The Case for Application-Specific
Communication Protocols

Edward W. Felten

Department of Computer Science & Engineering
University of Washington

Technical Report 92-03-11
March 1992

The Case for Application-Specific Communication Protocols *

Edward W. Felten

Technical Report 92-03-11
Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195 U.S.A.

March 24, 1992

Abstract

Message-passing programs are heavily dependent
on the performance of communication primitives.
While communication hardware has gotten much
faster in the last few years, the communication per-
formance achieved by application programs has not
improved so dramatically. We argue that this commu-
nication gap is inherent in the design of conventional
message-passing systems, which are based on general-
purpose communication protocols implemented in the
operating system. Closing the gap requires fundamen-
tal changes in system design.

We review the arguments for user-level implementa-
tion of communication protocols. We discuss how the
architecture and operating system can be structured

to provide user-level communication without compro-

mising system protection.

We further argue that general-purpose communica-
tion protocols, whether implemented at user level or in
the kernel, are inherently slow. Optimum performance
requires a protocol designed to take advantage of the
behavior of a particular application program. We in-
troduce the notion of a protocol compiler, a program
that generates an application-specific protocol, based
on information about an application’s communication
behavior. As a concrete example, we sketch the design
of a protocol compiler that can generate nearly opti-
mal communication code for a class of data-parallel
applications.

*This material is based upon work supported by the National
Science Foundation (Grants DCR-8352098, CCR-8619663, and
CCR-8703049), the Washington Technology Center, Digital
Equipment Corporation (the External Research Program and
the Systems Research Center), and Apple Computer Company.
Felten was supported in part by an AT&T Ph.D. Scholarship
and a Mercury Seven Fellowship.

1 The Communication Gap

As message-passing parallel computers have begun
to mature, researchers have focused on the critical is-
sues that will determine whether these machines will
find wide use in the future. One of these issues is
the performance of communication primitives, and the
search for alternative semantics and implementations
that provide better performance.

We use the term communication gap to describe
the gulf between the performance of communica-
tion hardware, and the performance actually ob-
served by application programs. New routing technol-
ogy allows networks to achieve very low latency and
high bandwidth [Rodeheffer & Schroeder 91, Int 91b,
Dally 90a]; for example Intel’s Touchstone DELTA
system achieves a node-to-node hardware latency less
than 1 microsecond. On the other hand, applications
on the Touchstone DELTA observe a latency of about
60 microseconds. Although message-passing machines
have always exhibited a communication gap, the gap
is wider now than ever — a potential factor of 60 in
communication performance is apparently being lost.

The communication gap affects application pro-
grammers in several ways. First, a relatively large
communication latency makes many fine-grained algo-
rithms impractical. Second, even when the underly-
ing algorithm is not fine-grained, a large latency forces
the programmer to optimize the program in ways that
would not be necessary with a smaller latency; this
adds considerably to the difficulty of programming
distributed-memory hardware.

1.1 Hardware and Software Assumptions

Before going further, let us stop and enumerate
our assumptions about the hardware and software un-

der study. We assume a high-performance message-
passing parallel computer, consisting of a set of com-
puting nodes connected by a point-to-point network.
The network is based on circuit switching or wormhole
routing, and uses a deterministic, deadlock-free rout-
ing algorithm. The network delivers messages reliably.

We also assume the system is running a general-
purpose operating system on each node, including sup-
port for multiprogramming, paged virtual memory,
and direct input/output calls. The system as a whole
runs a variety of uniprocessor and parallel jobs. We
will assume the system does not span administrative
boundaries — system policy is set by a single individ-
ual or group.

Examples of such systems include the Intel DELTA
[Int 91b] or Paragon [Int 91a] machines running the
Mach operating system, or a set of dedicated work-
stations connected by a Nectar [Arnould et al. 89] or
Autonet [Rodeheffer & Schroeder 91] network.

Although the machine is assumed to run a general-
purpose workload, we will focus on improving the
performance of parallel applications, especially data-
parallel scientific programs. These programs have rel-
atively simple behavior, and have much to gain from
improved communication performance.

1.2 Sources of the Communication Gap

If we examine the sources of the communication
gap, we find we can attribute it to two main causes:

protection boundaries and protocol processing over-
head.

