li 86, Carter et al. 91], concurrent check-

pointing [Li et al. 90] or transactional shared memory

systems (as on the IBM 801) [Chang & Mergen 88],

among other applications [Appel & Li 91].

Some of these applications involve changing the page

permissions for all protection domains, whereas oth-

ers require that page protections be maintained on a

per-domain, per-page basis. For example, transactional

shared memory on the IBM 801 runs each transaction

in a separate protection domain and initially denies

that domain access to all pages in the shared mem-

ory segment. As the transaction references pages, it

generates protection faults on those pages; the system

responds by granting locks and access rights for pages

to the transaction. Each transaction locks pages inde-

pendently of the others, so the system must be able to

represent separate access rights for each domain and

each page.

Such access right manipulation is straightforward on

a PLB-based system. Since access rights are stored on a

per-domain, per-page basis, changing a domain's access

rights to a page simply requires updating a PLB entry.

Changing individual rights in this manner on the

page-group implementation requires di�erent opera-

tions, depending on the number of domains involved.

If the rights are being changed for all domains that
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Application Action and Frequency Implementation

Type Description per Domain Domain-Page Page-Group

Any Attach Segment Once per

segment

Allow access rights to be faulted into

the PLB, one page at a time.

Add the page-group identi�er for the

segment to the page-group cache.

Detach Segment Once per

segment

Purge the PLB or inspect each entry

and eliminate those for the segment-

domain pair a�ected.

Remove the appropriate page-group

identi�er from the page-group cache.

Concurrent

Garbage

Collection [Ap-

pel et al. 88]

Flip Spaces: Change to-

space to from-space. Cre-

ate new segment for new

to-space. Make both

spaces read-write for the

collector only.

Once

per garbage

collection

Inspect each entry in the PLB,

marking those for from-space as no

access for the application.

Remove the page-group identi�er

of from-space from the page-group

cache for the application domain.

Add separate to-space identi�ers to

the page-group cache for the appli-

cation and the collector.

Access un-

scanned to space: Trap

the access, garbage collect

the page and move it to

\scanned" to-space, mak-

ing it read-write for the

application.

Once per

page

touched

Garbage collect the page. Mark

it as read-write for the application

domain.

Garbage collect the page. Place in

to-space page-group for the applica-

tion domain.

Distributed

VM [Carter

et al. 91, Li 86]

Get Readable: Trap the ac-

cess, get a readable copy of

the page and make it read-

only.

Once per ac-

cess of the

remote page

Check to see if the copy in memory

is valid, and retrieve it from the re-

mote host if it's not. Set read-only

rights in the PLB.

Check to see if the copy in memory

is valid; retrieve it from the remote

host if it's not. Put in accessible

page-group and set read-only rights

in the TLB.

Get Writable: Trap the ac-

cess, get an exclusive copy

of the page and make it

read-write.

Once per ac-

cess of the

remote page

Check to see if the copy in memory

is valid; retrieve it from the remote

host if it's not. Invalidate any other

remote copies. Set read-write access

in the PLB.

Check to see if the copy in mem-

ory is valid; retrieve it from the re-

mote host if it's not. Invalidate any

other remote copies. Put in acces-

sible page-group and set read-write

rights in the TLB.

Invalidate: A remote ma-

chine invalidates the page.

Make it inaccessible on this

node.

Once per re-

mote access

to the local

page

Set access rights to none in the PLB. Set access rights to none in the TLB.

Transactional

VM [Chang &

Mergen 88, Ep-

pinger 89]

Lock (read): Allow shared,

read-only access

Once per

page

touched, per

transaction

Determine if the page can be locked;

if so, mark it as locked and set the

read bit in the PLB entry for trans-

action's domain.

Determine if the page can be locked;

if so, mark it as locked. Deter-

mine the correct page-group for the

pages locked by the current domain,

and move this page to that page

group. Set the access rights to al-

low reading.

Lock (write): Allow pri-

vate, read-write access

Once per

page

touched, per

transaction

As above, except set both the read

and write bits in the PLB entry for

the transaction's domain.

As above, except set the access

rights to allow both reading and

writing.

Commit: Unlock all locked

pages and return them to

the inaccessible state.

Once per

page

touched, per

transaction

Remove all the locks held by this

transaction. For each locked page,

look up the page in the PLB, and

change the access rights to inacces-

sible; or change the PD-ID to repre-

sent the new transaction.

