
c
 Copyright 1992

Barry Cli�ord Neuman

The Virtual System Model:

A Scalable Approach to Organizing Large Systems

by

Barry Cli�ord Neuman

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

University of Washington

1992

Approved by

(Chairperson of Supervisory Committee)

Program Authorized

to O�er Degree

Date

Doctoral Dissertation

In presenting this dissertation in partial ful�llment of the requirements for the Doctoral

degree at the University of Washington, I agree that the Library shall make its copies

freely available for inspection. I further agree that extensive copying of this dissertation

is allowable only for scholarly purposes, consistent with \fair use" as prescribed in the

U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be

referred to University Micro�lms, 300 North Zeeb Road, Ann Arbor Michigan 48106, to

whom the author has granted \the right to reproduce and sell (a) copies of the manuscript

in microform and/or (b) printed copies of the manuscript made from microform."

Signature

Date

University of Washington

Abstract

The Virtual System Model:

A Scalable Approach to Organizing Large Systems

by Barry Cli�ord Neuman

Chairperson of the Supervisory Committee: Professor Edward D. Lazowska

Department of Computer Science

and Engineering

Naming is critical in distributed systems. Names identify �les, services, processors,

and users. A name service translates the names of objects to the information needed to

access those objects. The growth of distributed systems brings with it an increase in the

number of objects to be named. Existing naming techniques are derived from techniques

used on centralized systems and are not su�cient for organizing the large number of

objects that are becoming available.

This dissertation presents the Virtual System Model, a new model for naming that

helps users organize the information available in large systems. The Virtual System

Model has four principal features: support for customizable name spaces, tools to help

users construct name spaces, support for synonyms, and a method for selecting the

appropriate name space when resolving names.

In the Virtual System Model users create customized views of the system, called

virtual systems, using tools that allow new views to be speci�ed as functions of other,

possibly changing, views. In a customized view, objects that users frequently use have

short names while those that are never used are hidden from view. A problem that

arises from customized naming is the lack of name transparency: the same name may

refer to di�erent objects when used in di�erent name spaces. This problem is addressed

by supporting closure: each object has an associated name space, and that name space

is used to resolve names that are speci�ed by the object.

The dissertation begins by discussing the naming mechanisms used in existing sys-

tems and by highlighting the problems that arise as systems grow. The Virtual System

Model is described, and its di�erences from existing models of naming are discussed. The

application of the Virtual System Model to distributed systems is described, including

its use organizing and searching for information, selecting processors and services, and

specifying security requirements.

A prototype �le system named Prospero demonstrates the usefulness of the model.

The prototype is used on more than 7,500 systems in 29 countries to organize and explore

information available from Internet archive sites worldwide. The design, implementation,

and use of the prototype are described.

Table of Contents

List of Figures : viii

List of Tables : ix

Chapter 1: Introduction : 1

1.1 Thesis Statement, Goals and Contributions : : : : : : : : : : : : : : : : : 2

1.2 Thesis Overview : 4

Chapter 2: An Introduction to Naming : 7

2.1 De�nitions : 7

2.2 The Nature of Naming : 9

2.3 A Formal Basis for Naming : 11

2.4 Summary : 17

Chapter 3: Existing Systems : 18

3.1 Centralized Systems : 18

3.2 Distributed Systems : 19

3.2.1 Host-Based Naming : 20

3.2.2 Global Naming : 20

3.3 Problems with Existing Approaches : 21

3.3.1 Synonyms : 21

3.3.2 Finding Things : 22

3.3.3 Customization : 23

3.4 User-Centered Naming : 24

3.5 Summary : 26

Chapter 4: The Virtual System Model : 28

4.1 De�nitions : 29

4.2 Features of the Model : 30

4.2.1 Customization : 30

4.2.2 Filters : 31

4.2.3 Union Links : 35

4.2.4 Synonyms : 38

4.2.5 Closure : 38

4.2.6 Review of the Features : 39

4.3 A Formal Presentation : 40

4.3.1 The Resolution of Names : 40

4.3.2 When is a Naming Network Well-Formed? : : : : : : : : : : : : : : 45

4.3.3 Two Types of Change : 50

4.3.4 Closure : 51

4.4 Relationship to Existing Systems : 52

4.4.1 Directed Graph Based Naming : 52

4.4.2 Filters : 53

4.4.3 Union Links : 54

4.4.4 Closure : 55

4.5 Summary : 55

Chapter 5: Use of the Virtual System Model : 57

5.1 Organizing Information : 58

5.1.1 Project Organization : 58

5.1.2 Index by Author : 59

iii

5.1.3 Topical Indices : 60

5.1.4 Indices by Attribute : 60

5.1.5 Personal Organization : 61

5.2 Looking for Information : 61

5.2.1 Browsing : 62

5.2.2 Finding Things : 63

5.3 Relationship to Distributed Systems : 63

5.3.1 Authentication & Authorization : : : : : : : : : : : : : : : : : : : 64

5.3.2 Processes and Processors : 65

5.3.3 Services and Applications : 66

5.3.4 Tying it All Together : 67

5.4 Summary : 68

Chapter 6: A Prototype Implementation : 70

6.1 Function of the Prototype : 71

6.2 The Implementation : 72

6.2.1 The Server : 72

6.2.2 The Client : 74

6.3 Other issues : 78

6.3.1 Protection and Security : 79

6.3.2 Garbage Collection : 80

6.3.3 Object Mobility : 82

6.3.4 Autonomy : 83

6.3.5 Replication : 83

6.4 Performance : 84

6.5 Summary : 85

Chapter 7: Use of the Prototype : 86

7.1 Usage Statistics : 87

iv

7.2 What it is Used For : 88

7.2.1 Using Prospero Itself : 89

7.2.2 Archie : 93

7.2.3 The Australian Academic and Research Network : : : : : : : : : : 95

7.2.4 User Developed Software : 97

7.3 The Bottom Line : 98

Chapter 8: Related Problems : 99

8.1 Directory Services : 99

8.2 File Systems : 100

8.3 Databases : 102

8.4 Computer Supported Cooperative Work : : : : : : : : : : : : : : : : : : : 105

8.5 Hypertext : 106

8.6 The Resource Discovery Project : 108

8.7 Operating Systems : 110

Chapter 9: Conclusion : 111

9.1 Contributions : 112

9.2 Future Work : 113

9.3 Final Remarks : 117

Bibliography : 118

Appendix A: Prospero User's Manual : 127

A.1 The Directory Mechanism : 127

A.2 Using the Prospero File System : 128

A.2.1 File Names : 129

A.2.2 Using Existing Applications : 130

A.2.3 Finding Things : 131

A.2.4 The Commands : 132

v

A.2.5 Retrieving Files : 138

A.2.6 Customizing a Directory : 138

A.2.7 Attributes and Forwarding Pointers : : : : : : : : : : : : : : : : : 139

A.3 Protection : 140

A.4 Filters : 144

A.5 Setting up a new system : 144

A.5.1 Building the Binaries : 144

A.5.2 Running the Server on Unix (like) Systems : : : : : : : : : : : : : 144

A.6 Setting up a New Site : 147

A.6.1 Setting up the Master Directories : : : : : : : : : : : : : : : : : : : 147

A.6.2 Setting up an Isolated Site : 148

A.7 Glossary : 148

A.8 Quick Reference : 151

Appendix B: The Prospero Library : 152

B.1 Pcompat Library : 152

B.2 PFS Library : 153

Appendix C: Directory and File Attributes : 156

C.1 Objects : 156

C.1.1 Attributes : 156

C.1.2 Persistence : 157

C.1.3 Mobility : 158

C.2 Directories : 158

C.2.1 Additional Attributes : 158

C.2.2 Link Attributes : 159

C.2.3 Replication : 162

Appendix D: The Prospero Protocol : 163

D.1 Commands : 164

vi

D.2 Standard Responses : 173

Appendix E: Reliable Datagram Protocol : 175

vii

List of Figures

2.1 Sample naming network : 13

2.2 Resolving a name : 14

4.1 Results of applying a simple �lter : 33

4.2 Use of a �ltered union link : 36

4.3 Use of a union link for customization : 37

4.4 Sample naming network for the Virtual System Model : : : : : : : : : : : 41

4.5 Steps to resolve a name in sample naming network : : : : : : : : : : : : : 42

4.6 Result of applying distribute(author) to r17 : : : : : : : : : : : : : : : : 43

4.7 The way the user sees the naming network : : : : : : : : : : : : : : : : : : 44

4.8 The resolution of union links : 45

4.9 Naming network before and after modi�cation : : : : : : : : : : : : : : : : 50

4.10 Naming network after a customization : 51

5.1 A complete virtual system : 69

6.1 Basic structure of the Prospero implementation : : : : : : : : : : : : : : : 74

6.2 Simpli�ed code for the distribute �lter : 77

7.1 Sample session : 90

7.2 A typical virtual system : 92

7.3 Sample session : 94

viii

List of Tables

3.1 The characteristics of existing naming mechanisms : : : : : : : : : : : : : 27

6.1 Protection modes in access control lists : : : : : : : : : : : : : : : : : : : 80

6.2 Approximate time to resolve a name and open a �le : : : : : : : : : : : : 84

7.1 Systems using Prospero by country : 87

7.2 Breakdown of U.S. systems by organization type : : : : : : : : : : : : : : 88

A.1 Settings for the pfs default environment variable : : : : : : : : : : : : : 131

A.2 Verbosity levels for newvs : 133

A.3 Protection modes in access control lists : : : : : : : : : : : : : : : : : : : 140

A.4 Settings for the pfs default environment variable : : : : : : : : : : : : : 151

B.1 Settings for the pfs enable global variable : : : : : : : : : : : : : : : : : 152

D.1 Options for the delete command : 170

ix

Acknowledgements

Over the past ten years I have been fortunate to have worked with some of the

most talented individuals in distributed computing systems. I owe much of my initial

understanding of and outlook on the �eld to three people, Jerry Saltzer, Dave Clark, and

David Gi�ord, who together taught 6.033, the undergraduate computer systems class at

MIT. Dave Clark served as advisor for my Bachelor's thesis and it is through my work for

him that I �rst developed the skills needed for successful research in distributed systems.

Jerry Saltzer subsequently provided me with the opportunity to apply those skills in

a real system, Project Athena. It was at Project Athena that I learned the di�erence

between demonstrating an idea in isolation and solving a problem in the real world.

Just as important and just as talented are the individuals I worked with at the

University of Washington. I owe a great deal to my advisor, Ed Lazowska, who provided

me with additional examples of solutions to problems in distributed systems, and helped

me to develop a balanced view of previous work. I also owe him a great deal for standing

behind me as I chose my own research topic and for forcing me to narrow the scope of my

thesis to that which could be accomplished in a reasonable time. Finally, his comments

on numerous drafts of the dissertation greatly improved its content and readability.

Hank Levy, David Notkin, and John Zahorjan were involved from the early stages of

my work, asking di�cult questions and forcing me to think long and hard about many

of the issues. Their input helped me to better understand the problem, and to better

understand my own solutions. John Zahorjan's detailed comments on numerous drafts

of the dissertation were extremely valuable.

Other members of my advisory committee, including Richard Ladner and Martin

Tompa, provided useful feedback on my work through early discussions on the scope of

my thesis, later discussions on aspects of the model itself, and by commenting on sections

of the dissertation.

x

Bill Griswold provided help with the implementation of �lters, making available a

dynamic linker used for one of his research projects, and extending it so that it was

suitable for use in Prospero.

Others who provided feedback on the ideas or comments on drafts of the dissertation

include Brian Bershad, Andrew Black, David Cohn, Peter Deutsch, Alan Emtage, Bar-

bara Gordon, Bruce Gordon, Terry Gray, Robert Henry, Chuck Kacmar, David Keppel,

Alex Klaiber, Mary Ann G. Neuman, Larry Snyder, Karen Sollins, and Alfred Spector.

I'd like to thank the users of Prospero for demonstrating that the problems addressed

in this dissertation are real, and that the solutions are useful. I'd especially like to thank

Steve Cli�e, Alan Emtage, George Ferguson, Brendan Kehoe, and Khun Yee Fung, who

integrated Prospero into their own applications, greatly extending the community of

Prospero users. I'd also like to thank Bill Bryant for suggesting the name \Prospero".

Finally, I'd like to thank my father, Peter Neuman, who kept after me these past few

years to �nish things up, and my mother, Barbara Gordon, who was just as supportive

but knew that I didn't need another person constantly asking when I'd be done.

xi

Chapter 1

Introduction

This thesis describes a new model for naming that allows users to cope with the growing

size of distributed systems.

Naming is one of the key facilities that unite networked computers into a distributed

system. Names are used to identify �les, services, processors, and users. The name

service translates the names of objects to the information needed to access those objects.

The size of distributed systems is growing. With this growth comes an increase in

the number of objects that need to be named. A system's scale has three dimensions

and the tasks of naming and �nding objects of interest in large systems are complicated

by each.

The �rst dimension is numerical. As the number of computers in a distributed system

grows, or as the storage available on existing computers increases, the number of objects

that are accessible from within the system increases. The number of objects that are

of interest to a particular user, however, will not grow as fast as the total number of

objects. Thus, for any given user, the bulk of the objects being added are not of interest,

and unfortunately, the few that are do not stand out among the clutter of other objects

in the system.

The second dimension of scale is geographic. In order to achieve acceptable perfor-

mance, objects are usually stored on or near the systems that frequently access them.

2

Related information used from di�erent locations is stored separately, and the task of

�nding information on a particular topic requires looking in multiple places. Unfortu-

nately, it may not be obvious to users where to look.

The third dimension of scale is administrative. A large system often spans multiple

organizations, each wanting control over \its" part of the system. This control is often

granted by giving organizations the exclusive right to assign a subset of the names that

are available for naming objects. The result is that a user looking for an object needs to

know which organization controls the object, but this information is often unknown.

Existing techniques for naming in distributed systems have evolved from techniques

used on centralized systems. These techniques fail to address the problems of organiza-

tion that arise as systems grow.

1.1 Thesis Statement, Goals and Contributions

My thesis is that existing techniques are not su�cient for organizing information in

large systems. As distributed systems grow, so does the number of objects that need

to be organized. Existing techniques for organizing information in distributed systems

have evolved from the techniques used on centralized systems. These techniques are

not su�cient for organizing the large amount of information that is becoming available.

Better tools are needed.

Improving the organization of objects of known interest bene�ts users who are trying

to identify objects of potential interest. When information is poorly organized it is di�-

cult for users to identify objects of potential interest. Thus, improving the tools available

for organizing information will also make it easier for other users to �nd information that

has been organized with those tools.

Customization plays an important role in the organization of objects. It aids users

in keeping track of the objects that they use on a regular basis. It is also possible to

make use of the information speci�ed by users in customizing their own name spaces

when constructing views of information to be shared with others.

3

A problem that arises from customized naming is the lack of name transparency: the

same name may refer to di�erent objects when used in di�erent name spaces. To address

this problem, naming mechanisms should support closure: each object should have an

associated name space, and that name space should be used to resolve names that are

speci�ed by the object.

The goal of my work is to make it easier for users to cope with the increasing size

of distributed systems. This goal has two parts: �rst, to make it easier for users to

keep track of and organize those parts of the system in which they have indicated an

interest; and second, to make it easier for users to learn about additional parts of the

system which might be of interest, but which have not yet been seen by the user. Part of

my thesis is that by ful�lling the �rst part, ful�llment of the second part will naturally

follow: the structure imposed as users organize the information that is of interest to

them is useful also to other users who have not yet seen that information.

In achieving this goal I developed a new model for naming that allows users to

organize objects as they see �t. The model allows individuals, organizations (e.g., pro-

fessional societies), libraries, and commercial services to organize information in many

ways, and it allows users to choose among the alternatives, de�ning their own virtual

systems (views of the system) based on the views de�ned by others.

The contributions of this dissertation include the recognition that users need the

ability to view large systems in di�erent ways and that a uniform global name space is

not appropriate for user-level naming in extremely large systems; the recognition that

systems that support multiple views or multiple name spaces must address the problems

that result from the lack of name transparency; the presentation of the Virtual System

Model, a new model for naming which better supports customization and provides pow-

erful tools which help users organize the information available to them; and the design,

implementation, deployment, and evaluation of Prospero, a prototype �le system based

on the Virtual System Model, which is being used to organize information available from

Internet archive sites worldwide.

4

The Prospero prototype is used on more than 7,500 systems in 29 countries. Its

rapid and widespread adoption demonstrates that the organizational exibility provided

by the Virtual System Model is useful. Prospero has been successfully used to organize

information available from Internet archive sites including software releases, archives of

Internet and Usenet mailing lists, and online copies of technical reports and conference

papers. Individuals have used the prototype to organize information on many topics,

and network service providers are starting to use it to organize information of interest

to their users.

Prospero also has been adopted as the preferred method for remote access to archie,

a database that maintains information about �les available from key archive sites. It

has also been adopted by the Australian Academic and Research Network (AARNet)

as part of their plan for archiving in Australia [Cli�e 91]. AARNet has added Prospero

support to one of their FTP servers where it helps them reduce the number of repeated

�le retrievals across a low-speed trans-Paci�c connection, and it provides the bene�ts of

Prospero to users who have not installed Prospero on their systems. A window based

�le browser built at the University of Rochester provides an alternate user interface to

Prospero. Built on top of Prospero primarily to access the archie database, it is being

extended to support browsing through other parts of the Prospero naming network.

1.2 Thesis Overview

Chapter 2 presents an introduction to naming. Terms that are used throughout this

dissertation are de�ned. The role of names in computer systems is discussed and the

manner in which names are shared and how they change are described. The chapter

concludes by presenting a formal model for naming as it applies to existing systems, a

model that will be extended in later chapters to provide better support for customization.

Chapter 3 continues the discussion by presenting an overview of naming in exist-

ing systems, highlighting the problems that arise as systems grow. For each problem,

requirements are suggested that, if satis�ed, help address the problem. The extent to

5

which existing systems meet the requirements are described. These requirements form

the basis for the Virtual System Model.

The Virtual System Model is described in Chapter 4, beginning with the de�nition

of terms used when discussing the model. The key features of the model are then

described informally. The chapter continues by formally describing the model and by

discussing the di�erences between it and the model of naming presented in Chapter 2.

The chapter concludes by discussing the relationship of the features of the model to

related mechanisms found in existing systems.

Chapter 5 shows how the features of the Virtual SystemModel can be used to organize

information in large systems. Users create customized views of the global system; this

chapter describes the ways that users construct and add things to their own views and

how they make use of other views. Some views are created speci�cally for use by others;

the incentives to do so will be described. The Virtual System Model can be applied to

all parts of a distributed system, and the relationship of the model to many of these

parts is discussed.

The Prospero prototype is described in Chapter 6. The chapter begins by explaining

what Prospero allows users to do. The structure of the prototype is then presented and

its principal components are described. Prospero's support for some of the auxiliary

functions related to �le systems is then described. Among these functions are security,

object mobility, garbage collection, and replication. The chapter concludes by presenting

performance �gures for the prototype. The Prospero user's manual and library and

protocol speci�cations are included in several appendices.

Chapter 7 examines the use of the prototype in order to evaluate the acceptance

and usefulness of the Virtual System Model. The chapter begins by presenting statistics

which demonstrate the widespread use of the prototype. The information available

through the prototype is described and the ways that users employ the prototype to

organize and search for information are discussed.

6

The problem of �nding and organizing information crosses several areas of research.

While I have approached the problem from a systems perspective, paying particular

attention to how people organize information, the problem can be approached from

several other perspectives. In Chapter 8 I discuss the relationship of the Virtual System

Model to alternative approaches and describe other work related to the problem.

Chapter 9 concludes by summarizing the contributions of this work. There is more to

be done; possible directions are presented. The chapter closes with some �nal remarks.

Chapter 2

An Introduction to Naming

The problem of naming in computer systems has received a great deal of study. In this

chapter I draw upon the existing work in the area to de�ne some of the key concepts

that will be required in the remainder of this dissertation. I discuss the nature of names,

how they are used, and how they are created and evolve. I conclude the chapter by

presenting a formal model for naming as it applies to the existing systems of interest in

this dissertation. This model will be extended in later chapters to provide better support

for customization.

2.1 De�nitions

A name is the information used to identify an object. A name may be assigned by a

user, or it may be a collection of information that uniquely identi�es the object. It is

usually a character string. The binding of a name is the object to which the name refers,

though the object is often represented internally by an address.

By object I mean any part of a computer system, either physical or abstract, which

can be uniquely identi�ed. Examples of objects include �les, directories, processors,

users, and servers.

8

An address is the information used by a system to internally identify an object. An

address is itself a name that is understood by the system [Saltzer 82]. As used in this

dissertation, the distinction between a name and an address is that a name is visible to

the user whereas an address might not be.

A path name is a name for an object that consists of more than one part. Each part is

called a component of the name. Components are delimited by a special character called

the separator which does not appear within any components. A name that consists of a

single component is a simple name.

A directory is an object that maps a component of a name into an object. The object

may itself be a directory. A link is an entry in a directory.

To resolve a name is to determine its binding. If the name has a single component,

this may be accomplished by �nding the mapping in the appropriate directory. If the

name has multiple components, one must resolve the �rst component then resolve the

remaining components of the name starting from the directory returned by resolving the

�rst component.

A naming network is a directed graph often used to model the resolution of names.

Its internal vertices represent directories and its edges are labeled with the initial com-

ponents of the names that are resolvable from the directory represented by each vertex.

A name space represents a mapping of names to objects. The resolution of names in

a name space can be modeled by a naming network together with a designated vertex

(directory) from which name resolution is to begin. The designated vertex is called the

root of the name space.

A context is one's state while resolving a name. It is the directory in which the

current component of a name is to be resolved.

Closure is the mechanism that binds an object to a name space within which all

names speci�ed by that object are to be resolved.

Many of these terms will be de�ned in greater detail later in this chapter. Terms

that apply only to the Virtual System Model are de�ned in Chapter 4.

9

2.2 The Nature of Naming

In her thesis, Sollins describes the way that names are used in everyday life [Sollins

85]. Among the characteristics she discusses, seven are particularly important in this

work: individuality, multiplicity, mobility, locality, manifest meaning, communication,

and sharing. These characteristics provide insight into the ways that humans are able

to name the huge number of objects in the world, and that insight can be applied

to the naming of objects in large computer systems. Additionally, by providing these

characteristics in the mechanism used to name objects in computer systems, the naming

mechanism will seem more natural to users.

By individuality it is meant that names are used di�erently by di�erent people. Dif-

ferent individuals may use di�erent names to refer to the same object, or they may use

the same name to refer to di�erent objects. Existing systems use various methods to

allow users to customize the names they use. Examples include symbolic links and search

paths. The advantages and disadvantages of these approaches are discussed in Chap-

ter 3. Support for customization should be an integral part of a naming mechanism, not

an afterthought.

By multiplicity, it is meant that an object can have more than one name. Multiplicity

logically follows from individuality, but even a single individual may have more than one

name for an object. The di�erent names might be used in di�erent situations. For

example, a user might refer to a paper using its author's name if confronted with a

set of papers on a particular topic. If confronted with a set of papers by a particular

author, however, the user might refer to the paper by its topic or title. Of concern

when supporting multiple names is the issue of whether all names are to have the same

precedence, or if one name is primary, with all other names dependent on it.

By mobility, it is meant that the meanings of names change over time. For example,

the name annual-report may refer to a di�erent object in 1991 than it did in 1990. If

users assign their own names to the annual-report (as individuality tells us they are

likely to do) some may be referring to \the most recent annual report" while others are

10

referring to the annual report for a particular year. The mechanism by which users keep

track of objects should allow them to identify the objects to be remembered in either

way.

Names are often used in a way that takes advantage of locality. The meaning of a

name depends on the context within which the name is used. For example, the name

june might refer to the host june.cs.washington.edu when talking about disk usage,

but it might refer to the month when talking about average rainfall. Naming mechanisms

should make it easy to specify the context within which a name is to be resolved, and it

should be easy to change the default context as the topic of interest changes. In most

systems, directories provide the local naming context, and the working directory can be

set according to the current topic of interest.

Though names refer to objects, they have a manifest meaning of their own. It is

this manifest meaning that distinguishes names from addresses. The names assigned by

humans convey information about the objects they identify. This meaning helps users

remember the names of objects, and it helps users �nd the objects they are looking for.

In systems where the names of objects have multiple components, each component of the

name should have a meaning that is recognizable to potential users of the object. The

manifest meaning of each component should reect information that someone looking

for the object is likely to know.

Names are used primarily for communication, whether between users, between pro-

grams, or even across time (names allow a user to remember an object that was seen at

some point in the past). Names provide a shorthand for referring to objects. Communi-

cation requires that both parties be able to identify the object to which a name refers.

The individuality of naming has the potential to make this more di�cult.

Names are shared. Users don't assign their own names to each object they use.

Instead, they frequently use names that have been assigned by others. The use of names

assigned by others is one of the methods by which users identify objects of interest.

Naming mechanisms should allow users to use names assigned by others, and they should

provide ways for users to incorporate such names into their own name spaces.

11

Sollins's work concentrates on the mechanisms by which users jointly manage shared

contexts. In her approach, shared names come to be accepted in stages and these stages

are noted along with the name. I believe that the acceptance of a name is implicit in

the number and nature of the users that use the name, and that it cannot be easily

quanti�ed. Users accept names by including them in their own views (name spaces).

These names can be included either individually, or by adopting whole sets of names

from the views of others. Users that don't like the names that are assigned either will

pick other views on which to base their view, or will provide their own customizations,

some of which might be adopted by other users. Acceptance is determined by the number

of users to which a name is visible.

2.3 A Formal Basis for Naming

This section presents a formal model for the resolution of names in existing systems.

This model is described informally in [Saltzer 78]. Comer and Peterson describe the

model more formally and extend it to support the composition of names from di�er-

ent naming mechanisms (for example, /usr/bcn/readme@cs.washington.edu where

/usr/bcn/readme is a �lename parsed left to right and cs.washington.edu is a host

name parsed right to left) and to model the iterative resolution of names, from those that

users specify, to addresses, to the hosts on which the objects are stored, to the objects

themselves [Comer & Peterson 89].

This dissertation is concerned with the names that are speci�ed by and visible to

users. The approach taken is to impose a uniform higher level naming mechanism that

maps names from those speci�ed by users to those used by existing systems. The naming

mechanisms of the underlying systems are thus hidden from the user, and the names from

the underlying systems should be thought of as addresses. Because this dissertation is

not concerned with the resolution of these addresses, and because the naming mechanism

visible to users is uniform, the extensions described in [Comer & Peterson 89] are not

relevant to our discussion. The model presented in this section is a little simpler, but

12

it does draw on the formalism presented in that paper. The model will be extended in

later chapters to provide better support for customization.

A name can be broken into components delimited by a special character called a sepa-

rator. Each continuous string of characters not containing the separator is a component.