1.2.1 Protection Boundaries

Providing protection is one of the main goals of an
operating system. Unfortunately, operating system
protection sometimes interferes with applications. For
example, in most message-passing machines, commu-
nication is a privileged operation — threads from the
same application, running on different nodes, cannot
communicate without crossing protection boundaries.

Figure 1 illustrates the protection boundaries en-
forced by the hardware and operating system on a
message-passing machine running a single application.
The application is running in a separate protection
domain on each node of the machine. The operat-
ing system kernel and the communication network re-
side in a single, privileged domain. When the applica-
tion communicates between nodes, the communicated
data must cross two protection boundaries — from
the sending thread into the sending node’s kernel, and

NODE 1

NODE O

Figure 1: Protection boundaries on a conventional
message-passing system. The system is running a sin-
gle application on two nodes. Each shaded area repre-
sents a protection domain. Communicating between
the two application threads requires crossing two pro-
tection boundaries.

later from the receiving node’s kernel to the receiving
thread.

Crossing protection boundaries is inherently expen-
sive, for several reasons.

e Crossing between application and kernel protec-
tion levels implies a context switch between an
application thread and a kernel thread. Con-
text switches are expensive, since register state
must be saved, and TLBs and caches may have
to be flushed. Context switches are becoming
relatively more expensive as CPU technology ad-
vances [Ousterhout 90, Anderson et al. 91].

o The entities communicating across the protection
boundary do not trust each other, so parameters
to cross-domain calls must be checked carefully
for validity, and copied from the caller’s mem-
ory to the callee’s memory. For operating system
calls, the kernel must typically assume that the
application program is trying to cause a kernel
error or deadlock. This slows down the kernel
implementation.

e The interface at the protection boundary is usu-
ally part of the system specification, so it cannot
realistically be customized to accommodate the
application’s needs. The application must “work
around” the semantic gap between the interface
it wants and the interface it is forced to use. If
the interface provides too much functionality, the

application must pay for features it doesn’t use;
if too little functionality is provided, the applica-
tion must built the abstractions it wants on top
of the ones the system provides. In either case,
the rigidity of the interface carries a cost.

If the same application is running on several nodes
of the machine, there is no logical reason to protect
the application’s threads on different nodes from each
other. If we can find a way to remove these protec-
tion boundaries, we will improve communication per-
formance.

1.2.2 Protocol Processing Overhead

On most message-passing machines, the operating
system runs a general-purpose communication proto-
col. This protocol typically buffers messages, often on
both the sending and receiving nodes. It also imple-
ments a software flow-control strategy, to ensure that
nodes have sufficient buffer space for arriving mes-
sages. Running the protocol requires extra computa-
tion, as well as extra messages to manage flow control.
By reducing or eliminating the protocol. process-
ing overhead, we could improve communication perfor-
mance. Unfortunately, this is difficult in general, since
the protocol cannot ensure correct operation without
engaging in some buffering and flow control.

2 Eliminating Protection Boundaries

As shown in figure 1, message data must cross two

protection boundaries as it travels from sender to re-
ceiver. Only the kernel can access the network di-
rectly; the application must ask the kernel to commu-
nicate for it.

We would like to change this organization, so the
application can access the network directly, without
operating system intervention. However, we must do

this in a way that ensures protection between separate

applications.

2.1 Protection in the Presence of User-
Level Communication

If we simply unprotected the communication hard-
ware, applications could violate the protection guar-
antees we require the system to provide. For example,
an application thread could send a message directly
to another job, or it could clog the network with mes-
sages and refuse to remove them. We must make some
changes to the architecture and operating system, to

ensure that application control of the communication
hardware is safe.

We can achieve this goal by using techniques
pioneered by Thinking Machines’ CM-5 architec-
ture [Thi 91). The CM-5 provides safe, application-
level access to communication hardware; the CM-5’s
mechanisms can be adapted to other, similar architec-
tures.