Remove all the locks held by this

transaction. For each page that was

locked, look up in the TLB and

move to inaccessible page-group; or

remove lock groups from the page-

group cache and allocate new groups

for the next transaction's locks.

Concurrent

Checkpoint [Li

et al. 90]

Restrict Access: Remove

clients' access rights to all

pages in the segment.

Once per

checkpoint

taken

Inspect each entry in the PLB and

mark the pages as read-only for the

application.

Mark the page-group for this seg-

ment as read-only to the applica-

tion. Allocate a di�erent group as

read-write for this segment for both

the application and server.

Checkpoint Page: Trap

the access and write the

page to disk. Make the

page read-write for the

application.

Once per

page, during

the

checkpoint

operation

Write the page to disk. In the

PLB mark it as read-write for the

application.

Write the page to disk. Move it to a

new read-write group in the TLB.

Compression

Paging [Appel

& Li 91]

Page-out: Make the page

inaccessible to the applica-

tion, compress the data on

the page, write it to disk

and unmap the page

Every time

a page is

deallocated

Mark the page inaccessible to the

client in the PLB. Compress the

data on the page and write it to

disk. Remove the page entry from

the TLB and allow the page to be

reallocated.

Move the page to the page-group

private to the server in the TLB.

Compress the data on the page and

write it to disk. Remove the page

entry from the TLB and allow the

page to be reallocated.

Page-in: Allocate the

physical page, read data

from the disk and decom-

press. Make the page ac-

cessible to the client.

Every

time a page

is brought

in from sec-

ondary

storage.

Allocate the physical page, map it in

the TLB, and mark it accessible to

the server in the PLB. Read the page

and decompress the data. Make the

page accessible to the client in the

PLB.

Allocate the physical page, map it in

the TLB, and put it in the server's

private page-group with read-write

access. Read the page and decom-

press the data. Move to page-group

representing this segment for the

client.

Table 1: Some Common Functions that Manipulate Protection
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can access a shared page-group, the change is easily

made in a single TLB entry. However, changing the ac-

cess rights for a subset of all domains that can access a

shared page might require moving pages between page-

groups. For example, suppose that two domains require

read-write access to di�erent pages within an otherwise

read-only segment. Allowing these domains write ac-

cess to their respective pages requires two additional

page-groups, each containing the read-write pages for

its respective writing domain. The original page-group

for the segment is modi�ed to contain only the remain-

ing read-only pages.

7

This is necessary because of the

global nature of page-group protection, which permits

a domain that can write to one page in a page-group to

write to any writable page in that page-group.

Similarly, representing read-locks in a transactional

locking system can be done in one of two ways on the

page-group implementation: putting all locks held by a

given domain into a page-group private to that domain,

or putting each locked page into a separate page-group

shared by all domains that have a read-lock on that

page. The �rst solution allows a domain to lock a large

number of pages without penalty, but requires chang-

ing the page-group of a locked page if the lock becomes

shared. This can cause a page to alternate between

page-groups on each context switch. The second solu-

tion allows concurrent access to the locked page without

changing its page-group, but can �ll the cache of active

page-groups if a domain holds many locks.

Each system has its advantages and disadvantages. A

PLB system will take fewer faults in situations where

there is active sharing and frequent protection changes.

However, it does this at the cost of redundant entries in

the PLB. The page-group implementation, on the other

hand, will incur fewer TLB misses than the PLB in

situations where sharing is static or protection changes

are infrequent.

4.1.3 Paging Operations

Pages must be protected from access by applications

while page-in and page-out operations (i.e., moving

pages to and from secondary store) are in progress.

If these operations are implemented by user-level pag-

ing servers [Young et al. 87] that read and write the

pages directly, then the paging server's protection do-

main must have exclusive access to the page during the

operation. In a PLB system access rights are simply

updated in the PLB; the number of entries changed de-

pends on the number of domains that have access to

the page. In a page-group system a special page-group

7

It is possible to allow only one domain to have read-write ac-

cess to some subset of the pages using a combination of the access

rights attached to the page and the write-disable bit attached to

the domains' PIDs.

is used to represent the paging server's access rights.

Pages are moved to the paging server's group prior to

paging operations, by adding or updating the TLB en-

try for the page.

