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Abstract

Although most people believe that planners that delay step-ordering deci-

sions as long as possible are more e�cient than those that manipulate totally

ordered sequences of actions, this intuition has received little formal justi�-

cation or empirical validation. In this paper we do both, characterizing the

types of domains that o�er performance di�erentiation and the features that

distinguish the relative overhead of three planning algorithms. As expected,

the partial-order (nonlinear) planner often has an advantage when confronted

with problems in which the speci�c order of the plan steps is critical. We argue

that the observed performance di�erences are best understood with an exten-

sion of Korf's taxonomy of subgoal collections. Each planner quickly solved

problems whose subgoals were independent or trivially serializable, but prob-

lems with laboriously serializable or nonserializable subgoals were intractable

for all planners. Since di�erent plan representations induce distinct search

spaces, the subgoals for a given problem may be trivially serializable for one

planner, laboriously serializable for another, and nonserializable for a third.

We contend that the partial-order representation yields superior performance

because it more frequently results in trivial serializability.
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1 Introduction

Since the early work on NOAH

[

29

]

, the common wisdom of the planning

community has been that nonlinear planners are more e�cient than linear

algorithms, but this intuition has never been convincingly demonstrated. Fur-

thermore, the very term \linear planner" is often confusingly given two di�er-

ent meanings:

1. A planner that represents plans as totally ordered sets of actions (i.e.,

manipulates linear lists of actions).

2. A planner that focuses problem solving attention on one subgoal, shifting

to another only after the �rst has been completely addressed.

2

We argue that the factors of plan representation and subgoal selection can

and should be considered independently. In this paper we focus on the former

and hold the latter �xed; we evaluate the relative e�ciency of total-order and

partial order representations in planners that focus on a single subgoal before

shifting to the next goal.

3

To alleviate confusion, we follow the advice of

[

8

]

and avoid the adjective \linear" in the rest of this paper. By holding the

subgoal elaboration strategy �xed, we present an objective evaluation of early

ordering commitment on planning e�ciency.

We found no problem domains in which a total-order planner performed

signi�cantly better than an equivalent partial-order planner, but several do-

mains in which the partial-order algorithm was exponentially faster than the

total-order planners. The contribution of this paper is a careful characteriza-

tion of the types of domains in which a partial-order planner beats total-order

approaches (the requisite features are rather subtle) and a description of do-

mains in which both approaches encounter intractable branching. We argue

that the observed performance di�erences are best understood with an exten-

sion of Korf's taxonomy of subgoal collections

[

17

]

. Each planner performed

well when dealing with problems whose subgoals were independent or trivially

2

In fact, Sussman's original de�nition of the \linear assumption" is satis�ed only by a

planner that assumes that subgoals can be solved independently and in any order

[

32, p.

58

]

, but few consider this a viable strategy.

3

Note that it is crucial to distinguish between a planner's plan-time and execution-time

commitments. A planner's decision to plan for subgoal U before subgoal V is not necessarily

related to the decision to execute the actions corresponding to U strictly before, strictly

after or interleaved with those generated for V . In fact, in a partial-order planner, these

decisions are necessarily distinct while some total-order planners link the decisions and some

do not. As long as a planner does not link these decisions, subgoal ordering is independent

of completeness.

1



serializable, but problems with laboriously serializable or nonserializable sub-

goals were intractable. Since the di�erent plan representations induce di�erent

search spaces, the subgoals for a given problem may be trivially serializable

for one planner, laboriously serializable for another, and nonserializable for a

third. We believe that the partial-order representation yields superior perfor-

mance because it more frequently produces trivial serializability.

1.1 Algorithms & Methodology

We performed this evaluation by implementing three planners that share key

subroutines but di�er in important ways. All planners operate on action

schemata that conform to the STRIPS representation

[

11

]

.

The planner that turned out to perform the best is a lifted version of

McAllester and Rosenblitt's

[

19

]

propositional planner; since it represents plans

with a partial order and uses tagged pointers, called \causal links," to mark

protections, we call it POCL.

4

The second planner represents plans as to-

tally ordered sequences of steps; since this planner also uses causal links to

determine appropriate locations for new steps, it is called the \total-order,

causal-link planner," or TOCL. The third, and simplest, planner is called the

\total-order, prior-insertion planner" (TOPI) since it dispenses with causal

links and only adds steps prior to the existing steps of an incomplete plan. To

assure a fair comparison, the three planners share data structures and utility

routines to the maximum extent possible.

We tested the set of planners on large sets of randomly generated prob-

lems from both classical (e.g., the blocks world, transportation planning, and

a reconstruction of Ste�k's

[

31

]

MOLGEN molecular biology domain) and arti-

�cial domains. In this paper we limit our report almost exclusively to arti�cial

domains. While the \real" domains were a rich source of intuitions, the dif-

�culty of decoupling di�erent causes of combinatorial explosion made them

uninformative testbeds for empirical experiments. Speci�cally, planners make

two types of combinatorial choices: deciding how to achieve a goal and de-

ciding when to do so. Most real problems are fraught with both sources of

intractability, but neither partial nor total order representation provides much

guidance in the problem of choosing how to achieve a goal. Since we are inter-

ested in the utility of partial-order plan representations, we focus this paper

on the combinatorics of ordering decisions. Thus most of our arti�cial domains

include only one method for achieving each type of goal, but these methods

4

A Common Lisp implementation of this algorithm, known as SNLP, has be-

come quite popular as a framework for AI research and education. Send mail to

bug-snlp@cs.washington.edu for information on acquiring the source code for the three

planners and for the domains mentioned in this paper.

2



interact in rich and complex ways. However, since there is interaction between

the choice of operator used to achieve a goal and choice of the order in which

the resulting steps are executed, section 3.6 does explore arti�cial domains

with signi�cant operator selection complexity and section 3.8 brie
y discusses

experience with a \real" domain.

Another advantage of arti�cial domains is the ability to quantify the dif-

�culty of problems. In real domains it is extremely di�cult to come up with

such a measure | the number of objects in the world, the number of subgoals,

the length of an optimal solution, and related measures are much too crude

to yield any useful generalizations. The regularity of an arti�cial domain fa-

cilitates such a measure (even for randomly generated problems), enabling a

precise estimate of the asymptotic complexity growth as problems get harder.

Of course, the analysis of arti�cial domains is not an end in itself, but by de-

coupling the myriad causes of planning complexity, they provide insight into

the di�culties implicit in conventional domains.

We used the following experimental methodology. In each domain and for

each di�culty level, we generated a �xed number of random problems which

were given to each of the three planners. We display the data by graphing

the mean CPU time required by the planners at each di�culty level as well

as 90% con�dence intervals. With probability 0.9 the mean of all possible

problems at a particular di�culty level is within the interval. We terminated

each planner's performance curve when the di�culty became so great that it

could not successfully complete all problems in the random suite within the

time bound. Depending on the domain, we varied the number of problems

that we generated per di�culty level from �ve to thirty in an e�ort to keep

the con�dence intervals small.

1.2 Contributions

Our paper presents two major results: an extension to Korf's classi�cation of

subgoals and a series of experiments comparing the performance of our three

planners on eight di�erent domains. We link the contributions by analyzing

the experimental results in terms of our augmented taxonomy.

Korf's

[

17

]

insightful de�nition of independent, serializable, and nonserial-

izable collections of subgoals forms the foundation of our work. However, we

argue that the de�nition of subgoal independence is so strong that in practice

it rarely applies, and we observe that while nonserializable subgoals are always

di�cult, many serializable problems are almost as hard. This leads us to re�ne

Korf's class of serializable subgoals with the following new classes:

� A set of subgoals is trivially serializable if each subgoal can be

3



solved sequentially in any order without ever violating past progress. As

we explain in section 3, trivial serializability is considerably more general

than independence, yet results in comparable performance.

� A set of subgoals is laboriously serializable if there exist an inade-

quate percentage of orders in which the subgoals may be solved without

ever violating past progress. When it is di�cult or impossible to de-

termine the correct order, laboriously serializable subgoals are just as

intractable as nonserializable ones.

Figure 19 (page 36) shows the extended hierarchy of subgoal collections

that results from our analysis. We also extend Korf's treatment of subgoals

from search through states of the world to search through a space of incomplete

plans, since this is the representation of choice in modern planners

[

6

]

. With

this reformulation the computational advantages of the various algorithms

becomes clearer: the natural subgoal decomposition of a problem might be

trivially serializable for the search space of one planner, laboriously serializable

for another, and nonserializable for a third (table 3 on page 37). In fact, the

arti�cial domain D

1

S

2

(section 3.5) has exactly this property.

In addition to classifying problems in terms of their subgoal structure, we

performed a series of experiments to evaluate the relative performance of the

three planners. In no domain did either of the total-order planners perform

signi�cantly better than the partial-order planner; however, in some cases

the partial-order planner POCL did exponentially better than either total-

order algorithm. Both causal-link planners outperformed TOPI on all but the

simplest problems and domains.

In all our tests there was a clear correspondence between the classi�cation

of a problem's natural subgoals and the speed of the planner. All three al-

gorithms took exponential time to solve problems in which the subgoals were

laboriously serializable or nonserializable yet took apparently linear (or low-

order polynomial) time on domains with independent or trivially serializable

subgoals. We conclude that the major advantage of using a partial-order plan-

ning algorithm derives from the fact that it renders many subgoal collections

trivially serializable.

1.3 Outline

In the next section we formally de�ne the class of problems that we are try-

ing to solve. We then give pseudocode descriptions for the three planning

algorithms, POCL, TOCL, and TOPI, and present a complexity analysis of

their operation. The bulk of the paper is our analysis of the performance of

4



the planners on a number of di�erent domains. We start, in section 3, by

extending Korf's

[

17

]

characterization of problem domains, and then we per-

form a sequence of experiments that isolate the domain features that give the

partial-order planner a major advantage over total-order approaches. Section

4 summarizes our results and proves several generalizations. Related and fu-

ture work are discussed in sections 5 and 6 respectively. Finally, section 7

closes by stating our contributions.

5



2 Planners

Before presenting our results, we summarize the algorithms and representa-

tions used. Each planner uses what is known as the STRIPS action represen-

tation

[

5

]

although it is in fact a simpli�cation of that used by STRIPS

[

7,

11

]

. Each operator has sets of preconditions, an add list and a delete list (the

members of which are propositional schemata that are function-free atomic)

and a set of codesignation (and noncodesignation) constraints. For example,

the blocks world operator (puton ?x ?y)

5

, which takes block ?x from ?z and

puts it on ?y, is shown in �gure 1.

