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Abstract

Explanation-Based Learning (EBL) is a widely-used technique for acquiring search-

control knowledge. Recently, Prieditis, van Harmelen, and Bundy pointed to the similarity

between Partial Evaluation (PE) and EBL. However, EBL utilizes training examples whereas

PE does not. It is natural to inquire, therefore, whether PE can be used to acquire search-

control knowledge, and if so at what cost? This paper answers these questions by means of

a case study comparing prodigy/ebl, a state-of-the-art EBL system, and static, a PE-

based analyzer of problem-space de�nitions. When tested in prodigy/ebl's benchmark

problem spaces, static generated search-control knowledge that was up to three times as

e�ective as the knowledge learned by prodigy/ebl, and did so from twenty-six to seventy-

seven times faster. The paper describes static's algorithms, compares its performance to

prodigy/ebl's, noting when static's superior performance will scale up and when it will

not. The paper concludes with several lessons for the design of EBL systems, suggesting

hybrid PE/EBL systems as a promising direction for future research.

�

static is available by sending mail to the author at etzioni@cs.washington.edu. The prodigy

system, and the information necessary to replicate the experiments in this paper, is available by sending

mail to prodigy@cs.cmu.edu.



1 INTRODUCTION 1

1 Introduction

Explanation-Based Learning (EBL) [11, 36] has emerged as a standard technique for ac-

quiring search-control knowledge (e.g. [27, 33, 37, 35, 47, 52]).

1

Recently, Prieditis [46],

van Harmelen and Bundy [59] pointed to the similarity between Partial Evaluation (PE), a

well-known program optimization technique [25, 58], and EBL, suggesting that an EBL-style

analysis could be performed statically, without utilizing training examples. This suggestion

is controversial because EBL is perceived as a dynamic technique that depends on exam-

ples to focus the learning process. It is natural to inquire, therefore, whether search-control

knowledge can be acquired via PE-based static analysis.

Static analysis has three advantages over standard EBL methods. First, while EBL is

sensitive to incomplete or badly-ordered sequences of training examples, static analysis is

not. Second, EBL often acquires overly-speci�c control knowledge by retaining extraneous

features of its training examples [16, 44]. Finally, in contrast to EBL, a static analyzer

need not invoke the problem solver to solve training problems|a costly process. However,

because training problems \transmit" useful information about the task environment, it is

not obvious that static analysis can actually generate e�ective control knowledge and do so

tractably. Thus, we arrive at two fundamental questions:

� Can static analysis produce e�ective search-control knowledge?

� Can it do so in reasonable time?

This paper presents a case study, using the prodigy system [33], which answers these ques-

tions. Since a state-of-the-art EBL system, prodigy/ebl, has already been implemented

and tested, our task has been to design a PE-based static analyzer and compare its per-

formance with that of prodigy/ebl. prodigy/ebl was tested on sets of one-hundred

randomly generated problems in three benchmark problem spaces [31]. The performance of

the static analyzer (called static) was compared to that of prodigy/ebl, using the same

sets of test problems, in each of the benchmark problem spaces. Surprisingly, static gener-

ated search-control knowledge that was up to three times as e�ective as prodigy/ebl's, and

did so from twenty-six to seventy-seven times faster. The paper explains these experimental

results, and considers under what conditions the results will be replicated in larger and more

complex problem spaces.

The paper is organized as follows. Section 2 provides necessary background on EBL,

prodigy, and PE. The subsequent sections describe static's algorithms in detail, and

compare it to prodigy/ebl. Section 6 contrasts static with standard partial evaluators

and other static analyzers, and Section 7 concludes by considering design lessons for EBL

systems based on the static case study.

1

EBL is also used to revise or repair \imperfect" theories (e.g. [8, 20, 40, 42, 48]).
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2 Background

This section is organized as follows. Section 2.1 describes the prodigy problem solver, which

is the substrate for prodigy/ebl. Section 2.2 introduces standard EBL terminology, and

sketches prodigy/ebl. Finally, Section 2.3 de�nes partial evaluation.

2.1 The PRODIGY Problem Solver

Detailed descriptions of prodigy appear in [29, 33, 34]. The bare essentials follow. prodigy

is a domain-independent problem solver. Given an initial state and a goal expression,

prodigy searches for a sequence of operators that will transform the initial state into

a state that matches the goal expression. A sample prodigy operator appears in Ta-

ble 1. prodigy's sole problem-solving method is a form of means-ends analysis [39]. Like

strips [17], prodigy employs operator preconditions as its di�erences. However, prodigy's

operator description language is considerably more expressive, allowing universal quanti�ca-

tion and conditional e�ects.

(UNSTACK

(preconditions

(and (object Block-X) (object Block-Y)

(on Block-X Block-Y) (clear Block-X) (arm-empty)))

(effects ((del (on Block-X Block-Y))

(del (clear Block-X))

(del (arm-empty))

(add (holding Block-X))

(add (clear Block-Y)))))

Table 1: The Blocksworld operator unstack. Variable names are capitalized.

prodigy's default search strategy is depth-�rst search. The search is carried out by

repeating the following decision cycle [30]:

1. Choose a node in the search tree. A node consists of a set of goals and a world state.

2. Choose one of the goals at that node.

3. Choose an operator that can potentially achieve the goal.

4. Choose bindings for the variables in the operator. If the instantiated operator's pre-

conditions match the state then apply the operator and update the state, otherwise

subgoal on the operator's unmatched preconditions. In either case, a new node is

created.
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Search-control knowledge in prodigy is encoded via control rules, which override

prodigy's default behavior by specifying that particular candidates (nodes, goals, oper-

ators, or bindings) should be selected, rejected, or preferred over other candidates [30].

Alternatives that are selected are the only ones tried; alternatives that are rejected are re-

moved from the selected set. Finally, all other things being equal, preferred alternatives

are tried before other ones. prodigy matches control rules against its current state. If the

antecedent of a control rule matches, prodigy abides by the recommendation in the con-

sequent. For example, the control rule in Table 2 tells prodigy to reject the Blocksworld

operator unstack when the block to be held is not on any other block.

(REJECT-UNSTACK

(if (and (current-node Node)

(current-goal Node (holding Block-X))

(candidate-operator Node unstack)

(known Node (not (on Block-X Block-Y)))))

(then (reject operator unstack)))

Table 2: A control rule from prodigy's Blocksworld.

2.2 Explanation-Based Learning

Mitchell, Keller and Kedar-Cabelli describe a model of EBL, called Explanation-Based Gen-

eralization (EBG) [36], which articulates many of the aspects common to various EBL sys-

tems. Two of the major contributions of the EBG model are the identi�cation of explanations

with proofs, giving a precise meaning to the term \explanation," and the clear speci�cation

of the input and output of EBL (Table 3). The input consists of a target concept, a theory

for constructing explanations, a training example, and an operationality criterion. The out-

put of EBL is a su�cient condition for recognizing the target concept. The operationality

criterion is intended to ensure that the su�cient condition can be used to recognize instances

of the concept e�ciently. EBL proves (or explains) that the training example is an instance

of the target concept and outputs the weakest preconditions [12] of the proof.

2.2.1 PRODIGY/EBL

A terse description of prodigy/ebl, using EBG terminology, follows. A complete descrip-

tion of prodigy/ebl appears in [29]. prodigy/ebl's primary target concepts are success,

failure and goal interaction. prodigy/ebl analyzes a trace of prodigy's search on a train-

ing problem, and extracts training examples from this trace. prodigy/ebl's domain theory

has two components: the architectural theory, which describes prodigy's problem-solving
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Given:

� Target Concept De�nition: A concept de�nition describing the concept to be learned.

(It is assumed that this concept de�nition fails to satisfy the Operationality Criterion.)

� Training Example: An example of the target concept.

� Domain Theory: A set of rules and facts to be used in explaining how the training

example is an example of the target concept.

� Operationality Criterion: A predicate over concept de�nitions, specifying the form in

which the learned concept de�nition must be expressed.

Determine:

� A generalization of the training example that is a su�cient concept description for the

target concept and that satis�es the operationality criterion.

Table 3: Mitchell et al.'s speci�cation of EBG.

method declaratively, and the problem-space de�nition which consists of prodigy's op-

erators, and axioms constraining the set of legal problem-space states. prodigy/ebl's

operational predicates are problem-space predicates (e.g. on-table in the Blocksworld),

and a small set of predicates that describe the problem solver's state (e.g. current-goal).

prodigy/ebl proves that various candidates (e.g. operators) will succeed, fail, or interact.

Its output consists of control rules whose antecedents are the operational weakest precondi-

tions of its proofs, and whose consequents expresses preferences based on the proofs' conclu-

sions. For example, a proof that an operator will fail, results in a control rule that rejects

that operator.

prodigy/ebl attempts to reduce the match cost of the rules it generates by a combina-

tion of logical simpli�cation and theorem proving. This process is referred to as compression.

prodigy/ebl also estimates the utility of learned rules (both empirically and analytically)

and discards rules that are deemed to be harmful. This process is referred to as utility eval-

uation. In summary, prodigy/ebl extends traditional EBL methods in three important

ways. First, prodigy/ebl utilizes multiple target concepts. Second, prodigy/ebl derives

control rules based on the su�cient conditions it computes. Third, prodigy/ebl performs

post-processing of the control rules in an e�ort to increase their e�ectiveness.

2.3 Partial Evaluation

Partial evaluation is a program optimization technique inspired by Kleene's S-M-N theo-

rem [22, 59]. The theorem states that given any computable function f over n variables,

f(x

1

; :::; x

n

), k of which have known values a

1

; :::; a

k

, we can e�ectively compute a new func-
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tion f

0

which only takes n� k inputs such that:

f

0

(x

k+1

; :::; x

n

) = f(a

1

; :::; a

k

; x

k+1

; :::; x

n

)

Presumably, the new function f

0

is easier to compute than f .

Partial evaluation is typically implemented by symbolically executing the program that

computes f and performing, at compile-time, any computation whose value depends only

on the known inputs. The fundamental operation performed, when symbolically executing a

program, is known as \call unfolding" or simply unfolding. Unfolding replaces a function call

in the program by the function's body, substituting the values of the function's arguments

for its variables. When the values of the arguments are unknown, place-holders or \symbolic

values," are created and propagated through the program. In a language such as Prolog,

unfolding replaces an atomic formula in the body of one Horn clause by the body of another

clause whose head uni�es with that formula. For example, given the following Horn clauses:

liftable(Z) :- has-handle(Z), small(Z).

cup(X) :- liftable(X), liquid-container(X).

The formula liftable(X) could be unfolded to derive:

cup(X) :- has-handle(X), small(X), liquid-container(X).

We can view a problem solver such as prodigy as a function P that maps a problem-

space de�nition d, an initial state i, and a goal expression e, to an operator sequence s that

transforms the initial state into one which satis�es the goal expression. That is, P (d; e; i) = s.

Partial evaluation, in this context, amounts to symbolically executing the program for P with

some of its inputs unknown. In particular, static takes the problem space de�nition d as

input and symbolically back-chains on the uninstantiated operators in d. Thus, we can view

prodigy operators as functions being unfolded.