We must make the following changes to the archi-
tecture and operating system:

o Divide the machine into partitions. The operat-
ing system must support partitioning of the ma-
chine, where a partition is a contiguous set of
nodes and the network connecting them. Par-
titions have the property that sending a message
between two nodes in the same partition uses only
network channels within that partition; this en-
sures that mutual deadlock between applications
cannot occur. Partitions can be changed in soft-
ware, but this is a very heavy-weight operation.

e Validaie message destinations in hardware. The
hardware must check the destination of each mes-
sage, to ensure that it is being sent to a node in
the same partition.

o Use strict gang scheduling. Each parallel job must
run in one partition, but several jobs may be run-
ning in the same partition, with the operating
system time-slicing the partition’s CPUs between
them. To guarantee protection, we must use strict
gang scheduling in each partition; this means that
all nodes in the partition run the same job at the
same time — nodes in a partition must all switch
jobs at the same time. This prevents a message
sent by one job from being delivered to another
job in the same partition.

e Support saving and restoring the network state.
When a partition context-switches from one job
to another, we need some way of saving the state
of the network. Generally, some messages (and
partial messages) from the switched-out job will
be in the network at the time of the context-
switch, and these messages must be saved some-
where so the network is clear for the newly
switched-in job. Later, when the original job is
rescheduled, the saved network state must be re-
stored.

The CM-5 saves network state by putting a region
of the network in “all fall down” (AFD) mode.
AFD mode causes all messages to be delivered

to the nearest node, rather than to their destina-
tions. Nodes receiving these messages save them
in memory, and then resend them when the job
is rescheduled.

AFD mode relies on two assumptions about the
CM-5 network: message packets are limited to
20 bytes, and in-order delivery of messages is not
guaranteed!. Both of these assumptions are false
in our hardware model, so we cannot use AFD
mode. However, it is not hard to design other
hardware mechanisms that allow network state
to be saved and restored.

e Provide a separate logical communication network
for the kernel. The machine runs a general-
purpose operating system, so the operating sys-
tem kernel might have to communicate at any
time. For example, the. kernel might need to
service a page fault, or receive the result of an
input/output operation, or coordinate a context
switch between jobs. The kernel must always be
able to communicate, regardless of how applica-
tion programs use the network.

The only way to provide this guarantee is to have
a separate logical network for the kernel. Each
node must have two network interfaces, one for
user-level programs, and one reserved for the ker-
nel. Fortunately, we needn’t implement two sep-
arate physical networks — the two logical net-
works can be multiplexed over a single physical
network, using virtual channels [Dally & Seitz 87,
Dally 90b] as in the J-machine [Dally 90a].

These strategies, taken together, enable safe, user-
level manipulation of the communication network.
However, this only solves half of the problem. The
question remains: once user-level communication is
available, how should use it?

3 Application-Specific Protocols

User-level access to the communication hardware
allows us to run conventional, general-purpose com-
munication protocols at the application level. The
kernel must still provide communication, but this
can be specialized to the case of communication be-
tween separate protection domains. Communication
within an application would be provided by a run-
time library that duplicates the functionality of a

1In-order delivery means that messages from a given sender
to a given receiver are received in the same order in which they
were sent.

standard communication system such as NX [Int] or
PICL [Geist et al. 91]. In addition to its organiza-
tional advantages, this approach offers better perfor-
mance. For example, the communication system may
allow an ill-behaved application to deadlock the (user-
level) network; this implementation choice is not avail-
able when there is only a single, protected network.

However, application-level communication does not
reduce protocol processing overhead. Runmning a
general-purpose protocol at user-level provides only a
small performance gain, since the protocol must still
buffer messages and perform high-level flow control.
General-purpose protocols cannot be sped up beyond
a certain point.

We can improve performance still further by run-
ning application-specific protocols. By taking advan-
tage of the programmer’s or the compiler’s knowl-
edge about the communication pattern of an applica-
tion, we can design a streamlined protocol that is de-
signed especially for that application. While a general-
purpose protocol must be robust in the face of arbi-
trary application behavior, an application-specific pro-
tocol can ignore certain behaviors that the program-
mer or compiler knows will not occur.

Examples of useful knowledge that a protocol de-
signer might exploit include:

e each node communicates only with a small,
known set of other nodes, or

¢ all communication in a certain phase of the pro-
gram consists of exchanges of data between pairs
of processors, or

¢ all communication involving a particular node is
made up of remote procedure calls following a
request-response pattern. :

Using this information, we can design an efficient pro-
tocol tailored to the application. In the limiting case,
the communication pattern of one phase of an algo-
rithm may be completely known in advance.