(defoperator : action

0

(puton ?x ?y)

: precond

0

((on ?x ?z) (clear ?x) (clear ?y))

: add

0

((on ?x ?y) (clear ?z))

: delete

0

((on ?x ?z) (clear ?y))

: equals

0

((6= ?x ?y) (6= ?x ?z) (6= ?y ?z)

(6= ?x Table) (6= ?y Table)))

Figure 1: An operator to move a block ?x o� of ?z and onto ?y.

Note the codesignation constraints listed in the :equals �eld. They specify

that ?x, ?y, and ?z must refer to di�erent blocks. Also neither ?x nor ?y can

refer to Table. The variables mentioned in an action are only used to de�ne

constraints between a step's variables. A unique set of variables is created and

used whenever a new step is created. Codesignation constraints between vari-

ables of di�erent steps are added to an incomplete plan to constrain a step's

possible e�ects. For example, a step with action (puton ?x

1

?y

1

) can be con-

strained to clear block C by adding the codesignation constraint: (= ?z

1

C).

Although the limitations of this action representation have been clearly

documented

[

5

]

, we have succeeded in encoding a number of domains, in-

cluding the blocks world, several arti�cial worlds, a discrete time version of

Minton's scheduling world

[

21

]

, a simple transportation scheduling world, and

an approximation of Ste�k's MOLGEN molecular biology domain

[

31

]

.

The planners each require three arguments: a set of operators, a set of

initial conditions, and a set of goal conditions; they return sequences of steps.

All planners treat variables the same way in that they use least-commitment,

constraint-posting techniques when reasoning about the arguments to the op-

erators, and all planners operate via backward chaining. To ensure fairness,

5

Symbols that start with question marks denote variables (which are also known as

formal objects

[

20

]

).

6



the planners were implemented in Common Lisp using a shared set of data

structures and subroutines. The most important such subroutine is the vari-

able binding and uni�cation code that handles all of the variable constraints.

2.1 Planning as Search

Like

[

17

]

, we view planning as a search problem. In order to discuss our

planners, we need to de�ne a planning problem, and how it can be considered

as a search. From

[

19

]

we adopt:

De�nition 1 A STRIPS operator consists of an operator name plus a

precondition list, an add list and a delete list. The elements of the

precondition, add, and delete lists are all function-free, atomic expressions. A

STRIPS planning problem is a triple �O;�;
� in which O denotes a set

of STRIPS operators, � denotes a set of initial propositions, and 
 denotes a

set of goal propositions.

Previous analyses of planning problems

[

13, 17

]

viewed planning as a search

through a graph of world-states | i.e., a graph in which nodes are labeled

with a set of propositions that specify what is true in that state of the world.

A STRIPS planning problem can be solved by searching through such a graph.

� speci�es the initial world-state, 
 speci�es a set of goal world-states, and

the operators in O specify the directed edges. If an operator's preconditions

are satis�ed in a world-state, then an edge leads from that node to the node

denoting the e�ect of applying that operator. The purpose of the search is to

�nd a path from the initial world-state to a goal world-state. The solution to

the planning problem consists of the actions associated with the edges of this

path. An example of such a search space appears in �gure 2.

One of the major contributions of Sacerdoti's NOAH

[

29

]

was a conceptual

shift: instead of viewing planning as search through a space of world-states,

NOAH searched through a space of (possibly incomplete) plan-states. Our

planners perform similar searches.

De�nition 2 A plan-state is a triple: �S;O;B� in which S denotes a set

of plan steps (also known as actions), O denotes a set of ordering constraints

that specify a (possibly partial) order on S, and B denotes a set of binding

constraints over the variables mentioned by the steps in S.

This shift makes the structure of a search space dependent on the planner

as well as the domain. The arcs between world-states were just determined by

domain actions, but the arcs between plan-states represent the extension of

7
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Figure 2: A STRIPS planning problem �O;�;
�can be solved by searching

through a graph of world-states. The goal is to �nd a path from � to a world-

state labeled with 


i

� 
. Edges out of a world-state correspond to operators

that can be performed in that world-state

an incomplete plan (i.e., the addition of a step, ordering constraint or binding

constraint) rather than the regression of a world description.

In plan-state search, a planning problem is encoded in an initial plan-state

�S;O;B�consisting of two steps s

0

and s

1

. The step s

0

adds �, and s

1

has


 for preconditions. This plan-state has no variable-binding constraints, but

O has one constraint to force s

0

before s

1

. The set O de�nes what can be

added to the set S in a plan-state. The goal of the search is to �nd a solution

plan-state.

De�nition 3 A solution plan-state �S;O;B�is a plan-state in which

the preconditions of each step s

i

2 S are all necessarily true in the input

situation of s

i

.

To make this de�nition precise, we recall the following terminology from

Chapman's formalization of planning

[

5

]

. The input situation of a step is a

set of propositions that are true immediately prior to the execution of that

step

[

5

]

. A proposition is necessarily true in the input situation of a step in a

partially ordered plan-state �S;O;B� when it is true in all completions that

extend the partial constraints of O and B into total constraints.

2.2 Algorithms

In order to test our intuitions regarding how representations of the space of

plan-states a�ects planning di�culty, we implemented three di�erent planning

algorithms. Each of these algorithms is sound and complete and each exhibits

what McAllester terms the \systematic" property

[

19

]

6

. Loosely speaking,

6

We note that the utility of systematicity has not been clearly documented. We sus-

pect that for some domains systematic planners will be more e�cient than nonsystematic

8



systematicity means that each algorithm is guaranteed to search among plan-

states in an irredundant fashion { visiting every possible plan-state exactly

once. This property is re
ected in the structure of each planner's search space

in that the directed edges form a tree rooted in the initial plan-state.

The �rst algorithm, called POCL and shown in �gure 3, uses a partially

ordered step representation for de�ning plans. POCL is a lifted version of

McAllester's algorithm. The algorithm is loosely descended from TWEAK

[

5

]

and NONLIN

[

33

]

, but is conceptually simpler. Like some previous planners

(e.g.,

[

14, 33, 34, 35

]

) but unlike TWEAK, McAllester's algorithm uses causal

links to record the purpose for introducing a step into a plan and to protect

that purpose. If a step S

i

adds a proposition p to satisfy a precondition of

step S

j

, then S

i

p

!S

j

denotes the causal link. McAllester's key innovation is

a clever, methodical technique for creating and protecting causal links. We

say that a link S

i

p

!S

j

is threatened if some step S

k

may possibly be ordered

between S

i

and S

j

, and S

k

either deletes or adds

7

a proposition that possibly

uni�es with p. Two propositions possibly unify if they can be uni�ed by adding

variable-binding constraints to a plan-state without making that plan-state's

variable constraint set B inconsistent.

Each precondition p of a plan-state step S

j

is an open condition if it has no

corresponding causal link S

i

p

!S

j

2 L. The algorithm searches for a solution

plan-state �S;O;B�by eliminating open conditions in G while ensuring the

safety of causal links in L. In the initial invocation of POCL, �S;O;B�is the

initial plan-state, G is the set of preconditions of s

1

, and L is the empty set.

Our use of least commitment for variable bindings has a subtle e�ect on the

causal-link-protection step. In the absence of unbound variables, protecting a

causal link s

i

p

!s

j

from a step s

k

simply involved ordering s

k

before s

i

or after

s

j

. With the introduction of unbound variables we get the extra possibility

of adding variable constraints between the e�ects of s

k

and the proposition

p. For example, there are 5 di�erent sets of constraints that can be added to

protect s

i

(on?x?y)

! s

j

from a step s

k

that deletes (on ?a ?b).

1. fs

k

before s

i

g

2. fs

k

after s

j

g

3. fs

k

between s

i

and s

j

, ?x 6= ?a, ?y 6= ?bg

algorithms while the converse will hold in other domains. Since a detailed evaluation of the

utility of systematicity is beyond the scope of this paper, we feel that holding systematicity

constant in our experiments increases their validity.

7

Steps that add p threaten the causal link S

i

p

!S

j

because they negate the purpose for

adding step S

i

. POCL would not be systematic if it ignored these threats.

9



Algorithm: POCL(�S;O;B�,G,L)

1. Termination: If G is empty, report success and stop.

2. Goal selection: Let c be a proposition in G, and let S

need

be the step

for which c is a precondition.

3. Operator selection: Let S

add

be a step that adds c (either a new

step or an existing step possibly prior to S

need

). If no such step exists

then backtrack. Let L

0

= L [ fS

add

c

!S

need

g, S

0

= S [ fS

add

g, O

0

=

O [ fS

add

� S

need

g, and B

0

= B[ the set of variable bindings to make

S

add

add c. Backtrack point: Each existing and possibly addable step

must be considered for completeness.

4. Update goal set: Let G

0

= (G � fcg)[ preconditions of S

add

, if new.

5. Causal link protection: A step s

k

threatens a causal link s

i

p

!s

j

when

it occurs between s

i

and s

j

and it adds or deletes p. For every step s

k

that might threaten a causal link s

i

p

!s

j

2 L

0

:

� Ensure that s

k

does not threaten s

i

p

!s

j

by adding constraints to

O

0

and/or B

0

. Backtrack point: Each way to protect s

i

p

!s

j

from s

k

must be considered for completeness.

6. Recursive invocation: POCL(�S

0

; O

0

; B

0

�,G',L').

Figure 3: The Partial-Order, Causal-Link (POCL) Algorithm

4. fs

k

between s

i

and s

j

, ?x 6= ?a, ?y = ?bg

5. fs

k

between s

i

and s

j

, ?x = ?a, ?y 6= ?bg

The addition of codesignation as well as noncodesignation constraints is

required to ensure systematicity. In general, the number of ways to protect a

causal link is exponential in the number of unbound variables involved.

The second algorithm, TOCL, is similar to POCL, but it restricts its use

of plan-states by only generating plans comprised of totally ordered sets of

steps. It can insert steps anywhere between s

0

and s

1

in a plan, but it can

never reorder two existing steps. The algorithm (�gure 4) is similar to POCL

except there is an extra linearization step, and causal links are only used to

determine possible locations for new steps.

Since TOCL is just a modi�cation of POCL, its calling conventions are

identical, and its search space is very similar to that of POCL. The similarity

is due to the fact that they start with the same initial plan-state and each par-

tially ordered plan produced by POCL corresponds to a set of totally ordered

plans. Each of these totally ordered plans are generated by TOCL whenever

10



Algorithm: TOCL(�S;O;B�,G,L)

1. Termination: If G is empty, report success and stop.

2. Goal selection: Let c be a proposition in G, and let S

need

be the step

for which c is a precondition.