A simple name is a name that has only one component while a path name has more than

one component.

A name space can be represented by a naming network together with a designated

starting node in the network that represents the root of the name space. A naming net-

work is a directed graph G = (V;E) with labeled edges. Each vertex in V represents an

object, possibly a directory. Each edge corresponds to an entry in a directory represented

by the source of the edge, for the object represented by the destination of the edge. The

edge's label is a simple name of the object relative to the directory that is the source of

the edge. The labels are drawn from an alphabet � that contains all components of all

names in the system, a potentially huge but �nite set. An element of � is a component

of a name, often multiple characters in length.

Figure 2.1 shows a sample naming network. When multiple name spaces share a

common naming network it is the choice of the starting node that distinguishes name

spaces from one another. Thus, the naming network in Figure 2.1 can be used to model

more than one name space, including one rooted at q

1

, one at q

2

, and another at q

4

.

Multiple naming networks may be represented as a single naming network with dis-

connected components. Thus, without loss of generality we may assume that there is a

single naming network. This simpli�cation allows us to completely specify a name space

by identifying its starting node.

Presumably, the purpose of resolving a name is to identify an object so that it may

be accessed. Thus, associated with each naming network we de�ne an access function,

� : V ! type � address. The access function maps vertices to the information needed

to access the object represented by the vertex. This information consists of an address

and information indicating how that address is to be used by the system.

13

109

8765

43

21

ls ls

q

locallocal
cat cat

bin
oldbin

q

q

qqq

q

q

qq

edit lookup

Figure 2.1: Sample naming network

To model the resolution of names we de�ne a name resolution automaton,

NA = (Q;�; �; q

0

; �). Every vertex in the naming network is represented by a con-

text q 2 Q. The alphabet, �, is the set of labels on edges in the naming network.

� : Q� �! Q, the transition function, maps a context and a component to a new con-

text. Its de�nition is based on the set of edges in the naming network such that �(q; �)

is de�ned as the destination of the edge in E from q with label �, and is unde�ned if

such an edge does not exist. q

0

is the initial context identifying the name space within

which names are to be resolved. � is the access function de�ned for the naming network.

Under the assumption that there exists a single naming network, Q;�; �; and � will be

�xed.

Naming automata are related to �nite automata [Mealy 55, Moore 64, Hopcroft &

Ullman 79]. The di�erence is that the result of applying a �nite automaton is boolean,

indicating whether the �nal context was accepting or non-accepting, whereas a naming

automaton returns the result of applying the access function to the �nal context.

14

q = q

1

q = �(q

1

; bin) = q

3

q = �(q

3

; local) = q

6

q = �(q

6

; edit) = q

9

return �(q

9

)

Figure 2.2: Resolving a name

We formally de�ne the value of a directory as a function corresponding to the map-

pings in � that de�ne transitions from a particular context that represents the directory:

directory(c) = f(�) : 8

�

f(�) = �(c; �)

which means that the value of the directory corresponding to context c is a function such

that for all values of � the function maps � to q if and only if the transition function

maps context c and symbol � to the new context q.

To resolve a name, an NA sets its current context to the initial context (q = q

0

). It

then reads a name from left to right (or from right to left for some naming mechanisms),

and for each component it selects a new context by applying the transition function to

the current context q and the current component � (q

0

= �(q; �)). When all components

of the name have been read, the NA returns the address associated with the current

context, �(q). If a component � is read during name resolution for which �(q; �) is not

de�ned, the NA returns a distinguished address indicating an error. Figure 2.2 shows

the steps required to resolve the name \/bin/local/edit" using a naming automaton

constructed from the naming network in Figure 2.1, and with starting state q

1

.

Names are always resolved within a name space. Systems resolve names using a name

resolution function which takes as arguments the name to be resolved and a name space

(which identi�es the starting context to be used by the NA when resolving full path

names):

resolve(name; namespace)

15

The second argument (namespace) is not part of the name, nor is it speci�ed by the

user. Instead, the name space for the resolve function is �lled in by the system. In many

systems, the name space argument is constant, not changing from call to call. In others,

it is determined by applying a closure function.

A closure function, � : object! NS, maps an object to the name space within which

names embedded in or speci�ed by the object are to be resolved [Saltzer 78, Neuman

89a]. Since the name space to be used is speci�ed by the closure function, it needn't be

speci�ed as part of the name itself. Most systems approximate closure by associating

a name space with the process resolving a name, and not speci�cally the object within

which the name was embedded. Such systems keep track of a working directory for each

process, and the working directory is used as the starting context. In some of these

systems, processes can also de�ne search paths and a name can be resolved starting from

the successive elements of the search path until an object matching the name is found.

A full path name is a name that is to be resolved starting from the root of the active

name space. Some systems allow names to be speci�ed starting from a context other

than the root of a name space. Such names, called abbreviated names, are syntactically

di�erent from full path names, and are resolved starting from an intermediate context

that is remembered by the system. Technically, this can be thought of as resolving a

name in a di�erent name space, one whose root is the intermediate context, in which

case the name would be a full path name. Traditionally, however, abbreviated names

are treated separately, so I preserve the distinction.

Abbreviated names are sometimes called relative names, and full path names are

sometimes called absolute names. I avoid this terminology because, in a system support-

ing multiple name spaces, even full path names are relative (to the root of the active

name space).

Having presented a model for name resolution, I can now describe several properties

about names and naming mechanisms in terms of the model.

16

If a full path name identi�es the same object in every name space, then the name is

said to be a global name.

global(name), 8

ns

1

;ns

2

resolve(name; ns

1

) = resolve(name; ns

2

)

Names are unique within a name space if no two distinct names identify the same

object.

unique(ns) , [8

n

1

;n

2

resolve(n

1

; ns) = resolve(n

2

; ns)) n

1

= n

2

]

A name space that includes non-unique names is said to support synonyms

1

. If a link is

encountered during name resolution that yields a new name that must itself be resolved

in the same name space, the link is called a symbolic link and a name that spans the link

is called an alias. An alias is not a synonym; synonyms independently name the same

object while the binding of an alias depends on the binding of the name returned when

the alias is resolved.

A at name space only supports single component names. This is the case when no

transitions are de�ned from any of the nodes reachable from the root of the name space

except for the root node itself. If the nodes reachable from the root of a name space

form a tree with depth greater than 1, then the name space is hierarchical.

Two name spaces are said to be disjoint if they do not name any objects in common.

The complement of disjoint is overlap; i.e., if an object is named in more than one name

space, those name spaces are said to overlap.

disjoint(ns

1

; ns

2

),6 9

n

1

;n

2

resolve(n

1

; ns

1

) = resolve(n

2

; ns

2

)

overlap(ns

1

; ns

2

), 9

n

1

;n

2

resolve(n

1

; ns1) = resolve(n

2

; ns

2

)

disjoint(ns

1

; ns

2

), : overlap(ns

1

; ns

2

)

1

I do not consider abbreviated names to be synonyms.

17

2.4 Summary

In this chapter I discussed general concepts of naming. I started with a discussion of the

ways that humans use names, with emphasis on those aspects that help in coping with

the large number of nameable objects. I then presented a formal model for the naming

mechanisms used in existing systems and de�ned some of the terms used to describe the

mechanisms. This model will be extended in Chapter 4 to provide better support for

customization and sharing.

Chapter 3

Existing Systems

This chapter continues the discussion of naming by presenting an overview of existing

systems. It describes the �le naming mechanisms used in centralized systems and dis-

cusses some of their shortcomings. It then describes several name servers, discusses the

roles they play in the naming of �les in distributed systems, and explores the advantages

and disadvantages of various approaches.

As systems grow, it becomes less appropriate to support a uniform name space across

all systems. The need for customization is discussed, and several systems that support

customized name spaces are described. Customized name spaces introduce a number

of problems which are discussed. The chapter concludes by suggesting requirements for

naming mechanisms in large systems.

3.1 Centralized Systems

Early systems managed data by reading and writing directly to disk or tape. Later

systems provided a �le abstraction: programs could treat related data as belonging to

a �le, and the �le could be accessed by name. Translation to the physical location at

which the data was stored was handled automatically by the system.

19

As the number of �les available within a system grew, the at name space of early

systems became cumbersome. Users had to agree how �les were to be named so that

they would not choose conicting names. Additionally, the single catalog listing all �les

grew to the point that it no longer helped users determine the names of the �les they

were looking for; the listing was too long and too cluttered with the names of irrelevant

�les to be useful.

To address this problem, some systems supported separate catalogs for each user.

While this allowed users to choose their own names for �les without the possibility of

conict with names belonging to other users, it was not possible to share �les. Only �les

within the user's catalog could be named, and thereby accessed.

This limitation is addressed in the Multics [Daley & Neumann 65] and Unix [Ritchie &

Thompson 74] operating systems by supporting a hierarchical name space (an approach

which has been adopted by most subsequent systems). Files are named within directories,

and the full path name of a �le or directory is the concatenation of the full path name

of the containing directory and the name of the �le within that directory. The directory

structure forms a tree and names are resolved starting from a distinguished directory,

called the root, which is known by all users.

3.2 Distributed Systems

Many of the advantages of hierarchical naming apply also to distributed systems. Name

services such as the Internet Domain Naming System [Mockapetris 87], X.500 [CCITT

88], and DEC's Global Naming System [Lampson 85] use hierarchical names to reduce

the need for centralized administration. Central administrators create directories that

correspond to individual sites, and administrators at each site are able to administer

names within their site's directory.

The distributed name services just mentioned are used to name hosts, users, servers,

and even �le systems, but not individual �les. Despite this, these services play a role in

�nding �les. The names maintained by these services are often used as pre�xes of the

20

names of �les, and when they are, these services are used to identify the hosts on which

the �les are stored.

3.2.1 Host-Based Naming

Early distributed �le systems employed host-based naming to identify �les. Examples

of host-based naming include IBIS [Tichy & Ruan 84], FTP, and to some extent, Sun's

Network File System [Sandberg et al. 85]

1

. In host-based naming, a user wanting to

access a �le must know the name of the host on which the �le resides. While relatively

simple to implement, host-based naming makes it di�cult to organize and to locate

information: the �rst part of a �le name (the host) usually has little or no relation to

the topic, and as a result, logically related information stored on di�erent hosts ends up

scattered across the name space. Additionally, when a �le is moved, its name changes.

Because of these problems, users have adopted various ad-hoc solutions for organizing

information. Some make local copies of information out of fear that it might move, or

that they might forget where it is. Often the information is not used locally, but is copied

\just in case" it is later needed. Others maintain lists of the information available from

various locations, frequently updating the lists as things change. Some of these lists are

periodically distributed through electronic mail.

3.2.2 Global Naming

An alternative to host-based naming is global naming. Global naming is used by the

Andrew File System [Howard et al. 88], Coda [Satyanarayanan 90, Kistler & Satya-

narayanan 91], Locus [Walker et al. 83], Unix United [Brownbridge et al. 82], Sprite

[Ousterhout et al. 88], Echo [Hisgen et al. 89], and the Universal Directory Service

[Lantz et al. 85]. In these systems all �le names are part of a single name space and

the name of the system on which a �le resides is not explicitly part of the �le's name.

1

In NFS, the user must know the name of the system on which the �le is stored in

order to mount the �le system. Once mounted, however, the host name need not be part

of the �le's name.

21

The Universal Directory Service uses the same name space for all naming, not just the

naming of �les.

These systems address, in part, some of the problems of host-based naming. In

particular, the name of the storage site is no longer part of a �le's name. As most of

these systems are implemented, however, �les are distributed across servers based on

pre�xes of their names. This reduces the size of the naming database and reduces the

number of requests to name servers, but it also constrains the distribution of �les in such

a way that �les whose names share a common pre�x, i.e. those that are \related" in the

name space, must usually be stored on the same storage site.

3.3 Problems with Existing Approaches

Hierarchical naming has worked well in existing systems, but as implemented, it has

several limitations. Further, as systems grow, other problems arise which are inherent

in the approach itself. This section describes problems of both kinds.

3.3.1 Synonyms

The �le systems described so far provide only partial support for synonyms: in Multics,

an object can only have multiple names within a single directory; in Unix, only within

a \�le system" (a boundary which is supposed to be hidden from the user). Existing

distributed �le systems do not support synonyms across system boundaries.

Lack of true synonyms creates problems when a �le should logically appear in more

than one directory. Many of the systems described so far support aliases (symbolic

links), but when an alias is resolved, a new name is returned which must be further

resolved. The problem with aliases is that they depend on a primary name for the �le

they reference. If the primary name changes, or is removed, the alias ceases to work.

22

3.3.2 Finding Things

Large name spaces are often easier to administer when they are organized hierarchically.

Sub-hierarchies are assigned to users and organizations, and those users and organiza-

tions are responsible for assigning names within their part of the name space. Unfortu-

nately, this results in a name space whose top levels are often the names of organizations,

and whose second levels are the names of users. This means that logically related infor-

mation ends up scattered across the name space. As was the case for the storage site,

users searching for information on a particular topic will not often know the name of the

user or organization that maintains the information.

An approach to solving this problem is to create shared directories with links to

information on particular topics. The di�culty with this approach is that, in a large

system, people will not agree on what information is important. Instead it becomes

necessary to decide which shared directories should exist, and for each directory, to

assign the task of maintaining it. Once a system crosses administrative boundaries,

gaining consensus becomes even more di�cult.

A uniform hierarchical name space works best for systems where a single administra-

tor can make decisions about what should appear in the upper levels of the name space.

Users can often accept the role of a central authority in assigning unique organization

names, for example domain names, but when it comes to matters of opinion, e.g., what

topics deserve shared directories and who should maintain them, users are less willing to

accept someone else's judgment, at least not if they don't personally get to decide whose

judgment to accept.

This problem is very apparent on Usenet, a distributed message service for dissemi-

nating messages on many topics, worldwide. A large proportion of the messages sent on

Usenet discuss what messages are appropriate for particular newsgroups, whether new

newsgroups should be created, and what they should be called. This clearly demonstrates

the problem of reaching consensus on globally shared names.

23

3.3.3 Customization

A second shortcoming of the uniform hierarchical name space is poor support for cus-

tomization: all users see the same name space. Customization is important for several

reasons. In large systems, there is a huge amount of information, and much of that infor-

mation is not of interest to a particular user. Customization helps the user to remember,

and later return to, information that is of interest. Examples of customization can be

seen in systems that allow users to de�ne alternative names for frequently referenced

�les.

But customization has many other uses. Di�erent users employ the same names to

reference di�erent �les. For example, if two similar �les are stored in di�erent parts of a

system, users in di�erent parts of the system might use a common name to refer to the

particular �le that is nearer to them. Customization is also used when di�erent versions

of a �le are needed in di�erent situations. For example, di�erent system binaries are

needed when running on di�erent architectures, but it should be possible for users to

use the same name for a program or �le regardless of the type of system they are using.

Customization is also needed when users want to change the behavior of the system.

They customize their name space so that their own modi�ed version of a �le or program

is used instead of the one provided by the system. Finally, customization is important

because users don't want to type long path names whenever they refer to a �le. Long

path names are often necessary to uniquely identify a �le, but in a customized name

space, shorter, or abbreviated, names can be used for those �les that are frequently

used.

Existing systems support customization and abbreviated names through mechanisms

external to the name space. For example, TOPS-20 [Dig 80] and VMS [Dig 88] allow users

to use logical names in place of �le names. Once speci�ed, logical names support limited

customization of the name space, but they are private to the process that speci�ed them.

R* [Lindsay 81] supports private aliases which allow users to assign their own names to

remote databases. Most systems allow users and programs to specify search paths to be

24

followed when resolving abbreviated names; the system tries each directory in the search

path until a match is found. The Andrew File System supports both a local and a global

part of the �le system. The local part of the �le system is customized on a system-by-

system basis, allowing each system to be con�gured in an appropriate manner. Most of

the �le names speci�ed by users, however, fall into the uniform, global part of the name

space.

The problem with the customization mechanisms described so far is that the cus-

tomizations are not an integral part of the naming system. They are visible only to

the user who has made the customization. This makes it di�cult for users to resolve

customized names that were speci�ed by other users. For example, compilers often use

search paths to identify the directories to be searched when looking for libraries. These

search paths are found in environment variables set by the user. When a user attempts

to compile a program that was written by another user, it might not be possible to

resolve some of the names if the search paths of the two users are di�erent.

In many systems, users can include symbolic links that assign short names to the �les

that they frequently access. However, most of the systems described so far allow users

to assign only names that appear in their own sub-hierarchies of the �le system. This

is not a su�cient level of customization. Users should be able to customize all parts of

their name spaces. Without this ability, users must remember when they have created

customized views of parts of the name space that they are not allowed to customize

directly. Finally, users who expect others to be able to resolve their abbreviated names

must �rst prepend the names of their home directories, thus turning the abbreviated

names back into full path names.

3.4 User-Centered Naming

One reason it is hard to �nd things in large systems is that there is a huge amount of

information, and much of that information is not of interest to a particular user. This

problem is addressed in Tilde [Droms 86, Comer et al. 90], QuickSilver [Cabrera &

25

Wyllie 88], Plan 9 [Presotto et al. 91], and Amoeba [Tanenbaum et al. 90, van Renesse

89] by supporting user-centered naming: each user resolves names in a separate name

space containing only the �les of interest to that user.

The customization supported by these systems is important for a number of reasons:

it reduces clutter in the user's name space; it allows users to de�ne shorter names for

frequently referenced �les; and it allows users to replace entire portions of the name

space with alternative views that are more appropriate for their needs. A user-centered

name space also eliminates the need for consensus when deciding what should appear in

the upper levels of the name space. Each user can make that decision based on his or

her own opinions.

User-centered naming presents several problems of its own. The �rst problem is the

lack of name transparency: the same name might refer to di�erent �les when used in

di�erent name spaces. This has the potential to make sharing di�cult and it can cause

confusion. As was the case with earlier customization mechanisms, part of this problem

results from the fact that in most of these systems, customizations are visible only to

the user or process that made them.

Another problem with user-centered naming as supported by Tilde, QuickSilver, and

Plan 9 is that a �le (or collection of �les) must be explicitly added to the name space

before it can be accessed

2

. This requires that the user specify a globally unique name

for the �le, thus reintroducing all of the problems associated with global naming.

A �nal problem with user-centered naming as supported in Tilde, QuickSilver, Plan 9,

and Amoeba is that the information that is available changes, and it isn't practical to

expect users to keep their name spaces up to date, item by item. There needs to be

some way to specify a view of information as a function of one or more other views.

Existing systems do not provide adequate tools for constructing derivative views. In

Tilde and Plan 9, part of the problem is that views are not persistent. Instead, they are

2

Naming in these systems might be better described as user-exclusive rather than

user-centered, since �les (or collections of �les) that have not been explicitly included in

the name space cannot be accessed.

26

constructed by a process (often using a con�guration �le) and they only live as long as

the process that constructed them.

3.5 Summary

This chapter described the naming mechanisms used by a representative set of existing

systems and discussed their limitations. It identi�ed some of the problems that arise from

supporting a uniform global name space in systems that cross administrative boundaries.

The need for customization was presented, and the customization mechanisms employed

by traditional systems were described. Several recent systems support user- or process-

centered name spaces. These systems provide better support for customization and

address some of the problems inherent with the uniform global name space, but they

run into problems due to their lack of name transparency. Table 3.1 shows the systems

that were discussed in this chapter and lists some of their characteristics.

The amount of information that is available within distributed systems has been

growing. To help users organize and share this information, naming mechanisms should

allow objects to have multiple names. These names should be synonyms. If one name

changes, the others should continue to work. Naming mechanisms should support cus-

tomization, but it should always be possible to correctly resolve a name, even if the

name was speci�ed by a user in a di�erent name space, or by a user that has applied

di�erent customizations. Finally, tools are needed to help users de�ne views of �les as

functions of one or more other views. Users should not be required to build their name

space item-by-item. These requirements form the basis for the Virtual System Model.

2
7

Table 3.1: The characteristics of existing naming mechanisms

Characteristics

System

a

Scale Objects Namespace Synonyms Customization mechanisms

Multics system �les uniform aliases

b

search paths

Unix system �les uniform aliases

c

search paths

DEC Global Naming global �lesystems uniform aliases working root

IDNS global hosts uniform aliases resolver can support search paths

X.500 global hosts/users uniform aliases context of resolver

FTP WAN �les uniform no none

NFS LAN �les system-centered aliases mount

AFS global �les uniform

d

aliases search-paths

Coda global �les uniform aliases search-paths

Locus LAN �les uniform aliases search-paths

Sprite LAN �les uniform aliases search-paths

Amoeba WAN objects user-centered yes per-user root

Plan 9 company �les per-process no mount, union-mount

Quicksilver company �les user-centered yes

e

links, search-paths

Tilde LAN �les per-process of trees per process naming of trees

Prospero global �les object-centered yes closure, �lters, union-links

a

Grouped by predominant characteristics

b

Synonyms supported within same directory

c

Synonyms supported for �les on same �le-system

d

For the /afs hierarchy

e

But if across system boundaries, only for immutable �les

Chapter 4

The Virtual System Model

This chapter presents the Virtual System Model, a new model for organizing large sys-

tems. The Virtual System Model has four principal features: support for customizable

name spaces, tools to help users construct name spaces, support for synonyms, and a

method for selecting the appropriate name space when resolving a name. These features

satisfy the requirements that were summarized at the end of Chapter 3.

The chapter begins by de�ning terms that apply to the Virtual System Model and

by discussing the features of the model informally. The chapter continues by formally

describing the Virtual System Model and by discussing its di�erences from the naming

model presented in Chapter 2. The relationship of the features of the Virtual System

Model to the mechanisms found in existing systems is then described.

Although the examples in this chapter concentrate on the naming of �les, the

Virtual System Model also applies to other aspects of a distributed system. Chapter 5

will describe this.

29

4.1 De�nitions

When used in this dissertation, the term system usually refers to a distributed system:

a collection of computers, connected by a computer network, working together to imple-

ment some set of services. In some cases, if the meaning is clear, the term also refers

to the local system, the physical system to which a user is logged in, on which processes

execute, or on which �les are stored.

A virtual system is a system that is composed of �les, processors, services, appli-

cations, users and other objects available over a network. A virtual system is created

by identifying the objects of interest and specifying the names that will refer to those

objects from within the virtual system. This mapping of names to objects constitutes

the virtual system's name space; the name space plus the objects it names constitute

the virtual system.

The term view is a general term describing a mapping from names to objects. It is

often quali�ed by describing the objects to which the view applies or the mappings from

which it is derived. For example, a name space represents a view of all the objects in

a system and consists of the complete set of mappings of names to objects that apply

during a particular call to the name resolution function (for all possible names to be

resolved). Similarly, a directory de�nes a view of the objects in a name space whose

names share a common complete pre�x

1

. An alternate view of a directory might de�ne

a di�erent set of mappings to the same objects. Because it includes a name space, a

virtual system imposes a view on the objects it contains.

A conventional link is similar to a hard link in traditional �le systems: it maps a

name of an object to the information needed to access that object.

A union link is a link to a directory that causes the links that are part of the linked

directory to appear as part of the directory containing the union link. A directory's

1

By complete pre�x I mean all but the last component of the name. An alternate

description of a directory is that it de�nes a view of the objects reachable in a single

step from a particular node in the naming network.

30

contents are the union of the set of conventional links it contains and the contents of all

directories included through union links.

A �lter is a program attached to a link. A �lter changes the results of queries to the

directory that is the target of the link when reached through that link.

A link is either a conventional link or a union link, with or without an attached �lter.

A virtual directory is a directory in a virtual �le system. The contents of a virtual

directory might be calculated at the time the directory is queried by applying �lters or

expanding union links.

4.2 Features of the Model

There are four principal features of the Virtual SystemModel. These features are support

for a customizable name space, tools to help the user de�ne his or her name space, support

for synonyms, and a method for selecting the appropriate name space when resolving

a name. This section shows how these features are supported by the Virtual System

Model and how they satisfy the requirements set forth in the previous chapter.

4.2.1 Customization

The Virtual System Model supports customization by providing multiple name spaces.

This allows users to organize information in the manner they desire, making it easier

for them to keep track of the information they have seen. Users are not restricted to

organizing objects that they own; they can just as easily impose their own organization

on �les and directories owned or maintained by others. When organizing information it

is possible to create a customized view of the objects in a directory that is speci�ed as a

function of the original directory, or of another view. This is accomplished using a �lter

or a union link, each of which is described later.

To create a new name space (a customized view of available objects) a user creates

a directory that is to be the root of the name space

2

. Subdirectories are then created

2

A new directory is required since existing directories must remain unchanged for use

by those that don't want to see the customization.

31

and links to existing objects or directories of interest are added with names that are

meaningful to the user. If the organization of a piece of an existing name space is

acceptable to the user, a link to that piece can be added, and the piece becomes part of

the user's name space. When a user wishes to include part of an existing name space,

but with changes, a link to the desired part can be added, and �lters and union links

can be applied to change the way it appears in the new name space.

4.2.2 Filters

A �lter is a program, attached to a link, that allows the view of the target directory to

be altered. The input to a �lter is the value of the directory that is the target of the

link. The value of a directory is a list of the links it contains. Each link consists of a

simple name for the link, a target of the link, a link type, and if the target of the link

is itself a directory, optionally a �lter to be applied when that directory is listed or used

to resolve subsequent components of a name. A �lter returns a list of links (the value

of a virtual directory) that results from applying the �lter to the input. It is the list of

links returned by the �lter that is displayed when a user lists a virtual directory or uses

the virtual directory to look-up a component of a name.

What a �lter can do

A �lter can remove links from the list of links read from a directory, add new links,

change the simple name of a link already in the list, change the target of a link, change

the type of a link, change the �lter associated with a link, or add new �lters to a link. A

�lter operates on a copy of the links from a directory and its only e�ect is on the list of

links it returns when the directory is queried through the �lter (i.e. when the directory

is reached by the link to which the �lter is attached). A �lter cannot have side e�ects

3

.

Every link returned by the �lter must have as a target a node in the naming network.

3

Side e�ects can be useful for some purposes and might be allowed by particular

implementations, but side e�ects are not supported by the model.

32

Although a �lter can only a�ect the list of links it returns, it is free to use any

information it can obtain even if that information is not part of the naming network.

For example, a �lter might query a separate database and return the results of the query

as a virtual directory. A �lter is free to ignore its input; this is equivalent to deleting

all the links from the input and adding links of the �lter's own choosing. Even in this

situation, the �lter only has an e�ect through the list of links it returns.

Limitations

The application of a �lter is speci�ed by associating the �lter with a link, and as such it

is not possible to maintain multiple links to the result of the application of a �lter. It is

possible to create an additional link that applies the same �lter, but the additional link

would not be a�ected if the �lter associated with the original link were changed. This

is undesirable because when a user �nds a directory of interest, it should be possible

to treat the directory the same way regardless of whether the directory corresponds to

a node in the naming network, or the result of applying a �lter. It is possible to work

around this limitation by attaching a �lter to a union link. The union link is described

in Subsection 4.2.3.

