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Abstract

Network I/O performance has not kept pace with processor performance in modern multi-
processor workstations and servers. This paper studies this problem in the context of two such
systems: a 5-processor DEC SRC Firefly and a 20-processor Sequent Symmetry. We devise an
analytic model of network I/O. We parameterize it using measurements of the two systems. We
use it to study the performance of these systems as they currently exist, and to explore certain
feasible modifications that can enhance performance. Qur experiments indicate that network
controllers designed for uniprocessors may not be suitable for multiprocessor configurations.
They also suggest that a high performance I/O bus can significantly improve performance for
larger packets. Finally, they lead us to conclude that unlike uniprocessors, the performance im-
provement due to simpler transport protocols is comparatively small in multiprocessors. These
results arise more from the increased parallelism that is available with multiprocessors than just
from the increased processing power.
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Abstract

Network I/O performance has not kept pace with processor performance in modern multiprocessor
workstations and servers. This paper studies this problem in the context of two such systems: a 3-
processor DEC SRC TFirefly and a 20-processor Sequent Symmetry. We devise an analytic model of
network I/O. We parameterize it using measurements of the two systems. We use it to study the
performance of these systems as they currently exist, and to explore certain feasible modifications that
can enhance performance. Our experiments indicate that network controllers designed for uniprocessors
may not be suitable for multiprocessor configurations. They also suggest that a high performance 1/O
bus can significantly improve performance for larger packets. Finally, they lead us to conclude that
unlike uniprocessors, the performance improvement due to simpler transport protocols is comparatively
small in multiprocessors. These results arise more from the increased parallelism that is available with
multiprocessors than just from the increased processing power.

1 Introduction

Multiprocessors are gaining widespread use as workstations, file servers and timesharing machines. The
performance of network I/O has not kept pace with the capabilities of these systems. Host software and
controller hardware are often similar to those found in uniprocessor configurations. In this paper we explore
the performance of existing software and hardware architectures and we predict the behavior of certain
modifications to the I/O subsystem.

We specifically study the performance of network I/O in two shared-memory multiprocessors: the DEC
SRC Firefly [11] and the Sequent Symmetry [7]. We examine the effect on overall performance of host
hardware and software as well as the controller-host interface. This level of abstraction allows our results to

be applicable to a variety of host, operating system, and network combinations.
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Previous work [2, 1] on uniprocessors has indicated that software overhead and controller latency are
significant in limiting network performance. We wish to study the relative effects of these factors in mul-
tiprocessor systems. We have characterized the essential hardware and software components by measuring
service demands for the various resources in the two systems mentioned above. The measurement data is
used to parameterize a queuing model. We use this model to derive some performance bounds, for example,
the maximum rates of network traffic that can be accommodated in these systems, and to predict the effects
of changes to the protocol processing overhead, the I/O bus bandwidth, and the controller-host interface.
These changes are feasible given most modern operating systems and network controllers.

Analytic queuing models are ideal tools for such a study for several reasons. First, they are relatively
efficient and accurate; these models are easily defined, parameterized and evaluated. Second, modeling is
cheaper and easier than experimentation for exploring a design space; some of the proposed design changes
are difficult to perform. Finally, using a model enhances our understanding and intuition. Analytic models
have been used in the past to study network-related performance. For example, Lazowska et al. study the
performance of diskless workstations connected by an Ethernet [5], concentrating on the effects of file system
parameters such as block size on the performance of remote file systems. Meister, Janson and Svobodova
report on the performance of file transfer in local area networks; their paper investigates the performance
impact of different implementations of link level protocols on file transfer [8]. Garodia and Vernon assess the
effect of network interface units (NIUs) on inter-machine communication [4]; an NIU is capable of off-loading
protocol processing from the host and the emphasis of the paper is to study the effect of partitioning the
protocol overhead between the host and the NIU.

This paper is organized as follows. Section 2 describes the analytic queuing model and discusses the
measurement of the service demands. Section 3 provides a qualitative study of the baseline systems with
a view towards capturing some general principles. Section 4 presents a quantitative analysis and studies
the effect of the design changes. Section 5 summarizes our main conclusions. The appendix presents the

derivation of a queuing network equation that was developed to handle this particular modeling problem.