3. Operator selection: Let S

add

be a step that adds c (either a new step

or an existing step which is necessarily prior to S

need

). If no such step

exists then backtrack. Let L

0

= L [ fS

add

c

!S

need

g, S

0

= S [ fS

add

g,

and B

0

= B[ set of variable bindings to make S

add

add c. If S

add

is a

new step, let R = (S

initial

; S

need

), the ordered pair of existing steps that

bound the places to insert S

add

into the plan. Backtrack point: Each

existing and possibly addable step must be considered for completeness.

4. Update goal set: Let G

0

= (G � fcg)[ preconditions of S

add

, if new.

5. Causal link protection: For every step s

k

that might threaten a causal

link s

i

p

!s

j

2 L

0

:

� Protect the causal link from s

k

by adding constraints to B

0

. Also,

if S

add

is new, either s

i

or s

k

is S

add

and the link can be protected

by replacing one of the bounds in R. Backtrack point: Each way to

protect s

i

p

!s

j

from s

k

must be considered for completeness.

6. Linearization: If S

add

is a new step, let O

0

= O[ constraints to insert

S

add

into the plan-state at a point between the steps in R. Otherwise, let

O

0

= O. Backtrack point: Each insertion point between R's steps must

be considered for completeness.

7. Recursive invocation: TOCL(�S

0

; O

0

; B

0

�,G',L').

Figure 4: The Total-Order, Causal-Link (TOCL) Algorithm

POCL generates the partially ordered plan. This similarity lets us compare

the two algorithms using techniques developed in

[

22

]

.

The third algorithm, TOPI, only adds steps to the beginning of the plan

(i.e., immediately after s

0

). Thus it can be seen that TOPI is equivalent to

the regression planner of

[

25, section 7.4

]

which performs backward-chaining

search through the space of lifted world states.

TOPI works by de�ning the the goal conditions as planning subgoals and

building a plan backwards (�gure 5). It considers all steps that could possibly

add a subgoal without deleting any other unsolved subgoal. When it �nds

such a step it creates a new plan-state by adding that step between s

0

and

every other step already in the plan, eliminating the resolved subgoals and

adding the weakest preconditions for the new step as new subgoals. The

planner terminates when all of the open goals of a plan G unify with the

11



initial conditions I.

Since causal links were used to guide the placement of new steps in a plan,

and since TOPI only inserts steps at one point, causal links are not needed

by TOPI. Although TOPI does not require data structures for links or step

ordering, it shares with the other algorithms the data structures and routines

for variable bindings and constraints.

Algorithm: TOPI(�S;O;B�,I,G)

1. Termination: If G � I, report success and stop.

2. Operator selection: Let S

add

be a new step that adds a set of condi-

tions A such that (A \ G) 6= ;, does not delete g 2 G, and has a set of

preconditions C. Let S

0

= S[fS

add

g, O

0

= O[ ordering constraints that

make S

add

come after s

0

but before any other step in S, and B

0

= B[

constraints to make S

add

add A and not delete any element of G. Back-

track point: All possibly added steps and variable constraints must be

considered for completeness.

3. Update goal set: Let G

0

be the set (G�A) [ C

4. Recursive invocation: TOPI(�S

0

; O

0

; B

0

�,I,G').

Figure 5: The Total-Order, Prior-Insertion (TOPI) Algorithm

2.3 Per-Step Complexity

Comparing the performance of these three algorithms requires looking at the

number of plan-states each algorithm generates when solving a planning prob-

lem and the computational cost per plan-state. Comparing the number of

plan-states generated requires looking at planning problems, but the per-plan-

state complexity can be inferred from the algorithm descriptions.

From the POCL and TOCL algorithm descriptions we see that steps to

detect termination, select goals, and update the goal set all require constant

time. The major points where the algorithms di�er in terms of per-plan-state

complexity are the steps selecting an operator to solve a goal and protecting

a causal link. They arise from the di�erent ways that step orderings are

performed. One of the problems in operator selection is to determine the

existing steps that might solve the selected goal; this takes O(jSj

2

) time for

partially ordered steps and O(jSj) time for totally ordered steps. Similarly,

causal-link protection only involves protecting a new link from existing steps

and existing links from a new step. For this reason there are onlyO(jSj) threats

to resolve, and the loop only executes O(jSj) times. Detecting these threats

12



requires O(jSj

2

) time for POCL and only O(jSj) time for TOCL. Resolving a

threat takes constant time.

In contrast with the causal-link algorithms, the TOPI algorithm's per-plan-

state complexity does not depend on the number of steps at all. It depends

on the number of unsolved goals jGj. The most costly step in TOPI is the

termination detection step because �nding a set of variable bindings to make

G a subset of I takes exponential time. We can prove that this problem is

NP-hard by reducing the 3-Dimensional Matching problem

[

12

]

, which is NP-

complete, to it. The step by step per-plan-state complexity comparison is

summarized in table 1.

Algorithm

Step POCL TOCL TOPI

Termination O(1) O(1) O(jIj

jGj

)

Goal selection O(1) O(1) {

Operator selection O(jOj) O(jSj) O(jGj)

Update goal set O(1) O(1) O(1)

Causal link protection O(jOj) O(jSj) {

Linearization { O(1) {

Table 1: The complexity of each step in the three planning algorithms for a

plan-state �S;O;B�. The number of ordering constraints O can be O(jSj

2

).

For TOPI the sets I and G are the initial conditions and open goals respec-

tively.
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3 Analysis of Domains

In the view of

[

13

]

and

[

17

]

planning is modeled as search through a directed

graph of world-states, and the di�culty of a problem is measured in terms of

how hard it is to break it up into subproblems and use these subproblems to

guide the search for a �nal solution.

We wish to analyze the e�ect of reformulating problems as plan-state

searches. In order to compare the di�erent search spaces of our planners

we need to consider them in the context of solving problems. We start by

discussing subgoals and how they decompose world-state searches and plan-

state searches. Next we review and extend Korf's subgoal hierarchy. Finally

we de�ne example domains and show how the classi�cation of subgoals varies

from planner to planner.

3.1 Subgoals

Like

[

13

]

and

[

17

]

we are concerned with analyzing the e�ect of using various

subgoals on the speed of planning algorithms. In the simplest case a subgoal

is an intermediate state on the path from initial state to goal. Intuitively, it is

clear that searching from the initial state to the subgoal and then again from

the subgoal to the goal might be faster than searching all the way in one step.

Korf presents a broader de�nition of subgoal, which we adopt for this paper.

In general, a subgoal is not a single state but rather a property

that is true of a number of states. For example, if we establish a

subgoal for the Eight Puzzle of correctly positioning a particular

tile, this subgoal is satis�ed by any state in which that tile is in

its goal position, regardless of the position of the remaining tiles.

Therefore, we formally de�ne a subgoal to be a set of states, with

the interpretation that a state is an element of a subgoal set if and

only if it has properties that satisfy the subgoal

[

17, page 68

]

.

It is frequently awkward to refer to subgoals explicitly as sets of states. A

common technique used in

[

13

]

and

[

17

]

is to use elements of 
 to specify sub-

goals. A world-state is in a subgoal if the subgoal's associated goal proposition

is true in the world-state. This supposes that world-states with more elements

of 
 are closer to a goal world-state than those with less elements of 
.

The conceptual shift to planning with plan-states a�ects this technique for

specifying a subgoal. When planning with plan-states we think in terms of

the satis�ability of various elements of 
. We can do this with the following

formal de�nition.

14



De�nition 4 Let �O;�;
� be a STRIPS planning problem and let P 2 


denote one of the goal propositions. The subgoal specified by P with

respect to �O;�;
� is a set, U , of plan-states such that every �S;O;B�2

U satis�es:

1. S contains a step s

0

which only adds �.

2. S contains a step s

1

which only requires 
.

3. Every total order of S consistent with O has s

0

and s

1

as the �rst and

last steps, respectively.

4. P is necessarily true in the input situation of s

1

.

Proving that a proposition P is necessarily true can be done using Chap-

man's modal truth criterion

[

5

]

. Certain properties of our algorithms make

this proof process easier. For example, in TOPI the operator selection step

has the restriction that added steps cannot delete open goals. This and the

fact that TOPI can only add steps to the beginning of an incomplete plan

ensures that a proposition is necessarily true when it is either in the initial

conditions or it is added by a step and all of that step's preconditions are

necessarily true. Thus a goal proposition P is necessarily true once all of the

open preconditions of steps added to solve P are in the initial conditions.

The causal-link protection step of TOCL and POCL makes it easy to prove

the necessary truth of a proposition. A goal proposition P is necessarily true

if it has an associated causal link s

i

P

!s

1

, and all of the preconditions of step

s

i

are necessarily true. The causal-link protection step ensures that no steps

ever interfere with the truth of P . Thus P is necessarily true once all of

preconditions of all of the steps involved in solving P have associated causal

links.

3.2 Subgoal Hierarchy

Frequently, a problem is di�cult enough to make it necessary to specify several

subgoals in the e�ort to guide search. Korf classi�es a set of subgoals in terms

of how the members interact with each other. These interactions de�ne a

problem's complexity in terms of its subgoals. Figure 6 summarizes Korf's

hierarchy.

Independent subgoals are the rare ideal case | progress toward one has no

e�ect on another. Korf de�nes independent subgoals in terms of the distance

between two states, d(u; v), which denotes the length of the shortest path
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Figure 6: Korf's Hierarchy of Subgoal Collections.

from u to v. This primitive distance function allows de�nition of the distance

between two subgoals U and V with the equation

D(U; V ) = max

u2U

min

v2V

d(u; v)

Using D(U; V ), Korf de�nes and motivates independent subgoals with the

following statements.

A collection of subgoals are independent if each operator only

changes the distance to a single subgoal. : : :One of the impor-

tant properties of independent subgoals, which is clear from the

de�nition, is that an optimal global solution can be achieved by

simply concatenating together optimal solutions to the individual

subproblems in any order

[

17, page 71

]

.

Solving a single independent subgoal might be nontrivial, but the com-

plexity of problems with independent subgoals increases only linearly with the

number of subgoals. Korf de�nes serializable subgoals, those that do interact

in a limited manner, with the following statements.

We de�ne a set of subgoals to be serializable if there exists an

ordering among the subgoals such that the subgoals can always

be solved sequentially without ever violating a previously solved

subgoal in the order

[

17, page 71

]

.