Because a �lter's only e�ect is on its return value, and since its return value is a single

directory, a �lter can not directly a�ect the view of any directory except that to which it

has been applied. However, by changing the �lters associated with the links it returns or

by adding new �lters, a �lter can indirectly a�ect subdirectories. This mechanism will

be described in greater detail shortly.

Example of a simple �lter

Figure 4.1 shows an example of the results of applying a simple �lter. The �lter in the

�gure removes links that do not match the wildcarded string *.ps. It is applied to a

directory that contains several �les, but the computed view shows only those �les that

have the appropriate su�x, indicating that they are papers in PostScript format. In

33

r

64

6

54

3

1

10

rr

r r

rr

r

rr

2

2

r ’

Computed view

tr-31.ps

tr-27.ps

release.tar

system.doc

pub papers

match(*.ps)

tr-31.ps
tr-27.ps

papers

Figure 4.1: Results of applying a simple �lter

the �gures in this section, solid circles represent physical �les or directories. The label

inside the circle exists only for ease of reference in the text of this dissertation; the label

is not part of the name of the �le or directory as seen by the user. The directory r

0

2

in

Figure 4.1 does not exist as a node in the naming network. Instead, what is shown in

the computed view is the result of applying the �lter to directory r

2

.

This example uses a parameterized �lter. The parameter, *.ps, speci�es the names

of the links to be matched. The parameter allows a single �lter program to perform

multiple �ltering operations. When applied with di�erent parameters, a �lter program

should be thought of as a di�erent �lter. It performs a di�erent �ltering operation, e.g.,

matching names ending in ps rather than names ending in txt. The parameters of a

�lter are set when the �lter is attached to a link.

34

Composition of �lters

A link may have multiple �lters attached. The order of application of the �lters is

important. For example, if one �lter removes all links whose names contain the letter A

and a second �lter renames links by changing all Bs to As, then one ordering will yield the

renamed links while the other ordering will not. Neither ordering is intrinsically correct;

it is up to the user to specify the correct order when the �lters are attached.

Throughout most of this chapter I make the simplifying assumption that a link will

have at most a single �lter attached. This assumption can be made without loss of

generality since the composition of two or more �lters is itself a �lter. Thus, where more

than one �lter is needed, the �lters can be represented by a single �lter, the result of

composing the necessary �lters in the appropriate order.

How a �lter a�ects more than a single directory

Although a �lter can only directly a�ect the directory to which it is attached, it can

indirectly a�ect subdirectories by changing the �lters to be applied when subdirectories

are listed or used to resolve subsequent components of a name. This works because the

�lters to be applied to subdirectories are speci�ed by links in the current directory.

This ability to indirectly a�ect subdirectories can be used to apply a �ltering oper-

ation to a directory hierarchy. For example, to �lter out all �les more than a month

old from a hierarchy, a �lter scans the links from its input (the value of the directory to

which it is attached). For each link it checks the type. If the link is to a �le, then the

�lter checks the �le's write date, and if more than a month old, it removes the link. If

the link is to a directory, then the �lter attaches itself to that particular link. If a �lter is

already associated with the link, then the current �lter (the one being applied) attaches

itself in composition with the existing �lter, in this case composed so that the existing

�lter is applied �rst. When a subdirectory is listed or used to resolve a name, one �nds

that the subdirectory corresponds to exactly the same node in the naming network as

if the �lter had not been applied to the current directory, but that the very same �lter

35

applied to the current directory is now applied to the subdirectory as well. The �lter

will continue to propagate itself downward through all descendant directories in the same

manner.

When a �lter changes the �lters applied to subdirectories it is not constrained to

leave existing �lters in place, nor is it otherwise restricted in the choice of the �lters

to be attached. Although the code that implements the �lters to be attached must

already exist, new �lters can be speci�ed by composing existing �lters or by selecting

new parameters for parameterized �lters. The example in Section 4.3 (Figure 4.6) shows

a �lter that creates new �lters which are then attached to subdirectories. In this case the

distribute �lter attaches the attribute �lter to subdirectories and the parameters for

the attribute �lter are constructed from the author attributes of the �les in the current

directory.

Changing the �lters attached to links returned also allows the creation of ghost hi-

erarchies, parts of the name space that appear to be speci�ed entirely within the �lter.

Although the ghost hierarchy appears to be speci�ed entirely within the �lter, each di-

rectory in the ghost hierarchy is associated with a node in the naming network, usually

a node reachable from the node to which the original �lter was applied. Multiple direc-

tories from the ghost hierarchy might share the same node from the naming network,

but the �lters attached to links change the way each directory appears.

4.2.3 Union Links

A union link allows links from another directory, one corresponding directly to a node in

the naming network or one resulting from the application of a �lter, to appear as if they

originate from the node in the naming network from which the union link originates.

When a union link is present, the contents of the target of the union link (which must be

a directory) appear to be included in the originating directory

4

. If a union link has a �lter

4

If the target directory contains union links, those links are also expanded. The result

is the union of the conventional links in the transitive closure of the original directory

under the union link relation.

36

64

6

54

3

1

10

rr

r

rr

r

r

2

r

r

r

tr-31.ps

tr-27.ps

release.tar

system.doc

pub

match(*.ps)
tr-27.ps

tr-31.ps

Computed view

Figure 4.2: Use of a �ltered union link

applied, then the links that are included are those returned when the �lter is applied.

When traversed while resolving a name, a union link does not consume a component of

the name. As such, in the naming network, an edge corresponding to a union link will

not be labeled with a component of a name

5

.

Figure 4.2 shows the results of applying the �lter shown in Figure 4.1, but this time

the �lter is attached to a union link. Directory r

0

2

in the �rst example was a computed

view and could only be referenced through the link papers. In this example, directory

r

0

2

from the previous �gure has been included in the computed view of directory r

1

, and

links can be made to r

1

the same way they can be made to any other node in the naming

network. If at a later date, the �lter attached to the union link were to change, the

change would be visible to all users with links to r

1

.

5

The edge might be labeled with a �lter if one is to be applied.

37

1413

12

11

109

8

7

rr

r

r
r

r

rr

unique() mytr
tr

tr-27.ps

tr-37.ps
INDEX

tr-31.ps

tr-15.ps

INDEX

Figure 4.3: Use of a union link for customization

Union links have a second function: when a union link is combined with a �lter that

eliminates duplicates

6

, the user is able to create a customized view of a directory by

creating an empty directory, adding a union link to the original directory, and making

changes to the new directory.

For example, in Figure 4.3, directory r

12

presents a customized view of directory r

7

.

The link tr-37.ps has been added to the customized view and the link INDEX has been

modi�ed to reference object r

13

(instead of object r

8

). These changes are only visible

when looking at r

12

. They are invisible to anyone looking directly at r

7

. Future changes

to directory r

7

will be visible to individuals looking at r

12

as long as the changes do not

conict with customizations already made to r

12

.

If the unique �lter is applied to a union link, the order in which union links are

added to a directory is signi�cant. If more than one of the included directories has a link

with a particular name, the link from the directory searched �rst is the one returned.

The local directory is searched �rst, then directories are searched in the order that the

corresponding union links were added to the local directory. This behavior is analogous

to that of search paths in existing systems.

6

This �lter is called the unique �lter. In the prototype implementation it is imple-

mented as part of the union link mechanism itself. This greatly improves its e�ciency.

38

Filters and union links are powerful mechanisms for supporting customization and

the manipulation of name spaces. Filters are written in standard programming languages

and can take any action that can be speci�ed in such languages. The union link allows

the manipulation performed by a �lter to a�ect the directory containing the �lter.

4.2.4 Synonyms

The Virtual System Model allows links to be made from any directory to any object.

Unless the creator of a link speci�cally indicates otherwise, links are synonyms: they

are additional names for the referenced object and they will continue to work even if

other names for the object change. An object will continue to exist until all links to

it have been removed. The ability to add links to objects is not constrained by system

boundaries or by the type of the target of the link. It is possible for links to appear from

any directory to any object without regard for the physical location of the two objects.

Although names are synonyms and do not depend on the existence of other user-

level names, implementations may represent objects by system-level names. System-

level names might be human-readable, but they should be thought of as addresses. If

an implementation represents a link as a mapping to a system-level name, and if the

system-level name changes, it is the responsibility of the implementation to make sure

that all links continue to work.

4.2.5 Closure

So far, this section has shown how the Virtual System Model can support multiple

name spaces and it has described the tools that help users construct customized views

of existing name spaces. Support for multiple name spaces leads to problems with name

transparency: the same name might refer to di�erent objects when used from di�erent

name spaces. This can make a system confusing and can hinder sharing.

This problem is addressed in the Virtual System Model by closure: every object

that is created using the Virtual System Model has an associated name space. The

39

name space is represented as a reference to the node in the naming network that is the

root of the name space, and the reference is stored in the attribute list for the object.

Usually the name space closed with an object (associated with the object by closure) is

the name space of the process that created the object, but the closed name space may

be speci�cally set by the object's owner.

When a name is resolved, the name is resolved in the name space closed with object

that speci�es the name: if a name is speci�ed within a program, the name space closed

with the program is used; if speci�ed by the user as an argument to the program, the

user's name space is used; if read from a data �le, the name space closed with the

data �le is used. Through closure, the context within which a name is to be resolved

is automatically determined. Although the same name may refer to di�erent objects

within di�erent contexts, the correct context is always known.

4.2.6 Review of the Features

This section presented the features of the Virtual System Model. The naming network

supported by the Virtual System Model forms a generalized directed graph, a directed

graph that is augmented by �lters and union links. The features of the Virtual System

Model satisfy the requirements set forth in Chapter 3. Customization is supported by

allowing multiple starting nodes, each corresponding to a separate name space. Filters

and union links make it easier for users to construct and maintain customized name

spaces by allowing them to de�ne views of directories as functions of one or more other

views. Because the directed graph is not constrained to form a tree, or even to be acyclic,

synonyms are supported for all objects. Finally, closure speci�es the name space within

which names are to be resolved, making it possible to correctly resolve a name even if

the name was speci�ed by a user in a di�erent name space.

40

4.3 A Formal Presentation

This section presents a formal description of the resolution of names using the Virtual

System Model, based on the model for name resolution presented in Section 2.3, extended

to provide better support for customization.

4.3.1 The Resolution of Names

As was the case for existing systems, the resolution of names in the Virtual System Model

can be modeled by a name resolution automaton, NA = (Q;�; �; q

0

; �). Every nameable

object, whether real or computed, is represented by a context q 2 Q, and q

0

is the initial

context. The alphabet, �, is a set containing every component � that appears in any

valid name. � : Q � � ! Q, the transition function, maps a context and a component

to a new context. � : Q ! type � address, the access function, maps contexts to the

information needed to access the object represented by the context. Q;�; �; � are de�ned

by the naming network and are thus �xed under our single naming network assumption.

A name space is identi�ed by specifying q

0

.

Filters

Unlike traditional systems, in the Virtual System Model a context for name resolution q

consists of a real part r corresponding to a node in the naming network, and a function

7

f that is to be applied to the real part, that is q 2 R � F . The transition function

maps a context and a component of a name to a new context. In so doing, it applies

the function part of the context to the mappings in the directory that corresponds to

the real part. It then looks up the component and returns the new context. The new

context itself consists of a real part and a function. For most contexts, the function will

be the identity function.

Graphically, the naming network is still represented by a directed graph with labeled

edges and vertices. Each vertex corresponds to the distinct real parts of the contexts in

7

As discussed earlier, the function might be the composition of two or more functions.

41

21201918

17

1615

tr-37.ps

tr-31.ps
tr-15.ps

tr-27.ps

bynumber

tr distribute(author)
byauthor

r r

r

r r r r

Object Value of author attribute

r

18

neuman

r

19

lazowska

r

20

lazowska

r

21

neuman

Figure 4.4: Sample naming network for the Virtual System Model

Q. Instead of being labeled with only a component of a name, the edges in the naming

network are also labeled with the function that is to be applied to the real part of the

next context (the destination of the edge). To avoid clutter, the function will be left

out when it is the identity function. When moving through the naming network while

resolving names, it is necessary to remember the function associated with the last edge

over which one reached a vertex. The function and the vertex together specify the

context. Figure 4.4 shows a sample naming network for the Virtual System Model. The

table in the �gure lists values of the author attribute stored in the attribute list of four

of the �les. These attributes are read by the distribute �lter

8

.

It is important to note that the Virtual System Model only supports the resolution of

names in the forward direction. In particular, it only supports the resolution of full path

names or of abbreviated names starting from a context that has previously been resolved

8

As an arbitrary program, a �lter can query the attributes of an object in much the

same way that it reads or otherwise accesses the object.

42

q = [r

16

; I]

q = �([r

16

; I]; byauthor) = [r

17

;distribute(author)]

q = �([r

17

;distribute(author)]; neuman) = [r

17

; attribute(author = neuman)]

q = �([r

17

; attribute(author = neuman)]; tr � 37:ps) = [r

21

; I]

return �(r

21

)

Figure 4.5: Steps to resolve a name in sample naming network

and saved (e.g., a working directory). The Virtual System Model does not directly

support the resolution of relative names of the form \go back two directories, then resolve

name1/name2" as might be speci�ed by the Unix path name ../../name1/name2

9

. In

the prototype implementation of the Virtual System Model, the user interface interprets

such paths and performs a textual substitution before the name is resolved.

Figure 4.5 shows the steps required to resolve the name /byauthor/neuman/tr-37.ps

using the naming network in Figure 4.4 starting from node r

16

. The box labeled \Com-

puted view" in Figure 4.6 shows the result of applying distribute(author) to r

17

. The

result is a set of new links corresponding to the unique author attributes in the �les

under r

17

. The target of each of the links is r

17

itself, but each link has a di�erent �lter

applied, one that will pass only those links whose targets possess the appropriate author

attribute. In Figure 4.5 note that the access function is applied to the real part of the

�nal context. If the �nal context has a functional component other than the identity

function, the function will also be returned by the name resolution function

10

.

Figure 4.7 shows how the name space rooted at r

16

appears to the user. Although

Figure 4.7 more directly reects what the user sees than Figure 4.4, it is unable to model

the e�ect of change. In particular, it is not possible to determine from Figure 4.7 how

r

0

17

, r

00

17

, and r

000

17

will be a�ected when r

17

changes.

9

Unix does not really support such names. Instead, each directory has an entry named

\.." that refers to its parent directory. Thus, a name of the form ../../name1/name2 is

really just an abbreviated name starting from the current working directory. The \.."

notation in Unix appears to allow the user to back up because Unix directories can only

have a single parent. Symbolic links violate this assumption, and the \.." notation in

Unix can give unexpected results when such links are crossed.

10

Such a function might implement an alternative method to access the object.

43

21201918

17

17

16

1615

Computed view

tr-37.ps

attribute(author=neuman)
attribute(author=lazowska)

neuman

lazowska

bynumber byauthor

distribute(author)

r

’r

tr-31.ps

tr-15.ps

tr-27.ps

bynumber
tr

byauthor

r r

r

r r r r

Figure 4.6: Result of applying distribute(author) to r17

Union Links

So far my discussion of the di�erences between existing naming models and the Virtual

System Model has concentrated on �lters. A second di�erence is the inclusion of union

links. A union link is represented by a transition that consumes zero components of a

path name. If, after any �lters have been applied, a union link appears in a directory, then

in addition to returning any links in the current directory that match the component, the

transition function will recursively call itself on any contexts referenced by union links.

If a vertex is reached that has already been visited during resolution of the current

component, the context will not be expanded further

11

. The transition function might

return multiple matches

12

. Thus, the transition function must be extended so that it can

return multiple contexts, p � Q. It must also be extended to accept multiple contexts

for input, returning the union of the results of resolving the component in each of the

contexts.

11

In a well-formed naming network (see Subsection 4.3.2) such pruning does not a�ect

the correctness of the expansion.

12

If the unique �lter is applied to a union link, it will only be expanded if no match

for the component of the name has already been found.

44

171721201918

1717

16

tr-37.ps

tr-37.ps

tr-37.ps

tr-27.ps

tr-15.ps

lazowska
neuman

r ’’’r ’’

r ’

byauthorbynumber

tr-31.ps

tr-15.ps

tr-27.ps

r

r

r r r r

Figure 4.7: The way the user sees the naming network

The di�erence between the transition function in existing models of naming and

that required to support union links is precisely the di�erence between a deterministic

�nite automaton (DFA) and a non-deterministic �nite automaton (NFA). The NFA is

described in [Rabin & Scott 59] and [Hopcroft & Ullman 79] where it is shown to be

computationally equivalent to the DFA.

Graphically, a union link is represented as an edge with no label

13

. Figure 4.8 shows

a naming network with three union links. Node r

22

has more than one union link, and

the numbers at the base of the links indicate the ordering of the links in the directory.

To resolve the name tr-37.ps in the naming network of Figure 4.8, directory r

22

is

checked for the component tr-37.ps by applying the transition function. After checking

for local links, the transition function recursively calls itself for the directories referenced

by each of the union links, in order. It �nds a link labeled tr-37.ps under directory r

31

,

13

The edge might be labeled with a �lter to be applied, but there will be no label

identifying a component of a name.

45

3332

31

3029

28

2726

25

24 23

22

rr

r

rr

r

rr

r

r r

r

tr-37.ps
INDEX

tr-37.ps

unique()

tr-27.ps

tr-31.ps

tr-15.ps

INDEX

12

tr-17.ps

Figure 4.8: The resolution of union links

adds the link to those to be returned, and returns to the top-level transition function.

The top-level transition function continues to call itself recursively on the remaining

union links, but when it calls itself on r

23

it applies the unique �lter, recognizes that it

has already found a match, and immediately returns. Had the unique �lter not been

attached to the union link, it would have found a second link named tr-37.ps, added

it to the list of links to be returned, recursively called itself on directory r

24

, found no

match, then returned through the top-level transition function with two matches.

4.3.2 When is a Naming Network Well-Formed?

Filters and union links are powerful mechanisms for customizing name spaces. Together,

however, they can sometimes be too powerful. Because the proper functioning of a

system depends on its naming mechanism, it is important that the naming mechanism

be well behaved. In particular, it should always return an answer or signal an error, and

it should return complete results. A well-formed naming network is one in which the

resolution of names is guaranteed to terminate with complete results.

46

Unfortunately, not all naming networks are well-formed. For example, a naming

network might include �lters that loop inde�nitely and it is not possible for the system

to decide whether a �lter will eventually terminate [Turing 36]. As a practical matter we

can require that �lters terminate on all inputs, and we can make it the responsibility of

the writer of a �lter to write it in such a way that it does. In practice, the undecidability

of the halting problem does not present a serious problem for the Virtual System Model:

implementations can impose the more restrictive constraint that �lters must terminate

within a speci�c number of steps or a preset time limit. Such a constraint may result in

the rejection of �lters that might eventually terminate, but such �lters are not likely to

be of much use anyway.

Cycles of union links present another potential problem for the correct resolution of

names. If a cycle of union links includes a �lter that a�ects the subsequent expansion of

a union link, new links might be added each time around the cycle. In such a situation,

the complete expansion of the cycle might not terminate. In Subsection 4.3.1 we noted

that if while expanding a union link a vertex is reached that has already been visited

during resolution of the current component, the context will not be expanded further.

This pruning will cause the expansion to terminate, but possibly with an incomplete

result. We address this problem by imposing the requirement that cycles composed

entirely of union links not include �lters. Without intervening �lters to change the

result of subsequent expansion, the pruning does not a�ect the completeness of the

expansion since the result of a second expansion would be exactly the same as the �rst.

In practice, the transition function can keep track of intervening �lters, and if there exists

an intervening �lter other than the identity �lter, an error can be returned. While the

method employed to detect cycles is su�cient to guarantee that the recursive expansion

of union links terminates, the method does exclude some cycles that might otherwise be

valid.

Having discussed what it means for a naming network to be well-formed and having

described su�cient constraints on �lters and cycles of union links so that a naming

47

network will be well-formed, I now show that the resolution of names will terminate

correctly in such a naming network. For the purpose of this analysis, I will assert that

the naming network has a �nite number of vertices and that each name has a �nite

number of components.

A name is resolved by successively applying the transition function to the components

of a name until no components remain, then applying the access function to the result

of the last application of the transition function. To show that the resolution of names

terminates, it must be shown that the application of the access function and the transition

function will terminate and that, given that these functions terminate, so will the name

resolution procedure.

Assertion 4.1 The name resolution procedure will terminate

if the access and transition functions terminate.

I will show this by induction on the number of components in a name.

Assertion 4.1.1 Name resolution for a zero-component name

will terminate if the access function terminates.

To resolve a name of zero components, the access function is applied to the real part

of the current context and the result is returned, perhaps together with the functional

part of the current context

14

. As long as the access function terminates, so will the name

resolution function.

Assertion 4.1.2 If name resolution terminates for names with n

components, and if the transition function terminates, then name

resolution terminates for names with n + 1 components.

To resolve a name of n + 1 components, the transition function is applied to the

�rst component of the name and the current context. This returns a new context. The

14

If the current context is a directory containing a union link, the union link is not

expanded. The result of name resolution is a reference to the directory, not its value.

48

remaining n components of the name are then resolved starting from the context returned

by the transition function. Thus, the resolution of a name with n + 1 components

terminates as long as the transition function terminates, and the resolution of names

with n components terminates.

By induction on the number of components, the resolution of names with any number

of components will terminate as long as the access function and the transition function

both terminate on all inputs.

Assertion 4.2 The access function terminates.

The access function can be implemented as a lookup in a table with a �nite number

of entries, each corresponding to one of the vertices in the naming network. Such an

implementation will clearly terminate.

Assertion 4.3 The transition function terminates.

All that is left to be shown is that the transition function terminates. There are three

steps in the application of the transition function. In the �rst step, the functional part

of the current context is applied to the real part. The second step is a table lookup in a

table with a �nite number of entries

15

. The third step is the recursive application of the

transition function to any contexts referenced by union links.

Restriction 4.3.1 Filters must terminate on all inputs.

This restriction is one of the constraints we placed on �lters earlier in this section.

If the constraint holds, the �rst step is guaranteed to terminate.

Assertion 4.3.2 If a �lter terminates, the table lookup will terminate.

The table lookup within the transition function will terminate as long as the table

has �nite length. The length of the table is limited by the number of entries in the real

15

Each entry corresponds either to an edge in the naming network, or to an entry that

resulted from the application of the functional part of the context.

49

part of the directory, and by any entries that are added by the �lter. The number of

entries in the real part of the directory is �nite, and the number of entries added by the

�lter must also be �nite (if it weren't, the �lter would not terminate). Thus, the table

lookup will terminate if the �lter that is applied also terminates.

Assertion 4.3.3 The recursive application of the

transition function to union links terminates.

The last step in the application of the transition function is the recursive application

of the transition function to contexts referenced by union links. The naming network

might include cycles consisting solely of union links. Because the transition function

keeps track of the vertices that have been visited while resolving the current component

and will not further expand them, the depth of recursion is limited to the number of

vertices in the naming network, which is �nite.

Restriction 4.3.3.1 Cycles of union links may not include �lters.

This restriction is the second constraint we placed on the naming network earlier

in this section. If the constraint holds, pruning the expansion of union links will not

a�ect the correctness of the result since cycles of union links will not include �lters other

than the identify �lter, and subsequent expansion would yield links that were already

obtained during the initial expansion.

To summarize, in a well-formed a naming network the resolution of names is guaran-

teed to terminate correctly. A naming network in which �lters terminate on all inputs

and cycles of union links have no �lters, is well-formed. It is the responsibility of the

writers of �lters, and those modifying the naming network, to satisfy these constraints.

In practice, implementations may place more restrictive constraints on �lters in order to

allow the system to enforce compliance.

50

link2link1link2link1

3839373837

35343534

rrrrr

rrrr

3636
rr

xyz
defabcabc def

Figure 4.9: Naming network before and after modi�cation

4.3.3 Two Types of Change

Information in computer systems is dynamic. Models for naming in such systems must

correctly explain the e�ects of change. For models that support a single name space, the

e�ects of change are straightforward. Changes are always visible. Once a model supports

customization, however, two types of changes must be considered: modi�cations, which

are visible everywhere; and customizations, which are visible only in certain instances.

In the Virtual System Model a modi�cation is a change to the real part of a context.

Because it a�ects a vertex in the naming network, a modi�cation is visible in any di-

rectories (contexts) that share or include (through union links) that vertex. Figure 4.9

shows a modi�cation to directory r

36

. The �gure on the left shows the naming network

before the modi�cation. The �gure on the right shows the naming network after the

link xyz has been added. Note that the change is visible whether the directory is viewed

through link1 or through link2.

A customization creates a new view of a directory. A customization is visible only

when a directory is viewed through a particular link. A customization does not a�ect

the real part of the directory to which it is applied. For example, Figure 4.10 shows

the results of customizing the view of directory r

36

as seen through link2. Note that

no change was actually made to directory r

36

. In this case a new directory, r

40

, was

51

link2
link1

40

393837

36

3534

rrr

r

rr

r

unique()

abc def xyz

Figure 4.10: Naming network after a customization

created, the links in r

36

were included in r

40

through a union link, and directory r

35

was

changed to show the new target of the link named link2. A customization might also be

performed by adding a �lter to link2. Because the name of the �lter is part of the link,

and links are part of directories, such a change would also be a modi�cation to directory

r

35

, not r

36

.

A customization always results in a modi�cation, but as this example demonstrates,

the modi�cation is to a di�erent directory. In this case it was a modi�cation to a

directory containing a link to the customized directory. It is possible that the change to

the immediate \parent" might itself be a customization, in which case the modi�cation

would appear even \higher" in the hierarchy. It is expected that implementations will

provide tools to recursively create customizations automatically when requested by the

user. The user would specify the change to be made, and the name of the directory

which is to receive the modi�cation. By default, the deepest directory writable by the

user would be modi�ed and deeper non-writable directories would be customized.

4.3.4 Closure

A formal speci�cation of closure was presented in Chapter 2. Closure is represented the

same way in the Virtual System Model. To review, a closure function, � : object! NS,

maps an object to the starting context from which names embedded in the object are to

be resolved [Saltzer 78, Neuman 89a].

52

A �le system based on the Virtual System Model is di�erent from other �le systems in

that closure information is required to be stored with each object. In systems supporting

a single name space, such information is not necessary since the result of applying the

closure function is constant. In other systems, closure information is associated with the

running process or active user.

4.4 Relationship to Existing Systems

Features similar to those in the Virtual System Model are supported in several existing

systems. In this section I look at each of the features of the Virtual System Model and

discuss the relationship to similar features in existing systems.