When virtual pages are unmapped, it is necessary to

modify the caching and protection structures. This typ-

ically requires two steps: the page must be unmapped

in the page tables and TLBs, and also must be ushed

from the data caches. Unmapping pages is similar in

the two systems; the page needs to be removed from the

TLB, which is done with a small number of instructions

on each processor. On the PLB-based system, no main-

tenance of the PLB is required. The entries will even-

tually be purged from the PLB through normal block

replacement. Attempts to access a page before its entry

leaves the PLB may generate a legal access (no protec-

tion violation), but the lack of a TLB entry will generate

a fault, since the page will have been ushed and un-

mapped. Flushing the page from the data caches is ap-

proximately the same on both the PLB and page-group

systems; one cache access is required for each cache line

in the page (assuming cache ush is implemented as a

series of individual ush cache line instructions, as it is

on most modern processors).

4.1.4 Domain Switches

The cost of protection domain switches can have a large

e�ect on performance. Domain switches are becoming

more frequent, since many operating system services

are now provided by application-level servers accessed

with RPC calls [Bershad et al. 89].

A protection domain switch on a PLB-based system

requires changing only a single register, the PD-ID reg-

ister in the processor. Protection rights for the individ-

ual pages do not have to be loaded or unloaded from

the PLB; rights for the old domain are tagged with the

domain identi�er, and rights for the new domain can

be faulted in lazily.

Domain switching on the page-group implementation

involves purging the active page-group cache and load-

ing in the page-groups for the new domain. The page-

group cache can be reloaded lazily via protection faults,

but for performance reasons it may be advantageous to

explicitly reload it on domain switches.

4.2 Implementation Considerations

Protection checking in the page-group implementation

requires two steps performed in sequence during the

memory reference cycle: �rst, the TLB is indexed to

obtain the page-group and access rights for the page;

then the page-group cache is checked to determine if

the current protection domain has access to the page-

group. These cannot be performed in parallel, since the

9



second lookup is dependent on the result of the �rst.

The sequentiality may result in higher cycle times for

processors using the page-group model, especially if the

page-group cache is large.

The PLB requires only a single cache lookup, which

provides the access rights. However, the tags being

compared in the PLB are wider than either of the com-

parisons in the page-group implementation (the VPN

and PD-ID are used in the lookup).

4.3 Granularity of Protection

As mentioned in Section 3, the PLB explicitly sepa-

rates protection and translation.

8

One advantage of

this separation is that the granularity of protection and

translation can easily be di�erent. There are various

reasons why this might be desirable. Larger physical

pages are attractive, because they improve TLB per-

formance; with a larger page size each TLB entry cov-

ers more data. (This bene�t must be balanced against

an increase in memory fragmentation.) The units of

protection, on the other hand, should be optimized to

bene�t the operating system and applications that are

using the protection mechanism.

As noted above, many applications are utilizing

hardware-based protection and page faults to detect

when sharing or writing are taking place. Such detec-

tion would be more e�ective with a small granularity.

The large page sizes on current architectures are too

coarse-grained for many VM uses, causing, for exam-

ple, an increase in false sharing for distributed virtual

memory systems. Large page sizes would cause a sim-

ilar problem with transactional locking; for this rea-

son, the IBM 801 processor supports lock bits for every

128 bytes of memory to support database concurrency

control [Chang & Mergen 88]. In a PLB-oriented sys-

tem, protection and translation utilize di�erent hard-

ware structures; the PLB could be organized to provide

protection control on sub-page units.

Protection pages that are larger than a single trans-

lation page are also useful. Many segments, such as

stacks, temporary heaps and code segments, span many

pages, yet have a constant protection value for the en-

tire segment. For these segments, a single PLB entry

could map the entire region, regardless of the number

of physical pages it spans.

9

This is particularly useful

in alleviating the duplication problem for shared seg-

ments. Duplicate PLB entries would still be required;

however, since each entry maps a larger page, fewer

PLB entries would be used.

8

The page-group implementation can separate protection and

translation as well. See section 3.2.2.

9

The segment would have to be aligned to a power of two sized

page, but this is a relatively minor problem.

Supporting multiple protection page sizes requires

changes to the PLB. Currently, several commercial pro-

cessors support multiple sized pages [Cyp 90, Dig 92,

Hew 90, MIP 91]; the issues in designing a PLB that

supports multiple protection page sizes are similar [Tal-

luri et al. 92].