A critical issue in designing a partial evaluator is �nding an appropriate criterion for

terminating the unfolding process. If the termination criterion is too conservative (e.g.

never unfold calls) no optimization will be achieved, but if the criterion is too liberal (e.g.

unfold all calls) the partial evaluator will fail to halt when unfolding recursive calls [51]. As

van Harmelen and Bundy demonstrate, EBL algorithms unfold the domain theory guided

by their training example and operationality criterion. This elaboration of PE is important

because it provides EBL with a termination criterion. The theory is unfolded in accord

with the choices made in the training example. A partial evaluator will only match EBL's

performance if it is given an appropriate termination criterion. In [59], van Harmelen and

Bundy describe a simple partial evaluator that is able to emulate EBL, but they do not

specify an appropriate termination criterion.

static solves this problem by combining (its own versions of) prodigy/ebl's multi-

ple target concepts with a simple termination criterion: unfold only nonrecursive calls.

2

As shown in Section 3.2.2, static provably terminates, yet it is still able to outperform

prodigy/ebl (Section 5).

2

Theoretical motivation for this criterion appears in [15].
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3 Static Analysis of Failure and Success

This section describes static's algorithms for analyzing failure and success. The algorithms

in this section could be used to optimize pure Prolog programs. Section 4 presents static's

analysis of goal interactions. The algorithms in Section 4 are speci�c to problem solvers,

like prodigy, that transform states \nonmonotonically," by adding and deleting atomic

formulas.

static's input is a problem-space de�nition, consisting of prodigy operators and axioms

constraining legal states; its output is a set of prodigy control rules. Unlike prodigy/ebl,

static does not construct explanations or even utilize an explicit domain theory. Instead,

static symbolically back-chains on prodigy's operators to construct an and/or graph

representation of the problem space, known as a Problem Space Graph (PSG). Essentially,

the PSG represents all backward-chaining paths through the problem space. To keep the

PSG �nite, static restricts its attention to nonrecursive paths, terminating PSG expansion

whenever recursion is encountered. static annotates each PSG node with a label, indicating

which operators and subgoals will succeed or fail, and with a logical expression indicating

under what conditions the label holds. static derives prodigy control rules based on this

annotation.

Section 3.1 de�nes the PSG representation precisely, followed by a description of PSG

construction, labeling, and analysis.

3.1 Problem Space Graphs (PSGs)

A PSG is a directed, acyclic and/or graph that represents the goal/subgoal relationships in

a problem space. Each PSG is rooted in a distinct goal literal.

3

The root literal is connected,

via or-links, to the operators that can potentially achieve it. An operator can potentially

achieve a literal when one of its e�ects uni�es with the literal. Each operator in the PSG

is partially instantiated via the variable substitution from this uni�cation. Each operator is

connected, via and-links, to its partially instantiated preconditions. Each precondition is

connected to the operators that can potentially achieve it and so on. Thus, the PSG's nodes

are an alternating sequence of subgoals and operators, and the PSG's edges are an alternating

sequence of and-links and or-links. Figure 1 depicts the Blocksworld PSG rooted in the

subgoal (holding V).

When two sibling operators share a precondition, a single node designates that precon-

dition in the PSG. Both operators are linked to the node via and-links, so the graph is not

a tree. In Figure 1, for example, both pick-up(V) and unstack(V,V2) have (clear V)

as a precondition. Consequently, both operators have and-links to that node.

The PSG is independent of any state information, and should not be confused with a

state space graph. Its nodes are not states and its edges are not fully-instantiated oper-

ators. If we think of operators as functions being unfolded, the PSG can be viewed as a

\call graph" for prodigy [38]. Although the PSG was developed independently, it is quite

3

A literal is a possibly negated atomic formula.
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similar to the rule/goal graph [57], and related graph representations of logic programs (e.g.,

[26]). In contrast to previous work, however, static utilizes PSGs to compute the weakest

preconditions of EBL-style proofs.

(holding V)

UNSTACK(V,V2)

(on V V2) STACK(V,V2)
(holding V)

(clear V)

UNSTACK(V1,V)

(on V1 V)

(clear V1)

(arm-empty)

STACK(V,V3)
(holding V)

PUT-DOWN(V)
(holding V)

(arm-empty)PICK-UP(V)

(on-table V) PUT-DOWN(V)
(holding V)

goal-cycle

holds

unknown

holds

goal-cycle

goal-cycle

holds

goal-cycle

Figure 1: The holding PSG.

As described thus far, recursion would result in in�nite PSGs. In fact, the PSG has well-

de�ned termination conditions under which it is provably �nite. To state these conditions

precisely I introduce the notion of a literal's ancestors, which are the literals at the unique

set of subgoal nodes on a path from the literal to the root of the PSG. The ancestors of a

PSG node represent the set of subgoals prodigy would generate before subgoaling on the

literal at the node. PSG expansion is terminated at a node if and only if:

� No operators can achieve the literal at the node.

� The literal is identical to one of its ancestor literals. I refer to this condition as a goal

cycle.

� The literal uni�es with, but is not identical to, one of its ancestors. I say that the

literal recurs and label the node unknown.

� The literal is necessarily satis�ed, given its ancestor subgoals. In the holding PSG,

for example, (on V1 V) is labeled holds because, to reach it, prodigy subgoals on

(holding V) and (clear V) and, if a block is neither clear nor held, then there must

be some block on it. See Section 3.2.1 for more details.
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Note that the above conditions apply to subgoals, not to operators. Thus, the second

occurrence of unstack in Figure 1 is not an instance of recursion or of a goal-cycle. Table 4

presents a simple algorithm that derives PSGs from problem space de�nitions.

3.2 Constructing PSGs

static relies on partial evaluation to construct PSGs. Speci�cally, PSGs are constructed

by symbolically back-chaining on the problem space's operators from the root literal. Each

operator is partially (but not fully) instantiated since its e�ects are matched against a goal,

but its preconditions are not matched against a state. The PSG construction algorithm

creates a distinct PSG for each uninstantiated achievable literal in the problem space. static

�nds the achievable literals by scanning the e�ects of the problem-space operators. A capsule

description of the algorithm appears in Table 4.

Each operator node in the PSG contains the following information: the operator's name,

an or-link to its parent subgoal, and-links to its partially instantiated preconditions, its

label, and its partially instantiated e�ects. Each subgoal node in the PSG contains the

following information: the partially instantiated literal, or-links to the operators that achieve

the literal, its ancestors, and its label.

3.2.1 Constraints on Legal States

static's input is a problem-space de�nition, which consists of a set of operators and a set of

constraints on legal states. The constraints rule out impossible states. In the Blocksworld,

for example, either (arm-empty) is true or the robot is holding some block. static utilizes

the constraints on legal states to terminate the expansion of the PSG at certain subgoal

nodes. The constraints are used to prove that, given the subgoal's ancestors, if the subgoal

arises during actual problem solving it would invariably be matched by prodigy's current

state. For example, suppose that the literal (arm-empty) is an ancestor of the subgoal

(holding V). We know that (arm-empty) is not true because prodigy is trying to achieve

it. Therefore, the robot is holding some block and (holding V) will match the current state.

In general, we know that ancestor literals do not match prodigy's current state. Thus,

the ancestor set provides information about the current state. That information, in con-

junction with the constraints on legal states, is used by the function holds(p,ancestors(p))

to determine whether p will be matched by prodigy's current state, whenever p arises in

the current goal context. Constraints on legal states in the Blocksworld appear in Table 5.

Exactly one of the literals in each constraint is true in every state. To use the constraints

appropriately, static reasons about the potential bindings for the variables at PSG nodes.

Suppose, for example, that (holding V) is an ancestor of (arm-empty). Since V may be

bound to a constant b

1

during actual problem solving, the holding goal may not be sat-

is�ed, but (arm-empty) may still be false because the robot is holding yet another block

b

2

. Thus, we cannot conclude that (arm-empty) holds, and the PSG shown in Figure 1

is actually a simpli�ed version of the \true" PSG. This simpli�cation is inconsequential

because (arm-empty) can always be achieved via put-down. The only precondition to
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Input: operators, constraints on legal states, and an uninstantiated goal literal g.

Output: A PSG for g (e.g., Figure 1).

The ancestors of a node n in the PSG, ancestors(n), represent the set of subgoals

prodigy would generate before subgoaling on the literal at the node. The function

holds(p,ancestors(p)), which is described in more detail in the text, determines whether

the precondition p necessarily holds given its ancestors and the constraints on legal states.

Finally, ops(g) refers to the operators that can potentially achieve g, and precs(o) refers to

the preconditions of the operator o.

Algorithm:

1. Create a subgoal node for g.

2. For each partially instantiated operator o 2 ops(g):

(a) Create an operator node for o and or-link it to g.

(b) If any of o's preconditions is identical to one of o's ancestors, then create a subgoal

node corresponding to that precondition, label it goal-cycle, and and-link it to o.

(c) Else, for each precondition p 2 precs(o):

i. If a previously expanded sibling operator shares p, then a node for p already

exists. and-link o to the existing node.

ii. Otherwise, create a new node p and and-link it to o.

iii. If holds(p; (ancestors(p)) then label p holds.

iv. If p uni�es with, but is not identical to, one of its ancestors, then label p

unknown (i.e. recursion could occur here).

v. If no operator matches p, then label p unachievable.

vi. Else, return to step 1 with p as the current subgoal g.

Table 4: Constructing a PSG.
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put-down is that the robot be holding some block and this is guaranteed to be the case

when (arm-empty) is an ancestor goal.

8X;9Y such that 
(on-table(X); on(X;Y );holding(X)):

9X such that 
(arm-empty;holding(X)):

8X;9Y such that 
(holding(X); clear(X); on(Y;X)):

Table 5: Constraints on Blocksworld states. 
 denotes a generalized exclusive-or; exactly

one of 
's arguments is true in every state.

Binding analysis of this sort is a widely-used technique in program optimization [57,

chapter 12]. In fact, correctly terminating the expansion of PSGs is an instance of a gen-

eral problem in the symbolic execution of programs known as \detecting spurious execution

paths." Spurious execution paths are symbolically executed computations that would never

occur during actual program execution because they are logically inconsistent with the se-

mantics of the program. Expanding a subgoal node in the PSG, which prodigy would never

actually subgoal on, is an example of a spurious execution path, Avoiding spurious paths is

undecidable, in general, because detecting such paths can involve arbitrary inference about

the program. The holds function is a simple heuristic that prunes some of the spurious

execution paths in static's PSGs. When this heuristic fails, static will analyze spurious

execution paths, and learn inapplicable control knowledge. However, even when this occurs,

static will not generate control rules that lead prodigy to overlook possible solutions to

its problems.

3.2.2 PSG Size

To be a viable representation, a PSG must be compact. This section relates PSG size to

problem space characteristics and shows that, in the problem spaces studied, PSGs are very

compact indeed.

Several observations about PSGs follow from their de�nition in Section 3.1:

� The or-link branching factor is bounded by the maximal number of operators that

can potentially achieve any given literal.

� The and-link branching factor is bounded by the maximal number of preconditions to

any given operator.