4.4.1 Directed Graph Based Naming

The structure of the naming network in the Virtual System Model is similar to that

of the capability-based directory service used by Amoeba [Tanenbaum et al. 90, van

Renesse 89]. The two are similar in that they support multiple name spaces, and that no

constraints are placed on the topology of the naming network. Like the Virtual System

Model, the active name space in Amoeba is speci�ed by identifying the root directory.

A capability in Amoeba corresponds to a link in the Virtual System Model.

Amoeba di�ers from the Virtual System Model in several respects. Although it

supports customized name spaces, Amoeba does not provide mechanisms to specify cus-

tomized views of directories as functions of other views. Another di�erence is that the

Amoeba directory service supports a user-centered name space. A di�erent initial ca-

pability is employed by each user. Thus, closure in Amoeba is based on the identity of

the user, and not on the object that includes the name. Finally, capabilities in Amoeba

both identify an object, and specify access rights. As such, one's permissions to access

an object might be di�erent when the object is named through di�erent paths. The

linkage of protection and naming can hinder the sharing of names.

53

4.4.2 Filters

The function of �lters in the Virtual System Model is similar to the domain-switching

portal mechanism found in the Universal Directory Service [Lantz et al. 85]. A portal is a

call to a separate name server which may have a non-standard implementation, enabling

it to resolve names in a manner di�erent than that in a standard name server. An

important di�erence is that a �lter is associated with a link. This allows the individual

making a link to specify the customization that is to be applied. A portal is written by

the creator of the directory, and as such, it is not customizable by the individual users

of the directory.

There are also similarities between the functionality of �lters, and that of watchdogs

[Bershad & Pinkerton 88]. Watchdogs are an extension to the �le system that allow

the owner of a �le to de�ne alternative implementations of �le system calls, perhaps

returning computed results rather than data that actually appears in the �le. Because

Unix directories are implemented as �les, watchdogs can appear to alter the contents of

a directory. Like portals, however, watchdogs are written by the owner of a directory;

they are not speci�ed by the individual users. This is an important distinction. With

watchdogs, the same watchdog is always applied, while in the Virtual System Model, the

�lter to be applied to a directory can be di�erent when the directory is accessed through

di�erent paths.

Filters can also be applied to �les. If a �lter is associated with a link to an object

other than a directory, the name resolver can optionally return a reference to the �lter

together with the value returned by the access function when applied to the real part

of the �nal context. Because such a �lter would specify alternative access semantics for

the �le, it would resemble a watchdog more that it would a directory �lter. As is the

case with directory �lters, a �le �lter is speci�ed on a link. As such, di�erent �lters can

be applied when the �le is accessed through di�erent paths.

54

4.4.3 Union Links

Union links are related to several mechanisms found in existing systems. Among these

mechanisms are search paths and revision control.

Union links can be used to implement search paths. For example, by creating a

directory called /bin and adding union links to each directory in the search path, the

system can search for programs by looking in /bin. By associating the unique �lter

with each of the union links, only the �rst match (in the order the union links were

speci�ed) will be returned. Users can add their own programs to /bin directly and they

will be found in place of other programs with the same name found later in the search

path. In traditional systems where search paths are maintained as part of the state of a

running process, problems arise when names are resolved by processes that do not share

the same search paths. This problem is not present when search paths are implemented

by union links; the search path is part of the name space that is carried along with

objects through closure.

Perhaps one of the earliest uses of a mechanism similar to union links was for version

control in the Oxford experimental operating system OS12 [Black 91], a successor of

OS6 [Stoy & Strachey 72]. A directory in OS12 can contain a link to a single predecessor

directory, which might itself have a predecessor. If no match is found in the current

directory, and if a predecessor directory exists, the predecessor directory is searched. This

provides a subset of the functionality of union links. While useful for version control,

supporting mechanisms such as search paths requires the ability to specify multiple

directories to be searched.

A similar mechanism is used for version control in the 3-D �le system [Korn & Krell

90]. In the 3-D �le system, the directory seen by the user should be thought of as a stack

of physical directories. When resolving names, if no match is found at the current level,

the directories below the current level are searched in order of increasing depth until a

match is found. Like the predecessor directories in OS12, the stacking of directories in

the 3-D �le system supports only a subset of the functionality of union links.

55

The function of the union mount in the Plan 9 operating system [Presotto et al.

91] is close to that of the union link. Plan 9 allows a process to associate multiple �le

systems (or directories) with a single name pre�x

16

. The union mount can be used to

support search paths, but like search paths, the union mount is only visible to the process

that made the mount and to its children, and it lasts only as long as that process (or

its children). Because of its lack of persistence, and because it is not visible to other

processes, it is di�cult to share parts of a name space that are formed by a union mount.

4.4.4 Closure

The concept of closure comes from the binding of variable names in statically scoped

programming languages. Its use for naming in �le systems has been discussed [Saltzer

78], but no existing systems (other than Prospero) fully implement it. In many systems,

users approximate closure by setting environment variables before running a program.

For example, make�les (scripts used to build large software systems) often specify the

names of directories in which libraries and \include" �les are to be found.

4.5 Summary

This chapter presented the Virtual System Model. Among the features of the model are a

customizable name space, tools for constructing new name spaces, support for synonyms,

and a method for selecting the appropriate name space when resolving names. The model

was presented formally, and the relationship of the model to features found in existing

systems was discussed.

Using the Virtual System Model, the user sees a name space as a hierarchy, but it was

shown how the name space is really represented as a generalized directed graph; it only

appears hierarchical when viewed from a particular starting node which distinguishes

the name space from other name spaces.

16

Associating a �le system with a �le name pre�x is known as mounting the �le system.

56

This chapter has described the properties of the Virtual System Model by showing

how they apply to the naming of �les. The Virtual System Model is not just a model

for naming �les; it is a model for building large systems. As such, the model needs to be

applied to all aspects of a system. By using the name space to identify the users, servers,

services, and processors that are to be part of a virtual system, the concepts of the Virtual

System Model can be extended to these subsystems. The next chapter shows how the

Virtual System Model can be applied to many aspects of distributed systems. Among the

applications that will be discussed are the organization of information, authentication,

authorization, and the selection of processors, services and applications.

Chapter 5

Use of the Virtual System Model

In this chapter I show how the Virtual System Model makes it easier for users to �nd

information and resources in large systems. I start by discussing some of the methods

by which information is organized into multiple views. Next, I show how users can

construct their own views of the information and resources that are available and how

they can make use of the views of others when doing so. It is intended that some views

be created speci�cally for use by others; the incentives to do so are discussed throughout

this chapter.

By presenting examples of how the Virtual System Model can be used, I show that it

is a powerful and exible model for organizing large systems. In particular, I show that

many mechanisms used to organize o�-line information (e.g., papers, books) map nicely

to tools that can be implemented easily within the model. I also show how it is easier to

keep information up-to-date when these mechanisms are implemented in such a manner.

The Virtual System Model a�ects more than just the �le system. In the second half

of this chapter I show how the Virtual System Model a�ects other aspects of distributed

systems including authentication, authorization, and the selection of processors, services

and applications.

58

5.1 Organizing Information

The Virtual System Model allows information to be organized in many ways, and many

parties will play a role in doing so. Among the entities that will organize information

will be individuals, professional societies, libraries, governments, commercial indexing

services, or any collection of individuals sharing a common interest. The subsections that

follow describe some of the ways that information can be organized using the Virtual

System Model. An important feature of the model is that the same information can be

organized in multiple ways, and a reference to an object can appear at more than one

place in a name space.

While it might at �rst appear that some of the organizational methods described

in this section could be implemented using symbolic links in traditional systems, it is

important to keep in mind that a symbolic link would no longer work if its target moved,

that each link would have to be put in place individually, and that in a system as large

as the Internet it would be almost impossible to establish consensus on which directories

should appear near the root of the hierarchy, and what �les should appear in each

subdirectory.

5.1.1 Project Organization

It is expected that a project will have an associated virtual system and that a project's

virtual system will also be included in the virtual systems of the members of the project.

A project virtual system provides a single place where members of the project can look

for information related to a project, even if the information is scattered across multiple

systems or maintained by di�erent members of the project; it can be included in the

virtual systems of new users that join the project, allowing the new users to quickly

incorporate the project's view of project-related information into their own view; and it

provides a single point of reference from which users that are not part of a project can

look for information. When individuals that are not part of the project are to see only

a subset of the information related to the project, protection mechanisms can be used

59

to allow non-public information to be hidden. Using a project virtual system in this

manner eliminates the need to maintain a separate external view of the project.

The members of a project have several incentives for organizing a project virtual

system. First and foremost, they themselves bene�t from having a single location in

which project-related information can be found. One of the problems that often arises

with projects that involve more than one individual is that sources or copies of sources are

maintained in directories belonging to the individual members of the project, making

it di�cult for other members of the project to �nd them, and possibly resulting in

changes being made to old versions. A second incentive applies if a project chooses

to make parts of its virtual system available to others, and if links to it appear in

places where individuals wanting information about the project are likely to look. Such

an arrangement both increases the visibility of the project and reduces the number of

queries that must be answered from individuals wanting information about the project.

5.1.2 Index by Author

The individual in the best position to keep track of the papers written by a particular

author is that author. It is expected that authors will maintain directories with references

to their own works, or at least to those works that they want others to �nd. The incentive

for doing so is visibility. The ease with which others can �nd one's writings a�ects the

likelihood that those writings will be used. By maintaining one's own index of papers,

one can also add cross references to more recent work as it is completed.

The usefulness of such a directory is greatly enhanced when it is itself referenced

from a higher-level directory of authors. Such directories are maintained today in li-

brary card catalogs and in reader's guides to the literature, but the job of maintaining

such directories is greatly simpli�ed when implemented using the Virtual System Model;

the maintainer of the higher-level index would only have to update the directory when

new authors are added. Once added, it is up to the authors themselves, or to individ-

uals maintaining directories on behalf of the authors, to keep the list of the author's

publications current.

60

5.1.3 Topical Indices

Directories organizing information by topic will help users identify information of in-

terest. Such directories might be maintained by the experts on the topic. Professional

societies or libraries might solicit experts in particular areas and create higher-level di-

rectories that map topics to the directories maintained by individual experts. For such

directories to be useful, their maintainers will have to include references to only those

papers that are considered worthy of attention by the community at large, and the pro-

cess of deciding what is to appear in the directory will constitute a form of peer review.

Users who disagree with the choices made by those maintaining such directories are free

to create their own directories, or to use similar directories maintained by other individ-

uals. In fact, there will not be an o�cial moderator for each area. Instead, experts will

be recognized by the relative numbers of users that employ their views, and by endorse-

ment through inclusion in the higher-level indices maintained by libraries or professional

societies.

5.1.4 Indices by Attribute

Directories with references to �les with selected attributes can help users �nd the �les

they are looking for. Among the attributes that can be used are owner, writer, keywords,

�le type, and even whether the text of a �le contains a particular word or combination of

words. User-de�ned attributes may be stored along with �les, and �lters that read the

attributes or contents of a �le can be used to automatically maintain such directories.

Using �lters that read the attributes of individual �les is inherently ine�cient because

�les that don't match the criteria must also be checked. An alternative approach is

available when there exists a precomputed database of object attributes. A �lter can

map �le names to database queries, and the results of a query can be presented as a

directory containing those objects that matched the speci�ed attributes.

This latter approach provides a mechanism for making existing databases available

though the Virtual System Model (the Virtual System Model does not specify how these

61

databases are to be created or maintained). Many databases with information about

object attributes already exist and the Virtual System Model provides a mechanism

for tying them together. Some of these databases, library card catalogs for example,

contain information about objects that aren't accessible electronically. References to

such objects (e.g., books) can be represented on-line as objects whose access method

involves physically retrieving the item.

5.1.5 Personal Organization

Users will build their own hierarchies of �les by creating directories, subdirectories, and

�les of their own, and adding links to �les, directories and subdirectories created by

others. Files that are frequently accessed by a user will probably have short names while

names will be longer for objects of less interest. Because directories of other users will be

accessible from the user's virtual system, the virtual system will probably contain �les

that a user has never accessed and might not even know about. These �les, however,

will be deep in the user's hierarchy.

When users link directories to their own virtual systems, it will be possible to add

information to the link to specify how much of the merged hierarchy is to be included.

It will also be possible to use �lters to customize parts of the attached hierarchy.

Over time, multiple communities of users will evolve. It is expected that the members

of each community will have similarly structured name spaces, but name spaces may vary

widely across di�erent communities of users. For example, members of the computer

science community might organize virtual systems in one way while members of the

medical community might think of the world in a completely di�erent manner.

5.2 Looking for Information

Once information has been organized, users can look for it in many ways. A user looking

for a paper on heterogeneous computer systems for which Ed Lazowska was an author

might �nd the paper in a directory of papers by Ed Lazowska. A user that didn't know

62

any of the authors might �nd the same paper in a directory of papers on distributed

computing.

Just knowing that the information of interest exists in a published paper can be a

big help; many times a user won't even know that. The following subsections show how

the Virtual System Model can help users �nd information when they know little about

what they're looking for.

5.2.1 Browsing

The directories and �les that a user maintains will be owned by that user. Parts of a

user's hierarchy, however, may be owned by other users. Access control information is

maintained along with each �le or directory, and with each directory link. This infor-

mation determines who is allowed to read the �le or search the directory. It is expected

that users will make parts of their hierarchies accessible to others, but how much will be

decided by the individual.

One way that information can be found using a �le system organized with the Virtual

System Model is through browsing. An individual interested in a particular topic can

connect to the virtual system of someone else who is known to be interested in that

topic, or perhaps to the virtual system for a related project. The user could then look

through those virtual systems for documents or �les of interest. Of course, he would

only see those �les that the owner of the virtual system has authorized him to see. The

inability to see some information, though, will weed out the information that would not

be of interest anyway.

In order for browsing to work best, virtual systems owned by projects should include

a directory containing links to related work. Users should also maintain directories

containing links to �les that they consider interesting or relevant. Files in which others

would (or should) have little interest should be kept from view by applying appropriate

protections.

63

Browsing is considerably more likely to be e�ective under the Virtual System Model

than in traditional �le systems. The Virtual System Model encourages users to make

their own links to the �les in which they have an interest. As such, interesting �les are

likely to appear in the hierarchies of multiple people, thus increasing the likelihood that

they will be found by browsing.

5.2.2 Finding Things

In today's society, if something is available that is of interest, it is usually found through

directories such as the phone book or yellow pages, through reading newspapers and other

periodicals, or by word of mouth. In the computer science community, these sources of

information are supplemented by technical papers, electronic mail, and mailing lists.

These methods of discovery are natural, and it is likely that they will continue to �nd

signi�cant use even once other mechanisms are in place.

The Virtual System Model allows much of the information that is useful for �nding

objects, but which to date could only be obtained by external means (such as asking

the author of a paper), to be included as part of the �le system. A virtual �le system

provides a matrix through which users can navigate to �nd the desired information.

5.3 Relationship to Distributed Systems

So far this chapter has concentrated on the ways that the Virtual System Model can

be used to organize information in large systems. The Virtual System Model a�ects all

aspects of a distributed system. The model can be applied to other aspects because

naming is important to all of them. The system components that are to be part of a

virtual system can be speci�ed by creating special links in the name space that reference

those objects. By providing a mechanism to identify the components that are of interest,

it is possible to tailor the behavior of the system. This section shows how the model can

be applied to authentication and authorization, processes and processors, and services

and applications.

64

5.3.1 Authentication & Authorization

Authentication is used to ensure that an entity claiming to have a particular name is,

in fact, the entity to which that name refers. Authorization is used to make sure that

a named entity is allowed to perform a particular operation. For both to work, there

must be an accepted mapping from a set of names to entities requiring authentication.

Although this mapping does not need to be the same in all places, authorization is

signi�cantly simpli�ed if it is. Since virtual systems overlap, allowing the use of non-

unique user-level names for authentication could create parts of the system where two

di�erent sets of names are in use. This would complicate access control for objects

in those overlapping regions. For this reason, authentication and authorization will be

based on the globally unique names of users. This does not preclude having an additional

level of indirection through which users specify names.

It is expected that authorization will be accomplished primarily through access con-

trol lists (ACLs). Support for groups allows ACLs to provide a exible interface for

access control. Groups can contain users or other groups. As with names, groups should

be represented uniquely within ACLs. Users, though, might use di�erent names to iden-

tify them. A problem arises in deciding how to display the content of ACLs to the user.

With groups, it is perhaps even more important for the user to see a name with which

he is familiar. Mapping back from the unique name to a local name might be costly,

however.

One solution is to give the user the option of how ACLs are to be displayed. The

typical user would choose the local names. Since typical users are likely to have only a

small number of users or groups de�ned within their virtual system, the mapping might

not take as long as for an advanced user. In any case, information is needed to help users

�gure out what the purpose of a group is if the group does not map to a local name.

Each group can have a comment associated with it. These comments can be displayed

next to the local or unique name when the ACL is listed.

65

So far, I have discussed the naming side of authentication, and how these names are

used for access control. Authentication itself has not been talked about. One of the

problems that arises as a system spans multiple organizations is lack of trust. Services

can't be required to trust every authentication server that exists. It might not even be

the case that there is a single authentication server trusted by everyone. A particularly

paranoid application might only trust authentication performed independently by its

local authentication server.

Another issue is the distribution of authority. Unless, for every communicating pair

of entities, there exists some trusted entity sharing a secret with both parties, then

multiple authentication servers might be involved in authenticating a principal.

1

It is

important that the end service know which authentication servers were involved when

deciding whether to trust the authentication [Birrell et al. 86].

There may be di�erent competing collections of authentication servers. Such servers

might di�er in who they are run by, or perhaps even in the protocol required for initial

authentication (how the user logs on). It should be possible, from within each virtual

system, to decide which authentication servers are to be trusted. When accessing a

particular object, the authentication servers to be trusted would be those speci�ed in

the virtual system linked to the object though closure.

5.3.2 Processes and Processors

A virtual system may include references to a collection of processors. If speci�ed, these

will be the processors on which applications will run. Processors within a single virtual

system may be of di�erent types, and the processor chosen will be based on the require-

ments of the application as well as on other information available at the time (such as

load, etc.). Applications will be able to choose processors from within the virtual system

on which they are running, within which they were installed, or alternatively, on other

processors that they �nd dynamically.

1

Even with public key systems, the public key to party A must be known to a key

repository whose public key is known by B.

66

When a process is created it is associated with a virtual system. Typically the associ-

ated virtual system is that de�ned by the name space to which the running program has

been bound by closure. If the virtual system speci�es the processors (or other resources)

to be used by the application, then those resources are used, either in place of or in

addition to the resources available to the user. The optional use of closure for the selec-

tion of the processor or processors on which an application will run allows applications

that require a special processor or processor con�guration to be run automatically on an

appropriate machine, even if the user is unaware of the special requirements.

Just as the associated virtual system can be used to restrict the processors on which

an application can run, it can also be used to restrict the objects that can be accessed by

the process. This can be accomplished by setting a ag indicating that processes running

within a particular virtual system should only be able to access objects that are part of

that virtual system, and that the ability to switch to other virtual systems should be

disabled. By building a virtual system with limited size, and by protecting the virtual

system so that it can't be modi�ed from within, processes can be run in a protected

environment. In order for this to work, the processor on which the process executes

must enforce the restrictions imposed by the virtual system. By suitably restricting

what a process can read and write, the Virtual System Model can play a role in the

implementation of mandatory access control policies.

5.3.3 Services and Applications

In existing systems, services and applications di�er in the way they are accessed. A ser-

vice typically provides basic operations and is accessed across a network. An application

is typically a local program, but it may provide a front end for one or more services.

In the Virtual System Model, applications can be associated with a set of processors on

which they may run. When a user runs an application, it might run remotely. This will

blur the distinction between an application and a service. The distinction will become

more a matter of whether the interface is intended for humans, or for other programs.

67

Given the name of a service or application, clients will use the directory service to

�nd the server or executable. If multiple instances exist, the user will have to make a

choice. This choice will be speci�ed by including the selected server or set of servers in

the user's virtual system. The use of �lters provides a useful tool for choosing a server.

If a link is made to a directory containing pointers to instances of a service, a �lter

associated with the link can be used to �lter out all instances that do not satisfy the

client's constraints (e.g., price).

5.3.4 Tying it All Together

Figure 5.1 shows a complete virtual system. The resources available over the network

include three workstations, two multiprocessor systems, two authentication servers, and

a print server. The dotted line encloses the resources that form one virtual system. Other

virtual systems include overlapping resources, but they are not shown here. The virtual

system that is shown in the �gure includes a subset of the nodes on multi-processor 1,

several �les from workstations 1 and 2, the processor and display from workstation 2,

and the print server.

The virtual system shown is de�ned by a name space which assigns names to each of

the components of the virtual system. The name space is maintained by a distributed

directory service, though the directory service is not explicitly shown in this picture since

it permeates all parts of the system. It is the naming mechanism, as implemented by

the directory service, that has been the principal focus of this dissertation.

Closure is represented by a dashed arrow. One of the �les, a program on workstation

3, is associated by closure to the virtual system that is shown. If the program is con�gured

to select processors from the associated virtual system, then that program will run using

resources of the virtual system shown. In this example, the program that is associated

with the virtual system is not itself part of the virtual system. Thus, when a user of a

di�erent virtual system, possibly running on workstation 3, executes the program, it is

automatically run remotely, and names are resolved using the virtual system bound to

the program.

68

Finally, protection of resources associated by closure with this virtual system relies

on the security services of authentication server 2. Again, it is the �les associated by

closure to the virtual system that inherit the security attributes of the virtual system,

not necessarily the �les that are part of the virtual system.

5.4 Summary

This chapter has shown how the Virtual System Model supports the organization of

information and resources in large systems. Many of the techniques used to �nd and

organize o�-line resources are easily applied to on-line information and services using

the Virtual System Model. Using the Virtual System Model, the task of keeping such

reference materials up-to-date is made simpler by eliminating duplicated e�ort and by

assigning the responsibility for maintaining information to the parties that are in the

best position to do so.

The Virtual System Model a�ects more than just the �le system. Because most as-

pects of distributed systems depend on naming, the Virtual System Model allows the

customization of almost all parts of a distributed system. Among the a�ected com-

ponents are authentication, authorization, and the selection of processors, services and

applications.

6
9

2

1

3

21

2

1

workstation

local
disk

displayP

f
i
l
e
s s

e
l
i
f

P display

disk
local

workstation

authentication
server

workstation

local
disk

displayP

f
i
l
e
s

server
authentication

P

PP

PP

P

multiprocessorprint
server

PPP

PPP

P P P

multiprocessor

Figure 5.1: A complete virtual system

Chapter 6

A Prototype Implementation

In this chapter I describe Prospero

1

, a prototype implementation that applies the con-

cepts of the Virtual System Model to the design of a global �le system. A prototype

was needed to validate the solutions proposed by the model. A global �le system seemed

an appropriate test because of the large number of �les that already exist, the ability

to access �les over a large geographic area, and the distribution of �les across not just

system boundaries, but also administrative and national boundaries.

The chapter begins by describing the function of the prototype. The chapter contin-

ues with an overview of the implementation, describing the principal components of the

prototype and showing how they �t together. The implementation of �lters, union links,

and closure is described. A �le system has many functions that are not speci�c to the

Virtual System Model, yet these functions must be provided if a �le system is to receive

widespread use. These functions are discussed and I describe the support provided for

them by Prospero. For functions not supported by the prototype, possible approaches

are discussed and the steps taken to support future implementation of these approaches

1

From the Tempest by William Shakespeare. Prospero was the rightful Duke of

Milan who escaped to a desert island. When his enemies were shipwrecked on the island,

Prospero used his power of illusion to separate the party into groups, each of which

thought they were the only survivors. Thus, he caused each group to see a di�erent view

of the world. As time went on, the shipwrecked parties slowly learned about the others,

and thus, pieces of other views were added to their own.

71

are described. Finally, users won't accept a system that is slow. I conclude the chapter

by presenting performance �gures for the prototype implementation. Experience with

the prototype is described in Chapter 7.

6.1 Function of the Prototype

The Prospero prototype solves a real and recognized problem, that of organizing �les

that are scattered across the Internet, a network connecting educational, government,

and commercial computers worldwide. The Prospero �le system allows �les that are

logically related to be grouped together, even if scattered across multiple systems, and

it allows �les to be organized in multiple ways.

The Prospero �le system di�ers from traditional distributed �le systems in several

respects. In traditional �le systems, the mapping of names to �les is the same for all

users. In the Prospero �le system, users construct their own customized views of the

�les that are accessible. A virtual system de�nes this view and controls the mapping

from names to �les. Prospero provides tools to support this customization; among these

tools are the �lter and the union link.

Unlike most �le systems, Prospero is concerned primarily with the naming and or-

ganization of �les, not with the method used to store data or access a �le once it has

been found. The �les available through Prospero are stored in existing �le systems and

multiple access methods are supported.

Using Prospero, users can organize �les in many ways, creating their own directory

structures from scratch, or deriving them from directory structures that already exist.

When looking for information of interest, users can use the many directory structures that

already exist. These directory structures organize �les available from Internet archive

sites worldwide.

72

6.2 The Implementation

There are two parts to the Prospero implementation, the client and the server. When

names are resolved, the application resolving the name (the client) contacts one or more

directory servers on the host or hosts storing the directories that correspond to the

successive components of the name. The server looks up the requested name in the

speci�ed directory, returning the result to the client. The result is either used to access

the named object, or it is further resolved by contacting additional directory servers.

The subsections that follow describe the server and client in greater detail; Figure 6.1

(at the end of Section 6.2.1) shows how the pieces �t together.

6.2.1 The Server

The Prospero directory server accepts a directory identi�er and optionally the name of

the link to be returned to the client. The server returns the links in the directory that

match the speci�ed name, or all links if the name was not speci�ed. A Prospero link

speci�es the name of the host that stores the object and an identi�er for the object on

that host. These �elds can be thought of as an address for the object. The identi�er

of an object is the information needed by the Prospero server to identify and locate the

object on the local system. It is usually a native �le name for the object, but it could

also be an integer used as an index into a table, or even the arguments to a procedure

used for retrieving the object.

A Prospero link speci�es other information including whether the link is a union link,

and what (if any) �lters are associated with it. If the target of the link is a directory, the

link provides the information needed to resolve a name in that directory by contacting

the directory server on the host speci�ed by the link.

In addition to answering directory queries, a Prospero server answers requests for

information about the objects it manages, including system and user de�ned attributes

associated with objects. The values of these attributes can either be strings, used for

the last-modified, size, or similar attributes, or links used to represent named cross-

73

references to other objects. Finally, if con�gured to do so, the directory server will accept

changes to directories and to the attributes of the objects it maintains.

The client and directory server communicate using the Prospero protocol, described

in Appendix D. To reduce the overhead that would otherwise be incurred when estab-

lishing connections to multiple directory servers, the Prospero protocol is layered on top

of a reliable datagram protocol described in Appendix E and implemented using the

connectionless User Datagram Protocol [Postel 80].