5 Related Work

The two models presented in this paper are representa-

tive of protection organizations for single address space

systems, but they are by no means exclusive. Other

protection architectures for single address space sys-

tems have ranged from no protection at all (as on

the Xerox Dorado processors [Lampson & Pier 81]) to

capability-based architectures [Fabry 74, Levy 84, Pin-

now et al. 82].

Much of the groundwork for single address space op-

erating systems was explored in earlier single address

space systems, such as Pilot and Cedar [Redell et al.

80, Swinehart et al. 86]. These systems bene�ted from

the use of a common address space, but they had a sin-

gle protection domain as well as a single name space.

These were dedicated-application or single-user systems

that relied completely on language protection for safety.

New hardware allows us to generalize this model to mul-

tiple protection domains, as in Psyche [Scott et al. 90].

Segmented systems (e.g., Multics [Bensoussan et al.

72] and the IBM 801 [Chang &Mergen 88]) support uni-

form sharing to some degree. The �rst phase of address

translation on segmented architectures concatenates a

global segment identi�er with a segment o�set, yield-

ing a long-form address from a global virtual address

space.

10

The segment identi�er is retrieved from a seg-

ment table or a vector of segment registers associated

with the current domain. The segment table is typi-

cally accessed with the high order bits of the domain

speci�c address. Domains de�ne a local view of por-

tions of the global address space by overlaying global

segments into their private segment registers. Uniform

addressing in these systems is subject to some or all

of the following restrictions: (1) cross-segment point-

ers are not supported, (2) multiple pointer forms must

be treated di�erently by applications and (3) software

must coordinate segment register usage to create an

illusion of a single address space. The HP PA-RISC

di�ers from other segmented architectures in that it

allows applications to use long-form virtual addresses

directly; thus the PA-RISC could be viewed as a single

address space architecture. However, most software on

the PA-RISC uses short-form addresses, because they

are more compact and more e�cient to dereference, and

10

Multics did not generate a true long form address, instead

referencing directly into the page table for the segment.
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they permit backward compatibilitywith operating sys-

tems that rely on multiple virtual address spaces.

Okamoto et al. [Okamoto et al. 92] extend the

domain-page model by mapping access to a page ei-

ther by protection domain

11

or by the address where

the program is currently executing; that is, page A can

be marked so that it has read-only access by any thread

that is currently executing code from page B.

A single address space system also bears some resem-

blance to earlier capability-based architectures, which

relied on special hardware support to provide �ne-

grained protection within a global address space. In

contrast, our approach uses traditional page-level pro-

tection structures and a 64-bit address space to pro-

vide global addressing. We believe that this approach

can obtain many of the expected bene�ts of capabil-

ity systems but without the costs and complexities of

�ne-grained hardware-based protection.

6 Summary

It is clear from the newest RISC architectures that the

move to 64-bit virtual addressing is already well un-

derway. A 64-bit address space can be used for more

than running large programs: it increases our present

addressability by nine (decimal) orders of magnitude,

certainly more than will be needed by any single appli-

cation for the foreseeable future. Instead it facilitates a

fundamentally new operating system organization, the

single address space system, which promotes e�cient

data sharing among protection domains.

Single address space operating systems also allow a

reexamination of the conventional memory system ar-

chitecture, and in particular, the caching and protection

structures. In this paper, we have presented two pro-

tection models: the domain-page model and the page-

group model. The domain-page model is implemented

by a new memory system mechanism, the protection

lookaside bu�er. The PLB permits each protection do-

main to have its own set of access rights to any page,

and permits the rights of any one domain to be changed

without a�ecting the rights of other domains in the sys-

tem. The PLB also completely separates protection and

translation at the hardware level, allowing optimiza-

tions in both the granularity of protection and trans-

lation. The page-group model, implemented in the HP

PA-RISC, clusters pages into groups, and allows do-

mains to access entire groups, simplifying operations

that take place on the group level.

We have looked at the tradeo�s between the two

model implementations with respect to several oper-

ating system tasks. Until both systems are built, it will

11

They use the term thread, but the ideas are interchangeable

in this context.

be hard to tell which model can take best advantage

of single address space characteristics and which imple-

mentation provides better performance. Many of the

answers will depend on how the systems will be used,

i.e., which operations are most common.

Our current research explores these issues. We are

building an operating system (Opal) that uses a single

address space for all programs. Work is underway in

compiling programs for a single address space and sup-

port for user-level segment servers which control the

semantics and the protection for each segment. We

will also evaluate the protection models presented here

and determine appropriate con�gurations for their pro-

tection structures.
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