Although it is profitable to design a protocol for
a class of applications, we go beyond this to advo-
cate specializing a protocol to a specific epplication
program. This allows us to take advantage of any in-
formation that is available concerning the specific ap-
plication’s communication behavior. For example, we
may know something about the communication behav-
ior of fluid flow simulations in general, but we will have
much more detailed information about the behavior of
a particular simulation. This extra knowledge can be
used to improve the communication protocol’s perfor-
mance.

3.1 Managing the Complexity of Protocol
Design

Designing an efficient, specialized communication
protocol is a difficult task, and verifying the correct-
ness of that protocol may be even harder. Clearly, we
cannot expect the application programmer to design
protocols on a program-by-program basis. To make
this approach viable, we must automate the protocol
design process.

A protocol compiler is a program that generates
application-specific protocols. A protocol compiler
takes as input a description of an application’s com-
munication behavior, and outputs a program that im-
plements a communication protocol specialized for the
application. If the programmer is using a high-level,
parallel programming language, the protocol compiler
can be integrated into the parallel language compiler
— the language compiler may generate the commu-
nication description for the protocol compiler, or we
may view protocol generation as part of the code gen-
eration task.

3.2 The Role of Runtime Compilation

In some cases, detailed information about an ap-
plication’s communication behavior is not available at
compile time, but becomes known at runtime. In this
case, we can wait until runtime, when detailed knowl-
edge is available, then run the protocol compiler and
dynamically add the generated code to the program.
This is an example of runtime compilation, a technique
that has proven especially fruitful in parallel comput-
ing [Saltz et al. 90].

Consider a parallel program that simulates elec-
tronic circuits. When the simulator is compiled, the
compiler has no knowledge of what circuits might be
simulated. But once a simulation run has begun, the
structure of the simulated circuit is known, so detailed
information about the simulator’s communication pat-
tern is available. By using a protocol compiler at run-
time, we can take advantage of this information by
generating efficient code for the communication in the
main simulation loop.

4 A Simple Case: Straight-Line Sys-
~ tolic Programs

Generating application-specific protocols is a diffi-
cult problem, so we will start by attacking a simple
case, that of straight-line programs with fully speci-

fied communication. A straighi-line program is a par-
allel program without any communication enclosed in
control flow statements; each processor simply exe-
cutes its program from beginning to end. Fully speci-
fied communication means that the program contains
send and receive calls, the destination of every send
is known in advance, and the types of all messages
(if the system uses typed messages) are known in ad-
vance.

This case is clearly simpler than any real applica-
tion, but it provides a reasonable starting point. Once
we have solved this case, we will consider how to gen-
eralize to more realistic cases.

For maximum performance, we will generate pro-
tocols that use systolic communication [Kung 88b]
whenever possible. In systolic communication, the
communication network interfaces to the CPU with a
pair of FIFO buffers (one incoming, one outgoing) that
are mapped into the CPU’s memory. The CPU sends
and receives data with ordinary store and load instruc-
tions. Often, the CPU can consume a message directly
without putting it into memory, or.can construct a
message directly in the output FIFO rather than mar-
shaling the message in memory. Systolic communica-
tion thus can be faster than memory-based communi-
cation, because it consumes less memory bandwidth.
Systolic communication also implies that arriving mes-
sages do not cause an interrupt. This gives an addi-
tional speed advantage, since interrupts require time
to save and restore processor state, in addition to de-
ciding how to respond to the interrupt.

Systolic communication is nof limited to the
same algorithms as systolic arrays. Systolic ar-
rays are hardware designs that execute the same
nearest-neighbor-only communication pattern re-
peatedly. Systolic communication may imple-
ment complex communication patterns, as demon-
strated by the Warp [Annaratone et al. 87] and
iWarp [Borkar et al. 88, Borkar et al. 90] machines.