2 The Systems and the Performance Model

Our study focuses on the DEC SRC Firefly and the Sequent Symmetry. These systems are representative
of current shared-memory multiprocessors. In addition they are readily available to us for measurement.
We first give a brief functional description of the two systems. Then we describe the components of our

performance model. In Section 3, we study some details of the systems, using the model as a framework.



2.1 An Overview of the Systems

The DEC SRC Firefly is a small-scale multiprocessor with 5 processors: 4 CVAX processors and a single
MicroVAX-II. Each CVAX is rated at around 3 MIPS and the MicroVAX-II is rated at 1 MIPS. In the
measured environment a cluster of 10 Fireflies are connected by a 10 Mb/sec Ethernet. The Firefly hosts the
Topaz operating system. As in many multiprocessor systems, lightweight processes called threads provide
concurrency. Remote procedure call (RPC) is the predominant mode of interprocess communication. Net-
work I/O is performed when threads demand or provide services (such as file service) via RPC to threads
on other Fireflies.

To transmit a packet, a thread must first acquire a network buffer for its data. Topaz networking
software is structured so that only a single buffer is allocated independent of the size of the packet to be
sent. Buffers are shared between user and kernel to minimize copying of data between the two [evels. Network
buffer acquisition is done under a lock to provide mutual exclusion among multiple threads that might be
simultaneously trying to send packets. After the buffer is acquired, the thread performs some amount of
protocol processing and copies the data into the buffer. The software processing is composed of three parts.
First, there is a marshaling cost; this varies with the amount of data to be marshaled. Second, time is spent
initializing protocol-specific headers and performing checksums. Third, the packet must be prepared for
queuing on the controller. This work includes checking the argument validity, locating the correct network
link, and arranging for the packet buffer to be reclaimed. Typically there are sufficient processors in the
measured system that threads do not have to delay contending for processors.

The thread then places the network buffer in a shared-memory queue for the network controller module
and activates the network controller to begin the network transfer. Access to the network controller is
mediated by a lock to ensure mutual exclusion among threads. The controller uses DMA (direct memory
access} to move the data over the I/O bus into a silo or staging area from which the data is sent out when
the network is free.

Similarly, when a packet is received, the controller DM As the data from the network to a shared queue of
network buffers. The host then makes this data available to the destination thread. This involves additional
computational overhead. The shared queue of transmit buffers is distinct from the queue of receive buffers.

The Sequent Symmetry is a shared-memory multiprocessor with 20 Intel 1386 processors. Each processor
is rated at about 3 MIPS. The Sequent Symmetry supports the Dynix operating system, a derivative of
UNIX. Interprocess communication is provided using the standard UNIX socket interface. In the measured

environment there is a single Symmetry that remotely mounts files from other machines connected to an



Ethernet. Most network I/O in our system is caused by these remote file accesses.

In general, the message passing mechanism on the Sequent is similar to that of the Firefly described
above. However, some of the specifics differ. First, Dynix allocates buffer memory in two sizes: small fixed
sized parcels of memory (mbufs in the parlance) are allocated if the packet is small. Larger packets are
allocated in bigger units (called clusters) that can accommodate a maximal Ethernet packet. When the
larger size clusters are unavailable, however, medium and large packets will require multiple allocations of
mbufs. Multiple visits to the lock that protects the memory pool are required to allocate multiple mbufs.

Second, network buffers are not shared between user and kernel; data must be copied between the two levels.

2.2 The Performance Model

To study these systems, both as they currently exist and under various modifications, we model them as
queuing networks. The key components to be specified for a queuing model are the service centers, the
service demands at these centers, and the workload classes and intensities. The service centers represent
the hardware and software resources that we wish to model. The workload classes and intensities describe
the types and rates of requests. The service demands represent the average amount of service that each
request needs at each service center. The choice of the service centers and the workloads dictate to a large
extent the type of modifications that can be studied with the model. After the model is specified it is solved
for different values of the parameters. Each solution yields predicted residence times (i.e., the time spent
queuing for the service plus the time spent in service) at each center, and thus the overall performance of

the system.