� Since only one predicate repetition is allowed before the PSG's expansion is terminated,

the depth of the PSG is bounded by 2p + 1, where p is the number of predicates in

the problem space de�nition. This bound is tight only when every predicate in the

problem space participates in a given nonrecursive subgoaling chain. In practice, PSG

depth tends to be much smaller.
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In general, we have the following:

Proposition 1 The PSG representation of any �nite problem-space de�nition is �nite.

Note that because static's algorithm amounts to repeated traversals of the PSG, Propo-

sition 1 implies that static is guaranteed to terminate. In fact, in the problem spaces

studied, the PSGs are very compact (Table 6) which explains static's speed.

Blocksworld 86

Stripsworld 186

Schedworld 87

ABworld 249

Table 6: Total number of PSG nodes in the problem spaces studied, which include

prodigy/ebl's benchmark problem spaces and the ABworld, a highly-recursive variant

of the Blocksworld constructed to foil prodigy/ebl [13, 14].

3.3 Labeling the PSG

Each PSG node, below the root, is annotated with a label and a logical expression referred

to as its \failure condition." The label asserts what prodigy's behavior will be when an

instance of the node is encountered during problem solving. For example, the label holds

means that the literal at the node will be satis�ed in the current state, and the label goal-

cycle means that prodigy will �nd itself in a goal-cycle and backtrack. static asserts that

prodigy will fail at an instance of a PSG node only when the PSG node is labeled failure

and the failure condition at the PSG node is true. For instance, an operator node labeled

failure yields a control rule that recommends rejecting the operator when the node's failure

condition is matched by prodigy's current state (see Table 9 for illustrations).

This section describes how static computes the labels and associated failure conditions

for a PSG. The following section explains how this information is used to derive control rules.

The PSG labeling algorithm is described in two parts. First, the computation of the labels

is explained, followed by the derivation of the failure conditions.

Each PSG leaf is labeled by one of the following labels when the PSG is constructed:

holds, unknown, goal-cycle, or unachievable. Each internal PSG node is labeled failure,

success, or unknown. The PSG is traversed in postorder to determine the labels of internal

nodes. The label of each node is derived from the labels of its children using a three-valued

\label logic" where failure corresponds to false, success corresponds to true, and unknown

to unknown. The label holds is considered to be a success label, and the labels goal-cycle and

unachievable are failure labels. The label of an operator is determined by the conjunction of

the labels of its preconditions; the label of a precondition is determined by the disjunction of

the labels of the operators that can potentially achieve it. The precise meaning of conjunction
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and disjunction in label logic is de�ned by Table 7. When a set of nodes shares the same

label, applying disjunction and conjunction to the set yields that label as well. If both L

1

and L

2

are failure, for example, then their conjunction and disjunction is failure as well.

L

1

L

2

disjunction(L

1

, L

2

) conjunction(L

1

, L

2

)

failure success success failure

failure unknown unknown failure

unknown success success unknown

Table 7: Label logic.

If we think of false, unknown, and true as ordered, where false is minimal and true is

maximal, then labeling the PSG amounts to a min-max search of the graph. Minimizing

corresponds to conjunction, and maximizing corresponds to disjunction. In fact, an analog

of �� pruning is possible. For example, once an operator is labeled success, the labels of

sibling operators need not be computed to determine the label of the goal. �� pruning

was not implemented in static because, as Section 5 documents, constructing and labeling

PSGs is already very fast in the problem spaces studied.

3.3.1 Deriving Failure Conditions

fprecs(o) = fp 2 precs(o)jlabel(p) = failureg

op-fc(o; g;G) = If label(o) 6= failure then return false.

Else if g 2 G then return true.

Else return

_

p2fprecs(o)

goal-fc(p;G + g)

goal-fc(p;G) = :p ^

0

@

^

o2ops(p)

op-fc(o; p;G)

1

A

Table 8: static's algorithm for computing failure conditions.

The failure conditions are logical expressions associated with PSG nodes labeled failure.

The conditions are incrementally constructed as the PSG is labeled. Like a label, the failure

condition of each PSG node is derived from the failure conditions of its children. The failure

condition of an operator node is the disjunction of the failure conditions of its preconditions.

The failure condition of a precondition node is the conjunction of the failure conditions of its
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operators. Table 8 outlines the recursive procedure used to compute PSG failure conditions.

A pseudo-code description of the algorithm and a trace of its execution appear in [13, chapter

6]. The output of the algorithm applied to the holding PSG depicted in Figure 1, appears

in Figure 2.

(holding V)

UNSTACK(V,V2)

(on V V2) STACK(V,V2)
(holding V)

(clear V)

UNSTACK(V1,V)

(on V1 V)

(clear V1)

(arm-empty)

STACK(V,V3)
(holding V)

PUT-DOWN(V)
(holding V)

(arm-empty)

PICK-UP(V)

(on-table V) PUT-DOWN(V)
(holding V)

FAILURE
(and (ancestor (holding V)) (not (on V V2)))

FAILURE
(ancestor (holding V))

FAILURE
(ancestor (holding V)) GOAL-CYCLE

UNKNOWN

UNKNOWN

HOLDS

UNKNOWN

HOLDS

FAILURE
(ancestor (holding V)) GOAL-CYCLE

FAILURE
(ancestor (holding V)) GOAL-CYCLE

HOLDS

FAILURE
(and (ancestor (holding V)) (not (on-table V)))

FAILURE
(ancestor (holding V))

FAILURE
(ancestor (holding V)) GOAL-CYCLE

Figure 2: The annotated holding PSG.

3.4 Extracting Control Rules from the PSG

static traverses each labeled PSG, in preorder, searching for operator nodes labeled failure

or success. Operator rejection and binding selection rules are learned from failure nodes,

and preference rules are learned from success nodes. No rules are learned from nodes labeled

unknown. The operator rejection rules extracted from the holding PSG, for example, appear

in Table 9. The �rst rule, which rejects the operator pick-up, is derived from the pick-

up(V) node in the PSG; the second rule is derived from the unstack(V,V2) node in the

PSG. To avoid learning redundant rules, once static encounters a node labeled failure,

it does not continue its traversal of the PSG below that node. A detailed speci�cation

of static's criteria for generating control rules, and minor extensions to the algorithms

presented above (e.g. forming node rejection rules, avoiding redundant rules) are described

in [13].
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(REJECT-PICK-UP

(if (and (current-node Node)

(current-goal Node (holding Block-X))

(candidate-op Node pick-up)

(known Node (not (on-table Block-X)))))

(then (reject operator pick-up)))

(REJECT-UNSTACK

(if (and (current-node Node)

(current-goal Node (holding Block-X))

(candidate-op Node unstack)

(known Node (not (on Block-X Block-Y)))))

(then (reject operator unstack)))

Table 9: The operator rejection rules extracted by static from the holding PSG in Figure 2.

3.5 Complexity Analysis

static constructs a PSG in one pass, annotates it with labels and failure conditions in a

second pass, and extracts control rules in a third pass. Thus, its running time is \essentially

linear" in the size and number of its PSGs. There are three caveats to this statement.

First, static's detection of shared subgoals during PSG construction requires inspecting

all the sibling operators at each subgoal node. Second, static's detection of goal-cycles

requires inspecting the ancestor list at each subgoal node. Finally, static constructs failure

conditions at nodes labeled failure. In the worst case, the maximal size of a failure condition

is the size of the PSG, making static's running time quadratic in PSG size. In practice,

however, failure conditions tend to have bounded size keeping static's running time linear

in PSG size.

More formally, let � denote the number of nodes in the PSGs; let � denote the maximal

number of operators relevant to achieving a subgoal; let � denote the maximal number of

preconditions to an operator; let � denote the number of predicates in the PSG; and let

� denote the maximal failure condition size. The running time of the algorithm described

above is O(���

2

��).

4 Static Analysis of Goal Interactions

Goal interactions such as goal clobbering and prerequisite violation cause prodigy to back-

track. Goal clobbering occurs when, in the process of achieving one goal, the problem

solver negates or clobbers a goal that is already satis�ed. In the Schedworld, for example,
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changing the shape of an object damages any polish on the object's surface. Thus, the

goal (surface-condition Obj polished) is clobbered by all plans that achieve the goal

(shape Obj cylindrical). Prerequisite violation occurs when, in the process of achieving

one goal, the problem solver renders a pending goal unachievable by clobbering one of its

prerequisites. In the Schedworld, making an object cylindrical by using the roll operator

has the side-e�ect of heating the object. An object is only clampable if it is cold, and there

is no way of cooling an object. Consequently, any goal that has a clamping prerequisite is

rendered unachievable by the roll operator.

static anticipates these goal interactions by analyzing its PSGs, seeking to determine

the side e�ects and vital prerequisites of various goals. Based on this analysis, static

generates goal ordering and operator preference control rules that enable prodigy to avoid

goal interactions (e.g. Table 10). static anticipates goal interactions that will necessarily

occur. That is, static reports that two goals interact, under certain constraints, only if

the goals interact in every state that obeys these constraints. An alternative optimization

strategy (taken by Knoblock's alpine [24]) is to anticipate all goal interactions that can

possibly occur. Section 6.2 analyzes the relationship between the two approaches. static

is incomplete in that it will not anticipate all goal interactions, but it is sound in that the

interactions that static anticipates would in fact occur, if it were not for static's control

rules.

(PREFER-SHAPE

(if (and (current-node Node)

(candidate-goal Node (shape Part-X cylindrical))

(candidate-goal Node (surface-condition Part-X polished))))

(then (prefer goal (shape Part-X cylindrical)

(surface-condition Part-X polished))))

Table 10: A goal ordering rule produced by static.

The remainder of this section is organized as follows. Section 4.1 de�nes precisely several

terms used in the discussion that follows. Section 4.2 discusses goal clobbering followed by

Section 4.3 on prerequisite violation. Both sections:

� De�ne the interaction formally.

� Present static's algorithm for anticipating the interaction.

� Prove the algorithm to be sound.

� Describe static's strategy for deriving control rules.

� Analyze the time and space complexity of the algorithm.
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4.1 Preliminaries

A variable substitution � is a function from logical formulas to logical formulas that replaces

variables by constants (or variables). If � maps X to a, for example, then �((on X Y))=(on

a Y). A conjunction S

1

is said to match a conjunction S

2

when there is some substitution

� that makes every literal in S

1

identical to some literal in S

2

. That is, 8s

1

2 S

1

;9s

2

2 S

2

,

such that �(s

1

) = s

2

. Thus, (on X b) is said to match (on-table b) (on a b) (clear

a) when � maps X to a. The notation xjy means that x matches y; :xjy means that x does

not match y. The empty conjunction, denoted by �, matches any conjunction. Thus, 8x we

have that �jx. Finally, 8x s.t. x 6= �; we have that :xj�.

A literal g

1

is said to negate a second literal g

2

when both literals cannot match the same

state, under some substitution �. I denote this fact by N(g

1

; g

2

; �).

N(g

1

; g

2

; �) � �(g

1

)js! :�(g

2

)js:

Note that the negation relation is symmetric.