Thus, serializability means that for every state in the intersection of the

�rst n subgoals there exists a path to a state in the n + 1st subgoal that

lies wholly within the intersection. Since these paths are ways to reach later

subgoals without interfering with those previously achieved, the complexity

of problems with serializable subgoals is linear, with the number of subgoals,
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if the subgoals are solved in the correct order. Each subgoal only has to be

established once. Using the wrong order can lead to exponential complexity

because solving a set of subgoals in the wrong order can require having to

violate and reestablish a subgoal an exponential number of times.

Korf labels all sets of subgoals that aren't serializable as nonserializable:

It is often the case that given a collection of subgoals, previ-

ously satis�ed subgoals must be violated in order to make further

progress towards the main goal, regardless of the solution order.

Such a collection of subgoals will be called non-serializable

[

17,

pages 72{73

]

.

Since nonserializable subgoals may need to be violated and reestablished

many times, they o�er little guidance to a planner: solution time will likely

rise superlinearly with the number of subgoals.

This completes our review of Korf's subgoal hierarchy. We will be using

this hierarchy to analyze our planners' performances in various domains, but

�rst we observe several limitations. First, while it may be possible to determine

if a set of subgoals is independent, little work has been done on the problem

of determining that a set of subgoals is serializable and �nding the order

[

3,

4, 15

]

. The obvious method for verifying the serializability of a set of subgoals

is harder than simply solving the problem without subgoals. Second, the

knowledge that a set of subgoals is serializable just indicates that there exists

an order such that they can be solved monotonically, but provides no guidance

in the task of �nding the order. Third, the knowledge that a set U of subgoals

is serializable says little about the properties of subsets of U . We make this

precise with

Proposition 1 Let U be a set of subgoals and let V � U .

1. If U is independent then V is independent.

2. If U is serializable but not independent, then V may be independent,

serializable, or nonserializable.

3. If U is nonserializable, then V may be independent, serializable, or non-

serializable.

In some sense, the only surprising aspect of this result is that a subset

of a set of serializable subgoals may be nonserializable. In fact, the proof of

this is due to an observation of Korf's

[

17

]

regarding the Sussman Anomaly.

He showed that the goal set f(on A B), (on B C)g is nonserializable (in the
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space of world states), but the superset f(on A B), (on B C), (on C Table)g

is serializable.

8

Our experiments showed that Korf's hierarchy is by no means complete

| there are a number of interesting classes of subgoals between independent

collections and arbitrary serializable collections. Recall that a set of subgoals

is independent when progress towards one subgoal implies that the distance

towards all others is unchanged; this is an extremely restricted de�nition. In

the e�ort to provide a more re�ned taxonomy, we de�ne the following term.

De�nition 5 A set of subgoals is trivially serializable if they can be

solved in any order without ever violating a previously solved subgoal.

We note the following important properties:

Proposition 2 Let U be a set of subgoals.

1. If U is trivially serializable and V � U , then V is trivially serializable.

2. If U is independent, then U is trivially serializable.

3. The converse of property 2 does not hold.

Trivial serializability is more general than independence because it is strictly

a topological property while independence is metric (i.e., de�ned in terms of

a distance function). In particular, two trivially serializable subgoals are not

independent if some operator helps to achieve both of them. Of course there

is a price for the extra generality | trivial serializability does not carry the

compositional properties that are entailed by independence. In particular, so-

lutions to the separate subgoals cannot be concatenated to achieve a solution

to the conjunct. Nevertheless, trivial serializability is much more common

than independence and it appears to make the complexity of planning close to

linear in the number of subgoals.

Just as trivially serialized subgoals represent an ideal collection, it is nat-

ural to consider collections of subgoals that are pathological while still being

serializable. For such a collection of subgoals, it is di�cult to determine the

correct order. Solving problems with laboriously serializable subgoals, without

prior knowledge of the order, may take time exponential in the number of

subgoals.

8

When mapped into the search space of partially-ordered plans, both f(on A B), (on B

C)g and its superset are serializable.
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De�nition 6 A set of n subgoals is laboriously serializable if there ex-

ists at least one serializable ordering yet at least

1

n

of the subgoal orders can

not be solved sequentially without possibly violating a previously solved subgoal.

Even if the majority of subgoal orderings are �ne, the exponential cost

of backtracking on the few pathological cases will dominate average planning

time. After all, when a planner chooses a bad subgoal ordering, the result is

e�ective nonserializability | the planner will be forced to repeatedly resolve

the subgoals listed early in the ordering as subsequent subgoals induce back-

tracking. Since bad orderings can require exponentially more time than good

orderings, tractability requires that the number of bad orderings be exponen-

tially decreasing in the number of orderings. But if

1

n

(or any only polynomi-

ally decreasing percentage) of the orderings are bad, then intractability will

dominate.

3.3 Experiments with Independent Subgoals

To test our algorithms on problems consisting of independent subgoals we

created a domain, called D

0

S

1

, with �fteen operators. A template for such

an operator is illustrated below. In general, we named our domains D

x

S

y

because they contain x entries in each operator's delete set and it takes y

steps to achieve a goal.

(defoperator :action A

i

:precond fI

i

g :add fG

i

g

:delete fg)

Note that each operator adds a di�erent goal condition G

i

when its indi-

vidual initial condition I

i

is present. The operators are independent | neither

preconditions nor add lists overlap, and every operator's delete set is empty.

As a result, both the order in which a problem's goal conditions were handled

and the eventual order of the steps were irrelevant to the performance of every

algorithm.

Given this domain, we generated 75 solvable problems each consisting of 15

randomly permuted initial conditions and between 1 and 15 randomly selected

and permuted goal conditions such that for each number of goal conditions, 5

problems were generated. Each problem was given to all three algorithms; the

results are shown in �gure 7. Each point on the graph represents the average

of �ve random tests with that number of goal conditions; 90% con�dence

intervals are included, but are often too small to discern. Performance was

measured in seconds of Dec 5000 CPU time.
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Figure 7: The causal-link algorithms appear to exhibit linear time complex-

ity when given problems consisting of independent subgoals (as with D

0

S

1

),

but the prior-insertion algorithm requires time that appears quadratic in the

number of goals.

It is clear from the graph that both causal-link planning algorithms have

close to linear time complexity in the number of goals

9

for this unconstrained

domain, and that the prior-insertion algorithm has close to quadratic time

complexity. Graphs showing the number of incomplete plans created during

the search were all linear. TOPI's quadratic performance was caused by its

termination step. It must be noted that the performance shown depends on

the fact that only solvable problems were generated. While POCL would

have quickly quit attempting to achieve an impossible goal, the total-order

algorithms might have explored an exponential number of plans in a futile

attempt to �nd a satisfactory order. Similarly, the performance of the total-

order planners depends on the use of a bounded depth-�rst search strategy.

3.4 Experiments with Serializable Subgoals

Our investigation of serializable subgoals consisted of two domains, D

m

S

1

and D

1

S

1

, with large and small delete sets respectively. Elements of delete

9

In this discussion and in subsequent analyses, we assume that each planner can suc-

cessfully solve individual subgoals in a �xed amount of time. In other words, we describe

performance in terms of the complexity of integrating the solutions to the subgoals, assuming

that the cost of solving these isolated subgoals is �xed.
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sets cause steps in each domain to interact, however detecting the extent of

interaction is easier in the �rst domain than the second. This caused TOCL to

perform as well as POCL in the �rst domain, D

m

S

1

, while it degraded terribly

in the harder D

1

S

1

. We show that each planner performs well if the domain

is trivially serializable and poorly otherwise.

3.4.1 Goal Interactions are Manifest in D

m

S

1

The D

m

S

1

domain resembles D

0

S

1

except that the temporal order of plan

steps is tightly constrained by the delete sets of each operator. The D

m

part

of D

m

S

1

signi�es that there are many entries in each operator's delete set. A

template for an operator is illustrated below.

(defoperator :action A

i

:precond fI

i

g :add fG

i

g

:delete fI

j

jj < ig)

Note that operator A

i

deletes the preconditions of operators A

j

for all j

less than i. This implies that for any set of goals, there exists a single ordering

of steps that will achieve that set of goals. The reason is illustrated in �gure

8.

For a real world analog to this domain, consider sealing a set of di�erently

sized boxes such that box i �ts inside box i+ 1. Once one box is sealled, all

of the boxes inside of it are not accessible. The accessibility of a box b

i

is

represented by initial condition I

i

, operator A

i

seals the box, and its being

sealled is represented by goal condition G

i

. The di�culty of problems in this

domain is summarized by proposition 3.

s
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Figure 8: The causal structure of solutions to problems in D

m

S

1

and D

1

S

1

.

Time progresses to the right and each step deletes the preconditions of all

steps above it or the immediate step above it respectively.
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Figure 9: A total-order planner can excel in a domain, such as D

m

S

1

, in which

tight ordering constraints result in trivial serializability.

Proposition 3 The problems in D

m

S

1

have laboriously serializable subgoals

for TOPI, and trivially serializable subgoals for TOCL and POCL.

The proof of this proposition follows directly from lemmas 13 and 15 (See

appendix A).

We generated 75 solvable problems in the same fashion as the previous

experiment: 5 random problems for each number of goal conditions between

1 and 15. Figure 9 illustrates the results of this experiment. Both causal-

link planners appear to have linear time complexity, but TOPI was incapable

of solving even moderately sized problems before the resource cuto�. We

attribute this di�erence to the fact that the domain is laboriously serializable

for TOPI, but trivially serializable for the causal-link planners.

3.4.2 Goal Interactions are More Subtle in D

1

S

1

To show the e�ect of the arbitrary ordering decisions made by TOCL's lin-

earization step we created a domainD

1

S

1

similar to D

m

S

1

. Operators inD

1

S

1

contain only one entry in their :delete �elds, but that entry makes solutions

to problems in D

1

S

1

identical to those in D

m

S

1

. However, this successful

ordering can only be discovered by looking at numerous steps together and

considering their combined constraints. In contrast, the redundant deletes in

D

m

S

1

made the correct placement of a step clear in isolation. In �gure 8,
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where a step in D

m

S

1

deleted all of the preconditions of steps above it, a step

in D

1

S

1

only deletes the precondition of the step immediately above it.

(defoperator :action A

i

:precond fI

i

g :add fG

i

g

:delete fI

i�1

g)

The blocks world is a familiar analog to this arti�cial domain. Consider

building a tower of N blocks from an initial state where all blocks are on the

table. The initial condition I

i

represents that block b

i

is clear, action A

i

puts

block b

i

on top of block b

i�1

, and the goal G

i

represents that block b

i

is on top

of block b

i�1

.