2.2.1 The Service Centers

Figure 1 shows the queuing models we used for the Firefly and the Sequent. The center marked duffer lock
is the lock that the thread acquires before it can obtain a network buffer. The center marked controller
lock is the lock that the thread must acquire before the packet buffer(s) can be enqueued and the controller
activated. The service time at this center is determined primarily by the interface supported by the controller.
This makes it convenient to study the effects of host-controller interface modifications. In general, the total
amount of time spent in service at these centers depends on the size of the packets since the number of
buffers needed may vary.

We use a simple delay center to represent software processing overhead. Protocol header processing,
copying, checksumming, and bookkeeping are the major contributors to this cost. Here again we have to

model differing service requirements for various network packet sizes; in this case to account for certain
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Figure 1: Queuing model

aspects of software processing like checksumming that are sensitive to packet size. An implicit assumption
we make in this characterization is that there are sufficient processors in the system so that threads do not
have to contend for processors. Constraints on the number of available processors could cause the software
overhead to be more significant than what the model predicts.

To model the DMA operation between the network buffer memory and the network controller, we use a
queuing center to represent the I/O bus that needs to be acquired and held for the duration of the transfer.
This characterization is not strictly correct for the Sequent bus. Unlike the I/O bus on the Firefly, the
Sequent bus allows split transactions (i.e., following a read or write request, the bus is available for other
transactions even before the the reply to the request is ready). However, to sustain a bandwidth of 10
Mbits/sec on the Ethernet, the 53 Mbytes/sec bus needs to use only one out of every 50 cycles. This implies
that, effectively, there is no queuing at the bus in any case.

There are certain aspects of network I/O that our model does not account for. First, we do not explicitly
model received packets. Received packets cause contention at the buffer lock and at the I/O bus. This can
be accounted for by inflating the service requirements for the transmitted packets at these centers. The
controllers we consider have separate send and receive queues, and thus received packets and transmitted
packets will not contend for the same queue. Second, typical network controllers introduce some delay in
getting packets from their staging area to the link, even when the network is unloaded. This delay could be
a function of the packet size or it could be a constant if the controller uses pipelining. Qur model does not
accoﬁnt for this delay nor does it account for the delay in accessing the network which could vary considerably
depending on the medium access protocol. For instance, for FDDI networks each node added to the ring

causes additional delay in passing the token and hence in sending out data.
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2.2.2 Workload Characterization

The “customers” in the model are the network packets that make their way from the address space of a
thread to the network controller. En route, they encounter various delays at the centers because of service
time and contention. We represent the workload as a transaction workload; i.e., we specify the rate at which
network packets are generated on a machine. Since the size of the packet affects the requirements at each
center we use multiple customer classes, with each class representing a particular packet size.

The distribution of packet sizes is obtained by measurement; system performance for various rates of
packet generation is then studied given this distribution. Measurements of packet size in the two systems
indicate the most frequent packet sizes are in four distinct ranges. Correspondingly, we chose four packet
sizes—74, 150, 650 and 1514 bytes—as representative of these ranges, giving us an open model with four
classes. The arrival rate of a class represents the generation rate of packets of the corresponding size.

The packet was chosen as the unit of work, rather than a high level request like an RPC call or a
socket send operation, because these are inherently programming environment specific and cannot easily be
generalized across various operating systems. Given the performance measures in terms of packet residence
times it is possible to study a specific communication paradigm such as RPC.

We measured the relative frequencies of the packet size ranges of interest in the two systems. In our

model evaluations, we keep the arrival rates for the various classes in the same fixed ratios as those measured.