Under what conditions does one literal negate another? Clearly, for any �, it is the

case that N(g

1

;:g

1

; �). In addition, static makes use of explicit axioms that state which

goals negate each other in a given problem space. In the Schedworld, for example, a Part-

X is either hot or cold. static is told, therefore, that (temperature Obj hot) negates

(temperature Obj cold). static's \goal negation" axioms for the Schedworld appear in

Table 11.

Determining whether one literal necessarily negates another turns out to be easy. To

check whether one literal negates another, under some variable substitution, static matches

the two literals against the literals in each of the goal negation axioms. The matching

procedure either signals failure, implying that literals do not negate each other, or returns

a (possibly empty) variable substitution implying that the literals negate each other under

that substitution.

8 Obj; V;W such that V 6= W :

temperature(Obj; hot)! :temperature(Obj; cold)

painted(Obj; V )! :painted(Obj;W )

surface-condition(Obj; V )! :surface-condition(Obj;W )

shape(Obj; V )! :shape(Obj;W )

Table 11: Schedworld goal negation axioms.

4.2 Goal Clobbering

A plan for achieving a goal g is said to clobber a protected goal p when p is negated by the

plan. A goal g is said to necessarily clobber a protected goal p when all plans for achieving
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g clobber p. This section de�nes the notion of necessary goal clobbering, and shows how

static anticipates and avoids goal clobbering by computing the necessary e�ects of achieving

each goal.

Typically, g clobbers p onlys under some co-designation constraint between the two goals.

In our Schedworld example, goal clobbering occurs only when the surface-condition and

the shape goals refer to the same object. In the discussion that follows, co-designation

constraints are enforced by applying the variable substitution � to both goals. The set

of states in which the clobbering necessarily occurs may be constrained as well. In the

Schedworld, two operators are available for achieving the goal has-hole: punch and drill-

press. Only punch clobbers the surface-condition goal. If the object in question is

not drillable, however, the only available operator is punch and the goal clobbering will

necessarily occur. Constraints on the set of states are captured by the condition k described

below.

Formally, a goal g is said to necessarily clobber a protected goal p, under some condition

k and variable substitution �, when every nonempty operator sequence c that achieves g,

from a state that matches p and k under �, has a pre�x that results in a state that does not

match p under �. The necessary clobbering relation is denoted by 2C(g; p; �; k).

2C(g; p; �; k) � 8s s.t. �(p)js ^ �(k)js, and 8c s.t. �(g)jc(s),

9c

0

such that pre�x(c

0

; c), and we have that :�(p)jc

0

(s).

Let E(g) denote the necessary e�ects of achieving g. E(g) is de�ned to be a set of pairs

(e; k) where e is an e�ect and k is a condition under which e necessarily occurs.

E(g) = f(e; k)j 8s; � s.t. �(k)js, and 8c s.t. �(g)jc(s),

9c

0

such that pre�x(c

0

; c), and we have that �(e)jc

0

(s)g

g clobbers a protected goal p if and only if p is negated as a necessary e�ect of achieving g.

Proposition 2 2C(g; p; �; k) i� 9(e; k) 2 E(g), s.t. N(e; p; �).

Proof: By the de�nitions of 2C, E, and N . 2

Note that operator sequences that clobber but re-establish p in the process of achieving

g satisfy 2C(g; p; �; k). static detects and attempts to avoid \temporary goal clobbering"

of this sort for two reasons. First, temporary goal clobbering can result in a state cycle,

which causes prodigy to backtrack. Second, in order to eliminate \temporary e�ects" from

consideration static would have to determine the possible side-e�ects of achieving each

subgoal. While this can be done in a straight-forward manner, using an algorithm such as

Knoblock's [24], I did not pursue this in static.

4.2.1 Computing Necessary E�ects

I conjecture that computing the set of necessary e�ects E is hard in general, but I will

not attempt to prove this. static computes a subset of E denoted by

^

E, and anticipates
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goal clobbering based on

^

E. This section describes how

^

E is computed and discusses the

relationship between E and

^

E.

static computes

^

E using two mutually recursive procedures, shown in Table 12. The

�rst procedure takes two arguments: a goal g and its ancestor set G.

4

The procedure

intersects (a subset of) the necessary e�ects of each operator that could potentially achieve

g. The subset is denoted by

^

E

o

(g;G) for any given operator o.

^

E

o

(g;G) is computed by

a second procedure which forms the union of o's e�ects with the necessary e�ects of its

preconditions. The necessary e�ects of each precondition are computed by calling the �rst

procedure recursively. Note that a necessary e�ect of achieving a precondition occurs only

if the precondition, and each of its ancestors, is unmatched in the current state. Otherwise,

prodigy would not attempt to achieve the precondition. Thus, each necessary e�ect is

conditioned on the negation of its ancestors. Let

�

G denote the conjunction of the negations

of the literals in the set of ancestor literals G. That is,

�

G �

V

g2G

:g. Table 12 denotes an

e�ect e, which occurs only in the context of G, by the pair (e;

�

G).

U(g;G) is satis�ed when g cannot be achieved in the context of G. holds(g;G) is satis�ed

when g is necessarily true in the context of G (see Section 3.2.1). leaf(g) is satis�ed when

g is a leaf of the PSG.

^

E(g;G) = If U(g;G) or holds(g;G) then return �.

Else if leaf(g) then return (g;

�

G)

Else return

\

o2ops(g)

^

E

o

(g;G+ g)

Intersecting e�ect pairs:

(e

1

; k

1

) \ (e

2

; k

2

) = (�(e

1

); �(k

1

) ^ �(k

2

)) when 9� such that �(e

1

) = e

2

.

(�(e

2

); �(k

1

) ^ �(k

2

)) when 9� such that �(e

2

) = e

1

.

� otherwise.

^

E

o

(g;G) = f(e;

�

G)je 2 e�ects(o)g [

0

@

[

p2precs(o)

^

E(p;G)

1

A

Table 12: The procedure for computing

^

E(g,G).

As Table 12 indicates, a necessary e�ect of an operator that achieves g is only a necessary

e�ect of the subgoal g if it is shared by all the operators that could potentially achieve g.

4

When g is a top-level goal, G = �.
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The shared e�ects are determined by intersecting the necessary e�ect sets of each operator.

Intersecting elements of the sets involves matching the individual e�ects of operators (Ta-

ble 12). Even if the e�ects of two operators share a predicate they may not match when

the arguments to the predicate are bound di�erently in each operator. static's matching

procedure takes this into account by distinguishing between four classes of bindings for an

argument. Consider matching the e�ect, e(X), of one operator against the e�ect e(Y ) taken

from another operator. The arguments X and Y can be:

� Bound to a goal argument: in this case X = Y and the e�ects match.

� Bound to operator-speci�c constants in matching the operator's e�ects against the

goal: when the operator-speci�c constants are distinct (e.g., X = b and Y = c), the

e�ects will not match.

� Bound in matching each operator's preconditions against the state: the e�ects match

only when static is able to identify constraints under which the e�ects are necessarily

the same. For example, suppose the e�ects are (dr-open D-X) and (dr-open D-Y).

Then, the e�ects match when both D-X and D-Y are doors to the same room, and the

room only has one door.

� Unbound: If either X or Y is unbound, the e�ects will match. An argument to an

e�ect is unbound when it does not appear in the operator's preconditions and the e�ect

is not matched against the goal. Unbound arguments are marked as such when the

PSG is constructed.

To illustrate the algorithm's operation consider the Schedworld goal (shape Obj

cylindrical). Only two operators can potentially achieve this goal: lathe and roll.

Both operators delete the surface condition of the object they are applied to. As a re-

sult, achieving (shape Obj cylindrical) necessarily clobbers (surface-condition Obj

polished). static detects this necessary side-e�ect by intersecting

^

E

lathe

and

^

E

roll

.

Since the e�ects of o are added to

^

E

o

after the e�ects of o's preconditions, the list

^

E

o

(g;G)

is ordered by the generality of the conditions on o's necessary e�ects. This ordering turns

out to be useful because static searches

^

E sequentially for clobbering e�ects. As a result,

static will form the most general rules it can �nd.

The computation of necessary e�ects by static is sound:

Theorem 1

^

E(g; �) � E(g).

Proof: (By induction on the number of calls to

^

E.) 2

It is di�cult characterize the relationship between

^

E and E in general terms. In the

problem spaces studied,

^

E contained enough information to allow static to anticipate vir-

tually all binary goal interactions encountered by prodigy. Yet it is possible to manufacture

examples where

^

E is strictly a subset of E. For instance, any necessary e�ects resulting from

recursive operator application will be missed by static. Furthermore, consider a PSG where

some goal g can be achieved by the operators o

1

and o

2

. Suppose that static is unable to
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identify the condition f under which o

1

fails.

5

Suppose there are only two operators for

achieving g. It follows that, when f holds, all of the necessary e�ects of o

2

are necessary

e�ects of g, but static will miss this.

It follows that by computing

^

E we can anticipate some (but not all) goal clobberings.

Corollary 1 If 9(e; k) 2

^

E(g; �), 9� s.t. N(e; p; �) then 2C(g; p; �; k).

Proof: By Proposition 2 and Theorem 1. 2

4.2.2 Avoiding Goal Clobbering

static seeks to avoid goal clobbering using its knowledge of necessary e�ects. For every

goal pair (p; g), static searches for a necessary e�ect of achieving g, that clobbers p under

some variable substitution �. If a clobbering is found, and the two goals do not negate each

other under �, static forms a goal ordering rule in order to avoid the clobbering. A sample

goal ordering rule appears in Table 10.

As Ryu and Irani [49] demonstrate, introducing the appropriate co-designation on the

variables in p and g can be rather subtle. Consider Ryu and Irani's Stripsworld example

where p is (dr-closed D-X) and g is (inroom robot R-Y). The inroom goal has the nec-

essary e�ect (dr-open D-Y) where D-Y is a door to room R-Y. The (dr-open D-Y) e�ect

necessarily clobbers the (dr-closed D-X) goal only when the two variables D-X and D-Y

necessarily co-designate. To generate the appropriate goal-ordering rule, static adds a con-

dition to the rule which guarantees that the two variables necessarily co-designate (Table 13).

In essence, the condition ensures that R-Y only has one door, in which case achieving the

inroom goal necessarily clobbers the dr-closed goal.

6

(PREFER-INROOM-ROBOT

(if (and (current-node Node)

(candidate-goal Node (inroom robot R-Y))

(candidate-goal Node (dr-closed D-X))

(forall (D-Y) (known Node (dr-to-rm D-Y R-Y))

(is-equal D-Y D-X))))

(then (prefer goal (inroom robot R-Y)

(dr-closed D-X)))

Table 13: A static goal ordering rule enforcing co-designation constraints.

5

For instance, o

1

may lead to a state cycle.

6

A bug prevented static from generating this condition in the static experiments described earlier,

leading static to produce an overly-general rule. This bug has been corrected in response to Ryu and

Irani's analysis.



4 STATIC ANALYSIS OF GOAL INTERACTIONS 21

When the above procedure fails to �nd goal ordering rules, static checks whether one

or more of the operators that achieve g clobbers p. If so, then when all other operators for

achieving g fail, a goal clobbering will occur. When all non-clobbering operators have failure

labels, static creates an expression, called the goal-clobbering condition, which consists of

the conjunction of the failure conditions of each of the non-clobbering operators. g necessarily

clobbers p when the goal-clobbering condition holds.