Proposition 4 shows that eliminating the redundant delete constraints

makes this domain considerably harder for TOCL, transforming it from triv-

ially to laboriously serializable:

Proposition 4 The problems in D

1

S

1

have laboriously serializable subgoals

for TOPI and TOCL. They have trivially serializable subgoals for POCL.

The proof of this proposition follows directly from lemmas 13, 16, and 17

in appendix A.

We generated 390 solvable problems in the same fashion as the earlier ex-

periments: 30 random problems for each number of goal conditions between

1 and 13. As shown in �gure 10, POCL maintained its near-linear perfor-

mance, while both total-order planners exhibited apparently exponential time

complexity. Because this domain is laboriously serializable for TOCL, the al-

gorithm branched intractably when considering arbitrary ordering constraints

between steps A

i�1

and A

i+1

before adding step A

i

, which gives the correct

ordering constraint.

3.5 Experiments with Nonserializable Subgoals

In this section we explore the performance of our algorithms on three domains,

all of which are nonserializable when considered in terms of either the space of

world states or the search space of TOPI, but are serializable for the causal-

link planners. The �rst two are readily solved by POCL, but the last one is

more di�cult.

3.5.1 POCL Finds D

m

S

2

and D

1

S

2

Trivially Serializable

To experiment with nonserializable subgoals we created two di�erent domains,

D

m

S

2

and D

1

S

2

, by modifyingD

m

S

1

and D

1

S

1

. The di�erence, of course, lies

in the S

2

superscript which signi�es that subgoals require subplans of length 2
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Figure 10: Some domains, such asD

1

S

1

, give all total-order planners problems,

but are easily solved by partial-order planners.

unlike the singleton subplans of the S

1

domains. The pattern of the delete sets

of the new domains force the planners to interleave the steps introduced for

each subgoal, and (as in the previous section) determining the correct ordering

is easier for D

m

due to the redundant constraints.

As a concrete example of the domains, templates for the operators needed

to achieve goal condition G

i

in domain D

m

S

2

are shown below.

(defoperator :action A

1

i

:precond fI

i

g :add fP

i

g

:delete fI

j

jj < ig)

(defoperator :action A

2

i

:precond fP

i

g :add fG

i

g

:delete fI

j

j8jg [ fP

j

jj < ig)

A step in D

m

S

2

deletes the preconditions of all prior steps, while a step

in D

1

S

2

deletes the preconditions of the only the immediately prior step.

Templates for the operators needed to achieve goal condition G

i

in domain

D

1

S

2

are shown below.

(defoperator :action A

1

i

:precond fI

i

g :add fP

i

g

:delete fI

i�1

g)

(defoperator :action A

2

i

:precond fP

i

g :add fG

i

g

:delete fI

j

j8jg [ fP

i�1

g)
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Thus, there exists a single ordering of steps that will achieve a set of goal

conditions. The causal structure of a solution to a problem in these domains

appears in �gure 11.
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Figure 11: The causal structure of solutions to problems in D

1

S

2

and D

m

S

2

.

For each domain we generated 120 problems. Each problem type consisted

of 16 initial conditions and between 1 and 8 goal conditions. 15 problems

were generated for each problem type. As in previous sections, the initial

conditions and goal conditions were randomly permuted, and performance was

measured in seconds of Dec 5000 CPU time. The di�culties of these domains

are summarized in propositions 5 and 6, and the results of the experiments

appear in �gures 12 and 13.

Proposition 5 The problems in D

1

S

2

have subgoals that are nonserializ-

able for TOPI, laboriously serializable for TOCL, and trivially serializable for

POCL.

The proof is derived simply from lemmas 14, 16, and 17 in appendix A.

Proposition 6 The problems in D

m

S

2

have subgoals that are nonserializable

for TOPI and trivially serializable for TOCL and POCL.

The proof follows directly from lemmas 14 and 15 in appendix A.

3.5.2 Ordering Decisions in D

m

S

2

* are Di�cult

So far, in all our experiments, the set of subgoals was trivially serializable

for POCL. In order to create a harder domain for POCL we created D

m

S

2

*.

The subgoals in this domain are laboriously serializable for POCL. Once again,

there is only one way to achieve a subgoal, and �nding it is trivial. The problem
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Figure 12: In D

1

S

2

POCL outperformed all other planners.
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Figure 13: Solving problems in D
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S

2

was easy for both causal-link algorithms.
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comes in �tting the solutions together. There are two types of subgoals. The

�rst is speci�ed by G

i

and templates to achieve this type appear below.

(defoperator :action A

1

i

:precond fI

i

g :add fP

i

g

:delete fP

j

jj < ig)

(defoperator :action A

2

i

:precond fP

i

g :add fG

i

g

:delete fP

j

jj < ig)

There are an exponential number of solutions to problems that solely con-

sist of subgoals like G

i

, but the number reduces to one when subgoal G

�

is

included in the problem. Solving subgoal G

�

only requires an instance of the

following operator.

(defoperator :action A

�

:precond fI

�

g :add fG

�

g

:delete fI

i

j8ig [ fG

i

j8ig)

The causal structure of the solution to a problem in D

m

S

2

* appears in

�gure 14. The step A

�

a�ects all the causal links that do not appear directly

below it, and the steps A

1

i

and A

2

i

a�ect the middle link of the causal chains

above them. The di�culty of this domain is summarized in the following

proposition:

Proposition 7 The problems in D

m

S

2

* have subgoals that are nonserializable

for TOPI and laboriously serializable for POCL and TOCL.

The proof follows from lemmas 14 and 18 in appendix A.
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Figure 14: The causal structure of solutions to problems in D

m

S

2

*.

Given this domain we generated 60 solvable problems in the same fashion

as the earlier experiments: 20 randomly generated problems for each number
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Figure 15: Some simple domains, such as D

m

S

2

*, give all planners problems.

of goal conditions between 1 and 6. Figure 15 plots the results: all plan-

ners exhibited exponential degradation when confronted with more goal con-

juncts; this con�rms the expectation that laborious serializability results in

intractability. When solving problems with 6 goals, the mean performances of

TOCL and POCL were quite variable, resulting in large 90% con�dence inter-

vals. This was caused by the fact that in a third of the problems the planners

were lucky, chanced upon a good serialization orderings, and thus took only

a linear amount of time. For the majority of problems, however, the planners

required exponential time which dominated the average problem solving time.

See the proof of lemma 18 for further elaboration.

3.6 Experiments with Operator Selection Decisions

The domains considered in previous sections are much simpler than those

encountered in many real planning problems because the arti�cial domains

provided only one way to achieve each subgoal. This meant that step order-

ing decisions were the only source of combinatorial search since the operator

selection decision was always trivial. Because the complexity due to operator

selection is important for most planning tasks, this section explores the inter-

action between the selection and ordering decisions in the three planners. To

make this analysis, we introduce a general transformation �

n

for the previously

de�ned domains and scrutinize several illuminating instances.

We illustrate this transformation by taking D

m

S

1

and constructing the
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new domain �

2

D

m

S

1

. Our construction begins by taking each operator in

D

m

S

1

(section 3.4.1) and creating the following two

10

operators for the new

domain by adding the precondition P

�

or P

�

.

(defoperator :action A

�

i

:precond fI

i

; P

�

g :add fG

i

g

:delete fI

j

jj < ig)

(defoperator :action A

�

i

:precond fI

i

; P

�

g :add fG

i

g

:delete fI

j

jj < ig)

When the terms P

�

and P

�

are in a problem's initial conditions, there are

two ways to achieve any subgoal G

i

. One uses operator A

�

i

and the other uses

operator A

�

i

. The construction is completed by adding the following operator

A

�

to the domain.

(defoperator :action A

�

:precond fg :add fG

�

g

:delete fP

�

g [ fG

i

j8ig)

Problems with goal G

�

require adding a step of type A

�

to the plan, but

this step threatens the causal link A

x

i

G

i

!s

1

which was created while achieving a

goal G

i

with either step A

�

i

or A

�

i

. This threat can be resolved by ordering step

A

�

before step A

x

i

, but when x is �, A

�

also threatens the causal link s

0

P

�

!A

�

i

.

This latter threat cannot be resolved. Thus, complete solutions cannot contain

A

�

i

steps, but no planner can determine this until it plans for goal G

�

. This

means that any serializable ordering in the �

2

D

m

S

1

domain must begin with

the subgoal for G

�

. The following proposition describes the general case:

Proposition 8 For POCL and TOCL, the ratio of orderings that are seri-

alizable for an M goal problem in a �

n

transformed domain (n � 2)is R=M ,

where R is the ratio of orderings that are serializable for an M�1 goal problem

in the original domain.

This proposition has interesting consequences:

Corollary 9 For POCL and TOCL, problems with 2 or more subgoals are

laboriously serializable in any domain which has been transformed by �

n

(for

n � 2).

10

To increase the complexity of step selection further one can replace with an arbitrary

number of new operators, but setting n = 2 su�ces to complicate planning by an exponential

factor.
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The corollary makes intuitive sense: since �

n

domains have multiple ways

to achieve each subgoal and the di�erent methods interfere, backtracking is

required for most subgoal orderings. The proof is straightforward. Since R

can never exceed 1 and

M�1

M

�

1

M

for M � 2, the corollary follows directly

from proposition 8 and de�nition 6.

Since TOPI does not use causal links, the above arguments do not directly

apply. Still, just like POCL and TOCL, TOPI cannot know which step to

use in achieving a subgoal G

i

until it achieves the subgoal for G

�

. At this

point we note that G

�

has to be achieved last to make step A

�

appear �rst in

the plan. This leads to proposition 10.

Proposition 10 For TOPI, all problems in �

n

transformed domains have

nonserializable subgoals.

Empirically, we explore the interaction of step ordering decisions with op-

erator selection decisions by constructing the domains �

2

D

m

S

1

and �

2

D

0

S

1

from D

m

S

1

and D

0

S

1

respectively. For each of these domains we generated

300 solvable problems. Each problem type consisted of 17 initial conditions,

and between 1 and 10 goal conditions. Performance was measured in seconds

of Dec 5000 CPU time. The results are shown in �gures 16 and 17. Each data

point represents a planner's average performance over 30 randomly generated

problems. The 90% con�dence intervals show how much the the performance

varied from one problem to another.

In the �

2

D

m

S

1

domain, only one step ordering is legal, and TOCL could

infer this ordering early in the planning process. As a result, TOCL avoided

pointless backtracking over equivalent step ordering decisions and exhibited

the same performance as POCL in this domain.

In the �

2

D

0

S

1

domain, any step ordering beginning with A

�

is legal. Since

the placement of A

�

is easily determined from all of its delete conditions, the

di�culty of these problems is solely caused by the operator selection decisions.