2.2.3 Service Demands

Service demands specify the service requirements of a customer of each class at each service center. Typical
queuing models require only the aggregate service demand (summed over all visits) at each center. However,
our model has a transaction workload with four customer classes (one for each packet size) with different
service requirements per visit at several of the centers, which are scheduled FCFS. Thus, the standard
queuing model solution is not applicable [6]. A modified approach is required to approximately evaluate the
model and is presented in the appendix. This solution technique requires the per-visit service requirement
and the number of visits at each center. For the special case when the per-visit service requirement at each
center is identi.cal for all classes, this reduces to the standard solution for a multi-class open model with
FCFS scheduling.

To obtain the service demands for the Firefly, we made RPC calls with various packet sizes. We instru-
mented the kernel as well as the user level RPC system to obtain the elapsed time at the various centers: the

buffer lock, the network I/O procedures, and controller queue lock. The Firefly network software is struc-



Service Demand
Packet Size | Buffer Lock | Software Overhead | Controller Lock | I/O Bus
(bytes)
74 46 495 537 70
150 46 591 537 109
650 46 734 537 368
1514 46 1061 537 815

Table 1: Firefly service demands (in pseconds)

Service Demand
Packet Size | Buffer Lock | Software Overhead | Controller Lock | I/O Bus
(bytes)
74 34 793 311 3
150 34 846 311 6
650 54 993 311 24
1514 54 1299 311 57

Table 2: Sequent service demands (in pseconds)

tured so that each packet makes one visit to each of these service centers per transmission. Determining the
service requirements for the Firefly I/O bus by direct measurement proved more difficult. Instead, we used
previously published figures [9] and interpolated for packet sizes of interest. The service demands for the
Firefly are shown in Table 1.

Table 2 summarizes the service demands for the Sequent. To arrive at the service demands we made
socket calls of various sizes. We modified the kernel to measure the elapsed times, the number of times
mbufs were requested, and the number of times clusters were requested for each packet size. We measured
the buffer lock overhead per visit to be 17 useconds for mbufs and 37 pseconds for the larger clusters. In
the model we do not consider the case when a packet’s data does not fit into one mbuf and the system has
run out of clusters. Since a single mbuf is allocated for the protocol header independent of packet size, the
service demand is 34 (17 + 17) useconds for small packets, and 54 (17 + 37) useconds for large packets. As
in the case of the Firefly, the time spent on the bus was estimated from the manufacturer’s specifications for

the bus.

2.2.4 Summary

This paper concerns system design. The model is used simply as a means to that end—as a vehicle for
structuring our study of the system, and for extrapolating our understanding to configurations that cannot

be measured directly. The model itself is conservative, and will not receive much attention.
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3 The Systems in Greater Detail

In this section we study the two systems with a view towards extracting some general principles. Our
objective is not so much to contrast the two systems as it is to find common points. There are basically four
features that affect performance in these systems: the memory allocation policy, amount of data copying done,
the design of the network controller/driver software, and the I/O bus bandwidth. These performance factors
are not peculiar to multiprocessors; much of what we say here is applicable to uniprocessor environments
as well. The treatment in this section is intended to be a qualitative examination of the two systems; a

quantitative analysis is deferred until the next section.

3.1 Memory Allocation

Recall from subsection 2.1 that we differentiate between network packets and network buffers—one or more
fixed sized memory regions that happen to contain a network packet. On the Firefly, buffer allocation is
simplified because it is done once per packet with the restriction that the packet size cannot be larger than
the maximal Ethernet transmission unit size. Larger packets are broken up at user level and require multiple
calls to the network I/O subsystem. Thus, the Firefly buffer allocation scheme tends to overallocate memory
given the fact that most packets are quite small. In our model, we have ignored the fact that the number
of buffers available in the system is finite. Conversely, the average number of customers in the system is
an output of the model which can be used to estimate the number of buffers required. Realistically, under
high load one would expect buffers to be a scarce resource on the Firefly. The Sequent scheme conserves the
total amount of buffer memory. But, as mentioned earlier, multiple buffers may have to be allocated even
for a packet smaller than the Ethernet maximum transmission unit size. Thus, if the proportion of clusters
to mbufs is not chosen judiciously, medium and large packets could suffer increased delay due to multiple
visits to the buffer lock center.