4.1 Avoiding Deadlock in Systolic Pro-
grams

Deadlock avoidance is the most difficult problem in
designing systolic protocols. The routing network is
guaranteed to deliver messages to their destinations,
provided that arriving messages are removed promptly
from the network. This guarantee doesn’t necessarily
hold for systolic programs, since they may let a mes-
sage sit in the network until the receiver is ready to
receive it. The problem arises when one node is wait-
ing to receive a message, which is blocked by another
message whose receiver is not ready for it yet.

In order to avoid deadlock, the systolic program
must ensure that whenever communication is taking
place, the program will eventually remove a message
from the network. This must be true in spite of the
fact that only a subset of the messages in transmission
may reach their destinations before being blocked.

4.1.1 Deadlock Avoidance Algorithms

The difficulty of avoiding deadlock depends on the par-
ticular program and communication topology in ques-
tion. If the topology is a cross-bar (all pairs of nodes
are directly connected), we can check for deadlock us-
ing the “crossing-off” procedure of Kung [Kung 88a].
Kung’s procedure also works if the network is suffi-
ciently well-connected to realize the program’s com-
munication pattern without ever blocking one message
behind another 2. In general, though, deadlock avoid-
ance is difficult.

A deadlock avoidance algorithm must be aware of
the network’s topology, since that determines which
messages can block behind which others. (In this pa-
per, the term “topology” is used to encompass the
combination of a physical topology and a routing al-
gorithm.) Programs with systolic communication fall
into three classes:

1. Programs that deadlock on all topologies: These
can be detected by Kung’s crossing-off procedure.

2. Programs that never deadlock on any topology:
These programs are rare, and are mostly trivial
cases.

3. Programs that deadlock on some topologies but not
on others: These programs comprise the vast ma-
Jority of interesting cases. On topologies where
these programs deadlock, they do so in a timing-
dependent fashion — they may or may not dead-
lock depending on details of scheduling and event
timing.

Since topology-dependent deadlocks are so prevalent,
we need an algorithm to detect them.

We have devised such an algorithm, although space
does not allow explaining it in detail here. Given a
straight-line systolic program and a topology, the al-
gorithm determines, in polynomial time, whether the

2Actually, Kung’s procedure is able to avoid deadlock for all
programs, if we assume that all network routers contain general-
purpose processors. Kung presents an algorithm that runs on
each router; the algorithm delays routing some messages based
on data in the message headers, and on a set of tables generated
at compile time and downloaded into the routers. It seems
unlikely that Kung’s routing algorithm could be implemented
efficiently in hardware.

program is prone to deadlock on the topology. If the
program is deadlock-prone, the algorithm also pro-
duces an equivalent systolic program that won’t dead-
lock on the given topology.

A deadlock-prone program is “repaired” by in-
serting extra synchronization messages. These are
messages that carry no data, but merely inform the
receiving node that it is safe to proceed with its
program. We avoid deadlock by waiting for syn-
chronization messages before certain other messages
are sent. This strategy of delaying “dangerous” re-
source demands is used for preventing deadlock in
other contexts. For example, the banker’s algo-
rithm [Dijkstra 68, Habermann 69] avoids deadlock by
preventing a lock acquisition from taking place until
it is safe to do so.

4.2 Buffering

Buffering is another issue that must be dealt with.
Standard message-passing semantics imply that data
is buffered by the message-passing system. Program-
mers often take advantage of this; for example, an
exchange of messages between two nodes may be ex-
pressed as both processors sending, then receiving.
This example cannot execute without buffering.

Since systolic programs do not use buffering, we
must devise some strategy for dealing with programs
that require buffering. Rather than outlawing applica-
tion programs that require buffering, we can recognize
cases where buffering is needed, and-insert the neces-
sary buffering.

Given a straight-line program, there is an algorithm
that identifies where buffering is needed. The algo-
rithm builds a data structure called the program graph,
and searches for cycles in it. Each cycle must be bro-
ken by buffering a message; buffering.a message al-
lows that message’s data to arrive at the receiver at
one point in time, but not be visible to the receiving
program until later. The problem of opiimally insert-
ing buffering into a program is probably NP-complete,
but we can use heuristics to generate good solutions.

A systolic program that deadlocks on all topologies
can be transformed into a program with topology-
dependent deadlocks by inserting buffering. We can
then use the algorithm of section 4.1.1 to generate an
equivalent deadlock-free program. By combining our
deadlock-avoidance algorithm with our algorithm for
inserting buffering, we can generate deadlock-free sys-
tolic code for any straight-line program.