The main lesson learned from this experiment is that arbitrary step ordering

decisions interact with arbitrary operator selection decisions. All planners

exhibited exponential performance, but the early commitment on step ordering

resulted in a higher branching factor for the total order planners. Although

the order of the steps was immaterial to the success or failure of the plan under

consideration, more 
awed plans were considered on average leading to poor

performance.

These experiments are interesting because the �

2

transformation had dif-

ferent e�ects on the relative performance of the planners in the two cases.

Although POCL and TOCL performed equally in D

0

S

1

and D

m

S

1

, their

performance di�ered in the �

2

derivatives. This shows that a partial order
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Figure 16: In domain �

2

D

m

S

1

, TOCL's performance mimicked that of

POCL.

planner can have a performance advantage which is solely due to operator

selection issues.

The phenomena can be explained by realizing that the �

2

domains cause

both planners to make mistakes and eventually backtrack. But since each

POCL plans corresponds to many totally ordered plans, TOCL requires more

search to regain the path after each mistake.

3.7 Experiments with Heterogeneous Sets of Subgoals

Until this point we have been concentrating on problems that contain sets of

related subgoals. In order to explore how the di�culty of a problem behaves

when it contains two unrelated sets of subgoals, we constructed a test that

contained subgoals from D

m

S

2

* and D

0

S

1

.

In this domain we generated 1620 solvable problems. Each problem type

consisted of 12 initial conditions, between 0 and 8 D

0

S

1

goal conditions, and

between 0 and 5 D

m

S

2

* goal conditions. 30 problems were generated for each

problem type. Each problem had its initial and goal conditions randomly

permuted. Performance was measured in seconds of Dec 5000 CPU time. The

results are shown in �gure 18.

The main lesson learned from this experiment is that the di�culty of solv-

ing problems with heterogeneous subgoals is not simply additive because the

number of plan-states which need violated subgoals to reach a solution can
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Figure 17: In domain �

2

D

0

S

1

, TOCL took as long as TOPI.

increase dramatically when combining di�erent sets of subgoals. The most

illustrative example of this occurs in the graph for TOCL where the number

of D

m

S

2

* goals is held at three and the number of D

0

S

1

goals varies from

zero to eight. The complexity appears to rise exponentially with the number

of independent goals.

The behavior of TOCL can be explained by noting that there are two

plan-states, [A

1

1

, A

2

1

, A

1

2

, A

2

2

] and [A

1

2

, A

2

2

, A

1

1

, A

2

1

], in three goal problems

of D

m

S

2

* that cannot be modi�ed into a solution without violating previous

subgoals. The number of such plan-states rises exponentially with the number

of independent goals. TOPI has a similar problem. In this example, POCL

avoids the problem because the number of such minimal plan-states only rises

linearly with the number of independent goals. This is not the case in general.

3.8 Application to Real Domains

Previously, we argued that real world domains typically include many di�erent

types of subgoal interaction which impedes any understanding of the source of

computational intractability. By restricting our attention to arti�cial domains,

we've teased apart the di�erent aspects of domain complexity and compared

the scaling properties of di�erent planning algorithms. However, our theory

can also be applied to more complex domains as we now illustrate.

We focus on the Tyre world domain which encodes repair actions on a

British automobile. While not completely \real," Tyre world's 14 operators
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Figure 18: For total-order planners the di�culty of solving a problem can rise

exponentially with the number of independent subgoals.

make it fairly complex. We selected the domain for several reasons. First, it

was written independently by Stuart Russell at Berkeley and thus represented

an independent test for our theory. Second, Russell had posed a di�cult

planning problem for the domain (replacing a 
at tire by jacking the wheel,

unbolting the lugs, etc., eventually restoring all tools to the trunk) whose

optimal solution required 19 steps and took six hours to solve (e.g., required

exploring 3 million partial plans) even when using extremely e�cient search

techniques (in fact, Russell invented the problem to test his bounded-memory

IE search technique

[

28

]

). We took as our challenge, the problem of rendering

this problem tractable.

Our theory predicted that the eight subgoals of the problem were nonse-

rializable for TOPI yet laboriously serializable for POCL and TOCL. Con-

centrating on the causal link planners, we noted four constraints on subgoal

ordering that would render the problem trivially serializable for POCL.

11

Anal-

ysis showed that only

9408

40320

= 23:3% of the possible orderings denoted correct

serializations for POCL. Two extra constraints were needed to render the prob-

lem trivially serializable for TOCL so only

1576

40320

= 3:91% of all orderings were

correct serializations for TOCL

To test if our theory of subgoal interactions could lead to signi�cant per-

formance improvement in this domain, we generated three sets of planning

11

For example, three conditions force a planner to generate steps that use a tool prior to

considering goals to put that tool away (e.g., the planner must consider how it will in
ate

the spare before determining how and when the pump will be put in the trunk). Space

restrictions preclude a detailed description of this domain and our experiments, but the

complete encoding, source code for the planners, and our data is available by anonymous

FTP. Send mail to bug-snlp@cs.washington.edu for details.
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problems. All planning problems encoded Russell's tire changing task with

the same eight goal conjuncts | the only di�erence was the order of the con-

juncts. The �rst ten problem were randomly chosen serializations for both

TOCL and POCL. The second ten problems were serializations for POCL

but not for TOCL. Finally, the last ten problems weren't serializations for

eith planner. As Table 2 shows, the performance we measured corresponds

perfectly with our theory.

Serializations POCL TOCL

for Completed Mean Time Completed Mean Time

TOCL & POCL 100% 123 100% 863

Just POCL 100% 102 50% > 6769

Neither 0% > 10323 0% > 11594

Table 2: Summary of the three experiments with Tyre world problems. Times

are in CPU seconds; the \>" appears when the mean includes time spent

planning before failure induced by resource cuto�.

These experiments suggest that our theory of subgoal interactions does

provide useful insight about the performance of planners on real world do-

mains. When given a serializable ordering, both partial and total order plan-

ners exhibit comparable performance. The challenge is �nding a serialization

ordering. A partial order planner's ability to delay step ordering decisions of-

ten increases the number of serializable orderings, sometimes quite drastically

(i.e., trivial serializability).
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4 Discussion

One of the major advances of Sacerdoti's NOAH

[

29

]

was the shift from search-

ing through a space of world-states to searching through a space of partially

ordered, plan-states. This paper analyzed that contribution by comparing the

performance of three di�erent planning algorithms on a variety of domains.

The �rst planner, POCL, delays the ordering of steps in a plan until they

interact in a way that a�ects the plan's correctness. The second planner,

TOCL, is a modi�cation of POCL that restricts generated plans to contain to-

tally ordered steps. This restriction makes TOCL add premature step-ordering

constraints that POCL avoids.

Although the �rst two planners add steps anywhere in a plan, the third

planner, TOPI, only adds steps prior to existing steps. This last algorithm

is radically di�erent from the previous two: although it uses plan-states, it

structures the search space in a way that makes it equivalent to a backward

chaining world-state search such as the regression planner of

[

25

]

.

The performance of each algorithm is determined by the number of plan-

states that it visits to �nd a solution and the complexity of visiting each

plan-state. We �rst compared the three algorithms in terms of the complexity

of visiting a plan-state. TOCL is the most e�cient at visiting a plan-state:

its cost is linear in the number of existing steps. The use of partial orderings

made POCL'cost per step be quadratic in the number of steps. Finally, TOPI's

complexity did not depend on the number of steps, but it was exponential

in terms of the number of open goal conditions (assuming P 6= NP). This

cost applies to any backward chaining state-space search that uses a least

commitment binding strategy for variables.

To compare the number of plan-states each planner visited, we had to

classify the di�culty of problems for the various planners. We made this char-

acterization by considering the set of subgoals speci�ed by a problem's goal

conjuncts, and classifying that set in Korf's subgoal hierarchy. Since Korf's

subgoal hierarchy is overly general, we extended it to include the trivial and la-

borious subclasses of serializable subgoals (�gure 19). Solving problems with

independent or trivially serializable subgoals required visiting a number of

plan-states that was linear in the number of subgoals, but problems with labo-

riously serializable or nonserializable subgoals required visiting an exponential

number of plan-states.

To explore this re�ned hierarchy, we generated several arti�cial domains

and compared the di�erent planners. We observed that the partial-order

planner never took signi�cantly longer than either total-order planner, and

sometimes the partial-order planner performed much better. In all cases the

planners only performed well when given a problem with trivially serializable
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Figure 19: An Extended Hierarchy of Subgoal Collections.

subgoals. With one simplifying assumption this result can be proven true:

Proposition 11 Assuming that a problem's subgoals can be achieved in con-

stant time, the expected time to solve a problem rises linearly with the number

of subgoals if the problem is trivially serializable, but rises exponentially if the

problem is laboriously serializable or nonserializable.

The proof follows easily from the fact that a subgoal only has to be achieved

once given a serialization ordering, but may have to be solved an exponential

number of times when given some other ordering.

A close examination of our experiments reveals even more interesting regu-

larities as summarized in table 3. Notice that the di�culty of a set of subgoals

was never harder for POCL than it was for the total order planners, and that

it was always hardest for TOPI.

Attempting to prove these observations are guaranteed leads us to propo-

sition 12 which implies that solving a set of subgoals is never more di�cult

for POCL than it is for TOCL (our experiments show that it is often much

easier).

Proposition 12 Any serializable subgoal ordering for TOCL is also a serial-

izable subgoal ordering for POCL.

The proof follows from lemma 19 in section A.2.

Perhaps suprisingly, a similar domination result for POCL and TOPI can-

not be made. There exist problems with subgoals that are trivially serializable
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Algorithm

Domain POCL TOCL TOPI

D

0

S

1

I I I

�

2

D

0

S

1

L L N

D

1

S

1

T L L

D

m

S

1

T T L

�

2

D

m

S

1

L L N

D

1

S

2

T L N

D

m

S

2

T T N

D

m

S

2�

L L N

Tyre L L N

Table 3: Summary of the subgoal classi�cations of each domain for each plan-

ner. Subgoals are independent (I), trivially serializable (T), laboriously seri-

alizable (L), or nonserializable (N).

for TOPI and laboriously serializable for the causal link algorithms. For ex-

ample, consider the following domain which we call D

�

S

1

C

2

:

(defoperator :action A

1

i

:precond fI

i

g :add fG

i

g

:delete fG

�

g)

(defoperator :action A

2

i

:precond fI

i

g :add fG

i

g

:delete fg)

Problems inD

�

S

1

C

2

have initial conditions fG

�

; I

1

; :::; I

n

g and goals fG

�

; G

1

; :::; G

n

g.