A related issue is the way headers are allocated. Topaz allocates space for headers and data at the same
time while Dynix allocates protocol headers at different times. This has the effect of making the Dynix

software processing more complex, which adversely affects latency under light load.

3.2 Protection and Copying

The Firefly is intended to be a personal workstation where the user is trusted. The Topaz operating system
trades protection for performance by mapping the buffer memory into kernel as well as user space. The
only copying overhead in the Topaz system is the cost of marshaling the data into the packet. The network

controller has access to processor memory and it directly DMAs the packet to its memory.



Dynix, in contrast, is a traditional timesharing operating system with strict notions of user and kernel
spaces. Thus, copying from the user’s buffer to the kernel’s mbufs is done. In addition, the Ethernet driver
program performs another copy from these mbufs to an area of memory from which the controller can access
it for DMA. Copying has a particularly adverse effect on performance because it is a time cost that is roughly
proportional to the amount of data being copied.

There are some alternatives to be considered where the cost of getting the buffer to the controller can be
kept down without compromising protection. One approach is to use a scatter/gather facility if the controller
provides it. This allows the controller to read the header from kernel space and the data from user space.
The efficacy of this approach is limited by the bus and by the speed of the controller. Now DMA transfers
have to be set up twice and it is also likely that the controller is slower than one that does not support this
facility because of the increased complexity in the controller. Another option is to allocate the header and
data contiguously but across two adjacent virtual pages: one containing the header and the other the data.

Protection can then be achieved by suitably mapping the two page table entries.

3.3 Host-Controller Interface

The interface supported by the network controller dictates the structure of the host device driver. On the
Sequent, the low level details of the controller are hidden from the device driver. Even so, there are several
points of similarity between the Firefly and Dynix device drivers.

Both drivers use a single ring of descriptors to describe the packets to be sent, and another ring to describe
the buffers to be received into. These rings are shared between the host and controller. On the Sequent a
single lock mediates processor access to the ring. On the Firefly the situation is slightly complicated. There
is a single designated processor that is allowed to communicate with the controller with which it shares the
ring. Thus other processors have to activate the specialized processor under a lock.

In a multiprocessor environment, we believe that benefits would arise in having multiple send rings per
controller and by giving each processor equal access to the controller. Ideally the number of rings could be
configurable by software at controller initialization time. Thus the host could have as many rings as there
are processors. Each processor would then get its own ring which can be accessed without a lock. Mutual
exclusion between processor and controller is provided with simple memory interlock. This scheme results
in both better latency under light load as well as better performance under heavy load. We consider this in

a quantitative setting in Section 4.



3.4 I/0 Bus

The Firefly uses a 16 Mbit/sec Q-Bus without split transactions to transfer data between processor memory
and the controller, whereas the Sequent uses a 53 Mbyte/sec pipelined bus designed to handle the traffic
from its 20 1386 processors. In general for both systems a slow bus would limit the rate at which packets
can be transferred from the processor’s memory to the controller. For small packet sizes the bus is not a
bottleneck. For bigger packet sizes and under load, one would expect that the Q-Bus on the Firefly would

be more of a limiting factor.

4 Performance Results

In this section we use the model developed in Section 2 to study the performance of the baseline systems,

and the effects of some 1/0 system design alternatives.

4.1 Bounding Analysis

We first consider some simple bounds for our model of the baseline systems. We concentrate on the common
and important case of small packet sizes. First we consider the performance under light load. Under light
load, the packet transmission latency (i.e., the sum of the service requirements) is 1148 useconds for the
Firefly and 1141 pseconds for the Sequent. Since the Sequent has much more processing power than the
Firefly, one might expect the software processing delay to be smaller on the Sequent, leading to a smaller
overall latency. However, this is not the case because the Dynix kernel performs significantly more software
processing. In fact, for the smallest packet size, software processing on Dynix is more than 1.5 times that
on the Firefly. Further, in this case, software overhead for these packets accounts for nearly 70% of the total
time on the Sequent. On the Firefly, it is only 43% of the total. As packet size increases the performance
of the Sequent gets progressively better relative to that of the Firefly although its software overheads are
still higher. The good performance of the Firefly given its processing speed is largely due to its network
I/0 software, which was specially structured to achieve good latency with multiprocessors, while the Dynix
kernel (like the 4.2BSD kernel) tries to preserve flexibility at the expense of speed.