Suppose, for example, that prodigy tries to achieve the two Schedworld goals:

(has-hole Obj Width Orientation) and (surface-condition Obj polished), and it

turns out that Obj is not drillable in the desired orientation. It follows that prodigy

has to use the operator punch to achieve has-hole. The punch operator clob-

bers the (surface-condition Obj polished) goal. static generates a rule that tells

prodigy to achieve (has-hole Obj Width Orientation) before (surface-condition

Obj polished) when Obj is not drillable (Table 14) in order to avoid the goal clobber-

ing. Finally, when a goal-clobbering condition cannot be found, static tells prodigy to

prefer other operators to the clobbering ones.

(PREFER-HAS-HOLE

(if (and (current-node Node)

(candidate-goal Node (has-hole Part-X Width-W Orient-Z))

(candidate-goal Node (surface-condition Part-X polished))

(known Node (not (is-drillable Part Orient-Z)))))

(then (prefer goal (has-hole Part-X Width-W Orient-Z)

(surface-condition Part-X polished))))

Table 14: A \conditional" goal ordering rule produced by static.

Determining the running time of static's algorithm is straight forward. As shown in

Table 12, the necessary e�ects of achieving a goal are computed by traversing the PSG rooted

in that goal. To detect goal clobbering, static considers every pair of (uninstantiated)

achievable literals. Thus, its running time is linear in the size of the PSGs, and quadratic

in the number of achievable literals. Determining whether two literals negate each other is

linear in the number of goal negation axioms. Finally, the operations on sets of necessary

e�ects take time linear in the size of the relevant

^

Es.

4.3 Prerequisite Violation

A plan for achieving a goal v is said to violate the prerequisites of a goal g if executing the

plan for achieving v renders g unachievable. This section de�nes the notion of necessary

prerequisite violation, and shows how static anticipates and avoids prerequisite violation

by computing the necessary prerequisites of achieving each goal.
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A goal v is said to necessarily violate the prerequisites of a pending goal g, under some

condition k and variable substitution �, when every operator sequence that achieves v, from

any state that matches k under �, renders g unachievable under �. The violation relation is

denoted by 2V (g; v; �; k).

2V (g; v; �; k) � 8s s.t. �(k)js and 8c s.t. �(v)jc(s);:9c

0

s.t. �(g)jc

0

(c(s)).

Note that static ignores ignores \soft" prerequisite violations{ones that can be undone

by inserting additional operators into the plan. Let P (g) denote the necessary prerequisites

of achieving g. Since some prerequisites are only necessary if a condition k matches s, P (g)

is de�ned to be a set of pairs (p; k) where p is a prerequisite and k is a condition under which

p is necessary.

P (g) = f(p; k)j8s; � s.t. �(k)js, and 8c s.t. �(g)jc(s) we have that �(p)jsg

v violates the prerequisites of g if and only if a necessary prerequisite of a goal g is negated

as a necessary e�ect of achieving the goal v.

Proposition 3 2V (g; v; �; k) i� 9(p; k) 2 P (g), 9(e; k) 2 E(v) such that N(e; p; �).

Proof: By the de�nitions of P;E;2V , and N . 2

4.3.1 Computing Necessary Prerequisites

I conjecture that computing the set of necessary prerequisites P is hard in general, but I

will not attempt to prove this. static computes a subset of P denoted by

^

P , and identi�es

prerequisite violations based on

^

P . This section describes how

^

P is computed.

The procedure for computing

^

P takes two arguments: a goal g, and g's ancestor set G.

The procedure calls two Boolean-valued functions: recurs(g;G) which returns true when

g's predicate appears in G, and holds(g;G) which returns true if g is necessarily matched

by the current state given G and the constraints on legal states. The procedure appears in

Table 15.

The computation of necessary prerequisites by static is sound:

Theorem 2

^

P (g; �) � P (g).

Proof: (By induction on the number of calls to

^

P (g;G).) 2

Again, it is di�cult to characterize the relationship between

^

P and P more precisely. As

with

^

E and E, there are cases where

^

P is a strict subset of P , yet the procedure described

performs well in practice.

It follows that computing

^

P enables static to anticipate some (but not all) prerequisite

violations.

Corollary 2 If 9(p; k) 2

^

P (g; �), 9(e; k) 2

^

E(v; �), 9� s.t. N(e; p; �) then 2V (g; v; �; k).

Proof: By Theorem 1, Theorem 2, and Proposition 3. 2
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^

P (g;G) = If recurs(g,G) or holds(g,G) then return �

Else if U(g;G) then return (g;

�

G)

Else return

\

o2ops(g)

^

P

o

(g;G + g)

^

P

o

(g;G) =

[

p2precs(o)

^

P (p;G)

Table 15: The procedures for computing

^

P .

4.3.2 Avoiding Prerequisite Violation

static attempts to avoid prerequisite violations using its knowledge of necessary prereq-

uisites and e�ects. static's strategy for avoiding prerequisite violations is similar to its

strategy for avoiding goal clobbering. Essentially, for every goal pair (v; g) static applies

Corollary 2 to anticipate necessary prerequisite violations and forms goal reordering and

operator preference rules to avoid the violations.

The time and space complexity of detecting and avoiding prerequisite violation are the

same as those for detecting and avoiding goal clobbering. If goal clobbering is analyzed �rst,

the necessary e�ects can be cached and used in analyzing prerequisite violation. In fact, the

necessary prerequisites of a PSG node can be determined by examining the node's failure

condition (see Table 8). Thus, prerequisite violation can be avoided solely on the basis of

information that has already been computed by analyzing failure and goal clobbering.

4.4 Discussion

static's analysis of goal interactions embodies several high-level design choices:

� Forming control rules based on necessary (as opposed to possible) goal interactions.

This design choice was made to emulate prodigy/ebl's strategy for learning from

goal interactions.

� Analyzing interactions between goal pairs as opposed to N-ary goal interactions for some

N greater than two. This design choice was made to keep static's analysis process

tractable. In practice, more involved goal interactions appear to be rare, di�cult to

analyze at compile-time, and expensive to anticipate at run time.

� Searching for \unconditional" goal interactions before conditional ones. In many cases

goal interactions have multiple explanations. This design choice leads static to pre-

fer explanations that do not depend on any facts about the state. As a result, the
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match cost and coverage of static's goal ordering rules are improved as compared

with prodigy/ebl's.

static's analysis can be used to avoid goal interactions, not only in prodigy, but in

subgoal-interleaving or forward-chaining planners as well. In the Schedworld, for example,

static notes that changing the shape of a Part-X destroys the Part-X's surface polish, and

recommends changing shape before polishing. This recommendation is useful independent

of prodigy. Any planner applied to the Schedworld problem space ought to generate plans

that change the shape of a Part-X before polishing it. Thus, unless the planner antici-

pates goal interactions on its own, it will �nd static's analysis of goal interactions helpful.

Work is currently underway to apply static-style PSG analysis to the UCPOP partial-order

planner [43] and to a new subgoal-interleaving variant of prodigy [3].

5 Comparing STATIC and PRODIGY/EBL

This section answers the fundamental questions posed in the introduction by comparing

static and prodigy/ebl along two dimensions:

� Impact: the ability to speed up prodigy.

� Cost: the time required to generate control knowledge.

Surprisingly, static outperforms prodigy/ebl along both dimensions in the problem

spaces studied.

7

This section analyzes static's success, and considers how the relative per-

formance of the two systems will scale up (Section 5.3), noting cases in which prodigy/ebl

will outperform static (Section 5.3.3).

I refer to the prodigy problem solver, running under the guidance of static's control

rules, as prodigy+static and to prodigy, guided by the rules learned by prodigy/ebl,

as prodigy+ebl. The comparisons use CPU-time (on a Sun Sparcstation) as a performance

measure. A more detailed comparison that considers the number of nodes, average match

cost, and number of rules learned by each of the systems appears in [13, chapter 8]

5.1 Impact

static speeds up prodigy considerably in the problem spaces studied (Table 16). In fact,

static's control knowledge is up to three times as e�ective as that learned by prodigy/ebl.

While the exact �gures depend on a number of factors such as prodigy/ebl's training

procedure and the problem distribution used in the experiments, the response to the �rst

fundamental question is clear: static analysis can produce e�ective control knowledge.

7

It is important to note that prodigy/ebl predates static by several years and that static is based

on an in-depth study of prodigy/ebl.
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prodigy prodigy+ebl prodigy+static Ratio

Blocksworld 2182 139 47 2.96

Stripsworld 4347 292 226 1.29

Schedworld 4391 1262 685 1.84

ABworld 869 925 711 1.3

Table 16: Total problem-solving time in CPU seconds. The rightmost column displays the

ratio of prodigy+ebl's time to that of prodigy+static.

How was static able to outperform prodigy/ebl despite static's narrower scope (e.g.

no recursive explanations) and weaker inputs

8

(i.e., no training examples)? This question is

addressed in Section 7.

5.2 Cost of Learning

The time required for learning is an important aspect of a learning method because, when

learning time scales badly with problem size, learning can become prohibitively expensive

on problems of interest. In the problem spaces studied, static was able to generate control

knowledge from twenty-six to four-hundred and sixty times faster than prodigy/ebl (Ta-

ble 17). Thus, in response to the second fundamental question: static analysis can produce

e�ective control knowledge quickly.

prodigy/ebl static Ratio

Blocksworld 762 9.9 77.0

Stripsworld 1057 40.5 26.1

Schedworld 1374 19.4 70.8

ABworld 11,233 24.4 460.4

Table 17: Learning time in CPU seconds.

prodigy/ebl was \trained" by following the learning procedure outlined in Minton's

dissertation. First, prodigy/ebl analyzed a set of randomly generated training problems

(approximately one hundred in each problem space). Second, prodigy/ebl estimated the

utility of the rules learned in the �rst phase using an additional set of randomly generated

problems (roughly twenty-�ve in each space). Table 18 decomposes prodigy/ebl's running

time into three components: time to solve training problems, time to construct proofs based

on the training-problem traces, and time to perform utility evaluation. It is interesting to

note that utility evaluation is quite costly.

8

Both prodigy/ebl and static utilize domain-speci�c axioms to generate control rules. A detailed

comparison shows that the two systems are given roughly the same knowledge but in somewhat di�erent

forms [13, chapter 8].
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Training problems Proofs Utility

Blocksworld 127 313 322

Stripsworld 305 671 81

Schedworld 454 832 88

ABworld 2493 8067 673

Table 18: prodigy/ebl's learning time decomposed into components: time to solve training

problems, time to construct proofs based on the problem-solving trace, and time to perform

utility evaluation.

Why did static run so much faster than prodigy/ebl? static traverses the PSGs

for the problem space, whereas prodigy/ebl traverses prodigy's problem-solving trace

for each of the training problems. Since static's processing consists of several traversals

over its PSGs (construction, labeling, analysis of necessary e�ects, etc.), its running time is

close to linear in the number of nodes in its PSGs. Since prodigy/ebl analyzes prodigy's

traces, its learning time scales with the number of nodes in prodigy's traces. We can

predict, therefore, that the number of trace nodes visited by prodigy/ebl is much larger

than the number of nodes in static's PSGs. Table 19 con�rms this prediction. In fact, the

ratio of trace nodes to PSG nodes is almost perfectly correlated (correlation=0.999) with

the ratio of prodigy/ebl's running time to static's.