The directory server accepts queries, retrieves the requested data, and responds to

the client. Internally, the server uses the Prospero library to process directory informa-

tion and object attributes. Functions that are speci�c to the server are supported by

the psrv library including all reading from and writing to the native �le system. In this

role, the psrv library translates the native directory format into the Prospero directory

format, thus making available through Prospero existing �les and directories not created

through Prospero. The psrv library can also translate Prospero �le system queries to

database queries, allowing a database to be substituted for the native �le system's di-

rectory structure in support of alternative search methods such as keyword or attribute

queries.

The basic function (querying and modifying directories) of the Prospero directory

server is similar to that of capability-based directory servers like the one in Amoeba

[Mullender & Tanenbaum 86]: the directory server has no idea how its directories �t

into the name space; each directory is a separate object that may be referenced by many

other directories; and cycles are even allowed. The Prospero directory server di�ers

from those in capability-based systems in that its object handles (links) do not grant

authorization to access the object. The Prospero directory server further di�ers from

the Amoeba directory server in that links in Prospero contain information about the

storage site for the object, whereas in Amoeba they provide only a unique identi�er for

the object which must be located using a broadcast mechanism.

74

ServerClient

Library
Server

System
File

NativeProspero

Protocol

Directory ServerUtilities Applications

Prospero Library

Compatibility

Protocol

Figure 6.1: Basic structure of the Prospero implementation

6.2.2 The Client

The Prospero client is implemented as a library that resolves names, retrieves attributes,

and accepts updates to directory and attribute values. A second library, the compatibility

library, remaps open and several other system calls, allowing existing applications linked

with the library to resolve names using the active virtual system. No changes to the

source code of the programs are required. The procedures in both libraries are described

in Appendix B.

Users access Prospero through existing applications that have been linked with the

compatibility library or through utilities that allow them to specify the active virtual

system, navigate through the speci�ed name space, and to manipulate directories and

object attributes. Instructions for using these utilities, the syntax for specifying �le

names, and other information of importance to the user are described in the Prospero

user's manual which appears in Appendix A.

Resolving Names

The Prospero library keeps references to the current working directory and the root of

the active virtual system. When a user or application wishes to resolve a name, the �rst

75

component is resolved relative to the appropriate directory by sending a query to the

corresponding directory server using the Prospero protocol (described in appendices D

and E). Successive components of the name are resolved by sending queries to the

directory servers named in the links returned by the previous queries. This process is

repeated until all components of the name have been resolved

2

.

Filters

If a �lter is associated with a link, the �lter is applied to the result of the directory query

before the current component of the name is looked up

3

. A �lter can remove links from

or add links to a directory, change the names of links, or even change the way a directory

hierarchy appears to be organized (e.g., creating subdirectories).

Filters are written in C and are dynamically linked with the name resolver when they

are applied. If an appropriate object �le does not exist at the time the �lter is applied,

it can be automatically compiled before loading. The code for the linker is derived from

that used by the Extension Interpreter to support extensible user interfaces [Notkin &

Griswold 88]. For the prototype implementation, the dynamic linker only runs on the

VAX, though it would be straightforward to use a multi-platform linker for improved

portability [Ho & Olsson 90].

Although users can write their own �lters, most users can get by using prede�ned

ones. Among these are: atten (take a directory hierarchy and make it appear like a sin-

gle level name space),match (pass links matching a speci�ed list of names),matchhost

(pass links whose target is stored on the matched hosts), distribute (create subdirecto-

ries for each value of the speci�ed attribute and distribute �les among those directories

according to that attribute), and attribute (pass only links for objects with attributes

matching those speci�ed).

2

An optimization allows a directory server to resolve more than one component of

the name at a time as long as all intervening directories are stored on the same server.

3

This means that the directory server must be instructed to return all links in the

directory, not just those matching the component.

76

Figure 6.2 shows code implementing the distribute �lter. Declarations and some of

the bookkeeping code have been removed to make the example more readable, but the

majority of the code is shown. The distribute �lter is interesting in that it attaches

new �lters to the links it returns. In fact, the subdirectories \created" by the distribute

�lter are all �ltered links to the original directory. The �lters are attached to each link

with arguments corresponding to the values of the attributes returned by the call to

pget at. Duplicates are eliminated during the call to vl insert.

Union Links

At any point in the resolution of a name, the directory server might return one or

more union links. Such a response indicates that the directory has not been completely

searched, and that the current component of the name should be resolved in the directo-

ries named in the union links

4

. If the expansion of union links returns a link whose name

has already been returned, then the �rst link takes precedence and subsequent links

are added to a list of conicts. Since the list of conicts is ignored in most cases, this

behavior implements the unique �lter. In the prototype, the unique �lter is applied in

this manner to all union links.

Closure

Prospero supports closure by storing a link to the closed name space as the closure

attribute of each object. When a �le is opened, its closure attribute can be read and

this value used as the starting point when resolving names read from the �le. Some

objects, electronic mail messages for example, are passed from system to system by

mechanisms external to Prospero. For these types of objects, the closure information

must be included as part of the object itself, usually in a header. This works well for

electronic mail since the user interface can read the header and use the closure

4

If the directory is being listed, then the results of querying the union linked direc-

tories are merged with the rest of response from the directory that returned the union

links.

77

VDIR filter(dir,ip,argc,argv)

{

vdir_init(nd);

sd = vlcopy(dirlink,0);

avf = rd_vlink("/lib/filters/avalue.o");

/* Step through attribute values creating subdirs */

cl = dir->links;

while(cl) {

attributes = pget_at(cl,argv[0]);

for(ca = attributes;ca;ca = ca->next) {

/* If not first link, then make copy */

if(nd->links) sd = vlcopy(nd->links,0);

/* Set name of new subdir and insert it */

sd->name = stcopyr(ca->value,sd->name);

if(vl_insert(sd,nd) == PSUCCESS) {

/* If successful, then set filter arguments */

/* Find last filter on current subdir */

for(avf=sd->filters;avf->next;avf=avf->next);

sprintf(farg,"%s %s",ca->aname,ca->value);

avf->args = stcopyr(farg,avf->args);

}

}

atlfree(attributes);

cl = cl->next;

}

/* Return the result in the original directory*/

vdir_copy(nd,dir);

return(dir);

}

Figure 6.2: Simpli�ed code for the distribute �lter

78

information in an appropriate manner, while stripping o� such headers before the mes-

sage is displayed by the user.

Accessing the Named Object

The mechanisms described so far are used to locate a named object. If the object is a

�le, a method is needed to retrieve its contents. Because Prospero runs in a heteroge-

neous environment, it was necessary to support multiple access methods. Among those

presently supported are Sun's Network File System [Sandberg et al. 85], the Andrew

File System [Howard et al. 88], and access using the anonymous �le transfer protocol

[Postel & Reynolds 85]. When the client has located a �le to be opened, an additional

query is sent to the directory server on the system storing the �le. This query requests

the value of the access-method attribute. The directory server returns a list of the

methods it supports (in order of preference). The client chooses one of the methods and

opens the �le

5

.

References to objects on hosts that do not run Prospero can be included in a virtual

�le system through external links. For external links, the access method is encoded as

part of the object type �eld of the link. When a �le referenced through an external link

is opened, the access method encoded in the link is used and no negotiation of access

method occurs.

6.3 Other issues

This section describes various operational issues that are raised by the Prospero �le sys-

tem. Some of these issues are addressed by the prototype while others will be addressed

at a later date. Where an issue is not addressed by the prototype, possible solutions are

proposed, and the steps taken in the prototype to enable these solutions are described.

The operational issues that are discussed are protection and security, mobility, garbage

collection, replication, and autonomy.

5

If the anonymous FTP method is chosen, the �le is �rst retrieved, then the local

copy is opened. The anonymous FTP method is supported for read access only.

79

6.3.1 Protection and Security

Protection of objects named by Prospero is based on the protection mechanisms employed

by the underlying access method. The ability to resolve the name of an object does not

grant permission to access the object. Protection of directory information, however, is

based on access control lists that are associated with directories and with individual links

within directories. The authorization mechanism provided by Prospero applies to the

ability to resolve names in or to modify a directory. It does not apply to the referenced

object itself

6

.

Access control lists in Prospero assign rights to principals (users, groups, programs,

etc.) identi�ed by various authentication mechanisms. The authentication method

presently supported identi�es the host from which a request originates and the name

of the user on the host. It trusts the software at the client to correctly identify the user.

Hooks are in place to support stronger authentication methods such as Kerberos [Steiner

et al. 88].

Table 6.1 shows the rights that appear in access control lists. The entries on the left

appear in directory ACLs and apply to all links within the directory. The entries on the

right apply to individual links within a directory. If an entry from the right appears in a

directory ACL, then it applies to all links in the directory that do not specify individual

ACLs. Negative rights may be assigned by preceding the permission list with a \-".

Such an entry will deny rights to a principal that would otherwise be granted rights by

a subsequent ACL entry. The add-rights and remove-rights permissions are a restricted

form of the administer permission that allow the authorized principal to grant or remove

only those rights that follow the add or remove symbol in the permission list.

6

Though the attributes of an individual object might include the access control in-

formation used by the underlying access method.

80

Table 6.1: Protection modes in access control lists

Directory Link

Character Meaning Character Meaning

A Administer a Administer

V View v View

L List l List

R Read r Read

M Modify m Modify

D Delete d Delete

I Insert does not apply to link

B Administer does not override link

Y View does not override link

> Add-rights] Add-rights

< Remove-rights [Remove-rights

) Add-rights does not override link

(Remove-rights does not override link

6.3.2 Garbage Collection

In the Virtual System Model, all links to an object are equivalent, and an object continues

to exist as long as there exists a link that references it. In practice, this is di�cult to

support in distributed systems. The obvious approach is to maintain a count of the links

that reference each object, and the storage for the object can be reclaimed when the

reference count reaches zero. Unfortunately, this approach has two problems. First, in a

loosely coupled distributed �le system such as Prospero, a server failure might result in

the loss of a link to an object without a corresponding decrement of its reference count.

Second, the topology of the Prospero naming network allows cycles, and the reference

counts for objects that are part of a cycle will be non-zero whether or not the cycle is

reachable from the rest of the graph.

The primary method used for garbage collection in Prospero is timeouts. Every

object has an associated time-to-live (TTL). The TTL is the period for which the object

is guaranteed to exist. When a link is made to an object, the TTL is added to the current

time, and the resulting link expiration date is stored with the link. To guarantee that a

81

link will continue to work, it must be refreshed before its expiration. This can be done

when the link is referenced, but for links that are infrequently referenced, a background

process can refresh the link before it expires.

If a user wishes to recover the storage space for a �le, the �le is agged for removal.

When links to the object are refreshed, noti�cation is sent that the object is about to

disappear, and anyone wanting to maintain their link must copy the object elsewhere

7

.

Subsequent users have the option of making their own copy, or updating their link to

refer to one of the new copies.

The TTL for an object is chosen by the owner of the object. The cost of the back-

ground refreshing of links will depend on the value of the TTL. The longer the TTL,

the fewer refreshes are required. But a user is required to keep a copy of an object until

the TTL expires even after the user's link to the object is deleted. This limits the user's

ability to reclaim the storage used by the object.

The owner of an object can grant a backlink to a directory that includes a link to

the object. A backlink is a reference to the link referencing the object. If a backlink has

been granted, the grantor guarantees that, before the link is invalidated, the grantor will

notify the server that maintains the directory that was granted the backlink. A link for

which a backlink has been issued does not need to be refreshed

8

. The drawback is that

a very large number of backlinks would be required for a widely referenced object, and

the owner of the object can not get rid of it if the holders of any of the backlinks are

inaccessible. As such, backlinks are most appropriate for infrequently accessed stable

objects with few links.

The mechanism described so far can make sure that storage is not reclaimed for ob-

jects that have non-expired references. If a cycle of unreachable objects exists, however,

the links will be refreshed periodically by the background process, and the storage will

7

The original copy must continue to exist until its expiration time since other users

with links to the object might not trust the �rst user to make an accurate copy.

8

Actually, a TTL does apply to such a link, but the TTL will be much longer than

for links that were not granted backlinks.

82

not be reclaimed. Because there is no global root, it is not possible to require the back-

ground process to refresh only those links reachable from a common starting node. The

scalability of such an approach also presents problems since every object in the global

system would be accessed on each sweep. An alternative is to store an additional times-

tamp with each object indicating the time it was last referencable. When an object is

referenced, the timestamp is set to the time of the reference. When a link is refreshed, it

propagates its last referencable timestamp to the referenced object (which replaces it's

own if the new timestamp is more recent). The last referencable timestamp for objects

in an inaccessible cycle will eventually stabilize at a value that is less than or equal to

the time at which the cycle became inaccessible.

The �elds to support these garbage collection methods are supported by the Prospero

implementation, but the code to automatically refresh the link expiration dates and to

propagate the last referencable timestamp has not been implemented in the prototype.

Implementing and evaluating the scalability of this approach, and improving upon it,

are topics for future research.

6.3.3 Object Mobility

A Prospero link continues to work even if the object it references has moved. Prospero

supports object mobility through the use of forwarding pointers [Fowler 85]. A user

attempting to access an object at its old location is given the new location of the object

and the Prospero library automatically retries the request using the new information.

When a link is refreshed, any forwarding pointers are followed and the link is updated

to reect the new address for the object. This reduces the number of steps required for

future reference, and it also makes it possible to get rid of forwarding pointers once all

possible links with the old address have expired.

83

6.3.4 Autonomy

The physical systems tied together by Prospero may be autonomous. Each can operate

independently from the others. Prospero has no central database, and the naming net-

work need not have critical nodes, though depending on the organization of individual

name spaces, some nodes may be more important than others. As expected, one would

not be able to access objects or services which reside on systems that are unreachable

due to network or hardware problems. To resolve a name, the directory corresponding

to each component of the name must be accessible. If an intermediate directory is not

available, the object can not be accessed using that name, though it might still be pos-

sible to access the object using an alternate name. Autonomy is improved when the

directories near the center of a user's name space are stored, replicated, or cached on

local systems.

6.3.5 Replication

Large distributed systems should support more than one method of replication. This is

especially important if the system is to receive widespread use. It is not even enough

to provide a �xed set of replication techniques. Instead, the system should provide

the infrastructure necessary so that applications can provide their own replication when

appropriate [Neuman 90].

Although Prospero does not presently implement replication, support for replication

was an important consideration in its design. Prospero provides the necessary support

for replication by allowing a list of replicas, a speci�cation of the type of replication to

be used, and any data speci�cally required by that mechanism (e.g., votes) to be stored

in the attribute list for each object.

While the authoritative copy of the replication information is stored with each replica

of the object, a possibly out-of-date or incomplete list of replicas can be stored with each

link

9

, allowing the user to select an alternate if the replica referenced by the link is

9

A directory can associate more than one link with a single name, and each link is a

reference to one of the replicas.

84

unavailable. The list is treated as a hint, the authoritative information is checked when

the replica is accessed. Because it is unlikely that one will know where all the links to

an object originate, it is not practical to require that the links be updated when the

replication information changes.

6.4 Performance

While performance was not the most important issue in the design of Prospero, it was im-

portant that the performance be comparable to that of existing distributed �le systems.

Users won't use a system that is slow, no matter how much better it is for organizing

information.

Table 6.2 shows the performance of the Prospero client on a DECstation 5000. The

remote Prospero server is running on a second DECstation 5000 on the same Ethernet.

The numbered columns represent the time required to resolve a name with the speci�ed

number of components. The second to last column is the time required to negotiate the

access method and the �nal column is the time it takes to open the �le. Since Prospero

uses the existing access methods of the underlying system, the last column is also the

time it takes to open the �le without Prospero.

Table 6.2: Approximate time to resolve a name and open a �le

Time to resolve a name in Prospero Negotiate Open

Number of components Access Access

Storage site 1 2 3 4 5 Method Method Time

Remote 38ms 76ms 115ms 153ms 191ms 32ms NFS 125ms

Local 21ms 43ms 63ms 86ms 107ms - Local 27ms

In compiling these �gures, the optimization that resolves multiple components at

the same time has been disabled. Thus, the time to resolve a name with consecutive

components stored on the same server would be less.

85

The performance of the prototype is more than adequate. The time required to open

a �le using Prospero (name resolution + negotiation + open) when all components of the

�le's name are stored on a single server is less than twice that required to open the �le

directly with NFS. This degradation is to be expected when one considers that at least

one extra pair of network messages is involved. For most applications, the frequency of

opens is low enough that the increased latency won't be noticed by the user. Because

Prospero uses the underlying access methods of the system on which it runs, the time

for reads and writes is unchanged.

6.5 Summary

This chapter described the prototype implementation of the Virtual System Model. The

implementation has two parts: a server which responds to directory queries, requests for

�le attributes and accepts updates; and a client which resolves names by contacting the

appropriate servers, expands union links, applies �lters, negotiates access methods, and

opens �les.

To be useful, a distributed �le systemmust address many issues other than the storage

of �les and the resolution of names. A few of the issues of importance are security, object

mobility, garbage collection, and replication. The �rst two issues are addressed by the

prototype and the approach used was described. Possible approaches to addressing the

remaining issues were discussed, but the implementation, evaluation, and improvement

of the proposed approaches is a subject for future research.

Chapter 7

Use of the Prototype

Evaluation of the Virtual System Model is a di�cult task. Because the prototype allows

users to do new things, comparison to existing systems must be qualitative; there are no

numbers to compare. Chapter 6 presented some performance �gures, but evaluating the

model based on those �gures would completely miss the point: while the performance

is quite good for a prototype, the real contribution of model is that it enables users to

better organize information.

An alternative approach to evaluation would be to point to the prototype implemen-

tation and claim that it successfully satis�es the requirements set for the Virtual System

Model. While such an assessment would demonstrate that the model can be practically

implemented, it too would miss the important issue: whether the model is useful.

To answer this question, one must look at the use of the prototype. There are several

questions to be answered: Do people use the prototype? What is it used for? Does the

prototype help them organize information, and once organized, does it help them �nd

what they're looking for?

87

Table 7.1: Systems using Prospero by country

Country Domain Count Country Domain Count

Austria AT 42 Iceland IS 2

Australia AU 144 Italy IT 20

Belgium BE 3 Japan JP 106

Brazil BR 2 South Korea KR 8

Canada CA 559 Mexico MX 8

Switzerland CH 146 The Netherlands NL 121

Germany DE 338 Norway NO 130

Denmark DK 21 New Zealand NZ 17

Spain ES 8 Portugal PT 3

Finland FI 29 South Africa ZA 1

France FR 126 Sweden SE 111

Greece GR 6 Singapore SG 42

Ireland IE 1 United Kingdom UK 93

Israel IL 36 United States See 7.2 5392

India IN 2 Total 29 7518

7.1 Usage Statistics

The prototype, Prospero, has been available since December 1990. As of the end of

November 1991, the system had been used from more than 7,500 systems in 29 countries

on six continents to �nd �les available from Internet archive sites. The prototype has

made it possible to organize information scattered across the Internet into a coherent

whole. Table 7.1 shows the number of systems on which Prospero is used in each country.

Table 7.2 breaks down the U.S. totals by type of organization.

On a typical day, Prospero is used by more than 1,400 users

1

on more than 1,350

systems to make more than 6,000 queries. Over the course of a week Prospero is used by

more than 4,500 users. These statistics are based on the log�les of only seven Prospero

servers. While the user and system counts accurately reect the use of Prospero as a

1

I treat requests from users with the same username, but on di�erent systems, as

coming from a single user. While this results in an underestimate of the number of

users, to do otherwise would result in an even greater overestimate.

88

Table 7.2: Breakdown of U.S. systems by organization type

Organization type Domain Count

Educational EDU 4160

Commercial COM 745

Military MIL 88

Other Government GOV 287

Network Administration NET 40

Other Organizations ORG 72

Total 5392

whole, the query counts are understated since they do not include queries to servers for

which I did not have access to log�les.

It is interesting to note the strong foreign interest in Prospero. More than 25 percent

of the sites running Prospero are located outside the United States. In fact, the foreign

users more frequently use Prospero's ability to create customized views of the information

that is available. I attribute this to the fact that much of the information on the Internet

is organized under the assumption that the user will have a high-bandwidth connection

to U.S. sites; customization allows foreign users (who often have slower links to the U.S.)

to substitute views that are more appropriate for their locale.

7.2 What it is Used For

Prospero has been used to organize information available from Internet archive sites, and

to look for information that has been organized or indexed by others. At present, users

do not use Prospero in place of their existing �le systems; they turn to Prospero when

looking for information that they think is available over the Internet.

Users interact with Prospero using commands that move through, modify, and display

directories. Users can also interact with Prospero through existing applications that have

been relinked with the Prospero compatibility library, browsers and other tools that have

been speci�cally written to use Prospero, and gateways that allow Prospero to be used

89

from other services. Many of the applications that rely on Prospero were written by

others.

7.2.1 Using Prospero Itself

As distributed, a user's virtual system starts out with links to directories organizing

information of various kinds in several ways. Figure 7.1 shows a sample session with

Prospero. Users �nd information by moving from directory to directory in much the

same manner as they would in a traditional �le system. Users do not need to know

where the information is physically stored. In fact, the �les and directories shown in

the example are scattered across the Internet. At any point, a user can access �les in a

virtual system as if they were stored on his or her local system.

In the example, the user connects to the root directory and lists it using the ls

command. The result shows the categories of information included in the virtual system.

The information includes online copies of papers (in the papers directory), archives

of Internet and Usenet mailing lists (in the mailing-list and newsgroups directories

2

),

releases of software packages (in the releases directory), and the contents of prominent

Internet archive sites (in the sites directory). Files of interest can appear under more

than one directory. For example, a paper that is available from a prominent archive site

might also be listed under the papers directory.

Next, the user connects to the papers directory, lists it, and �nds the available pa-

pers further categorized as conference papers, journal papers, or technical reports. The

technical report directory is broken down by organization, and by department within the

organization. The journals directory is organized by the journal in which a paper appears,

and the two journals that are shown are further organized by issue. Use of the vls com-

mand shows where a �le or directory is physically stored, demonstrating the fact that the

�les are scattered across the Internet (IEEE TC/OS Newsletter on ftp.cse.ucsc.edu

2

Because the volume of the messages makes it impractical for a single system to

archive more than a handful of mailing lists, these archives are scattered across many

sites. To the user, however, it looks like a single archive broken down by mailing list.

90

Script started on Wed Jan 29 21:02:50 1992

% cd /

% ls

afs documents info mailing-lists papers releases

databases guest lib newsgroups projects sites

% cd papers

% ls

authors conferences subjects

bibliographies journals technical-reports

% cd technical-reports

% ls

Berkeley IAState OregonSt UCalgary UWashington

BostonU MIT Purdue UColorado Virginia

Chorus NYU Rochester UFlorida WashingtonU

Columbia NatInstHealth Toronto UKentucky

Digital OregonGrad UCSantaCruz UMichigan

% ls UCSantaCruz

crl

% ls UCSantaCruz/crl

ABSTRACTS.1988-89 ucsc-crl-91-01.ps.Z

ABSTRACTS.1990 ucsc-crl-91-02.part1.ps.Z

ABSTRACTS.1991 ucsc-crl-91-02.part2.ps.Z

ABSTRACTS.1992 ucsc-crl-91-02.ps.Z

INDEX ucsc-crl-91-03.ps.Z

...

% ls UWashington

cs cse

%

% ls UWashington/cs

1991 INDEX PRE-1991

1992 OVERALL-INDEX README

% cd /papers

% ls

authors conferences subjects

bibliographies journals technical-reports

% ls journals

acm-sigcomm-ccr ieee-tcos-nl

% ls journals/ieee-tcos-nl

cfp v5n1 v5n2 v5n3 v5n4

% ls journals/acm-sigcomm-ccr

app.pps apr90 jan89 jan91 jul90 oct89

apr89 apr91 jan90 jul89 oct88

% vls journals

acm-sigcomm-ccr NNSC.NSF.NET /usr/ftp/CCR

ieee-tcos-nl FTP.CSE.UCSC.EDU /home/ftp/pub/tcos

%

script done on Wed Jan 29 21:06:53 1992

Figure 7.1: Sample session

91

and Computer Communications Review on nnsc.nsf.net.) Though not shown in the

example, papers are also organized by author and subject in other directories from the

same virtual system.

Figure 7.2 show a simpli�ed diagram of the virtual system; only a few of the links are

actually shown. The �gure shows how an online copy of a paper describing the Kerberos

authentication system, represented by the black dot, can be found through more than one

path: as an MIT technical report (/papers/tech-reports/MIT/authentication.ps), under

the directory for the author (/papers/authors/neuman/kerberos.ps), under its subject

(/papers/subjects/security/kerberos.ps), and though archie (/match/kerb/kerberos.ps).

The directory /match/kerb is created by a �lter and is described in greater detail in

Subsection 7.2.2.

While it might at �rst appear that some of the organizational methods employed

in this example could be implemented using symbolic links in traditional systems, it

is important to keep in mind that symbolic links would break as objects moved, that

each link would have to be put in place individually, and that in a system as large as the

Internet it would be almost impossible to establish consensus on which directories should

appear near the root of the hierarchy, and what �les should appear in each subdirectory.

It is also important to note that this example shows only part of the information

available through Prospero, and that it shows a typical way that the information is

organized. Individuals can, and have, organized their own virtual systems di�erently.

One user, David Cohn, has created a directory named Nnets in his own virtual system

for the purpose of organizing information about neural networks. That directory has

subdirectories for papers, source code, and sample data sets. The papers directory is

further broken down by subtopic, and Cohn has added references to papers for each

subtopic. Though the directory was organized as part of his own virtual system, links

to his Papers directory from other virtual systems allow other users to make use of the

data he has organized.

9
2

kerb

ieee-tcos-nl

CCR
MIT

UWashington

journals

authentication.ps

kerberos.pskerberos.ps

kerberos.ps

os.research

releases

neuman
security

authorssubjectsmatch

af

bib

religious

...

archiegov

archie

tech-reports

papers

mailing-lists

documents

databases

/

Figure 7.2: A typical virtual system

93

Figure 7.3 shows a user browsing through Cohn's Nnets directory. As in previous

examples, it is important to remember that the �les shown are scattered across multiple

Internet archive sites, but that it appears as a single system to the user.

7.2.2 Archie

Some of the most frequently used

3

directories are maintained by the archie group at

McGill University [Emtage & Deutsch 92]. The archie database [Emtage 91] indexes

�les from directories at major Internet FTP sites according to the last components of

their �le names.

Information from the archie database is accessed through a �lter (the af �lter in

Figure 7.2). For performance, the �lter executes on the Prospero server, where it has

direct access to the database, instead of on the client

4

. The directories visible through

the �lter correspond to the results of queries to the archie database.