5 Extensions to More General Cases

We have solved the simple case of straight-line
programs with fully specified communication, but we
haven’t dealt with programs outside this narrow do-
main. We would like to be able to extend our tech-
niques to deal with a wider range of programs, includ-
ing some real applications. There are two main ways
we could extend the model: we could handle programs
with more general control flow, and we could handle
cases where the compiler has imperfect information
about the program’s communication pattern.

5.1 Programs with Data-Parallel Control
Flow

So far we have assumed straight-line programs,
i.e. no control flow. It is difficult to handle gen-
eral control flow, but we can deal with programs with
data-parallel control flow. Data-parallel programs are
common in scientific applications on message-passing
machines [Fox 88, Hillis & Steele Jr. 86]; such pro-
grams are also generated by compilers for data-parallel
languages like Fortran-90 [ANS 89, Chatterjee 91],
C* [Rose & Steele Jr. 87, Hatcher et al. 91}, and
MPL [Mas 91].

Programs with data-parallel control flow are struc-
tured programs that can be decomposed into a series
of blocks surrounded by sequential control structures,
such that:

e no block contains a control-flow construct with a
message-passing operation nested inside it, and

o there is an implied barrier synchronization at the
end of each block, and

o all processors are in the same block at all times,
and

e messages do not persist across block boundaries.

Because of the simple structure of these programs, we
can treat each block as a straight-line program, pro-
vided we can generate code to make transitions be-
tween blocks.

To handle these transitions, we construct a block
graph that summarizes the possible control flow be-
tween blocks. The block graph tells us which blocks
might follow each other block in the execution. We
can analyze each potential transition between blocks
by using our deadlock avoidance algorithm to decide
whether a deadlock is possible at the block transition;

if such a deadlock is possible, we must insert synchro-

nization messages at the block boundary to prevent
the deadlock.

5.2 Programs with Imperfectly Specified
Communication

We would also like to extend our methodology to
deal with cases where the communication pattern isn’t
fully specified in advance. For example, we might not
be able to determine in advance the destination or
type of all messages.

Handling imperfectly specified communication is a
difficult problem in general. If there is no information
available about the application’s communication be-
havior, our only choice is to run a general-purpose pro-
tocol. On the other hand, if some information about
the application’s communication is available, we can
probably do better than a general purpose protocol.
Devising a general mechanism for this case is an im-
portant area for future work.

We note, though, that it is possible to switch com-
munication protocols “on the fly” while the applica-
tion is running. For example, we might run a fast,
specialized protocol in the innmer loop of the appli-
cation, and switch to a general-purpose protocol for
other parts of the program.

6 Related Work

An active message, as introduced in
[von Eicken et al. 92], is essentially an interprocessor
interrupt that also carries a data packet. When an ac-
tive message arrives at its destination, a message han-
dler is run “to integrate the message into the ongoing
computation” on that node. Message handlers run at
user level, and are intended to be generated by a com-
piler or a systems programmer. An implementation of
active messages on the nCUBE/2 is presented; this im-
plementation achieves a communication latency of 24
microseconds, not including handler execution time.

The nCUBE/2 implementation of active messages
is able to achieve low latency because it presents an
interface essentially identical to what the hardware
provides. The active messages implementation passes
the hardware’s message-arrival interrupts on to the
application program with a minimum of interference.
The active messages implementation does not provide
buffering or flow control; these functions are left to the
user-level program (and its message handlers). Be-
cause message handlers run at interrupt time, they
must obey strict rules; in particular, a message han-
dler may never block.

It is unclear whether a similarly efficient implemen-
tation of active messages is possible on a system with
paged virtual memory. The problem arises when an

active message arrives at a node, and the message
handler needs to access a page that is not resident
in physical memory 3. If a handler has to wait for a
page to arrive from backing store, the active messages
implementation must put the handler’s message in a
buffer, so that other messages can be received. These
other messages might also require pages from back-
ing store, so they too may need to be put in buffers.
This introduces a buffer management problem, which
can be solved either by letting messages back up in
the network (which is likely to lead to deadlock), or
by discarding messages (causing an unrecoverable er-
ror in the application program), or by implementing
higher-level flow control in software. This higher-level
flow control would necessarily be part of the imple-
mentation of active messages, and thereby invisible to
the user-level program.