At the other extreme, under high load the rate determining center is the queuing center with the largest
service demand. For both systems the service demand at the Ethernet controller lock is the highest. The
reason for the high service demand at this center is different in the two systems. On the Firefly, a distinguished
1/0 processor has to be notified to read and write the I/O space before the Ethernet controller can be prodded

into action. On the Sequent, on the other hand, the large service requirement is mostly due to the software
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structure of the device driver.

4.2 Performance Under Intermediate Load

Recall that the measured packet size distribution determines the relative arrival rates of the various classes
in the model. We solve the model for 10-90% of the maximum possible overall rate. Figure 2 graphs the
performance for the Firefly and Figure 3 for the Sequent. The Y axis is the residence time in useconds for
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Figure 2: Projected performance under load on the Firefly
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Figure 3: Projected performance under load on the Sequent

each packet size when there is a mix of job classes. The X axis shows the arrival rate as it is varied between
10% of the maximum to 90%. A direct comparison of performance numbers between the two systems would

be unfair because the processors, the architecture, the scale and the use are very different. However, we
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would like to study some overall trends in the two systems.

The first observation is that at a given load, residence time on the Firefly is more sensitive to packet
size than it is on the Sequent. That is, large packets suffer relatively more delay on the Firefly than on the
Sequent. This is due to the large delay imposed by the I/O bus on the Firefly for the larger packets. At
light loads, for small packet sizes, both systems have similar performance. Another characteristic of both
these graphs is that performance degrades fairly rapidly under load. At about 60% of the maximum load,
there is significant degradation in residence time in both systems.

In the next subsections, alternative designs of some of the key components are explored with a view of
improving performance under load. The design alternatives considered are: (1) using a simplified protocol in
both systems, (2) replacing the I/O bus on the Firefly with a faster bus, and (3) modifying the host-controller

interface to reduce contention among processors.

4.3 Protocol Overhead

Both systems under consideration use IP/UDP as their transport protocol. Using IP allows the packets to
cross local network boundaries, i.e., the sender and receiver can be located on different networks. The cost of
using these protocols is primarily the overhead of adding additional headers and performing byte operations
like checksums on the packet. As an alternative, one could consider a simpler protocol that trades some
generality for ease of processing. For instance, it is possible to use Ethernet datagrams for communications
that originate and terminate on the same network. Thus it might be possible to eliminate the overhead
of IP/UDP in the common case. In our model, a change in the protocol alters only the amount of service
required at the delay center. The new values for the service demands were estimated from the baseline
measurements. The model was solved for these new values and results plotted in figures 4 and 5.

Figure 4 shows the effect on the residence time for the Firefly. The primary observation to be made
is that this modification reduces residence time slightly for all loads. The reduction is proportional to the
size of the packet, because in general, the amount of protocol processing increases with the length of the
packet. There is no discernible improvement in tolerance to high load. As before, at and past loads of about
60% of the maximum arrival rate, the residence time starts degrading. This is as expected, because, as seen
from Table 1, under heavy load it is the controller lock that is the bottleneck. In another experiment, we
(arbitrarily) decreased the total software processing overhead by as much as 50%. The gain in latency was
not commensurate with the change in the software overhead. A 50 percent reduction in processing resulted
in about 18 percent savings for the smallest packet size. For the largest packet size the saving was about 19

percent. These results are plausible because the software overhead accounts for only a fraction of the total
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~3000 —
%)

74 bytes
150 bytes
650 bytes
1514 bytes

ke
§27so —

X ¥ O D

gzsoo -
L
E 2250
@
E 2000 |-
o
§17so -
3
21500 -
i

T 4250 |-

1000
750 -

500 i I { | i i i i ! |
0 10 20 30 40 50 60 70 80 90 100

Arrival Rate (% of Max. baseline rate)