For example, the directory kerb contains references to �les available by Anonymous

FTP whose names include the string \kerb". Among the matches would be papers

related to the Kerberos authentication system. The contents of each subdirectory are

equivalent to what would result from running the Unix find command with appropriate

arguments over all the major archive sites on the Internet (if it were even possible to do

so). The subdirectories do not exist individually, but are instead created by the �lter

when referenced.

The information in the archie database can be used to simulate the directory structure

for the Internet archive sites that are tracked. The archie server supports a second �lter

that uses this ability to allow Prospero users to navigate through the �le hierarchies of

3

Almost 80 percent of the queries recorded in Subsection 7.1 were to directories

maintained by archie. The statistics are skewed, however, by the fact that I had access

to the log�les from the two most prominent archie servers, whereas I was only able to

obtain a few log�les from other Prospero servers.

4

At present, �lters that execute on the Prospero server must be built into the

server whereas �lters that execute on the client can be dynamically linked during name

resolution.

94

Script started on Sun Mar 1 18:13:38 1992

% cd Nnets

% ls

Data MailingLists Papers Sources

% ls Data

CORRESPONDENTS echocardiogram molecular-biology

DATE-RECEIVED flags mushroom

DOC-REQUIREMENTS function-finding othello

Index glass pima-indians-diabetes

OVERVIEW hayes-roth primary-tumor

TRANSACTIONS heart-disease prodigy

access-lists hepatitis shuttle-landing-control

annealing image soybean

audiology iris spectrometer

autos kinship thyroid-disease

breast-cancer labor-negotiations tic-tac-toe

bridges led-display-creator unavailable

chess lenses undocumented

contacts letter-recognition university

cpu-performance liver-disorders voting-records

dgp-2 logic-theorist waveform

donations lymphography zoo

ebl mechanical-analysis

% ls Sources

Biological backprop.lisp quickprop1.lisp

Executables cascor1.c rcc1.c

MS-DOS cascor1.lisp rcc1.lisp

NetTools.tar.Z hst.README rcs_v4.2.tar.Z

NeurDS031.tar.Z hst.tar.Z vowel.c

PlaNet5.6.tar.Z mactivation.3.3.sit

am5.tar.Z quickprop1.c

% ls Papers

Algorithms CogSci Implementations Speech

Applications Complexity KnowledgeBase Topology

Architectures Control Misc Vision

Associative Generalization Prediction

Biology Genetic Recurrent

% ls Papers/Vision

hinton.handwriting.ps.Z mozer.segment.ps.Z

maclennan.gabor.ps.Z zeidenberg.containment.ps.Z

marshall.steering.ps.Z

%

script done on Sun Mar 1 18:16:28 1992

Figure 7.3: Sample session

95

hosts that are not themselves running a Prospero server. Users can then move about

the surrogate �le hierarchy as if it were available from the host directly, except that

the surrogate hierarchy reects the hierarchy of the host at the time of the last archie

database update.

The information from the archie database is not used in isolation, but can be com-

bined with other information available through Prospero. For example, the Data direc-

tory in the neural-net hierarchy (described in Subsection 7.2.1) includes references from

a directory obtained through archie. When the archie database is updated, changes to

the archie maintained directory also become visible in the Data directory.

The use of archie through Prospero has been so successful that the archie group

has adopted Prospero as the preferred method for remote access to the archie database.

Work is now underway tomake other databases available through Prospero. For example,

software releases and other �les are often announced on the comp.archives mailing list.

By making a database of these messages available through Prospero (in a manner similar

to that for the archie database) users will see references to the announced �les organized

according to keywords from the full text of the announcement.

7.2.3 The Australian Academic and Research Network

The Australian Academic and Research Network (AARNet) Archive Working Group has

been a major user of Prospero and has adopted Prospero as part of its plan for archiving

in Australia [Cli�e 91].

The Australian Internet is well connected internally, but the connection to the U.S. is

over a low speed (512 Kbit) line. Unfortunately, this connection is often used to retrieve

the same large �les over and over by di�erent Australian users. The traditional solution

to this problem was to create an archive site in Australia that maintained a \mirror" of

the �les on the few most prominent archive sites in the US. Software ran nightly that

found changes at the original site, and retrieved new copies, keeping the local copies

up-to-date. Problems with this approach are that disk space limits the number of sites

96

that can be mirrored, mirrored �les are retrieved whether or not they will be retrieved

by local users, and a mirrored copy could be out of date by as much as a day (which

presents problems when a new version of a �le is announced).

To address these problems, Steve Cli�e has added Prospero support to an FTP server

run by the Archive Working Group. As well as making �les available from the physical

�le system, the modi�ed FTP server makes �les available from a virtual �le system. The

virtual �le system includes links to the mirrored archive sites, either directly if the site

runs Prospero, or to the surrogate directory maintained by archie if it doesn't. Because

the �les are not copied en masse it is possible to mirror an almost unlimited number of

sites. Further, for those sites that run Prospero, the mirror is always up-to-date; as soon

as a �le changes on the original site, that fact is reected by the mirror. Finally, only

those �les actually requested by users are retrieved, reducing network load.

As an added bene�t, the modi�ed FTP server provides the bene�ts of Prospero to

users who have not installed it on their systems. Through the FTP server, users can

browse through directories in other virtual systems, and selected directories have been

included as part of the \ftp" virtual system. This allows users to look for �les as they

have been organized through Prospero (e.g., as described elsewhere in this chapter), not

just as organized by the mirrored archive sites.

When a retrieval request is received, the FTP server locates the �le using Prospero

and checks to see if a copy of the �le is available locally. Using Prospero to check the

last modi�ed time of the authoritative copy, the FTP server checks that the local copy

is current. If a current copy does not exist locally, the server retrieves and caches a copy

of the �le. The local copy is then returned to the client.

While it might at �rst appear that Prospero is being used in Australia primarily for

caching, a topic that is not the subject of this dissertation, Prospero is in fact being

used exactly as intended. The concept of a mirror has been around for a while, it is

well understood, and users are comfortable with it. Prospero allows AARNet to create

a virtual mirror, organizing �les in a way that is familiar to them, yet guaranteeing that

the virtual directories automatically track the originals.

97

In addition to its use through FTP, Prospero is used directly. The default view

for new virtual systems in Australia is a customized view of what is seen in the U.S.,

but for resources that are available locally (e.g., the local archie server), the links to

remote instances have been replaced by links to the local ones. The Australian view

automatically tracks the U.S view. If a request is made for a resource that is known

to be available locally, a reference to the local copy is returned. If the resource is not

available locally, the request is forwarded to the U.S. servers and the non-customized

reference is returned.

7.2.4 User Developed Software

It says a lot about a system when others are willing to devote time and resources to

developing software that depends on it. Several individuals and groups have done so.

AARNet is one example. In addition to the FTP server just described, Steve Cli�e has

also contributed a replacement for the directory listing command which will recursively

list the directories in a virtual system, stopping the recursion when a cycle is detected.

Other individuals have written or ported programs that provide alternative user

interfaces to the information available through Prospero. A standalone client is available

that queries the Archie database through Prospero and displays the storage site, �lename,

and attributes of the �les found. Though originally written by myself, Brendan Kehoe

of Widener University has improved it and ported it to numerous operating systems. In

addition to most varieties of Unix, the standalone client now runs (using Prospero) on

MS-DOS and VMS.

Another example is a window-based �le browser built by George Ferguson at the

University of Rochester. The browser was built on top of Prospero primarily to access

the archie database, but it is being extended to support browsing through other parts of

the Prospero naming network.

98

7.3 The Bottom Line

Prospero has been successfully used to organize information available from Internet

archive sites. Individuals have used it to to organize information on many topics, and

network service providers are starting to use it to organize information of interest to

their users. I have also been contacted by two universities that are interested in using

Prospero to implement campus-wide, network-transparent information services.

Experience has shown that Prospero helps users �nd the information they are looking

for. In the past, users looking for �les on particular topics would send messages to

appropriate (and sometimes inappropriate) mailing lists asking if any one knows where

to look. Many users still send such messages, but others are able to �nd the answer using

Prospero, reducing the frequency of such messages. I have even seen people respond to

such messages with the results of Prospero queries.

The bottom line is that Prospero helps users organize information and �nd the in-

formation they're looking for. Analysis of server logs shows that most individuals who

use Prospero once, use it again.

Chapter 8

Related Problems

The problem of �nding and organizing information is a problem that spans several areas

of research. I have approached the problem from the systems perspective with a particu-

lar emphasis on the e�ects of scale. The problem could also be approached from several

other perspectives. In this chapter I discuss the relationship of the Virtual System Model

to other work both in the systems and non-systems areas.

8.1 Directory Services

Distributed directory services are used to organize information in large systems. Chap-

ter 3 discussed the problems with global directory services such as the Internet Domain

Naming System [Mockapetris 87], X.500 [CCITT 88], and DEC's Global Naming System

[Lampson 85]. While these systems are useful for organizing information whose structure

conforms to the administrative relationship between di�erent parts of the system, they

are less useful when the information is structured in other ways. The reason is that the

same name space is visible to everyone, and users are limited to modifying their own

parts of the name space. The result is that related information is scattered across the

name space and di�cult to locate without knowing who created it.

100

Attribute-based naming, as supported by Pro�le [Peterson 88], presents an alterna-

tive to the global hierarchical name services just described. In attribute-based naming,

objects are named by a collection of attributes. When naming an object, attributes

may be omitted, and only enough attributes to uniquely identify the object must be

provided. An advantage of attribute-based naming over hierarchical name spaces is that

the information appears to be organized in multiple ways: users can �nd objects even if

some information, e.g., the owner of the object, is not known. However, the attributes

that users will use in their search must be registered ahead of time.

Unfortunately, attribute-based naming in its pure form does not scale well. It is

di�cult to distribute the database of attributes across a large number of servers. Without

a way to direct a query to the right server, queries must be sent to all servers, an operation

that doesn't scale. Pro�le [Peterson 88] restricts the set of name servers that are queried

and relies on cross-references to direct queries to servers that were not included in the

original set. This approach requires that the right cross-references be in place before the

query is made, negating one of the advantages of attribute-based systems, i.e., that the

links corresponding to a particular query need not be in place ahead of time.

8.2 File Systems

There is a huge amount of information that is stored in conventional �le systems and

it would make sense to organize it using the mechanisms already supported by those

�le systems. Chapter 3 discussed some of the shortcomings of conventional distributed

�le systems like the Andrew File System [Howard et al. 88], Coda [Satyanarayanan 90,

Kistler & Satyanarayanan 91], Locus [Walker et al. 83], Sprite [Ousterhout et al. 88],

and Echo [Hisgen et al. 89]. Because these systems support a single name space, they

su�er from the same organizational problem described above: it is di�cult to organize

information whose logical structure doesn't follow the administrative structure of the

system.

101

By using aliases (symbolic links), it is possible to create a directory with links to

related objects scattered across the name space, but such links will cease to work if the

primary name for the object changes. Further, the name of the directory that contains

the links will still be constrained by administrative concerns, making it di�cult for users

to �nd.

Conventional �le systems provide only limited support for customization. Users can

customize their own directories and subdirectories, and they can include links to other

parts of the global name space. However, such customized directories will have di�erent

names than the parts of the global name space that they replace, meaning that users

have to remember which parts of the name space have been customized.

Some recent systems including Tilde [Droms 86, Comer et al. 90], QuickSilver [Cabr-

era & Wyllie 88], Plan 9 [Presotto et al. 91], and Amoeba [Tanenbaum et al. 90, van

Renesse 89] allow users to customize all parts of their name spaces. As mentioned in

Chapter 3 however, these systems fail to address the lack of name transparency that

results when multiple name spaces are supported, a problem that is addressed in the

Virtual System Model by supporting closure.

Existing �le systems do not provide adequate tools to help users create customized

views in terms of directories that already exist. Without such tools, users can only

customize their name spaces by creating new directories which shadow original directories

item by item. To do so is tedious, and the customized directory would need to be updated

whenever the original directory changed. In the Virtual System Model the �lter and

the union link allow directories to be created as functions of other directories and the

resulting directories automatically track the directories from which they are derived.

Semantic �le systems [Gi�ord et al. 91] provide an alternative method for �nding

�les of interest from a collection of �le servers. A semantic �le system automatically

extracts attributes for the �les it contains. Users search for �les by specifying attributes

which are looked up in the resulting database. It is easier to �nd information of interest

in a semantic �le system because, as in the Virtual System Model, users can look for

102

information in di�erent ways depending on what they know about the object they are

looking for.

Just as a �lter in the Virtual System Model allows the result of a computation (e.g.,

a database query) to be presented to the user in a virtual directory, the semantic �le

system described by [Gi�ord et al. 91] does the same. An important di�erence is that

the mapping between �le names and queries in a semantic �le system is speci�ed by the

implementation of the �le server, whereas in the Virtual System Model, the mapping is

speci�ed by a �lter which can be written (or selected) by the user performing the search

or creating a derived view.

Unlike the Virtual System Model, which relies on users or services to create the

appropriate links, a semantic �le system automatically generates the attributes used

for searches

1

. However, a semantic �le system has the same problem inherent in other

attribute based naming mechanisms: that it is di�cult to distribute the database of

attributes across a large number of servers. When used together, the Virtual System

Model and semantic �le systems could be very powerful. The databases maintained by

semantic �le systems could be accessible through �lters which could perform any desired

pre- or post-processing, and other features of the Virtual System Model could be used

to impose a structure that directs queries to the appropriate �le servers.

8.3 Databases

Databases have been used to organize large collections of information for some time.

Early examples include commercial database services such as Lexis and Westlaw which

support full text searches of legal rulings. More recently, the Wide Area Information

Service (WAIS) [Kahle & Medlar 91] has provided a common protocol to access multiple

1

Attributes are generated by transducers, type-speci�c programs that read �les and

produce attributes. Users can write their own transducers, and the transducers that are

applied can depend on the position of a �le in the �le hierarchy. It is the user or group

with administrative control over a �le that determines which transducers are applied,

not necessarily the user doing the searching.

103

full text databases over the Internet. Attribute-based naming and semantic �le systems

provide other examples of the use of databases to organize information.

These systems work by computing an index over the information in the database.

In a large system, the amount of data to be indexed, the frequency of updates, and

the need to cross administrative boundaries would preclude the use of a single index.

Distributed indexing [Danzig et al. 91] is a proposed approach for generating and main-

taining multiple indices. Each index would contain information on a particular topic,

separate from the data being indexed. To use multiple indices for organizing information

in a large system would still require the development of a mechanism to direct queries

to the appropriate index. The Virtual System Model would �ll this role nicely.

In fact, although it doesn't completely conform to existing database models, the

naming network of the Virtual System Model can be thought of as a database. It could

be implemented using a database based on the network model [Date 81]. Each object

would be represented by a record having unique identifying information that allows it to

be referenced or uniquely speci�ed as the starting node (root) of a name space. Names

would be resolved by following the named (or unnamed) links that connect the directory

records with the records representing its subdirectories or other referenced objects.

Even using the network model, there would be some features of the directory service

that could not be easily supported. One of these features is views. Although database

models support multiple views, there are some important di�erences between database

views and views as de�ned by the Virtual System Model.

The primary functions of a database view are as an abstraction mechanism that hides

the conceptual organization of the information in a database from the application and

as a protection mechanism that prevents access to information that is to be protected

[Wiederhold 86]. In the Virtual System Model, views are used to organize the available

information.

A second important di�erence between database views and views in the Virtual

System Model is that database views are speci�ed external to the database and are

104

a shorthand for the result of applying database operations to one or more databases.

Queries can be made to these views as if they were separate databases, and the query is

translated to the corresponding query on the databases on which the view is based

2

.

In the Virtual System Model views are an integral part of the naming network. The

functions that help de�ne views are associated with the links in the naming network

and they a�ect the way that one moves through the network. The observed view is not

speci�ed outside of the network. Instead, it is determined by the links that are followed

when resolving a name within the network.

Distributed databases have received a great deal of attention in recent years and

it might be possible to apply that work to the problem of building a single database

within which all information could be organized. A distributed database is a collection

of data that belong logically to the same system but are spread across the sites of

a computer network [Ceri & Pelagatti 84]. There has been much work on merging

dissimilar databases (often across multiple systems) into a single database [Litwin &

Abdellatif 86]. Much of this work has concentrated on schema integration [Batini et al.

86], determining what the underlying databases have in common and deriving a new

model (schema) that integrates the data in each of the underlying databases.

Schema integration is only useful for tying together logically related information.

Many pairs of databases are not related in any useful manner. Consider, for example, a

database containing the average yearly rainfall for all cities in the State of Washington,

and a database with information on articles published in Communications of the ACM.

When there is no useful relationship between the data in two databases, they should be

treated as separate.

When looking for information stored in a database (or through a view de�ned on one

or more databases), it must be possible to identify the database or view to be queried.

This ability is also necessary when de�ning views on one or more databases. Databases

may be identi�ed using higher level databases, or through traditional naming techniques.

2

It is sometimes possible to cache the intermediate results of applying the view, in

which case, the query may be applied directly to the cached results

105

In a federated database architecture [Heimbigner & McLeod 85] autonomous sites

export de�nitions of the databases that are available to users at other sites on the

network. A de�nition is exported by adding an entry to a database that is shared by all

members of the federation. This meta-database imposes a uniform global name space

on the federation. As the federation grows it will become harder to reach agreement

on how entries in the database should be organized. It will also become necessary to

distribute the database over a greater number of sites (for reliability and performance)

but the scalability of existing distributed database systems is limited.

When traditional naming techniques are used to name the available databases they

usually impose a global hierarchical name space with the site at its �rst level, and a

local name for the database further down. The same problems that were discussed

in Chapter 3 apply to the naming of databases. Database systems could bene�t from

applying the Virtual System Model to the naming of individual databases.

There are some important di�erences between a name service and a database. The

primary di�erence is that the names used to query a name server are much less con-

strained than the keys usually used in database systems. Though names are often mean-

ingful, they may be meaningful only to a particular user, and often names used in the

same directory will come from completely di�erent domains. This can be useful; the

name for an object will often capture the critical distinguishing feature for that object,

though the critical distinguishing feature might be di�erent for di�erent objects in the

same directory. For objects that the user has named, or that have been previously seen,

it is often easier to identify and remember the object by name than by a set of attributes

that uniquely identi�es the object. The same may be true for objects that the user has

not yet seen, if the information has been organized appropriately.

8.4 Computer Supported Cooperative Work

The �eld of computer supported cooperative work is concerned with providing tools

that make it easier for users to work together. In order to collaborate, users must be

106

able to share objects, and much of the work in CSCW is concerned with the way that

information is shared within and across organizations. This section briey discusses the

relationship between CSCW and the Virtual System Model.

In order to collaborate, users must be able to understand one another. When working

together through a computer, users refer to the objects stored in the computer using

names. It must be possible for the recipient of a messages to resolve names that are

mentioned within the message. The Virtual System Model makes this possible with

closure.

When users work together there might also be a shared workspace. This is the

mechanism by which changes made by one user become visible to others. With a name

space based on the Virtual System Model, the shared workspace can be represented by

a directory shared by the users working on a project. The individual �les that are being

worked on could be stored across multiple sites, but the view seen by the collaborating

users would be the same as if they were using the same system.

Users are members of multiple groups. Systems should allow users to integrate the

workspaces of the groups in which they participate. The tools provided by the Virtual

System Model allow them to do so.

8.5 Hypertext

Hypertext has gained widespread interest as an approach for organizing the information

in computer systems. This section discusses the relationship between hypertext and the

Virtual System Model.

Hypertext [Nelson 65, Conklin 87] is the combination of text with links to other

text. These links represent cross references which may be followed when searching for

information, and they allow the interconnection of documents in ways that are more

general than supported by traditional �le systems. The term hypertext also refers to

hypermedia, a generalization where the objects organized may be other than text.

107

Hypertext is useful for �nding information because it can represent a greater degree

of interconnection between objects. An object can be reached through more than one

path, and links to an object can be created wherever the object is mentioned. This

makes a linked object easily referenceable at those points where the user is most likely

to reference it. Users �nd information by moving from object to object, selecting the

link to be followed at each step.

While useful for organizing information and for browsing documents, there are several

characteristics of hypertext that make it unsuitable for use as the only mechanism for

identifying objects. One such characteristic is that displaying each object along the path

followed to reach that object is cumbersome when one knows ahead of time which object

is to be accessed. In such situations it should be possible to name the object directly.

In fact, recognizing this need, many hypertext systems support names as an alternative

method for identifying objects. Names are also important if one is to refer to an object

through any mechanism other than the hypertext system itself, for example in person,

over the phone, or through an online application such as electronic mail which might not

have been integrated with the hypertext system.

Another problem with many hypertext systems is that it is easy to get lost. The

sequence of links to be traversed to identify an object depends on one's current position

in the hypertext graph. As one moves through the graph it is possible to lose track of

one's position relative to other objects of interest, and it isn't always a simple matter to

�nd one's way back to intermediate nodes that were previously visited.

A directory service based on the Virtual System Model supports the same degree

of interconnection that exists in hypertext systems. In the Virtual System Model, ob-

jects have multiple names and can appear in multiple directories, allowing them to be

organized in multiple ways. Cross references between objects can be represented as

attributes. The primary di�erence between the Virtual System Model and hypertext

systems is that when using the Virtual System Model, links can have names, and the

concatenation of the names on the links along any path to an object can be used by any

108

application as a name for that object. Additionally, the Virtual System Model provides

tools that allow users to customize the name space. Links in hypertext documents can

originate at any point within the body of a document, whereas using the Virtual System

Model links and cross references can only be associated with the document as a whole;

this limitation is relatively easy to work around, however.

Most hypertext systems run as a single application on a single system, but there has

been recent work on supporting hypertext links across applications and over a network

[Yankelovich et al. 88, Kacmar & Legget 91, Pearl 89]. Most existing hypertext systems

that work across application boundaries make use of a link service [Pearl 89] or database

[Riley 89] to maintain information about the links. Existing link services are not capable

of tying together information on a global scale, though there is a great deal of interest in

building link servers that can. In fact, several projects, including Bootstrap [Engelbart

90] and World Wide Web [Berners-Lee et al. 92], are attempting to build open hypertext

systems that tie together information distributed across the world; these projects are still

in their early stages.

A distributed link service could be easily built on top of Prospero (or any system

that satis�es the requirements of the Virtual System Model). The links that connect

documents would be implemented as named cross references associated with �les. The

names of the cross references would encode information about the source of the link,

perhaps in the form of an o�set into the �le, or in the form of a token embedded in the

�le itself. The target of the link would be an entire �le, or by de�ning a new address

type, the link could reference a region within a �le.

8.6 The Resource Discovery Project

The resource discovery project at the University of Colorado [Schwartz 91] has examined

mechanisms for the discovery of resources on large networks. Most of the work has

concentrated on ways to use the existing information sources that already exist on the

network, often tying together multiple services. For example, a white pages tool was

109

implemented that supports locating individuals over the network. It starts its search

by looking for the organization name in a database built from network news articles. It

then uses the Internet Domain Naming System to �nd hosts to look for and �nally the

�nger protocol to search for the individual.

Other approaches include user discovery agents [Schwartz 89] which accept queries

from users and use the information provided in the query to �nd objects in which the

user has an interest. The information needed to direct a query to the appropriate agent

evolves over time. A query is directed to the nearest agent, and agents learn how to direct

queries based on the results of previous queries. A potential problem with this approach is

that it gives the agents too much of the responsibility for building the resource discovery

graph and for developing the heuristics for navigating through it. Some techniques have

been suggested for making the agents capable in this regard, but I do not believe that

these techniques will scale.

Another approach has been applied to �nding information available from Internet

archive sites. The tools provided look for information in databases that are maintained

by individual archive sites. This information is augmented with data that has been

cached as users search for information. They are now looking at some of the same

mechanisms already supported by the Virtual System Model to allow users and groups

of users to construct views that organize the information that is available.

Many of the approaches taken by the resource discovery project work because of the

potentially rich interconnection between resources. The greater the interconnection, the

fewer the steps that are required to �nd a resource. There is much information which

might be useful in �nding objects, but which to date could only be obtained by external

means (such as asking the appropriate person). Using the Virtual System Model this

information can be explicitly included in the directory service in the form of links, cross-

references, attributes, and �lters. Tools for resource discovery could bene�t from the use

of this information in directing searches.

110

8.7 Operating Systems

The goal of allowing users to construct a system by selecting components that are avail-

able from the network is a goal that is shared by Plan 9 [Presotto et al. 91]. A key

di�erence between Plan 9 and the Virtual System Model is that Plan 9 addresses the

problems of combining the components, not of �nding them.

A system view in Plan 9 is not persistent. Instead, it is constructed by a process

(often using a con�guration �le) and only lives as long as the processes that uses it.

To construct a system view, the user must specify a globally unique name for each

component, introducing the problems associated with global naming.

Plan 9 does not address the problem of how users identify the components that they

want to include in their system view. The Virtual System Model is concerned primarily

with the mechanisms needed to organize and identify the components of interest and

relies on system provided access methods to actually use them.

Chapter 9

Conclusion

Naming is a critical service in distributed systems. Users employ names to identify the

objects accessible from within the system: �les, services, processors, and other users. The

name service translates the names of objects to the information needed by the computer

to access those objects.

The size of distributed systems is growing. As the amount of information that is avail-

able grows, so does the number of objects that need to be named. Existing techniques for

naming in distributed systems have evolved from the techniques used on centralized sys-

tems. These techniques are not su�cient for organizing the large amount of information

that is becoming available.

In this dissertation I have argued that existing models of naming are not su�cient

for organizing information in extremely large systems. In existing systems, the names

that can be assigned to objects are constrained by the object's location or the identity

of the individual assigning the name. This limits the ability of users to �nd an object

when they don't know where the object is stored, or who owns it. The assignment of

names should not be so constrained. Additionally, users need the ability to customize

their views of the system, eliminating those parts that are not of interest.

112

9.1 Contributions

The contributions of this dissertation are:

� The recognition that users need the ability to view large systems in di�erent ways

and that a uniform global name space is not appropriate for user-level naming in

extremely large systems.

� The recognition that any system that supports multiple views or multiple name

spaces, whether as an integral part of the naming mechanism or through ad hoc

means, must also address the problems that result from the lack of name trans-

parency.

� The presentation of the Virtual System Model, a new model for naming that better

supports customization. The Virtual System Model provides powerful tools which

help users de�ne their own views of the system, either directly, or in terms of other

views. The Virtual System Model addresses the lack of name transparency by

supporting closure.

� A description of the manner in which the Virtual System Model can be applied to

the organization of computer systems, both in the naming and organization of �les,

and in its application to other services including authentication, authorization, and

the selection of processors, services, and applications.

� The design and implementation of Prospero, a prototype �le system based on

the Virtual System Model. Prospero supports the creation of multiple virtual �le

systems from the �les that are available over the Internet.