These problems arise because the communication
network is a privileged resource, which must be pro-
tected by the operating system. By contrast, if the
approach of section 2 is followed, the (user-level) com-
munication network can be treated as an ordinary re-
source like a CPU register — the application can use or
abuse these resources in any way whatsoever, without
affecting other applications or the operating system.

7 Conclusions

This paper has argued that application-specific
communication protocols are an important tool for
reducing the cost of communication in parallel pro-
grams. General-purpose protocols expend time and
memory to protect the system from error or deadlock
in the face of arbitrary application behavior. By tak-
ing advantage of knowledge about a particular applica-
tion’s communication behavior, we can design a faster
protocol, customized for that application.

Before we can use application-specific protocols, we
must provide safe, user-level communication. This can
be achieved using a known set of architectural and op-
erating system structures. User-level communication
allows each application to manage communication in
its own way, thus eliminating the semantic gap be-
tween application needs and the functionality provided
by general-purpose communication systems.

3Note that we cannot simply outlaw the problem by lock-
ing all pages that might be accessed by handlers into physical
memory — this would often require locking most or all of an
application’s data into memory. Indeed, in the matrix multi-
Ply example given in the active messages paper, the entire data
set of every node is touched by the message handlers. There is
not much point in having paged virtual memory if applications
routinely lock themselves into physical memory.

We have introduced the notion of a protocol com-
piler, an automated tool that generates application-
specific protocols. Given a description of an applica-
tion’s communication behavior, the protocol compiler
generates an optimized communication protocol that
is guaranteed to be correct and deadlock-free for that
application. We have sketched the design of a protocol
compiler that generates highly efficient systolic com-
munications for a subset of data-parallel applications.

8 Acknowledgments

The author is grateful to Ed Lazowska, Rik Little-

field, Richard Ladner, Chandu Thekkath, and Martin
Tompa for useful discussions and comments.

References

[Anderson et al. 91] T. E. Anderson, H. M. Levy, B. N.
Bershad, and E. D. Lazowska. The interac-
tion of architecture and operating system de-
sign. In Proceedings of 4th International Con-
ference on Architectural Support for Program-
ming Languages and Operating Systems, pages
108-120, 1991.

[Annaratone et al. 87)
‘ M. Annaratone, E. Arnould, T. Gross, H. T.
Kung, M. Lam, O. Minzilcioglu, and J. Webb.
The Warp computer: Architecture, implemen-
tation, and performance. IEEE Transactions
on Computers, C-36(12):1523-1538, Dec. 1987.

[ANS 89] American National Standards Institute. A-
merican National Standard for Informa-
tion Systems Programming Language Fortran:
58(X8.9-198z), March 1989.

fArnould et al. 89] E. A. Arnould, F. J. Bitz, E. C.
Cooper, H. T. Kung, R. D. Sansom, and P. A.
Steenkiste. The design of Nectar: A net-
work backplane for heterogeneous multicom-
puters. In Proceedings of 3rd International
Conference on Architectural Support for Pro-
gramming Languages and Operating Systems,
pages 205-216, 1989.

[Borkar et al. 88] S. Borkar, R. Cohn, G. Cox, S. Glea-
son, T. Gross, H. T. Kung, M. Lam, B. Moore,
C. Peterson, J. Pieper, L. Rankin, P. Tseng,
J. Sutton, J. Urbanski, and J. Webb. iWarp:
An integrated solution to high-speed parallel
computing. In Proceedings of Supercomputing
’88, pages 330-339, 1988.

[Borkar et al. 90] S. Borkar, R. Cohn, G. Cox, T. Gross,
H. T. Kung, M. Lam, M. Levine, B. Moore,

W. Moore, C. Peterson, J. Susman, J. Sutton,
J. Urbanski, and J. Webb. Supporting systolic
and memory communication in iWarp. In Pro-
ceedings of 17th International Symposium on
Computer Architecture, pages 70-81, 1990.