Figure 5: Effect of reducing protocol overhead on the Sequent

delay. Figure 5 shows the effect of protocol overhead on the Sequent. Once again, the reduction in residence
time is modest. [Jowever, the marginal increase is more than in the case for the Firefly. When the software
processing overhead was drastically reduced to 50% of its old value, there was a reduction of about 29% in
the residence time at light loads. At heavier loads this effect is less. Unlike the Firefly, software is a bigger
overhead relative to the other costs. Thus, reduction of software costs yields better performance than in the
case of the Firefly. At higher loads the effect is less because of the insignificance of this overhead in relation

to the queuing delay for locked resources.
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4.4 1I/0 Bus Changes

The Q-Bus used on the Firefly can become a bottleneck if large packets are transmitted. The Ethernet
controller DMAs the data from system memory to the controller over this bus. This is a source of contention
during high load or when transferring large packets because the bus is tied up. This is not a problem with the
Sequent because its bus is designed for high bandwidth and allows split transactions. A faster bus has been
proposed by an earlier study as a way of reducing latency [9]. We wish to study the effect on performance
of a new bus that has twice as much bandwidth as the Q-Bus. We model this by changing the service
requirements from Table 1. We reduce the bus requirement by 50 percent and solve the resulting queuing

model. The results are shown in Figure 6.
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Figure 6: Effect of a faster bus on the Firefly

The smaller packets are largely unaffected by this change; there is no significant effect on the residence
times even under high load. The explanation for this lies in the fact that the time spent in service at this bus
is not a limiting factor to these packet sizes. For larger packet sizes there is about a 20% decrease in residence
time for all loads. Once again, the tolerance to load is largely unaffected; comparison with Figure 2 shows
that the performance begins to degrade at roughly the same load as before. These effects can be explained
as follows: even with the proposed fast bus, the controller lock continues to be the queuing service center
with the largest service demand except for packet sizes of 1514 bytes. Thus, the performance under load is

still largely dictated by the controller lock’s service requirement.
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4.5 A Different Ethernet Controller

In general, commercial Ethernet controllers are designed for use with uniprocessors. The interface presented
by the controller to the host is a reflection of this [10, 3]. Typically these controllers have some amount of
internal pipelining. This has the good effect that controller-introduced latency is insensitive to the size of the
packet. However, the fact that the controllers are designed for uniprocessor environments causes contention
in accessing and programming them in a multiprocessor environment. For instance, on both the Firefly and
the Sequent a large fraction of the time is spent in activating the Ethernet controller. The time spent in this
activity becomes a serious bottleneck because it is done under a single lock. There are various reasons for
this on each machine. On the Firefly, there is one processor that is “special”; since all Ethernet controller
activity has to be initiated from this processor, some form of locking is required. Further, the Ethernet
controller has only a single queue that it scans to find descriptions of packets to be transmitted. On the
Sequent the controller and the processors share a single pool of buffers. Processor activity on different CPUs
1s kept synchronized by one lock. As an alternative, one could partition these buffers equally among the
processors so that groups of processors share a single lock instead of all processors sharing the same lock, or
even to allocate each processor its own buffer pool.

An alternative suitable to multiprocessor environments would be to have the controller scan multiple
queues. The number of queues and the base of each of the queues would be set by host software at initial-
ization. This design has the effect of reducing the contention under load. Low latency is also achieved in
this case because the processor does not have to spend the time doing the locking operation. Having a per
processor queue to reduce contention is not novel, but it has not been applied in this setting. We study
one particular form of this modification by considering the case when the controller implements two queues
instead of one. We model this by creating two centers for the controller lock, each with half the aggre-
gate service demand. Figures 7 and 8 show the effect of the modification for the Firefly and the Sequent
respectively.