� The dissemination and support of Prospero as an experiment to validate the ideas

embodied in the Virtual System Model. The widespread use of the prototype to

organize and identify information of interest demonstrates the usefulness of the

model.

113

Like much recent work on large distributed systems, this dissertation addresses prob-

lems of scale. It di�ers from other work in the area by concentrating on how scale a�ects

the user, an aspect of the problem that has been largely ignored until now.

9.2 Future Work

Evaluation of the prototype demonstrates the usefulness of the Virtual System Model.

The widespread use of the prototype indicates a need for the functionality it provides.

The success of the prototype warrants continued work in the area. This work falls

into three categories: enhancements to Prospero, further experiments with the Virtual

System Model, and new research.

The �rst category, enhancements to Prospero, consists of improvements that will

allow Prospero to gain even wider use. With wider use, more information will become

available through Prospero, allowing a more accurate evaluation of the scalability of the

mechanisms it provides. Planned enhancements to Prospero include:

� Making additional services available through Prospero. Work is already underway

to make Wide Area Information Service (WAIS) databases available. Other can-

didates include the comp.archives database, library card catalogs, and mailing list

servers.

� Adding support for object types that are not directly accessible, or that are ac-

cessible only after considerable delay. The access methods for such objects would

provide information on how to access them, whether that involves actions like

visiting a library, or submitting retrieval requests.

� Making it possible for programs that have not been linked with the compatibility

library to use the Prospero �le system.

� Running �lters in separate address spaces and with restricted privileges. In the

present implementation, a �lter runs with the privileges of the individual applying

114

it. Since the individual applying the �lter might not even be aware that it is being

applied, this presents a security weakness.

� Allowing users to specify the application of a �lter as part of a �le name. The �lter

would be speci�ed as one of the components in the �le name. The components of

the name that follow the �lter would be resolved in the virtual directory created by

the application of the �lter to the directory named in the components that precede

the �lter.

� Allowing the server to apply an arbitrary �lter (when requested by the client).

If the �lter requires information about objects that are stored on the server, this

would be more e�cient than running the �lter on the client. The �lter would run

in a separate address space with restricted privileges.

� Adding support for alternative types of �lters. Possibilities include �lters that

return the value of a named link instead of returning the entire directory (selection

�lters), �lters that translate requests for changes to a virtual directory into the

corresponding change to the underlying physical directories (update �lters), and

�lters that a�ect access to the object itself, not just the listing of directories (data

�lters).

� Adding support for the replication of directories, and implementing alternative

replication methods for other types of objects.

� Adding support for the freezing of closures. At present, closures are dynamic.

When a change is made to a name space, that change a�ects the resolution of

names by objects bound to the name space through closure. This can present

problems for security. The ability of the user to control the name space used by a

program is important if a program is to be con�ned

1

[Lampson 73].

1

A program is con�ned when data cannot be written to locations that are not intended

by the user.

115

The second category, further experiments with the Virtual System Model, consists

primarily of applying the Virtual System Model to other parts of the system. Chapter 5

described how the features of the Virtual System Model a�ect other parts of the system,

but the ideas have not been tested. Planned experiments include:

� Letting the active virtual system specify the set of processors on which a user's

processes can run.

� Allowing the virtual system closed with a program to restrict the set of processors

on which the program can run.

� Using �lters to select the instance of a service to be used based on possibly changing

characteristics such as price, load, and locality.

� Using the virtual system closed with an object to specify the authentication and

authorization mechanisms to be employed by principals wishing to access the ob-

ject.

� Allowing users to specify user names and group names from their customized name

space when modifying access control lists, and allowing them to see customized

names when they view such lists.

� Using closure to restrict the �les that a process can read and write. By building a

virtual system with limited size, by protecting the virtual system so that it can't

be modi�ed from within, and by restricting the resolution of names to those in the

restricted virtual system, a process can be run in a protected environment.

Work is underway on the �rst two items above: DARPA funded research at the Uni-

versity of Southern California's Information Sciences Institute is applying the concepts

of the Virtual System Model to resource management on multiprocessor systems.

The third category, new research, consists of solving problems that arise because of

the exibility of the Virtual System Model and the greater size of the systems that can

116

be built using the model. It also includes solving problems for which new approaches

are possible when built upon the infrastructure supported by the model. More work is

needed in the following areas:

� Inverted naming. The Virtual System Model allows objects to have many names.

Given an object, it should be possible for users to determine some of the existing

names for the object relative to the active virtual system. This ability is important

when browsing or when a reference to an object is received from another user

because it allows one to determine whether the object is already known. Inverted

naming could be implemented using breadth �rst search, but faster methods are

needed.

� Garbage collection in large systems. The mechanism described in Chapter 6 will

work for very large systems, but it won't scale inde�nitely. Prospero provides an

ideal test bed for experimenting with new algorithms.

� The view maintenance problem. The results of applying �lters or expanding a union

link can be cached, but a method is needed to keep the cached view consistent with

the directories on which it is based.

� The view update problem. When the user makes a change, a method is needed

to decide whether the change is a customization that should a�ect only the user's

view, or whether it is a modi�cation that should be visible to everyone. If the

change is speci�ed in terms of a derived view, it is also necessary to determine how

that change should be reected in the physical directories that underlie the view.

The update �lter might solve part of this problem.

� Tools for �nding information. The Virtual System Model provides tools for orga-

nizing information. It is easier to �nd things that have been organized using the

tools provided, but it is the user's responsibility to navigate through the naming

network in search of the desired information. The Virtual System Model provides

the infrastructure on top of which tools for �nding information can be implemented.

117

9.3 Final Remarks

The Virtual System Model provides a powerful framework within which information can

be organized. The Prospero prototype makes that framework available for organizing

information on the Internet. By themselves, neither the model nor the prototype help

users �nd information of interest. Their contributions rest in encouraging and enabling

users to organize information in ways that make it easier to �nd things.

Professional societies, libraries, governments, commercial indexing services, and oth-

ers will play important roles in organizing the information available from future systems.

The Virtual System Model allows such service providers to build upon each other's work,

eliminating duplicated e�ort, and it allows users to construct views of the information

provided by these services which better meet their own requirements. The real contri-

bution of this work will be measured by the extent to which the model is adopted by

service providers and used to organize systems. The early signs are extremely positive

in this regard.

Bibliography

[Batini et al. 86] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis

of methodologies for database schema integration. ACM Computing Surveys,

18(4):323{364, December 1986.

[Berners-Lee et al. 92] T. Berners-Lee, R. Cailliau, J.-F. Gro�, and B. Pollermann.

World-wide web: The information universe. Electronic Networking: Research,

Applications and Policy, 2(1), Spring 1992.

[Bershad & Pinkerton 88] B. N. Bershad and C. B. Pinkerton. Watchdogs: Extending

the Unix �le system. Computing Systems, 1(2):169{188, Spring 1988.

[Birrell et al. 86] A. D. Birrell, B. W. Lampson, R. M. Needham, and M. D. Schroeder.

A global authentication service without global trust. In Proceedings of the IEEE

Symposium on Security and Privacy, pages 223{230, April 1986.

[Black 91] A. P. Black. Personal communication, July 1991.

[Brownbridge et al. 82] D. Brownbridge, L. Marshall, and B. Randell. The Newcastle

connection or UNIXes of the world unite. Software: Practice and Experience,

12:1147{1162, 1982.

[Cabrera & Wyllie 88] L.-F. Cabrera and J. Wyllie. QuickSilver distributed �le services:

An architecture for horizontal growth. In Proceedings of the 2nd IEEE Confer-

ence on Computer Workstations, pages 23{27, March 1988.

119

[CCITT 88] CCITT. Recommendation X.500: The Directory, December 1988.

[Ceri & Pelagatti 84] S. Ceri and G. Pelagatti. Distributed Databases: Principles and

Systems. Computer Science Series. McGraw-Hill, 1984.

[Cli�e 91] S. Cli�e. Archiving within Australia. Department of Computer Science, Uni-

versity of Wollongong, Australia, April 1991.

[Comer & Peterson 89] D. E. Comer and L. L. Peterson. Understanding naming in

distributed systems. Distributed Computing, 3(2):51{60, 1989.

[Comer et al. 90] D. Comer, R. E. Droms, and T. P. Murtagh. An experimental imple-

mentation of the Tilde naming system. Computing Systems, 4(3):487{515, Fall

1990.

[Conklin 87] J. Conklin. Hypertext: An introduction and survey. IEEE Computer,

20(9), September 1987.

[Daley & Neumann 65] R. Daley and P. G. Neumann. A general purpose �le system for

secondary storage. In Proceedings of the AFIPS Fall Joint Computer Conference,

pages 213{229, 1965.

[Danzig et al. 91] P. B. Danzig, J. Ahn, J. Noll, and K. Obraczka. Distributed index-

ing: A scalable mechanism for distributed information retrieval. In Proceedings

of the ACM SIGIR Conference on Research and Development in Information

Retrieval, October 1991.

[Date 81] C. J. Date. An Introduction to Database Systems. The Systems Programming

Series. Addison-Wesley, 1981.

[Dig 80] Digital Equipment Corporation, Maynard, Massachusetts. TOPS-20 User's

Guide (Version 4), January 1980.

[Dig 88] Digital Equipment Corporation, Maynard, Massachusetts. VMS General User's

Manual (Version 5), April 1988.

120

[Droms 86] R. E. Droms. Naming of Files in Distributed Systems. Ph.D. Dissertation,

Purdue University, August 1986.

[Emtage & Deutsch 92] A. Emtage and P. Deutsch. archie: An electronic directory

service for the Internet. In Proceedings of the Winter 1992 Usenix Conference,

pages 93{110, January 1992.

[Emtage 91] A. Emtage. archie. M.S. Thesis, McGill University, May 1991.

[Engelbart 90] D. C. Engelbart. Knowledge-domain interoperability and an open hy-

perdocument system. In Proceedings of the Conference on Computer Supported

Cooperative Work, pages 143{156, October 1990.

[Fowler 85] R. J. Fowler. Decentralized Object Finding Using Forwarding Addresses.

Ph.D. Dissertation, University of Washington, December 1985. Department of

Computer Science Technical Report 85-12-01.

[Gi�ord et al. 91] D. K. Gi�ord, P. Jouvelot, M. A. Sheldon, and J. W. O'Toole Jr.

Semantic �le systems. In Proceedings of the 13th ACM Symposium on Operating

Systems Principles, pages 16{25, October 1991.

[Heimbigner & McLeod 85] D. Heimbigner and D. McLeod. A federated architecture for

information management. ACM Transactions on O�ce Information Systems,

3(2), July 1985.

[Hisgen et al. 89] A. Hisgen, A. Birrell, T. Mann, M. Schroeder, and G. Swart. Availabil-

ity and consistency tradeo�s in the Echo distributed �le system. In Proceedings

of the 2nd IEEE Workshop on Workstation Operating Systems, pages 49{54,

September 1989.

[Ho & Olsson 90] W. W. Ho and R. A. Olsson. An approach to genuine dynamic linking.

Technical Report CSE-90-25, Department of Computer Science and Engineering,

University of California at Davis, August 1990.

121

[Hopcroft & Ullman 79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata

Theory, Languages, and Computation, chapter 2. Addison-Wesley, Reading,

Massachusetts, 1979.

[Howard et al. 88] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satya-

narayanan, R. N. Sidebotham, and M. J. West. Scale and performance in a

distributed �le system. ACM Transactions on Computer Systems, 6(1):51{81,

February 1988.

[Kacmar & Legget 91] C. J. Kacmar and J. J. Legget. PROXHY: A process-oriented

extensible hypertext architecture. ACM Transactions on Information Systems,

9(4):399{419, October 1991.

[Kahle & Medlar 91] B. Kahle and A. Medlar. An information system for corporate

users: Wide area information systems. Technical Report TMC-199, Thinking

Machines Corporation, April 1991.

[Kistler & Satyanarayanan 91] J. J. Kistler and M. Satyanarayanan. Disconnected op-

eration in the Coda File System. In Proceedings of the 13th ACM Symposium

on Operating Systems Principles, pages 213{225, October 1991.

[Korn & Krell 90] D. G. Korn and E. Krell. A new dimension for the Unix �le system.

Software: Practice and Experience, 20:19{34, June 1990.

[Lampson 73] B. W. Lampson. A note on the con�nement problem. Communications

of the ACM, 16(10):613{615, October 1973.

[Lampson 85] B. W. Lampson. Designing a global name service. In Proceedings of the

4th ACM Symposium on Principles of Distributed Computing, August 1985.

[Lantz et al. 85] K. A. Lantz, J. L. Edigho�er, and B. L. Hitson. Towards a universal

directory service. In Proceedings of the 4th ACM Symposium on Principles of

Distributed Computing, August 1985.

122

[Lindsay 81] B. Lindsay. Object naming and catalog management for a distributed

database manager. In Proceedings of the 2nd International Conference on Dis-

tributed Computing Systems, pages 31{40, April 1981.

[Litwin & Abdellatif 86] W. Litwin and A. Abdellatif. Multidatabase interoperability.

IEEE Computer, 19(12):10{18, December 1986.

[Mealy 55] G. H. Mealy. A method for synthesizing sequential circuits. Bell System

Technical Journal, 34(5):1045{1079, 1955.

[Mockapetris 87] P. Mockapetris. Domain names - concepts and facilities. DARPA

Internet RFC 1034, November 1987.

[Moore 64] E. F. Moore, editor. Sequential Machines: Selected Papers. Addison-Wesley,

Reading, Massachusetts, 1964.

[Mullender & Tanenbaum 86] S. J. Mullender and A. S. Tanenbaum. The design

of a capability-based distributed operating system. The Computer Journal,

29(4):289{299, 1986.

[Nelson 65] T. H. Nelson. A �le structure for the complex, the changing, and the inde-

terminate. In Proceedings of the ACM National Conference, August 1965.

[Neuman 88] B. C. Neuman. Issues of scale in large distributed operating systems.

General Examination Report, Department of Computer Science, University of

Washington, May 1988.

[Neuman 89a] B. C. Neuman. The need for closure in large distributed systems. Oper-

ating Systems Review, 23(4):28{30, October 1989.

[Neuman 89b] B. C. Neuman. The Virtual System Model for large distributed oper-

ating systems. Technical Report 89-01-07, Department of Computer Science,

University of Washington, April 1989.

123

[Neuman 89c] B. C. Neuman. Workstations and the Virtual System Model. In Pro-

ceedings of the 2nd IEEE Workshop on Workstation Operating Systems, pages

91{95, September 1989. Also appears in the Newsletter of the IEEE Technical

Committee on Operating Systems, Volume 3, Number 3, Fall 1989.

[Neuman 90] B. C. Neuman. Managing replicated data within the Virtual System Model.

Department of Computer Science and Engineering, University of Washington,

May 1990.

[Neuman 92a] B. C. Neuman. Prospero: A tool for organizing Internet resources. Elec-

tronic Networking: Research, Applications and Policy, 2(1):30{37, Spring 1992.

[Neuman 92b] B. C. Neuman. The Prospero File System: A global �le system based

on the Virtual System Model. In Proceedings of the Workshop on File Systems,

May 1992.

[Neuman 92c] B. C. Neuman. Scale in distributed systems. In Readings in Distributed

Computing Systems. IEEE Computer Society Press, 1992.

[Notkin & Griswold 88] D. Notkin and W. G. Griswold. Extension and software de-

velopment. In Proceedings of the 10th International Conference on Software

Engineering, pages 274{283, April 1988.

[Ousterhout et al. 88] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson,

and B. B. Welch. The Sprite network operating system. Computer, 21(2):23{

35, February 1988.

[Pearl 89] A. Pearl. Sun's link service: A protocol for open linking. In Proceedings of

Hypertext'89, pages 137{146, November 1989.

[Peterson 88] L. L. Peterson. The Pro�le naming service. ACM Transactions on Com-

puter Systems, 6(4):341{364, November 1988.

124

[Postel & Reynolds 85] J. B. Postel and J. K. Reynolds. File transfer protocol. DARPA

Internet RFC 959, October 1985.

[Postel 80] J. B. Postel. User datagram protocol. DARPA Internet RFC 768, August

1980.

[Presotto et al. 91] D. Presotto, R. Pike, K. Thompson, and H. Trickey. Plan 9: A

distributed system. In Proceedings of Spring 1991 EurOpen, May 1991.

[Rabin & Scott 59] M. O. Rabin and D. Scott. Finite automata and their decision prob-

lems. IBM Journal of Research, 3(2):115{125, 1959.

[Riley 89] V. A. Riley. An interchange format for hypertext systems: The intermedia

model. Technical Report 89-6, Institute for Research in Information and Schol-

arship, Brown University, 1989.

[Ritchie & Thompson 74] D. M. Ritchie and K. Thompson. The Unix time sharing

system. Communications of the ACM, 17(7):365{375, July 1974.

[Saltzer 78] J. H. Saltzer. Operating Systems: an advanced course, volume 60 of Lecture

Notes in Computer Science, chapter 3, pages 99{208. Springer-Verlag, 1978.

[Saltzer 82] J. H. Saltzer. On the naming and binding of network destinations. In

Proceedings of the International Symposium on Local Computer Networks, pages

311{317, April 1982.

[Sandberg et al. 85] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon.

Design and implementation of the Sun Network File System. In Proceedings of

the Summer 1985 Usenix Conference, pages 119{130, June 1985.

[Satyanarayanan 90] M. Satyanarayanan. Scalable, secure, and highly available dis-

tributed �le access. IEEE Computer, 23(5):9{21, May 1990.

[Schwartz 89] M. F. Schwartz. The networked resource discovery project. In Proceedings

of the IFIP XI World Congress, pages 827{832, August 1989.

125

[Schwartz 91] M. F. Schwartz. Resource discovery and related research at the University

of Colorado. Technical Report CU-CS-508-91, Department of Computer Science

University of Colorado, Boulder, January 1991.

[Sollins 85] K. R. Sollins. Distributed Name Management. Ph.D. Dissertation, Mas-

sachusetts Institute of Technology, February 1985. Laboratory for Computer

Science Technical Report 331.

[Steiner et al. 88] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An authen-

tication service for open network systems. In Proceedings of the Winter 1988

Usenix Conference, pages 191{201, February 1988.

[Stoy & Strachey 72] J. E. Stoy and C. Strachey. OS6: An experimental operating sys-

tem for a cmall computer. The Computer Journal, 15(3):195{203, 1972. Part 2:

Input/output and �ling system.

[Tanenbaum et al. 90] A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J. Sharp,

S. J. Mullender, J. Jansen, and G. van Rossum. Experience with the Amoeba

distributed operating system. Communications of the ACM, 33(12):47{63, De-

cember 1990.

[Terry 85] D. B. Terry. Distributed Name Servers: Naming and Caching in Large Dis-

tributed Computing Environments. Ph.D. Dissertation, University of California,

Berkeley, March 1985. Computer Science Division Technical Report 85-228.

[Terry et al. 84] D. B. Terry, M. Painter, D. W. Riggle, and S. Zhou. The Berkeley

internet domain server. In Proceedings of the Summer 1984 Usenix Conference,

pages 23{31, June 1984.

[Tichy & Ruan 84] W. F. Tichy and Z. Ruan. Towards a distributed �le system. In

Proceedings of the Summer 1984 Usenix Conference, pages 87{97, June 1984.

[Turing 36] A. M. Turing. On computable numbers with an application to the entschei-

dungsproblem. Proceedings of the London Math Society, 2(42):230{265, 1936.

126

[van Renesse 89] R. van Renesse. The Functional Processing Model. Ph.D. Dissertation,

Vrije Universiteit, Amsterdam, 1989.

[Walker et al. 83] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The Locus

distributed operating system. In Proceedings of the 9th ACM Symposium on

Operating Systems Principles, pages 49{70, October 1983.

[Wiederhold 86] G. Wiederhold. Views, objects, and databases. IEEE Computer,

19(12):37{44, December 1986.

[Yankelovich et al. 88] N. Yankelovich, B. J. Haan, N. K. Meyrowitz, and S. M. Drucker.

Intermedia: The concept and the construction of a seamless information envi-

ronment. IEEE Computer, 21(1), January 1988.

Appendix A

Prospero User's Manual

The Prospero �le system is based on the Virtual System Model. It di�ers from traditional

distributed �le systems in several ways. In traditional �le systems, the mapping of names

to �les is the same for all users. Prospero supports user centered naming: users construct

customized views of the �les that are accessible. A virtual system de�nes this view and

controls the mapping from names to �les. Objects may be organized in multiple ways

and the same object may appear in di�erent virtual systems, or even with multiple names

in the same virtual system.

Prospero directories can contain references to �les and directories that are stored

on remote nodes. This allows distribution at a much �ner level of granularity than is

possible in traditional distributed �le systems. Prospero also provides several tools to

support customization. Among them are the union link and the �lter.

A.1 The Directory Mechanism

In Prospero, the global �le system consists of a collection of virtual �le systems. Virtual

�le systems usually start as a copy of a prototype. The root contains links to �les or

128

directories

1

selected by the user. Directory links can be of several types: conventional,

union, and �ltered.

A conventional link is similar to a hard link in traditional �le systems. It may be

made to any type of object, including a directory. It maps a name for an object to the

information needed to access the object. As long as an unexpired link to an object exists

the object may be accessed by that name. If the object moves, a forwarding pointer

will allow continued access using the same name. An object is only deleted when no

unexpired links to it remain.

A union link can only be made to a directory. With a union link, the objects included

in the linked directory become part of the virtual directory containing the link. Thus,

the contents of a virtual directory are the union of the collection of conventional links it

contains, and the contents of all directories included through union links.

Filters may be attached to either type of link. A �lter alters the set of links that are

seen in directories whose paths pass through the �ltered link. A �lter can specify which

links are to appear and which are to be ignored, it can change the features of individual

links, or it can synthesize new links that are not in the original directory. Filters are

written in C and are dynamically linked during name resolution. A �ltered link contains

a reference to the �lter and any arguments required by the �lter.

A.2 Using the Prospero File System

This section assumes that Prospero has already been installed on your system. Sec-

tion A.5 describes the installation procedure.

To use Prospero you must �rst determine the name of the directory that contains the

executables.

2

That directory contains a �le called vfsetup.source, the contents of which

must be read by the shell. This can be accomplished by sourceing it. For example, if

1

To distinguish them from directories and links in traditional systems, and because

they are often illusory, directories and links in Prospero are sometimes referred to as

virtual directories and virtual links.

2

By default, the installation directory is /usr/pfs/bin.

129

the Prospero �le system binaries are stored in /usr/pfs/bin you should either execute

the following command or add it to your .cshrc �le:

source /usr/pfs/bin/vfsetup.source

Before you can begin using the Prospero �le system a virtual system must be created.

Section A.2.4 explains how the Prospero site administrator can create a new virtual

system. Most Prospero sites support a guest virtual system which can be used until your

own virtual system is created.

To use a virtual system, you must �rst execute the vfsetup command to initialize

your environment. For example, if the name of your virtual system is guest you should

execute the following command:

vfsetup guest

A.2.1 File Names

The slash, colon, pound sign, and open and close parenthesis (/, :, #, (, and)) are

special characters in Prospero. The slash separates components of �le names and the

colon separates information identifying a virtual system from the name of a �le within

the virtual system. These characters should not appear in any component of a �le name

unless they have been quoted.

By default, names are resolved relative to the active virtual system. If a colon (:)

appears in a name, the name is resolved relative to the name space identi�ed preceding

the colon. If the character preceding the colon is a pound sign (#), then the name

preceding the pound sign will be treated as an alias for a previously speci�ed virtual

system. For this reason, virtual systems should not have names ending in a pound

sign. A double colon (::) is the closure operator. When encountered, the name space

identi�ed by the closure attribute (see Appendix C, Section 1.1) of the object named

before the double colon is used to resolve the name that follows.

130

The pound sign (#) is also used to resolve name conicts when the same component

of a name is used by more than one object. In this case the pound sign is followed by

the magic number of the desired object. For this reason, unless quoted, the pound sign

should not be used in a component of a �le name if followed by a number (including

sign), and if there are no intervening non-numeric characters between the pound sign

and the end of the component.

The pound sign (#) is additionally used to indicate that a particular named union

link is to be followed when resolving a name, or to indicate that a �lter is to be applied.

In these cases, the pound sign is the �rst character of a component in a name and it

is followed by the name of the union link to be followed or the name of the �lter to be

applied. For this reason, unless quoted, the pound sign should not be used as the �rst

character in a component of a �le name (unless the full name of the component is #).

The open and close parenthesis ((and)) are used to delimit the arguments to a �lter

speci�ed as part of a �le name. The arguments immediately follow the name of the �lter

(which itself follows a pound sign). If no arguments are required, the null argument list

() must be included.

Note that in the current release, quoting of special characters is not supported so they

should be avoided in the situations described. This is easily accomplished by avoiding

the use of the colon and slash altogether, and by avoiding the use of the pound sign

at the start of a name, at the end of a name, or where it is immediately followed by a

number.

A.2.2 Using Existing Applications

The Prospero �le system is presently implemented as a library. A number of applications

have been linked with the Prospero library. The relinked versions may be found in the

same directory as the other Prospero binaries, and will appear in your search path once

the vfsetup command has been executed.

131

Table A.1: Settings for the pfs default environment variable

Value Meaning

0 Never resolve names within the virtual system

1 Always resolve names within the virtual system

2 Resolve names within the virtual system if they contain a :

3 Resolve names within the virtual system by default, but

treat names beginning with an @ or full path names that

don't exist in the virtual system as native �le names

4 Resolve names within the virtual system by default, but

treat names beginning with an @ as native �le names

By default, names which are to be resolved using Prospero must contain or be pre-

ceded by a colon (:). File names that do not contain and are not preceded by a colon

are treated as native Unix �le names. The default behavior can be modi�ed by set-

ting the pfs default environment variable. This may be done by using the venable

command. When enabled, names are resolved relative to the active virtual system by

default. Names that are to be treated as native Unix �le names must be preceded by an

atsign (@). vdisable will return the default to its original state. The meanings of the

values for the pfs default environment variable are listed in Table A.1.

A.2.3 Finding Things

The Prospero �le system provides tools that make it easier to keep track of and organize

information in large systems. When �rst created, your virtual �le system is likely to

contain links to directories that organize information in di�erent ways. As the master

copy of each of these directories is updated, you will see the changes. You may customize

these directories. The changes you make to a customized directory are only seen from

within your own virtual system, but changes made to the master copy will also be visible

to you. See section A.2.6 for instructions on customizing a directory.

Users are encouraged to organize their own projects and papers in a manner that

will allow them to be easily added to the master directory. For example, users should

132

consider creating a virtual directory that contains pointers to copies of each of the papers

that they want made available to the outside world. This virtual directory may appear

anywhere in the user's virtual system. Once set up, a link may be added to the master

author directory. In this manner, others will be able to �nd this directory. Once added

to the master directory, any future changes will be immediately available to other users.