Trace nodes PSG nodes Ratio

Blocksworld 4834 86 56.2

Stripsworld 2360 186 12.7

Schedworld 4730 87 54.4

ABworld 143,954 249 578.1

Table 19: PSG nodes versus trace nodes.

It is reasonable to believe, therefore, that static will continue to be signi�cantly faster

than prodigy/eblwhen the ratio between trace size, summed over prodigy/ebl's training

problems, and PSG size remains large. The following factors contribute to keeping PSGs

more compact than problem-solving traces in general:

� PSGs are partially instantiated. Thus, PSG size remains constant as the number of

objects in the problem solver's state increases whereas trace size increases commensu-

rately.

� PSGs do not represent recursions whereas traces do.

� PSGs do not represent backtracking due to goal interactions whereas traces do.

5.3 Scaling Up

static's success is due, in part, to the nature of the problem spaces studied. However,
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with the exception of the ABworld, the problem spaces studied were not selected to high-

light static's performance. In fact, the problem spaces were chosen by Minton to test

prodigy/ebl's e�ectiveness [30], and have been used as benchmarks in a number of experi-

ments both inside and outside the prodigy group [2, 18, 24]. Thus, static has been tested

as rigorously as prodigy/ebl, and other speedup learning programs. Naturally, additional

experiments in more realistic problem spaces are needed to further test the entire gamut

of speedup learning programs. The theoretical analysis of static, below, provides addi-

tional insight into static's performance relative to prodigy/ebl. The analysis considers

the relative running time and scope of the two systems, describing several cases in which

prodigy/ebl is likely to outperform static (Section 5.3.3).

5.3.1 Complexity Analysis

The analysis of static's algorithms in Sections 3.1 and 4 shows that static's running time

is:

� Linear in the number of possible subgoals, each of which forms the root of a dis-

tinct PSG. Note that modifying static to only create the PSGs whose roots are

subgoals that arise in actual problems, will make static's complexity the same as

prodigy/ebl's, on this measure. This simple modi�cation would help static in

problem spaces with large number of possible subgoals, only a few of which are ever

encountered in practice.

� Polynomial in the number of operators relevant to each subgoal. Since proving the

failure of a subgoal requires analyzing all of the relevant operators, prodigy/ebl's

complexity is the same as static's for this measure as well.

� Exponential in the depth of nonrecursive subgoaling in the problem space. Since PSG

expansion is terminated at a literal node when that literal's predicate is identical to the

predicate of one of its ancestors, PSG depth is bounded by the number of predicates in

the problem space. In practice, actual PSG depth is substantially smaller since many

predicates do not appear in a single subgoaling sequence. Since PSG size is exponential

in PSG depth, the depth of nonrecursive subgoaling is the key to the tractability of

static's analysis. static's analysis will be intractable in any problem space that

exhibits deep nonrecursive subgoaling, and nontrivial branching.

5.3.2 Scope

Because it performs static analysis, the range of proofs utilized by static is narrower than

that of prodigy/ebl. static does not analyze state cycles for example, because, in contrast

to prodigy's trace, no unique world state is associated with the PSG's nodes. Thus, merely

detecting potential state cycles would be more di�cult for static than for prodigy/ebl.

static only analyzes binary goal interactions as opposed to N-ary ones. The decision to

analyze binary goal interactions is analogous to static's policy of analyzing only nonrecur-

sive explanations. In both cases additional coverage can be obtained by analyzing a broader
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class of explanations, but static chooses to focus on the narrower class to curtail the costs

of acquiring and utilizing control knowledge. In the problem spaces studied, static acquires

more e�ective control knowledge than prodigy/ebl despite (or, perhaps, due to) static's

narrower scope, but this may not be the case in other problem spaces.

5.3.3 Worst Case Scenarios for STATIC

Two worst-case scenarios have already been mentioned above. First, when a combination of

deep PSGs and shallow problem-solving traces is encountered, static will be signi�cantly

slower than prodigy/ebl. Second, static will fail when the analysis required to curtail

problem solving falls outside its scope. In addition, when proving both failure and success

is recursive as in the Tower of Hanoi, ABworld, or recursive Bin-world [19] problem spaces,

static will form trivial PSGs and refuse to generate much if any control knowledge. To its

credit, static will do so quickly, whereas EBL systems will often generate ine�ective control

knowledge in such spaces, and take a long time to do so [13, 19, 23].

As EBL lore would have it, PE is bound to be intractable when applied to su�ciently

large and complex theories. The analysis in this section shows that when PE is appropri-

ately constrained, as in static, PE will only be intractable, relative to EBL, when potential

nonrecursive subgoaling in the problem space is \deep" and actual problem solving is \shal-

low." In Minton's experiments the opposite was true: nonrecursive subgoaling was shallow

whereas, due to recursion, actual problem solving was relatively deep. Whether such cases

are prevalent in the real world is, ultimately, an empirical question that cannot be prejudged.

6 Related Work

Problem spaces can be viewed as programs. This perspective places static and EBL in the

broader context of program optimization. Much of the classical work on optimizing compil-

ers (see [1]) focuses on optimizing arithmetic operations in programs written in imperative

languages and is not relevant for this reason. Similarly, much of the work on optimizing

database queries is speci�c to relational algebra, and as Smith points out [55], many of the

optimizations of relational algebra queries are obtained automatically as a side e�ect of the

partial instantiation of conjunctive expressions that is performed by search \engines" such

as Prolog and prodigy. Furthermore, whereas relational algebra does not allow recursion,

the optimization of recursive problem spaces is a central issue here.

The remaining literature on program optimization is vast, and cannot be surveyed ex-

haustively here.

9

Instead, I de�ne a space of program optimization systems, position static

in this space, and contrast it with other systems along the di�erent dimensions. I formulate

the dimensions of the space as questions:

� How does the optimizer handle recursion? static engages in partial problem space

analysis, terminating the expansion of the PSG whenever recursion is encountered . In

9

See [41, 57] for extensive surveys.
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contrast, much of the research on partial evaluation is concerned with e�ective policies

for unfolding recursions (e.g. [58]).

� Is the optimizer fully automatic? static is automatic but many optimizers are not

(e.g. [9]).

� What program transformations does the optimizer employ? static employs unfolding

and reordering transformations. In contrast to most Prolog implementations of EBL

(e.g., [21, 52, 56]), which only reorder Horn Clauses, static (and prodigy/ebl)

reorder both Horn clauses and conjuncts.

Conjunct ordering has been studied extensively in the database community (e.g. [60])

and by Smith [54]. By and large, the database work focuses on heuristics that order

conjunctive subgoals based on factors such as domain size and number of instanti-

ated arguments. Additional heuristics are used to decompose queries into subqueries

that can be processed independently. Unlike prodigy/ebl and static, the database

systems do not perform conjunct reordering in concert with unfolding.

� What representation of the program does the optimizer use? static uses Problem

Space Graphs (PSGs). Many optimizers use similar graph representations of programs.

Connection graphs [26], rule/goal graphs [57], and 
ow graphs [38] are some examples.

� What is the complexity of the optimization? static's time and space complexity are

close to linear in the size of its PSGs. The complexities of di�erent optimizers vary

widely.

� Are the optimizations carried out for speci�c inputs? static is run once per problem

space. Many approaches, particularly ones cast as improved proof procedures (e.g.,

[26]) are problem speci�c. Most optimizers that analyze goal interactions are problem

speci�c as well (see Section 6.3).

� Does the optimizer change the semantics of the program? Most optimizers, static

included, use only semantics-preserving transformations.

6.1 STATIC and Traditional PE

Although static utilizes PE intrinsically, it goes beyond standard partial evaluators in

several important ways that are motivated by its task of generating search-control knowledge

for prodigy. First and foremost, static utilizes (its own versions of) prodigy/ebl's

multiple target concepts. The concepts facilitate a novel solution to a major open problem

for PE: deciding when to terminate the unfolding of recursive calls [51, 58]. static avoids

unfolding recursive calls altogether, relying on its \nonstandard" target concepts to yield

e�ective control knowledge despite its strong termination criterion. In addition, static

expresses its output as control rules, which encode reordering transformations that are not
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part of the standard arsenal of PE systems. Finally, static anticipates goal clobbering and

prerequisite violation whereas standard PE systems do not.

In AI work, PE has been used to generate abstraction hierarchies for planning [7] and

to reduce the match cost of rules learned via EBL [47, 29]. Concurrently with static,

Letovsky [28] developed the prope system which generates macro-clauses by partially-

evaluating pure PROLOG programs. Letovsky reports that prope failed to generate the

appropriate search-control knowledge for solving simple algebraic equations. prope is weaker

than static in a number of ways. prope does not generate control rules, does not analyze

failures and goal interactions, and does not use axioms to prune \spurious execution paths"

(cf. Section 3.2.1).

6.2 Analyzing Goal Interactions

Goal interactions occur frequently in programs that attempt to achieve conjunctive goals by

nonmonotonic state transformations. The program transformations used to avoid goal inter-

actions are the reordering transformations used to optimize monotonic inference programs,

but the motivation for applying these transformations is di�erent.

REFLECT Dawson and Siklossy [10] describe reflect, an early system that engaged in

static problem space analysis. reflect ran in two phases: a preprocessing phase in which

conjunctive goals were analyzed and macro-operators were built, and a problem-solving phase

in which reflect engaged in a form of backward-chaining. During its preprocessing phase

reflect analyzed operators to determine which pairs of achievable literals (e.g., (holding

X) and (arm-empty)) were incompatible. This was determined by symbolically backward-

chaining on the operators up to a given depth bound. A graph representation, referred to

as a goal-kernel graph, was constructed in the process. The nodes of the goal-kernel graph

represent sets of states, and its edges represent operators.

Although the actual algorithms employed by reflect and static are di�erent, the spirit

of static is foreshadowed by this early system. In particular, static's PSG is reminiscent

of the goal-kernel graph, both systems analyze successful paths, and both system analyze

pairs of achievable literals. One of the main advances found in static is its theoretically

motivated and well-de�ned criteria for terminating symbolic back-chaining (see Section 3.1),

and particularly its avoidance of recursion. Another advance is the formal speci�cation and

computation of necessary e�ects and prerequisites to facilitate goal reordering (Section 4).

Finally, unlike static, reflect does not reorder subgoals to avoid goal interactions.

ALPINE Knoblock's alpine [24] generates hierarchies of abstract problem spaces by stat-

ically analyzing goal interactions. alpine maps the problem space de�nition to a graph

representation in which a node is a literal, and an edge from one literal to another means

that the �rst literal can potentially interact with the former. alpine's algorithm guarantees

that if two literals potentially interact in the problem space, then the algorithm will place

an edge between them. The algorithm is conservative in that the algorithm will sometimes
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include edges between literals that do not interact. Knoblock's guarantees on the algorithm's

behavior are analogous to my own: I compute a subset of the necessary goal interactions,

and Knoblock computes a superset of the possible goal interactions.