While the latency reduction under light load is modest for the Firefly, this modification causes a significant
change in the performance under load. This is not surprising since the Ethernet controller was the bottleneck.
By reducing the service demand at this center we have reduced the queuing delays. Under heavy load, the
effect is a discernible reduction in residence time. A similar effect is seen on the Sequent. Both these graphs
argue for the alternative structure for the controllers, which provides very good performance under load

without compromising latency.
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Figure 7: Effect of a different controller on the Firefly
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Figure 8: Effect of a different controller on the Sequent
5 Conclusions

We have analyzed the network [/O performance of two small-scale multiprocessors: the DEC SRC Firefly

and the Sequent Symmetry. Our analysis shows that:

1. Software processing is a major contributor to latency under light load. However, reducing software
processing alone does not buy commensurate performance gain at higher loads. Thus using a simplified

transport protocol may not be as advantageous as one might initially think, especially at high loads.

2. 1/0O bus performance is important to performance under high load and for large packets. For instance,

in our particular environment, a faster bus or a split transaction bus may increase performance by
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roughly 20% for large packets.

3. By far the most important feature for high performance at heavy load is the structure of the network
controller. Traditional controllers designed for uniprocessors may not be appropriate in a multiproces-
sor environment. Having a single controller data structure shared by the multiple processors gives rise
to excessive congestion at high loads. Effective controller interfaces may be designed to achieve very
high performance on multiprocessors under heavy loads. For instance, processors could configure the
number of queues that the controller services. This arrangement results in less contention and latency

In accessing the network.

The design of controllers for multiprocessor network 1/0 is an area that merits attention for performance

oriented environments.
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Appendix

Here we derive the residence time for a multiclass queuing model with a transaction workload where the
queuing discipline is FCFS but the per visit service requirement is not the same across all classes.

For a queuing center £, the residence time of a customer of class i is the sum of the total time spent in
service and the total time spent in queue waiting for the customers ahead of it to get their service. This
latter term is Z]C:l Sk fi;,k(X), where S i is the service time of a class j customer at center & and A]‘k(X)
1s the average number of class j customers at center k seen by an arriving class i customer, C being the total
number of classes. Thus, if a class ¢ customer makes V; ; visits to center k, its total residence time at the

center 1s:
c

Riw(N) = Vie [Sx + D Sedl o(X) (1)

j=1

llere we make an intuitively appealing assumption (and one often used with success) that, in an open
system, the average number of class j customers seen by a class ¢ (i and j may be the same) customer at
center & is the time averaged queue length of class j customers at that center. We denote this by Qi k-
Applying Little’s law we get
Qs = A Ry i
Substituting this into equation 1 yields the following expression for residence time:
c
Rie(A) = Vi |Sik+ D Sjedi Ry (%) (2)
i=1
Because the summation term is independent of the customer class i and is only a function of center &, we

denote the summation by 7%. We can then rewrite the above formula as:
R k(A) = Vi x (S + Tk] (3)

Now consider the residence time R; ; of a class j customer at center k. Using equation 3 we can write this
as:

Ry b(X) = V5 1 [Sj 5 + Ti] (4)

Eliminating T} between equations 3 and 4 leads to the following relation between R, ; and Ry k:

N - - Ri k(X
Ry e(A) = Vk [b),k - Six+ —V—(_Z}
1.k

We substitute this expression for R; ; into equation 2 and obtain
P 7, q

- < Ri x(X)
Ry x(A) = Vi {Si,k + ;Sj,k/\] Vik |Sie—Sik+ _:V_,k——

19



Simplifying this we get

c c
Rie(N) = Vik [Sik+ ) SiadVik [Sie = S]] + Rix(XD) D S5eh Vi
j=1 J=1
The term S; A;V; ¢ is the utilization Uj k of class j at center k. When summed over all classes, the
result is the total utilization, Uk, at center k. Making this substitution above and simplifying, we finally

derive the expression for the residence time:

v Vi kSik Vi k SR .
Rip(X) = =228 4 B S0 0V e [S) 0 - S :
(A A =0, 2 S; AV e[Sk — Sik] (5)

Note that the first term on the right hand side of equation 5 is the usual expression for response time
for a multiclass model where the per visit service requirement is assumed to be identical across classes. The
second term represents an additional factor which vanishes as the service requirement per visit of the various

classes converge to the same value. That is, the second term is 0 if S; ; = S; ; for all 4,j.
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