For the causal link algorithms, all serializable subgoal orderings have to start

with the subgoal for G

�

. For TOPI, the operator selection step ensures that

any subgoal ordering is a serializable ordering.

Finally, although one might expect that the partial order representation

provides no bene�t when planning complexity results from the need to choose

which operator should be used to achieve open conditions, we showed that this

intuition is false. In some domains, a partial order planner can rule out bad

combinations of operator selection decisions more e�ciently than can a total

order planner. In our last experiment, we explored the interaction of di�erent

sets of subgoals. We discovered that even though two sets are independent

with respect to each other, solving problems with both sets together is harder

than solving each set separately.

37



5 Related Work

In previous work

[

2, 30

]

we reported on preliminary experiments regarding the

e�ect of step-order representations on planning. Besides an increased num-

ber of experiments, this paper analyzes the results in terms of an extended

version of Korf's

[

17

]

taxonomy of subgoals and domain complexity. Joslin

and Roach

[

13

]

extend Korf's analysis of nonserializable subgoals

12

with a

topological analysis of subgoals in terms of their connected components. Our

extensions to Korf's taxonomy are independent of Joslin and Roach's con-

tribution since they do not consider the number of viable subgoal orderings

while this is the key concept underlying our notions of trivial and laborious

serializability.

Besides our earlier papers, there has been little other work comparing the

performance of partial-order and total-order planners. A notable exception

is the excellent work of Minton et al.

[

22

]

. This paper considers the to and

ua algorithms which resemble propositional versions of our TOCL and POCL

algorithms with one di�erence: unlike our planners, to and ua are not sys-

tematic. Minton et al. demonstrate the existence of an isomorphism L which

maps from nodes in the ua's search space into nonempty equivalence classes

that partition the search space of to. The existence of L proves that the search

space of their partial-order planner is no larger than that of the total-order

algorithm, and that it is possibly exponentially smaller. Systematicity and

our proof of lemma 19 proves that L also exists between POCL and TOCL.

Minton et al. argue that since ua's cost to evaluate a search space node

is only slightly more than that of to, the partial-order planner should run

faster. They also report on experiments that suggest that ua's advantage in-

creases with a decreasing number of interactions between plan steps, but this

is the only domain characteristics they consider. Minton et al. also show that

partial-order planners can exploit certain types of heuristics more e�ectively

than their total-order siblings; given the crucial need for heuristics to guide

search through the exponential spaces of real problems, this result is of great

importance. In a recent extension to their earlier work, Minton et al.

[

23

]

con-

sider the e�ects of di�erent search strategies and the distribution of solutions

on performance.

12

Unfortunately, Joslin and Roach did not phrase their work in these terms, appearing

unaware of Korf's work.
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6 Future Work

There are several other limitations to this work that point to future research

directions. We need a way to analyze the di�culty of solving a single sub-

goal and techniques for analyzing domains which contain subgoals of varying

di�culty. Also, characterizing serializable subgoals as trivial or laborious is

still too coarse. There is room for more re�nement in Korf's hierarchy, espe-

cially in the critical cases where there are only a few (perhaps an exponentially

decreasing percentage) of bad subgoal orderings.

Our conclusion that domains with laboriously serializable subgoals are in-

tractable is based on the assumption that good serializations can't be pre-

dicted before planning commences. If it were possible to construct some sort

of domain theory compiler which identi�ed good and bad orderings, then the

bene�ts would be considerable. In fact, much of the work on abstraction in

planning can be viewed as doing exactly this. Perhaps it might be possible

to generalize the techniques in ALPINE

[

15, 16

]

or the subgoal interaction

analysis of STATIC

[

9

]

in this direction.

A major weakness in our work is its dependence on the STRIPS represen-

tation. We plan to use UCPOP

[

27

]

to explore whether partial-order represen-

tations are useful given more expressive domains, such as ADL

[

26

]

, which in-

clude conditional e�ects and universally quanti�ed e�ects. Also using UCPOP,

we hope to replicate the experiments of Minton

[

21

]

to see if explanation based

learning can speed up a partial-order planner as much as it has PRODIGY

[

24

]

.

All of the experiments reported in this paper challenged planners only with

solvable problems. A natural extension would be to investigate the perfor-

mance of the algorithms when confronted with impossible goals. Our intuition

is that the advantage of POCL would be ampli�ed. Another research direction

that begs for attention is consideration of other subgoal focusing mechanisms.

In this paper we assumed that each subgoal was completely solved before at-

tempting the next, but there are numerous other control strategies. For

example, it would be interesting to consider iterative sampling techniques de-

scribed in

[

18, 23

]

.

On a more basic level, it is unclear that our de�nition of subgoals for plan-

state searches is the best one. Our work, as well as

[

13

]

and

[

17

]

, de�nes

subgoals using elements of 
, but such need not be the case. Our causal link

algorithms focused on reaching subgoals, as we de�ned them, by using a FILO

strategy for selecting open goals to resolve. Just as there are other strategies

for selecting open goals, there are other ways to de�ne a subgoal.

For example, one selection strategy prioritizes open goals based on predi-

cate type and leads to a form of abstraction

[

19

]

. A plan-state is in a subgoal
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when it contains an abstract solution to a problem, and the next less abstract

solution is the next subgoal. We have performed some preliminary experi-

ments using POCL with di�erent strategies for selecting open goals and noted

that the di�culty of problems is strongly in
uenced by the strategy. More

work needs to be done to relate strategies with de�nitions of subgoals and to

characterize which strategy is best for a problem.
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7 Conclusions

In this paper we have evaluated the e�ect of a partial-order plan representation

on planning performance both empirically and in terms of the e�ect of repre-

sentation on subgoal structure. Our paper makes several major contributions:

� We demonstrate that Korf's

[

17

]

subgoal taxonomy fails to di�erentiate

between classes that have vastly di�erent computational properties. In

particular, we argue that some serializable sets are easy to solve while

others are di�cult. We conclude that the distinguishing feature is the

number of feasible serialization orderings and this leads to our de�nitions

of trivially serializable and laboriously serializable subgoals.

Since all orderings of trivially serializable subgoals lead to a global solu-

tion, this class is computationally tractable. We note that pure trivial

and pure laborious serializability are but two points on a continuum of

arduousness and many real problems may be intermediate in di�culty.

� We present and analyze three planning algorithms on eight arti�cial do-

mains, which were created to illustrate di�erent types of subgoal inter-

actions. From the results of our experiments, we make the following

observations:

1. The total-order planners never performed signi�cantly better than

the partial-order planner.

2. In domains with complex ordering interactions the partial-order

planner performed exponentially better than either total-order plan-

ner. In particular, the D

1

S

1

and D

1

S

2

domains (sections 3.4.2 and

3.5) have ordering interactions that involve numerous steps in a

pairwise fashion; only POCL was able to deduce a successful order-

ing e�ciently.

3. Planning problems which involved operator selection decisions (i.e.,

multiple, interacting ways to achieve open conditions) were easier

for a partial order planner | even when the corresponding single-

operator problems (e.g., D

0

S

1

and �

2

D

0

S

1

) were easy for planners

with either representation.

4. The performance di�erence of the planners correlates perfectly with

the subgoal classi�cation of the domains. Since the algorithms use

di�erent plan representations, they have di�erent search spaces.

Thus the natural subgoal decomposition of a D

1

S

2

problem was

trivially serializable for POCL, laboriously serializable for TOCL

and nonserializable for TOPI. As as predicted by proposition 11, all
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three planners performed well only when confronted with trivially

serializable subgoals.

� We prove (proposition 12) that compared to TOCL, the partial order

POCL planner renders a strictly greater number of problems trivially

serializable.
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A Proofs

There is one feature of our planners (used in all the proofs) that needs to

be discussed prior to proving the lemmas of this section. All of our planners

perform bounded depth �rst searches. This search interacts with the subgoal

classi�cation of a problem to a�ect the planners' performances. For instance,

solving a set of serializable subgoals in the correct order ensures that a previ-

ously solved subgoal need never be violated. This a�ects the depth �rst search

by limiting the amount of backtracking that needs to be performed. Once a

plan-state in a subgoal is found, the search will never need to backtrack back

through it.

We can use this feature to prove that a certain subgoal ordering is not a

serializable ordering. An ordering is not a serializable ordering when a planner

reaches a plan-state where it will have to backtrack and violate a previous

subgoal.

A.1 Prior Insertion Algorithm (TOPI)

As mentioned in section 3.1, plan-states for TOPI are in the subgoal for a

proposition P when all of the open conditions of steps added to solve P are in

the initial conditions. There are two ways to violate this subgoal. One is to

backtrack, delete a step, and make one of the open conditions for P not be in

the initial conditions. The other is to add a step for one of the open conditions

where one of that step's preconditions is not in the initial conditions. We will

focus our proofs on the �rst way to violate a subgoal; the second does not

happen in our domains.

The two main features of TOPI that we will use in the following proofs

are that steps are only added prior to existing steps, and no steps that delete

open conditions can be added.

Lemma 13 Problems in D

1

S

1

and D

m

S

1

domains have laboriously serializ-

able subgoals for TOPI.

Proof: The subgoals of problems in these domains are obviously serializable

because it only takes the addition of one step, A

i

, to achieve a subgoal,

G

i

. Thus, ordering the subgoals to add the steps in the right order

assures that TOPI never needs to violate a previous subgoal. The actual

serializable order is G

n

, G

n�1

, ..., G

1

.

Consider any subgoal ordering other than the above serializable ordering.

In this order there is a case whereG

i

comes beforeG

j

when i < j. In such

a case there exists a reachable plan-state in G

i

and all of its preceding
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subgoals that does not contain step A

j

. Since A

j

deletes a precondition

of A

i

, TOPI cannot add A

j

to the beginning of the plan-state until step

A

i

is removed, but this would violate subgoal G

i

.

Thus any serializable ordering other than the actual ordering cannot

ensure that some goal G

j

can be solved without violating a previous

subgoal G

i

. This means that for a problem with n subgoals only one of

n! orderings assures that the subgoals can be solved sequentially without

ever violating a previous subgoal. 2

Lemma 14 The problems in D

1

S

2

, D

m

S

2

, and D

m

S

2�

domains have subgoals

that are nonserializable for TOPI.