Universal Plans Schoppers [50] derives \universal plans" from problem-space descrip-

tions. Universal plans are, essentially, sets of rules that tell an agent what to do in any given

state. Schoppers partially evaluates problem-space de�nitions to derive universal plans.

Like static, Schoppers only considers pairwise goal interactions. Unlike static, he ignores

the issues of recursion and binding-analysis for partially instantiated goals by considering

tightly circumscribed domains such as the 3-block Blocksworld where recursion is bounded

and variables are fully instantiated. Instead, Schoppers focuses on di�erent issues including

conditional e�ects and incorrect world models.

6.3 Problem-Speci�c Methods

Whereas static analyzes the problem space de�nition, some algorithms analyze individual

problems. Whereas static is only run once per problem space, the algorithms described

below are run anew for each problem. Since the algorithms use problem-speci�c information,

they are often able to make strong complexity and completeness guarantees presenting a

tradeo� between problem-space analysis and problem-speci�c analysis. This tradeo� has

not been studied systematically.

Chapman's tweak [4] utilizes an algorithm for determining the necessary/possible e�ects

of a partially speci�ed plan. The input to the algorithm is an initial state and the plan. The

output of the algorithm is a list of the plan's necessary (occurring in all completions of the

plan) and possible (occurring in some completion of the plan) e�ects. The algorithm runs

in time that is polynomial in the number of steps in the plan. Cheng and Irani [5] describe

an algorithm that, given an initial state and a goal conjunction, computes a partial order

on the subgoals in the goal conjunction, which obviates backtracking across subgoals. The

algorithm runs in O(n

3

) time where n is the number of subgoals. Ryu and Irani [49] describe

an algorithm that relies on training examples to analyze goal interactions. The algorithm

was tested in prodigy's benchmark problem spaces and shown to generate goal-ordering

rules that are at least as e�ective as static's rules. Finally, Knoblock's alpine, which was

discussed above, performs some initial preprocessing of the problem space de�nition, but

then develops considerably stronger constraints on possible goal interactions by analyzing

individual problems.

In the context of logic programming, optimization is often implemented via improved

proof procedures, some of which use graph representations of their rule sets similar to

static's PSGs. Connection graph proof procedures, for example, rely on graphs whose

nodes represent rules or facts and whose edges represent the most general uni�ers between

the adjacent nodes [26]. Although some of the optimizations implemented by connection

graph proof procedures are akin to static's, the proof procedures are query-speci�c, yield-

ing very di�erent graph-traversal algorithms. In addition, the proof procedures do not seek
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to anticipate goal interactions, a central focus for static.

7 Design Lessons for EBL Systems

The previous section positioned static in the space of mechanisms for optimizing programs.

This section abstracts away from details of static and identi�es general lessons that can be

learned from the static case study.

There are many di�erent ways to prove that a training example is subsumed by a target

concept. Each proof gives rise to a di�erent su�cient condition for the concept, and some of

the conditions are considerably more general than others. Since EBL merely computes the

weakest preconditions associated with a particular proof, it is by no means guaranteed to

�nd the most general, or logically weakest, su�cient condition. As a result, EBL frequently

derives overly-speci�c control knowledge [16].

A solution to this problem, embodied by both prodigy/ebl and static, is to increase

the range of proofs, or analyses, available to the learning module by providing it with a

meta-level theory containing multiple target concepts such as failure, success and goal in-

teraction [29]. Increasing the range of proofs available to the learning module highlights the

problem of choosing an appropriate analysis of the problem solver's behavior. prodigy/ebl

makes this choice by generating a large number of control rules and heuristically evaluat-

ing their \utility" on a set of training problems. In contrast, static performs no post hoc

utility evaluation. Instead, static embodies a number of design principles that enable it to

generate and select superior proofs a priori.

These principles suggest general lessons for the design of EBL systems:

� Training examples can pinpoint learning opportunities, but should not determine EBL's

explanations. In contrast to existing EBL systems, what EBL explains and how it is

explained should be determined separately [44].

� A partial meta-level theory encoding su�cient (or necessary) conditions for EBL's tar-

get concepts is often preferable to a stronger theory, specifying necessary and su�cient

conditions for the concepts, but resulting in more complex explanations [16].

� Nonrecursive explanations are often preferable to recursive ones [15].

� Typically, EBL's proofs correspond to and trees but, often, a case analysis involving

several examples (corresponding to an and/or tree), is required to identify the most

general su�cient condition for the target concept [16].

� The Problem Space Graph (PSG) is a compact representation that facilitates the im-

plementation of the above ideas. In particular, the PSG facilitates the kind of logical

simpli�cation necessary to increase the generality and reduce the match cost of EBL-

style control knowledge.

Each principle is illustrated by speci�c examples below.
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7.1 The Pitfalls of Training Examples

Most existing EBL systems generate explanations by directly translating a trace of the

problem solver's behavior, when solving a training problem, into a logical proof [27, 33, 35,

47, 52, 56]. As a result, the problem solver's behavior on a training problem determines

not only what EBL will explain but also how the explanation is constructed, yielding overly-

speci�c control knowledge in many cases. The fundamental point of this section is that these

decisions should be made independently.

a b c

Initial State

Goal: (and (holding c)(on a b))

Figure 3: A Blocksworld problem that results in goal clobbering.

Consider the following Blocksworld example. When presented with the training problem

in Figure 3, prodigy/ebl learns the overly-speci�c rule in Table 20. prodigy/ebl explains

how achieving the holding subgoal, followed by the on subgoal, results in a goal interaction.

prodigy/ebl's explanation is based on the particular plan prodigy used in this training

problem. prodigy/ebl shows that the plan found by prodigy results in a goal interaction.

To prove that the interaction is necessary (in the sense of Section 4), prodigy/ebl analyzes

other attempts to achieve (holding c), given the block con�guration in its training problem.

prodigy/ebl is able to prove that all other attempts to achieve (holding c) fail, and the

interaction observed in the training problem is necessary.

(EBL-ON-BEFORE-HOLDING

(if

(and (current-node Node)

(candidate-goal Node (holding Block-X))

(candidate-goal Node (on Block-Y Block-Z))

*** (known Node (on-table Block-X))

*** (known Node (on-table Block-Y))

(then (prefer goal (on Block-Y Block-Z) (holding Block-X))))

Table 20: A (simpli�ed version of) the control rule learned by prodigy/ebl based on the

problem in Table 3. The ``***'' denote extraneous conditions that make the rule overly-

speci�c and increase its match cost.

Unfortunately, the second part of the explanation refers to the fact that blocks a and c are

on the table. Since these features of the training problem are mentioned in prodigy/ebl's
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explanation, they are \mechanically" incorporated into the antecedent of prodigy/ebl's

control rule (Table 20). Yet, the location of the two blocks is incidental to the goal inter-

action that occurred. The goal interaction occurs regardless of the blocks' location. Since

prodigy/ebl is focused on the particular block con�guration encountered in its training

problem, it overlooks this fact and includes two extraneous conditions in the antecedent of

its control rule.

(STATIC-ON-BEFORE-HOLDING

(if (and (current-node Node)

(candidate-goal Node (holding Block-X))

(candidate-goal Node (on Block-Y Block-Z))))

(then (prefer goal (on Block-Y Block-Z) (holding Block-X))))

Table 21: static's corresponding control rule.

In contrast to prodigy/ebl, static discovers that all plans for achieving on clobber

the holding subgoal. As described in Section 4, static computes (a subset of) the neces-

sary e�ects of achieving the on subgoal, and establishes that one of the necessary e�ects is

(arm-empty), which clobbers the (holding c) subgoal. Relying on this analysis, static

is able to acquire the more general rule in Table 21. static's analysis is more global than

prodigy/ebl's because static (implicitly) considers all plans for achieving on whereas

prodigy/ebl analyzes only the plans that would succeed in prodigy/ebl's training prob-

lem, conjoining the conditions under which other plans fail to the antecedent of its control

rule.

The above example demonstrates the bene�ts of a looser coupling between explanations

and training examples (cf. [31]). Whereas prodigy/ebl's explanations are determined by its

training examples, static's explanations are based on a global analysis of the partially evalu-

ated problem-space de�nition, which often yields better control rules. The dynamic system,

which is based on this design principle, utilizes both training problems and problem-space

analysis to generate prodigy control rules [44]. Like prodigy/ebl, dynamic utilizes train-

ing problems to pinpoint learning opportunities but, like static, dynamic generates control

rules via PSG analysis. Thus, dynamic combines the focus and distribution-sensitivity of

EBL with the global analysis performed by static. Given the training problem in Figure 3,

dynamic is able to generate the maximally general control rule in Table 21.

7.2 Meta-Level Theory Design

Whether training examples are used or not, the generality of acquired control knowledge

depends on the precise encoding of EBL's theory.

10

The theory used by prodigy/ebl to

10

This section is based on joint work with Steve Minton, which is described in [16].
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construct explanations has two components: the domain theory and the meta-level theory.

The domain theory consists of the operators and inference rules provided by the user. The

meta-level theory consists of the detailed de�nitions of the target concepts (e.g., success,

failure, and goal-interference) speci�ed by \EBL engineers." Since the point of automatically

learning control knowledge is to relieve the user from having to consider control issues when

specifying a domain, it is unreasonable to require a naive user to write domain operators

so that prodigy/ebl will learn e�ective control rules. The meta-level theory, on the other

hand, is a domain-independent theory, crafted by an \EBL engineer." It is not used by

the problem solver, and does not change from problem space to problem space. Thus, the

cost of designing the theory can be amortized over the life-time of the learning module. For

this reason, it is reasonable to engineer the meta-level theory in order to improve EBL's

performance.

Although it may sound obvious, engineering the meta-level theory so that the \right" ex-

planations are produced is one of the least-appreciated, but most critical, aspects of building

an EBL system [32, 31, 28]. The following informal design principle can be used to guide this

process: design a theory that \proves as little as possible." The more compact the proof, the

less likely it is that irrelevant conditions will \creep" into its weakest preconditions. This

principle has two corollaries. Instead of encoding the full necessary and su�cient conditions

for each target concept of interest, develop partial concept speci�cations that:

1. Encode simple su�cient (but not necessary) conditions.

For example, static's theory of failure, de�ned implicitly by the algorithm in Table 8,

merely analyzes failures due to goal-cycles and unachievable preconditions, and ignores

more subtle failures that are analyzed by prodigy/ebl (e.g. state-loops). Likewise,

as pointed out in Section 4, static only analyzes binary goal interactions, ignoring

more complex N-ary goal interactions. In both cases static's analysis does not cover

every possible instance of its target concepts. Instead, static focuses on su�cient

conditions for its concepts that yield compact proofs. Instances of this idea appear in

prodigy/ebl as well.