[Chatterjee 91] S. Chatterjee. Compiling data-parallel
programs for efficient execution on shared-
memory multiprocessors. Technical Report
CMU-CS-91-189, Carnegie Mellon University,
Oct. 1991.

[Dally & Seitz 87) W. J. Dally and C. L. Seitz. Deadlock
free message routing in multiprocessor inter-
connection networks. IEEE Transactions on
Computers, C-36(5):547-553, May 1987.

[Dally 90a] W. J. Dally. The J-machine system. In P. Win-
ston and S. Shellard, editors, Artificial Intelli-
gence at MIT: Ezpanding Frontiers, volume 1.
MIT Press, 1990.

(Dally 90b] W. J. Dally. Virtual-channel flow control. In
Proceedings of 17th International Symposium
on Computer Architecture, pages 60-68, 1990.

[Dijkstra 68] E. W. Dijkstra. Cooperating sequential pro-
cesses. In F. Genuys, editor, Programming Lan-
guages, pages 43-112. Academic Press, Lon-
don, 1968.

G. C. Fox. What have we learnt from using
real parallel machines to solve real problems. In
Proceedings of Third Conference on Hypercube
Concurrent Computers and Applications, pages
897-955, 1988.

 [Geist et al. 91] G. A. Geist, M. T. Heath, B. W. Peyton,
and P. H. Worley. A users’ guide to PICL, a
portable instrumented communication library.
Technical Report TM-11616, Oak Ridge Na-
tional Laboratory, 1991.

[Habermann 69] A. N. Habermann. Prevention of sys-
tem deadlocks. Communications of the ACM,
12(7):373-377, July 1969.

[Hatcher et al. 91] P. J. Hatcher, A. J. Lapadula, R. R.
Jones, M. J. Quinn, and R. J. Anderson. A
production-quality C* compiler for hypercube
multicomputers. In Proceedings of SIGPLAN

[Fox 88]

Symposium on Principles and Practice of Par-

allel Programming, pages 73-82, 1991.

(Hillis & Steele Jr. 86] W. D. Hillis and G. L. Steele Jr.
Data parallel algorithms. Communications of
the ACM, 29(12):1170-1183, Dec. 1986.

(Int] Intel Supercomputer Systems Division.
iPSC/860 User’s Guide.

(Int 91a] Intel Supercomputer Systems Division.
Paragon XP/S Product Overview, 1991.

(Int 91b] Intel Supercomputer Systems Division. A

Touchstone DELTA System Description, Feb.
1991.

[Kung 88a] H. T. Kung. Deadlock avoidance for systolic
communication. In Proceedings of 15th In-
ternational Symposium on Computer Architec-
ture, pages 252-260, 1988.

[Kung 88b] H. T. Kung. Systolic communication. In Pro-
ceedings of Intl. Conference on Systolic Arrays,
pages 695-703, 1988.

MasPar Computer Company. MasPar Paral-
lel Application Language (MPL) Users Guide,
March 1991.

[Ousterhout 90] J. K. Ousterhout. Why aren’t operating
systems getting faster as fast as hardware? In
Proceedings of Summer 1990 USENIX Confer-
ence, pages 247-256, June 1990.

[Rodeheffer & Schroeder 91] T. L. Rodeheffer and M. D.
Schroeder. Automatic reconfiguration in Au-
tonet. In Proceedings of 13th ACM Symposium
on Operating Systems Principles, pages 183-
197, 1991.

[Rose & Steele J1. 87] J. R. Rose and G. L. Steele Jr. C*:
An extended C language for data parallel pro-
gramming. Technical Report PL 87-5, Think-
ing Machines Corporation, 1987.

[Saltz et al. 90] J. Saltz, H. Berryman, and J. Wu. Multi-
processors and runtime compilation. Technical
Report 90-59, ICASE, Sept. 1990.

Thinking Machines Corporation. CM-5 Tech-
nical Summary, 1991.

[von Eicken et al. 92] T. von Eicken, D. E. Culler, S. C.
Goldstein, and K. E. Schauser. Active mes-
sages: a mechanism for integrated communica-
tion and computation. To appear in Proceed- .
ings of 19th Intl. Symposium on Computer Ar-
chitecture., 1992.

[Mas 91]

[Thi 91]