Proof: From the de�nitions of these domains there is only a single ordering

of steps that can achieve the goal. Take any ordering of the subgoals and

consider plan-states in all subgoals except the last subgoal, for G

x

. One

of the steps required for achieving G

x

is A

2

x

. Since A

2

x

has to appear after

steps A

1

y

, for all y, these steps have to be deleted before TOPI can add

A

2

x

to the plan, but this violates all of the previous subgoals. Therefore,

the subgoals of problems in S

2

domains are nonserializable for TOPI. 2

A.2 Causal-Link Algorithms (TOCL and POCL)

Unlike TOPI, the causal-link algorithms can add steps into the middle of a

plan, but they have other features that we can use in our proofs. The �rst

such feature is that at each point in the planning process the planners focus

on a single subgoal. They solve that subgoal and then move on to the next

in the subgoal ordering. Solving the subgoal for G

x

is a two step process for

problems in the S

1

domains and a three step process for the S

2

domains. In

each problem, the planners perform these processes for the current subgoal

and later move onto the next.

� Achieving a subgoal in S

1

domains.

1. Add step A

x

and A

x

G

x

!s

1

. Protecting existing causal links from

step A

x

can add ordering constraints to the plan-state.

2. Add s

0

I

x

!A

x

. Protecting s

0

I

x

!A

x

from any existing step A

j

can add

ordering constraints to the plan-state.

� Achieving a subgoal in S

2

domains.

1. Add step A

2

x

and A

2

x

G

x

!s

1

. Protecting existing causal links from

step A

2

x

can add ordering constraints to the plan-state.
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2. Add step A

1

x

and A

1

x

P

x

!A

2

x

. Protecting existing causal links from

step A

1

x

can add ordering constraints to the plan-state.

3. Add s

0

I

x

!A

1

x

. Protecting s

0

I

x

!A

1

x

from any existing step A

1

j

can add

ordering constraints to the plan-state.

The second feature comes from the causal-link-protection step. This step

ensures that the necessary truth of a solved subgoal is never violated while the

relevant causal links exist. Thus, the only way to violate a previously solved

subgoal is to get rid of a causal link through backtracking.

Lemma 15 Problems in D

m

domains have trivially serializable subgoals for

both POCL and TOCL.

Proof: Consider an arbitrary ordering of the subgoals for a problem in the

D

m

S

1

domain. The �rst subgoal is achievable from the null plan by

performing the S

1

subgoal achievement process. No protection is nec-

essary because there are no other steps in the plan. Now consider the

plan-state reached by focusing on the �rst m subgoals. Suppose that

its m steps are ordered such that A

i

precedes A

j

when i < j. This is

trivially true of the plan-state reached when focusing on the �rst sub-

goal. Reaching the m+1st subgoal involves performing the S

1

subgoal

achievement process, and protecting causal links ensures that all m+ 1

steps in the new plan-state are ordered such that A

i

precedes A

j

when

i < j. Since this ordering is consistent, POCL can always achieve the

next subgoal without violating a previous subgoal.

The same argument used for POCL works for TOCL because the ordering

of a plan-state's steps upon achieving the mth subgoal, for any m, is a

total ordering. This argument can also be extended to cover the D

m

S

2

domain because of the similarity or the domain steps and the subgoal

achievement processes. 2

Lemma 16 Problems in D

1

domains are trivially serializable for POCL.

Proof: Consider an arbitrary ordering of the subgoals for a problem in the

D

1

S

1

domain. The �rst subgoal is achievable from the null plan by per-

forming the S

1

subgoal achievement process. No protection is necessary

because there are no other steps. Now consider the plan-state reached

by focusing on the �rst m subgoals. Suppose that its m steps are or-

dered such that A

i�1

precedes A

i

. This is trivially true of the plan-state

reached when focusing on the �rst subgoal. Reaching them+1st subgoal
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involves performing the two step process, and protecting causal links en-

sures that all m + 1 steps in the new plan-state are ordered such that

A

i�1

precedes A

i

. Since this ordering is consistent, POCL can always

achieve the next subgoal without violating a previous subgoal.

This argument extends to the D

1

S

2

domain by replacing the subgoal

achievement process. Both steps added to achieve the next subgoal get

ordering constraints similar to those in the D

1

S

1

domain. 2

Lemma 17 Problems in D

1

domains are laboriously serializable for TOCL.

Proof: Consider orderings of n subgoals that start with a subgoal G

i

inD

1

S

1

.

The next subgoal in the ordering must be G

i�1

or G

i+1

. Otherwise,

the steps A

i

and A

j

, for the second subgoal G

j

, are not ordered with

respect to each other because they do not a�ect each other. The lack of

an ordering constraint gives the linearization step license to choose an

arbitrary order. Since the steps in the �nal solution are totally ordered,

only one of these arbitrary orders is the correct one. This means that

subgoal G

j

will have to be violated, via backtracking, several times to

�nd the order.

In general the valid serializable orders are those where a subgoal G

i

only

appears at the beginning or after the appearance of G

i�1

or G

i+1

. Any

other ordering would have a case like the one described above. There

are

�

n� 1

k � 1

�

such orders that start with G

k

, and the total number of

such orders is 2

n�1

. But this means that the number of bad orderings is

n!�2

n�1

n!

which is greater than or equal to

1

n

for n � 3. Thus, problems in

D

1

S

1

are laboriously serializable for TOPI.

This same argument holds for D

1

S

2

. 2

Lemma 18 Problems in the D

m

S

2�

domain are laboriously serializable for

POCL and TOCL.

Proof: Consider any ordering where G

�

and G

i

are the �rst two subgoals.

The only plan-state found while focusing on these subgoals contains the

totally ordered plan [A

1

i

,A

�

,A

2

i

]. Now consider plan-state reached by

focusing on the �rst m subgoals. Suppose that its 2m � 1 steps are

ordered as shown in �gure 14. This is trivially true for the �rst two

subgoals. Focusing on the m+ 1st subgoal G

x

involves adding steps A

1

x

and A

2

x

. Protecting links s

0

I

x

!A

1

x

and A

2

x

G

x

!s

1

forces A

�

between A

1

x

and

A

2

x

. Protecting link A

1

x

P

x

!A

2

x

from existing steps A

1

y

and A

2

y

, where x < y,

forces steps A

1

x

and A

2

x

between steps A

1

y

and A

2

y

. Finally, protecting
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existing links A

1

y

P

y

!A

2

y

from the new steps A

1

x

and A

2

x

, where y < x,

forces steps A

1

y

and A

2

y

between steps A

1

x

and A

2

x

. Thus the resultant

ordering of the plan for m + 1 subgoals is ordered as shown in �gure

14, and any ordering where G

�

and G

i

are the �rst two subgoals is a

serializable ordering. Since the ordering of steps in a plan for the �rst m

subgoals is always a total ordering, these serializable orderings are also

valid for TOCL.

Consider any ordering where G

�

is not one of the �rst two subgoals. Both

POCL and TOCL can generate a totally ordered plan-state [A

1

i

,A

2

i

,A

1

j

,A

2

j

]

where G

i

and G

j

are the �rst two subgoals and i < j. This plan-state

cannot be modi�ed to include step A

�

and achieve subgoal G

�

without

deleting A

1

j

and adding it before A

1

i

. Since this deletion involves vio-

lating subgoal G

j

, any ordering that does not include G

�

as the �rst or

second subgoal is not a serializable ordering.

So, since only

2

n

of the orderings are good serialization orderings, at least

1

n

are bad for large n. We conclude that problems in the D

m

S

2�

domain

are laboriously serializable for POCL and TOCL. 2

De�nition 7 Suppose O denotes a set of consistent constraints specifying a

partial ordering on a set S of steps, and suppose the set fO

1

; :::; O

n

g con-

tains all total orderings which are consistent with O. Let L denote a func-

tion from invocations of POCL to a set of invocations of TOCL such that

L(POCL(�S;O;B�; G; L)) = ft

1

; :::; t

n

g where t

i

= TOCL(�S;O

i

; B�; G; L).

Lemma 19 Given that both POCL and TOCL use the same goal selection

strategy, for every invocation p that POCL can make, TOCL can (nondeter-

ministically) make any of the invocations in L(p).

Proof: The lemma is trivially true for the initial calls to POCL and TOCL. As

an induction hypothesis, consider an invocation p = POCL(�S;O;B�,G,L)

at depth n of the recursion, and assume that TOCL can make all invoca-

tions in L(p). We prove by contradiction that this remains true at depth

n+ 1.

Suppose that a sequence of nondeterministic choices leads p to make the

recursive invocation p

0

= POCL(�S;O

p

0

; B�; G; L), but there exists a

t

0

2 L(p

0

) which cannot be called from any t

i

2 L(p). Since we are

assuming that the lemma holds at depth n and since POCL and TOCL

manipulate the sets S, B, G, and L in an identical manner, the only

possible di�erence between p

0

and t

0

concerns their respective ordering

constraints, O

p

0

and O

t

0

. We now consider possible di�erences between

these orderings.
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case 1: Suppose p does not add a new step. Then O

p

0

is a simple re-

�nement of O. By de�nition of L, O

0

t

is a linearization of O

p

0

, so

O

t

0
must be a linearization of O. But this means that there exists

a depth n invocation in L(p) with the same ordering and it could

call t

0

.

case 2: If p does add a step, S

add

, then O

t

0

is a total ordering of S [

fS

add

g. Removing references to S

add

from O

t

0

results in a total

ordering O

t

of S that is consistent with O. Thus 9t 2 L(p) with

ordering O

t

. But TOCL's construction of range R mirrors POCL's

re�nement of O

p

0

so t can call t

0

.

Since these cases are exhaustive, we have veri�ed the inductive hypoth-

esis at depth n+ 1. 2

Proposition 12 Any serializable subgoal ordering for TOCL is also a serial-

izable subgoal ordering for POCL.

Proof: Suppose that both TOCL and POCL use the same goal selection strat-

egy, and there exists a serializable subgoal ordering for TOCL that is not

a serializable subgoal ordering for POCL. This implies that there exists

an invocation p = POCL(�S;O;B�,G,L) where L contains just those

causal links needed to achieve the �rst n subgoals, and �S;O;B�cannot

be further extended to achieve the �rst n+ 1 subgoals.

Consider an invocation TOCL(�S;O

i

; B�,G,L) 2 L(p). From Lemma

19 we know that this invocation can be made by TOCL. Since the subgoal

ordering is serializable for TOCL, the plan-state �S;O

i

; B � can be

extended to achieve the �rst n+1 subgoals, but since�S;O;B�has fewer

constraints, it too can be extended to achieve the �rst n + 1 subgoals.

But this contradicts our hypothesis so any serializable subgoal ordering

for TOCL must be a serializable subgoal ordering for POCL. 2
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