2. Encode simple necessary (but not su�cient) conditions.

Consider, for example, the theory prodigy/ebl uses to learn from state-loops. A

state-loop occurs when the problem solver �nds itself in a state that previously oc-

curred. This is considered a failure point, since if a solution exists, there must exist

a path to the solution that does not involve a state-loop. Thus, prodigy backtracks

whenever it encounters a state-loop. prodigy/ebl learns to avoid state-loops by prov-

ing they will necessarily occur, given a certain control choice, computing the weakest

preconditions of that proof, and avoiding that choice when the weakest preconditions

are matched in future problem solving. Unfortunately, due to the complexity of this

proof, prodigy/ebl often generates overly-speci�c control rules when analyzing state-

loops.

static's analysis is much simpler. Since every operator application changes prodigy's

state, state-loops can only occur as a result of goal clobbering. Thus, goal clobbering is
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a necessary condition for state-loops. static ignores state-loops and merely attempts

to avoid goal clobbering. When it succeeds, state-loops are avoided \for free." Thus,

instead of analyzing state-loops, static analyzes a necessary condition for state-loops,

which yields superior control knowledge. See Appendix A for a striking illustration

of the e�ectiveness of this approach. In general, avoiding a necessary condition for a

phenomenon su�ces to eliminate the phenomenon altogether.

Encoding the meta-level theory in this manner trades completeness for e�ectiveness. static

seeks to generate e�ective control knowledge in frequently occurring, easily-handled cases,

while disregarding others. Future work may reveal methods for deriving compact proofs

based on complete encodings of various target concepts but, in the meantime, static prefers

not to \bite o� more of the target concept than it can chew."

7.3 Nonrecursive Explanations

Once a meta-level theory is in place, a learning system must decide which target concept to

learn from in analyzing a particular training example (or a particular PSG node). static au-

tomatically enforces the following criterion: learn only from the target concepts that yield non-

recursive proofs.

11

This design choice is motivated, in part, by the structural theory of EBL

which shows that learning from recursive explanations is problematic due to the recursion-

depth-speci�city and worst-case exponential match cost of \recursive control rules" [15] and,

in part, by the di�culty of deciding when to terminate the unfolding of recursion during

partial evaluation (Section 2.3).

In the presence of multiple target concepts such as success and failure, static's selec-

tive learning criterion turns out to be particularly e�ective. In the Blocksworld, for ex-

ample, clearing a block is a recursive operation. Clearing the bottom block of an N-block

tower requires N-1 calls to the unstack operator. As a result, when learning from suc-

cess, prodigy/ebl forms distinct rules for the two-block tower, the three-block tower, and

so on. Each rule is speci�c to towers of a given height. This is an instance of the infa-

mous generalization-to-N problem [6, 45, 53]. As the state size increases, and increasingly

taller towers are possible, more rules are necessary for guiding prodigy to choose unstack.

static avoids the generalization-to-N problem by generating control rules based on nonre-

cursive proofs. In fact, utilizing �ve nonrecursive failure proofs, static is able to generate all

the control rules necessary to make appropriate operator and bindings choices in Blocksworld

problems of arbitrary size. The nonrecursive proofs yield rules that are compact, general,

and cheap-to-match.

Nonrecursive proofs are not guaranteed to yield e�ective rules. Motivated by static,

Gratch and DeJong [19] modi�ed prodigy/ebl to learn only nonrecursive rules and to omit

utility evaluation. This variant of prodigy/ebl (called nonrec) performed quite poorly

in their experiments, demonstrating that it is quite possible for an EBL system to learn an

11

See [15] for a precise de�nition of the term \nonrecursive proof."
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ine�ective set of nonrecursive rules.

12

Gratch and DeJong's experiment demonstrates the

value of the other design ideas, beyond learning from nonrecursive explanations, which are

incorporated into static.

7.4 Logical Simpli�cation

One important advantage static has over nonrec, and over EBL systems is general, is

its ability to use its PSG representation to facilitate the logical simpli�cation of the control

knowledge it generates. EBL can be regarded as incrementally converting the target-concept

de�nition into a DNF expression where each disjunct is a su�cient condition learned from a

training example. \Pure" EBL, as described in [11, 36], does not attempt to logically simplify

the su�cient conditions it generates, a process that typically requires combining multiple

su�cient conditions or disjuncts. For this reason, pure EBL frequently derives overly-speci�c

control knowledge [15, 28, 29].

Consider a simple schematic example taken from [16]. Suppose EBL learns two conditions

of the form:

C if (P ^Q)

C if (P ^

�

Q)).

13

That is, there is a proof of the target concept whose weakest preconditions are (P ^Q), and

a proof whose weakest preconditions are (P ^

�

Q)). Since either Q or

�

Q is always true, a

more general condition holds. Namely:

C if P

However, pure EBL will not identify this condition.

To address this and related problems, EBL systems such as prodigy/ebl include heuris-

tic simpli�cation methods that attempt to improve the generality of EBL's conditions via

truth-preserving transformations [29, 47]. Unfortunately, these methods can only work if

EBL encounters the appropriate training problems. In the above example, if EBL never

learns the second su�cient condition, it is \stuck" with an overly-speci�c condition. Often,

a case analysis involving several examples is required to identify the most general su�cient

condition for the target concept, and there is no guarantee that EBL will encounter these

examples.

To illustrate this point, consider the schematic PSG shown in Figure 4. Suppose EBL is

trying to prove that the goal g fails, and it encounters a training problem in which operator

O

1

fails because its precondition P

1

is not true, and O

2

fails because P

2

is not true. EBL

will then learn that g fails if P

1

^ P

2

. In contrast, static computes the full (nonrecursive)

conditions under which the operators fail. By propagating this information up the PSG,

and simplifying the failure condition generated at each node, static is able to perform

12

It interesting to note, though, that when nonrec was allowed to carry out utility evaluation it actually

outperformed prodigy/ebl in two of the three problem spaces in which the systems were compared. Since

prodigy/ebl (and consequently nonrec) generates large numbers of rules, relying on its utility evaluation

module to prune ine�ective ones, it may be argued that this is a more appropriate comparison.

13

�

Q denotes the negation of Q.
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simpli�cations that EBL may miss. For instance, static realizes that operator O

2

will fail

even if P

2

is true. Thus,

�

P

1

is su�cient to prove that g fails.

Since static performs a more complete problem-space analysis, that is independent of

training examples, it has an advantage over EBL. Whereas EBL's proof trees are typically

and trees, the proof trees that facilitate logical simpli�cation are and/or trees of the

sort analyzed by static in considering multiple backward-chaining paths through the PSG.

Thus, static has an advantage in performing the logical simpli�cations that increase the

generality of control rules and, typically, reduce their match cost. Moreover, the PSG repre-

sentation preserves the tree structure of the problem space, facilitating local simpli�cations.

This structure is lost when EBL attempts to simplify the DNF expression it is forming by

\compressing" multiple disjuncts.

static: fails(g) if

�

P

1

.

EBL: fails(g) if

�

P

2

and

�

P

1

.

g

P1 P2 P3 P1

O3

O2 O1fails(O2) if P1 or P2.
−        −

− − −
fails(g) if  (P1 or P2) and P1.
simplifies to: fails(g) if P1.−

fails(O1) if P1 or (P3 and P3).
−                        −

simplifies to: fails(O1) if P1.
−

P3
−

Figure 4: A Schematic PSG illustrating how static is able to derive more general control

rules than EBL by performing logical simpli�cation as it traverses the PSG.

7.5 The Compactness of PSGs

Beyond preserving the and/or structure of the problem space, which facilitates logical

simpli�cation, the tree-structured PSG representation is often substantially smaller than the

full DNF expansion of a target-concept de�nition for concepts such as success or failure.

14

Consider a simple example where n operators can potentially achieve some goal g, and

each operator has p unachievable preconditions. In this case, the full DNF expansion of

14

Furthermore, unlike standard EBL systems, static analysis of PSGs obviates the expensive process of

repeatedly invoking the problem solver to solve training problems.
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the failure target concept contains p

n

terms, one term for each distinct combination of

unsatis�ed preconditions under which the goal g fails. The PSG, in contrast, is exponentially

smaller containing only O(np) nodes. Suppose further that the operators all share a common

precondition. static will detect this at the PSG node for g, and note that when this

precondition cannot be achieved, g cannot be achieved. The number of training examples

required for EBL, aided by simpli�cation, to reach the same conclusion is O(p

n

) in the worst

case.

8 Conclusion

The introduction posed two questions: can static analysis produce e�ective control knowl-

edge? And can it do so in reasonable time? The static case study has answered both

questions a�rmatively. When tested in each of prodigy/ebl's benchmark problem spaces,

static generated search-control knowledge that was up to three times as e�ective as

prodigy/ebl's, and did so from twenty-six to seventy-seven times faster. As with any

case study, these experimental results are existentially quanti�ed: a PE-based static ana-

lyzer, such as static, will e�ciently generate e�ective control knowledge in some but not

all problem spaces, for some but not all problem solvers. With this caveat in place, the

results support the structural thesis, formulated and argued for in [15]. The thesis states

that there is a correspondence between the PSG representation and the proofs used by EBL

systems to generate search-control knowledge. As a result, automatic PSG analysis can be

used to compute the weakest preconditions of the proofs and to discriminate between recursive

and nonrecursive proofs. Furthermore, the static case study demonstrates the e�ectiveness

of PSG analysis as a method of generating search-control knowledge for general problem

solvers.

Finally, note that PSG analysis need not be completely static. As dynamic [44] demon-

strates, training problems can be used to focus the analysis. Indeed, dynamic is just one

example of the gamut of hybrid PE/EBL systems. Such systems can tailor their analysis

to the problem distribution encountered, but still bene�t from the PSG representation and

associated analysis techniques.
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A Sample Control Rules

This appendix exhibits a striking example of the di�erences which can be found between

prodigy/ebl's rules and static's rules.

15

prodigy/ebl learned the following rule by

analyzing a state-loop and retained it even after utility evaluation. static learned the

corresponding rule by analyzing necessary goal clobbering.

(EBL-REJECT-HOLDING

(if (and (current-node R169)

(candidate-goal R169 (holding R167))

(known R169 (on-table R167))

(is-top-level-goal R169 (on R166 R165))

(known R169 (on-table R166))

(not-equal R166 R167)

(forall (R164)

(known R169 (object R164))

(or (and (not-equal R164 R167)

(known R169 (not (holding R164))))

(and (is-equal R167 R164)

(forall (R163)

(known R169 (object R163))

(or (is-equal R163 R164)

(and (known R169 (on-table R163))

<<< start back on the left <<<<<

(or (and (is-equal R163 R165)

(forall (R162)

(known R169 (object R162))

(or (and (not-equal R162 R166)

(or (known R169 (not (holding R162)))

(is-equal R162 R164)))

(and (is-equal R166 R162)

(forall (R161)

(known R169 (object R161))

(or (is-equal R161 R162)

(is-equal R161 R164)

(is-equal R161 R165)))))))

(is-equal R163 R166))))))))))

(then (reject goal (holding R167))))

15

In many cases, prodigy/ebl and static generate similar if not identical rules.



REFERENCES 41

static's corresponding rule, learned by analyzing goal clobbering:

(STATIC-PREFER-ON

(if (and (current-node V95)

(candidate-goal V95 (on V2 V3))

(candidate-goal V95 (holding V49))))

(then (prefer goal (on V2 V3) (holding V49))))
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