To add a link to the master copy of any of the shared directories, send a message to

your site administrator. The address should be pfs-administrator on the primary system

for the site. If you are using a virtual system stored at the University of Washington,

the address would be pfs-administrator@cs.washington.edu.

A.2.4 The Commands

This section steps though the process of creating and using a virtual �le system. It

assumes that the Prospero �le system has been installed on the system being used. Later

sections explain how to install the Prospero �le system at a new site and on individual

systems.

Most of the commands that are speci�c to the Prospero �le system take a debug

option. The form is -D# where # is an optional integer and speci�es the level of detail.

The higher the integer, the greater the detail. By itself, -D sets the debugging level to

1.

Creating a Virtual File System

A virtual �le system is created using the newvs command. The newvs command is for

use by the site administrator

3

. To have a virtual system created, send a message to

pfs-administrator at your site.

newvs [-v#] [-e] [host [name [home [owner [desc_file]]]]]

3

Systems which are running the release as distributed are part of the University of

Washington site. The site administrator is pfs-administrator@cs.washington.edu. This

applies even if your system is running a server.

133

Table A.2: Verbosity levels for newvs

Value Meaning

0 (default) Prompt for required input

1 (-v) Explain what is required when asking for input

2 List each action taken

3 Stop before each step

4 Stop before each step and explain the action

The newvs command is used to create a new virtual system. If called with no argu-

ments, the user is prompted for the system on which the new virtual system is to reside,

the name of the virtual system, the home directory, the owner, and the name of the

description �le.

The name of the virtual system is the default name with which it will appear in

the local site's master list of virtual systems. This name is not automatically exported

beyond the local site.

newvs will create the virtual system, assign a global name to it, and add the selected

name in the master list of virtual systems for the local site. It will also copy the links

from the prototype virtual system to the newly created one. The -e option will suppress

this copying, and will leave the new virtual system empty. As a �nal step, newvs will

optionally write a description �le that may be read by vfsetup.

The -v option is followed by an integer and sets the verbosity level. The meaning of

the verbosity levels are presented in Table A.2.

Initialization and Changing Virtual Systems

vfsetup [-n host path , [-r,v] name , -f file]

134

The vfsetup

4

command sets up the selected virtual system. It adds the appropriate

directories to the search path and sets all necessary environment variables. vfsetup can

be called in several ways. With no arguments, it reads the �le ~/.virt-sys and uses the

information found to access the virtual system description. The -v option takes the name

of the virtual directory containing the system description. The -n option takes the name

of a host and the physical name of the virtual directory on that host that contains the

virtual system description. The -f option takes the name of a Unix �le that is to be read

in place of ~/.virt-sys.

It is also possible to set up a virtual system by specifying its name. If the -r option

is speci�ed, the name is taken to be the default name for the virtual system at the local

site. If the name is speci�ed without a modi�er, the name is looked up in the /virtual-

systems directory of the presently active virtual system (the site default is used if no

virtual system is presently active). For example, if the name of your virtual system is

guest you can set up the virtual system using following command.

vfsetup guest

Creating Directories

vmkdir directory

vmkdir creates a virtual directory with the selected name and adds a link from its

parent directory.

Adding and Deleting Links

vln [-u, -s, -m] [-e[am], -n host] oldname newname

vln adds a new link to a directory. oldname is an existing name for the object to

which the link is to be made. newname is the name of the new link. The -u option

4

Because it changes environment variables, this command only has an a�ect when

its output is read by the shell. If vfsetup.source has been sourceed, then vfsetup is an

alias which will call the vfsetup executable in the appropriate manner.

135

indicates that the new link is to be a union link. The -s option is used to specify a

symbolic link.

The -e and -n options require the speci�cation of the name of the host containing

the target. The -n option indicates that the native information for the target has been

speci�ed. host is the name of the host on which the target resides and oldname is the

name of the target on that host. If the -s option has also been speci�ed, then host is the

name of the virtual system to which oldname is relative.

The -e (external) option indicates that the object resides on a host that does not run

Prospero. host is the name of the host on which the object resides, and oldname is the

name needed to access the object using the selected access method (e.g. if the access

method is anonymous FTP, the name is relative to the anonymous FTP directory on the

host).

The -e option can optionally specify the access method to be used and information

needed by that method. This information is speci�ed by appending it to the -e option

itself (e.g. -enfs,/u1). If no access method is speci�ed, the default is aftp,binary,

which will work for most �les accessible by anonymous FTP

5

.

If the standard input to vln has been redirected, the input will be searched for a line

of the form \Virtual-system-name: vs-name". If found, oldname will be relative to the

virtual system which has been read from (closed with) the input. If the -m option has

been speci�ed, the input will be additionally searched for a line for the form \Virtual-

�le-name: �lename". If found, �lename will be used in place of oldname. The reading

of the standard input can be suppressed by specifying the -a option, in which case the

currently active virtual system will be used.

vrm link

vrm removes the named link from a directory. It is important to note that vrm only

removes the link. The object will continue to exist if there are any additional links to it.

5

Contact info-prospero@cs.washington.edu if you need more information on this

option.

136

If there are none, then the object will become subject to garbage collection at a future

time.

Listing Directories

If the venable command (see section A.2.2) has been executed to set the default name

resolution mechanisms to the virtual �le system, then the ls command may be used

to list virtual directories. Otherwise, virtual directories may be listed using the vls

command.

vls [-A,-c,-f,-u,-v] [-a[attribute]] [path]

vls takes the virtual path name for a �le or directory. If the path is for a directory,

the links within that directory are displayed. If the path is for any other type of object,

then the information for the named link is displayed.

By default, vls displays for each link the local component of the path name and the

information needed to access the object. In most cases, this is a host and a name relative

to that host. A `*' preceding the host name indicates that a �lter is associated with the

link. The -v option causes the object type, and the type of each �eld to be displayed,

and it lists the �lters associated with the link. It also prevents the truncation of �elds

that are too long to be cleanly displayed without the -v option.

The -u option indicates that union links are not to be expanded. By default, union

links are expanded, and the results of that expansion displayed. To see which union links

are included in a directory, the -u option must be speci�ed.

There are cases when a directory might include more than one link with the same

name. One way this can happen is if the directory contains union links. By default,

only the �rst link with a particular name is displayed. The -c option tells vls to display

all links, including those with conicting names. The name of conicting links will be

followed by a \#" and a number that allows them to be uniquely identi�ed.

The -f option causes union links which could not be expanded to be displayed. This

option is presently set by default.

137

The -a option indicates that the attributes associated with each �le are to be dis-

played. It also forces the verbose option. If only a particular attribute is desired, the

attribute can be speci�ed as part of the -a option itself (e.g. -aforwarding-pointer).

The -a option by itself displays all attributes. The -A option is similar to the -a option,

but it only lists the attributes associated with the link itself, not those associated with

the object referenced by the link

6

.

Moving Around

vcd [-u] path

The vcd

7

command allows one to change the virtual working directory. If no argu-

ment is speci�ed, the home directory is assumed. Otherwise, paths starting with a slash

(/) are treated as relative to the root of the virtual �le system, and other paths are

treated as relative to the current working directory. \.." speci�es the directory above

the current working directory along the active path from the root.

The -u option allows one to change ones virtual working directory to a directory

included through a named union link.

If the venable command (see section A.2.2) has been executed to set the default

name resolution mechanisms to the virtual �le system, then the cd command may also

be used to change virtual directories.

vwd

vwp

The vwd command prints the name of the current virtual directory relative to the root

of the virtual system. The vwp command prints the information describing its physical

storage location.

6

When using vls to list the results of an archie query, the -c and the -A options

should be speci�ed.

7

Because it changes environment variables, this command only has an a�ect when

its output is read by the shell. vcd is an alias which will call the vcd executable in the

appropriate manner.

138

A.2.5 Retrieving Files

vget virtual-file [local-file]

The commands described so far allow you to move around the virtual �le system,

but they do not allow you to access the �les that it names. If a program has been linked

with the Prospero compatibility library, the program can access �les directly.

The vget command can be used to explicitly retrieve a �le that is accessible by

anonymous FTP. The virtual-�le is the name of the �le to be retrieved from the Prospero

�le system. local-�le is the real name that you want the �le to have in your real current

working directory. If local-�le is omitted the last component of the virtual �le name will

be used.

If the standard input to vget has been redirected, the input will be searched for a line

of the form \Virtual-system-name: vs-name". If found, virtual-�le will be relative to the

virtual system which has been read from (closed with) the input. If the -m option has

been speci�ed, the input will be additionally searched for a line for the form \Virtual-

�le-name: �lename". If found, �lename will be used in place of virtual-�le. The -a option

can be used to suppress the searching of the standard input.

A.2.6 Customizing a Directory

When a change is made to a directory, that change is often visible regardless of the path

through which the directory is viewed. There are times when it is desirable to make

a change that is only visible when the directory is viewed through a particular path,

or from a particular virtual system. Such a change creates a customized view of the

directory; the change will not a�ect the view of the directory when reached through

other paths, or from other virtual systems.

To create a customized view of a directory, create an empty directory, add a union

link from the directory you just created to the target directory, then remove the link to

the old directory and replace it with a link to the directory that was just created.

139

Links that are added to the customized directory will only be visible through the

customized directory, but changes to the target directory will also be visible through the

customized directory.

Some directories in your virtual system have already been customized. The root of

your virtual system is your own. Changes in the root do not appear in the roots of

other virtual systems. Each of the links from the root is also a customized directory.

For example, if you add a link to the /authors directory, that link will not be visible to

others. Directories at the next level, however, are not customized. Thus, if you add a

link to the directory /authors/Shakespeare,William, that change will be visible to others

unless you �rst customize that directory.

You can determine whether a directory has been customized by using the vls -u

command. That command will show the current directory without expanding union

links. Admittedly, this is a little confusing. Future releases will support the concept of

an owning virtual system. This will clear up some of the confusion by allowing automatic

creation of a customized directory when one is needed.

To have a link added to the master copy of a shared directory you should send a

message to pfs-administrator at your site, or to pfs-administrator@cs.washington.edu.

A.2.7 Attributes and Forwarding Pointers

This release includes preliminary support for attributes and forwarding pointers. This

means that �le attributes may be retrieved using the -a option to the vls command.

User de�ned attributes may also be associated with a �le. For the time being, such

attributes must be added manually.

Forwarding pointers are also supported. If a �le or directory has moved and a for-

warding pointer exists, the forwarding pointer will be returned and the request retried.

Like attributes, forwarding pointers must be added by hand. There are not presently

any programs to add forwarding pointers or attributes. For information on how to add

these by hand, send a message to info-prospero@cs.washington.edu.

140

Table A.3: Protection modes in access control lists

Directory Link

Character Meaning Character Meaning

A Administer a Administer

V View v View

L List l List

R Read r Read

M Modify m Modify

D Delete d Delete

I Insert does not apply to link

B Administer does not override link

Y View does not override link

> Add-rights] Add-rights

< Remove-rights [Remove-rights

) Add-rights does not override link

(Remove-rights does not override link

A.3 Protection

Access control lists (ACLs) may be associated with directories in Prospero, and with

individual links within a directory. These access control lists specify how directory

information is to be protected. They have nothing to do with the protection of the �le

to which a link refers. Table A.3 lists the protection modes that may appear within an

access control list entry.

When an entry appears in both columns, it means that the entry on the directory

overrides the entry on a link. For example, a user with R access to the directory can

read a link even if denied r access to the link. If a link permission is stored in a directory

access control list, then that permission indicates the default protection associated with

links in the directory that do not specify their own access control lists.

The administer permission allows the changing of the access control list. View allows

it to be viewed. List allows one to see a directory entry using wildcard searches. Read is

required to determine the binding of a link (the �le it references). If one is allowed read,

141

but not list, then one can only retrieve the link if its exact name is speci�ed. Modify

allows one to change the binding of a link, but it does not allow one to add or delete

links. Insert allows links to be added, and delete allows them to be deleted. The add

and remove rights are a restricted form of administer. They allow an individual to add

or remove a restricted set of rights. For example, \>r" allows one to grant read access

to someone else without also allowing one to grant modify access.

Negative rights may be speci�ed by prepending a minus sign (-) to the rights �eld.

The order of access control list entries is important. For negative rights to have an e�ect,

they must precede any rights that authorize access by that individual. When new ACL

entries are added, they are added at the front of the list, meaning that recent entries

take precedence over older ones.

When access is checked for a link, three access control lists are checked. First, the

ACL associated with the link itself is checked. If the link does not have its own ACL,

then the default ACL associated with the directory is used. Next, the ACL associated

with the directory is checked to see if it grants rights that override those in the link.

Finally, if access has still not been granted, a special override ACL is checked. This is

maintained by the system and should be used only in emergencies. Negative rights in

one list does not override access granted in another.

There are several di�erent ACL entry types. default, system, and directory

cause other access control lists to be included. default is the default ACL speci�ed by

the system on which the Prospero server is running. system is also speci�ed separately

on each Prospero server. It usually grants additional access to system administrators.

directory is the default access control list associated with the directory containing a

link. It allows one to easily specify that the rights on a link are to be in addition to

the default rights speci�ed in the directory. If no rights are associated with these ACL

entry types, then the rights granted are based on those in the default, system, or

directory access control lists themselves. If rights are speci�ed for such entries, then

the rights are the minimum of those speci�ed, and those in the included ACL. The ACLs

142

for new �les and directories allow access to default and system as de�ned in those

lists. Users have the option of removing such access

8

.

The any, authent, asrthost, and trsthost ACL types grant rights to the spec-

i�ed individuals according to the accompanying permission list. any matches any user.

authent speci�es an authentication method, and the name of the authorized individual

as returned by that method. At present, this entry type is not supported. The asrthost

method speci�es a list of authorized principals in the form user@internet-address. If no

Internet address is speci�ed (and no atsign), then the user is matched regardless of the

requesting host. Octets of the Internet address can be wildcarded, or replaced with a

`%'. A wildcard matches any number, and a `%' matches the number corresponding

to the local host. For example, \bcn@%.%.%.*" matches the user \bcn" on the local

subnet.

The asrthost type accepts the username asserted by the client. It is not possible

to verify that the user has not modi�ed the software to claim someone else's identity.

The Internet address can generally be considered accurate, though it too can be spoofed

by a knowledgeable and determined attacker. The trsthost type is identical to the

asrthost type, but is accepted only when the request originates from a privileged port

on the requesting system. Although this method might be used to provide security similar

to that for the Berkeley R commands, it is not recommended that you install Prospero

binaries setuid root until the sources have undergone careful scrutiny for possible security

holes

9

.

Listing ACLs

The list acl command may be used to list the contents of an access control list.

list_acl [-d dir] [link-name]

8

The system access control list is separate from the override list which can not be

removed.

9

By no means should vget or vcache be installed setuid root as these command write

�les to paths speci�ed by the user.

143

With no arguments, it lists the ACL for the current directory. If the -d option is

speci�ed, the argument that follows the option speci�es the directory whose ACL is to

be listed. An optional link-name speci�es that the ACL to be listed is that of the named

link within the directory.

Modifying ACLs

The set acl command allows one to change the access control list associated with a link

or directory.

set_acl [-asirKE,-n,-N] [-t type] [-d dir] [-l link] rights principals

The -d option is followed by the name of a directory. By default, the ACL for the

directory is modi�ed. The -l option allows one the modify the ACL for an individual

link.

The -a, -s, -i, -r, -K, and -E options indicate the operation to be performed on the

ACL. They correspond in order to add rights, subtract rights, insert a new entry, remove

an entry, kill the entire ACL (setting it to the default), and replacing the entire ACL.

If the -t option is speci�ed, it must be followed by the type of the ACL entry to be

added, deleted, etc. If the -t option is not speci�ed, asrthost is the default.

The �rst �eld following the options speci�es the rights to be added or deleted. All

remaining arguments are the names of the principals to be included in the particular

ACL entry.

When an ACL is set to an initial value (using the -K or -E options), the system ACL

is automatically included. The system entry can be removed by using the -r option in a

subsequent set acl command. The addition of the system entry can be suppressed by

using the -n option in conjunction with the original -K or -E option. Whenever rights are

removed from an ACL, the system checks to make sure that the user removing the rights

will be able to �x any mistakes. If the the change would result in the user being unable

to make subsequent changes, the minimal rights allowing the user to make subsequent

144

changes are automatically added back. This safety mechanism may be overridden by

specifying the -N option.

A.4 Filters

Filters are written in C, compiled, and dynamically linked during name resolution. Be-

cause of portability problems with the dynamic linker, �lters are not included in this

release, but are available upon request.

A.5 Setting up a new system

This section explains how to install the Prospero �le system on a new system. It assumes

that the local site has already been con�gured, This section (Section A.5) can be skipped

by most users.

A.5.1 Building the Binaries

[See the INSTALLATION �le in the distribution]

A.5.2 Running the Server on Unix (like) Systems

If you are installing the Prospero server, a user and group ID must be established under

which the directory server will run. The directory associated with the user ID should

be a location in which additional information about virtual �les and directories can be

stored. New �les which are to exist only within the Prospero �le system will also be

stored under this directory. It is suggested that you chose the user name pfs for this

pseudo-user, but other names may be used as well.

Once the user ID has been set up, install the binaries. The directory in which they

must be installed is selected at compile time. As originally distributed, it is /usr/pfs/bin.

The program pstart should be installed setuid and setgid the pseudo-user just described.

pstart [hostname]

145

To start the server run pstart. pstart takes an optional host name. If speci�ed,

the host name must be the primary name for the host on which the server is running.

In most cases, the server is able to determine the name on its own and there is no need

to specify it as an argument.

pstart will connect to the directory associated with the pseudo-user, it will check to

make sure that the user id is set appropriately, and it will exec the directory server with

the appropriate arguments.

Although it is not recommended, the directory server can also be started manually.

You must �rst be logged in as (or be su'ed to) the user under whose ID you want the

server to run. You can then execute dirsrv passing as arguments the required directory

names.

dirsrv [-m] root shadow data aftpdir afsdir hostname

The -m (manual) option prevents the directory server from dissociating itself from

the terminal. It is only useful for debugging. root is the logical root of the system. Only

�les below this point (and those under aftpdir and afsdir) will be accessible through the

Prospero �le system. shadow is the name of the directory that is to contain additional

information about �les and directories. It should typically be the shadow subdirectory of

the pseudo-user described above. data is the local directory under in which new virtual

directories and their contents will be stored.

aftpdir is the name of the directory hierarchy to which anonymous FTP has access

and afsdir is the name of the directory through which �les from the Andrew File System

may be accessed. If these access methods are not supported by your system, these

arguments should be the null string.

Users can use the Prospero �le system even if the server is not running, but they will

be unable to access �les or directories stored locally. If pstart is installed setuid and

setgid to the Prospero user and group IDs, then the directory server can be started by

any user. You may also want to start the directory server from the system's /etc/rc �le.

146

As things stand, users can access �les and directories created on the local system,

but they can not create new virtual systems stored locally. If you want to allow virtual

systems to be stored locally, then you must have the site administrator add a reference

to the new system from the pfs storage virtual directory.

Adding References to the New System

The remainder of this section describes the actions that are to be taken by the site admin-

istrator. Systems that are running the release as distributed are part of the University of

Washington site. The site administrator is pfs-administrator@cs.washington.edu. This

applies even if your system is running a server. If you are not a site administrator, you

can skip this section.

If you want to allow virtual systems to be stored locally, several links must be added

and a new virtual directory must be created. This will only be possible if the server has

not been con�gured read-only. When a new site is established (see Section A.6) these

links and directories are automatically created on the primary system for the site. The

following steps are only required when adding additional systems.

In the following steps, HOST is the fully quali�ed domain name for the host to be

added and PATH is the full path of the subdirectory of the pseudo-user (described above)

which will store the new virtual directories. The last component will typically be pfsdat.

If that directory does not already exist, it should be physically created.

A link must be added from the virtual directory pfs storage to the pfsdat directory

on the new site. While still in the master virtual system, the following steps will add

this link.

vcd /pfs_storage

vln -n HOST PATH HOST

You will next have to create the local vsystems virtual directory. You do this by

issuing the commands:

147

vcd HOST

vmkdir local_vsystems

A.6 Setting up a New Site

This section explains how to set up a new site. Systems that are running the release as

distributed are part of the University of Washington site. This applies even if your system

is running a server. If you would like to set up your own site, send a message to info-

prospero@cs.washington.edu to obtain the appropriate distribution (several additional

�les). Unless you are setting up your own site, you may skip the remainder of this

section.

Before you begin, you will have to obtain a global pre�x that will uniquely identify

the virtual systems registered at your site. A pre�x may be obtained by sending a

message to pfs-administrator@cs.washington.edu.

The global pre�x is part of the low level name for each virtual system. It should be

thought of as an address. Users employ higher level names to specify virtual systems.

Registering a pre�x will allow objects created at your site to be named by others. Even if

your site will not be reachable by any other sites, it is still important to register a pre�x.

Doing so guarantees that no other site has the same pre�x. This will make it possible

to connect with the rest of the global system should a connection ever be established.

More information on setting up an isolated site is described in Section A.6.2.

A.6.1 Setting up the Master Directories

To initially set up a new site, run the command newpsite. newpsite will construct a

skeletal site con�guration based on the compile time options described in the previous

section.

Once the site has been set up, it will be necessary to create additional directories

and add them to the prototype on which new virtual systems will be modeled.

148

A.6.2 Setting up an Isolated Site

As was already mentioned, even if your site will be isolated from others, you should still

try to register a unique global pre�x.

If your site will be isolated from other sites you will have to set up a replica of the

global root. This directory must be reachable with the name \#" from your site's master

list of virtual systems. To create a replica of the global root, create a directory and add

nested subdirectories corresponding to each component of your sites global pre�x. The

last entry should be a link to your site's master list of virtual systems.

If You Cannot Register a Pre�x

If it is not possible to contact pfs-administrator@cs.washington.edu, then it may still

be possible to generate a unique global pre�x based on a unique identi�er assigned by

another authority. Right now, the only names that may be turned into unique global

pre�xes are o�cially registered Internet domain names.

Internet Domain Names. If you have an o�cially registered Internet domain name,

it may be turned into a global pre�x by reversing the order of the components, replacing

the periods with slashes, and prepending \#/INET/".

ISI.EDU = #/INET/EDU/ISI

A.7 Glossary

conventional link. A conventional link is similar to a hard link in the Unix �le system.

It maps a name for an object to the information needed to access it.

�lter. A �lter is a program attached to a link. A �lter can modify the results of

directory queries where the path from the root of the virtual �le system to the queried

directory passes through the �ltered link.

149

global �le system. The global �le system is the collection of links and directories

that make up the virtual �le systems accessible to the user. The links and directories

form a generalized directed-graph.

link. A link is either a conventional link or a union link, with or without an attached

�lter.

local system. The local system is the physical system to which a user is logged in, on

which processes execute, or on which �les are stored.

master directory. A master directory is a directory maintained at the site level, and

included through union links as part of the corresponding directory in multiple virtual

systems.

site. A site is a collection of virtual systems administered by a particular organiza-

tion. An important characteristic of a site is that its virtual systems contain prominent

references to the other virtual systems that are part of the site.

union link. A union link is a link to a directory that causes the links that are part

of the linked directory to appear as part of the directory containing the union link. A

directory's contents are the union of the set of conventional links it contains and the

contents of all directories included through union links.

view. A view is a mapping from names to objects. Name spaces, parts of name spaces,

and individual directories all de�ne views. Because it speci�es a name space, a virtual

system also imposes a view. It is possible for more than one virtual system to impose

the same or similar views.

150

virtual directory. A virtual directory is a directory in a virtual �le system. The

contents of a virtual directory might be calculated at the time the directory is queried

by applying �lters or expanding union links.

virtual �le system. A virtual �le system is the �le system part of a virtual system.

It consists of a root directory and all the �les and directories that can be reached by

traversing 0 or more links. The virtual �le system is a projection of the global �le system

as viewed from the selected root.

virtual system. A virtual system is a distributed system that is assembled from the

�les, processors, services, applications, users and other components available over a global

network. The owner of a virtual system identi�es the components of interest, and as-

sembles them into a virtual system by assigning names.

151

A.8 Quick Reference

Commands a�ecting the Prospero �le system:

vfsetup [-n host path , [-r,v] name , -f file]

vcd [-u] path

vwd

vls [-v] [-u] [-f] [path]

vln [-u] [-s] [-e] [-n host1] name1 name2

vmkdir directory

vrm link

vget virtual-file [local-file]

newvs [-v#] [-e] [host [name [home [desc_file]]]]

list_acl [-d dir] [link-name]

set_acl [-asirKE,-n,-N] [-t type] [-d dir] [-l link] rights principals

vdisable

venable

Meanings for PFS DEFAULT:

The meanings of the values for the pfs default environment variable are:

Table A.4: Settings for the pfs default environment variable

Value Meaning

0 Never resolve names within the virtual system

1 Always resolve names within the virtual system

2 Resolve names within the virtual system if they contain a :

3 Resolve names within the virtual system by default, but

treat names beginning with an @ or full path names that

don't exist in the virtual system as native �le names

4 Resolve names within the virtual system by default, but

treat names beginning with an @ as native �le names

Appendix B

The Prospero Library

This appendix describes the entry points to the Prospero library.

B.1 Pcompat Library

The compatability library includes replacements for existing system calls and library rou-

tines that interact with the directory service. The replacements optionally resolve names

using the Prospero �le system. The behavior depends on the value of the pfs enable

global variable. Possible values are de�ned in pcompat.h and are described below.

Table B.1: Settings for the pfs enable global variable

Value Meaning

PMAP DISABLE Never resolve names within the virtual system

PMAP ENABLE Always resolve names within the virtual system

PMAP COLON Resolve names within the virtual system if they contain a :

PMAP ATSIGN NF Resolve names within the virtual system by default, but

treat names beginning with an @ or full path names that

don't exist in the virtual system as native �le names

PMAP ATSIGN Resolve names within the virtual system by default, but

treat names beginning with an @ as native �le names

153

Entry points: closedir creat, execve, open, opendir, readdir, scandir,

seekdir, stat, telldir, pfs open, pfs fopen, and pfs access.

closedir, creat, execve, open, opendir, readdir, scandir, seekdir, stat, and

telldir are identical to the entry points with the same names in the standard C library

except that, depending on the value of the pfs enable variable, �le names may be

resolved using Prospero.

pfs access(path,npath,ags) accepts a name, path, that is to be resolved using Pros-

pero. pfs access resolves the name, selects an access method, mounts the appropri-

ate �le system or retrieves the �le if necessary, and returns a new name in npath that

may be passed to open. npath must be a bu�er large enough to hold the new name.

By setting ags, it is possible to specify that the �le is to be created if it does not

exist (pfa create), or to indicate that the �le will be opened read only (pfa ro).

pfs access returns psuccess (0) or pmc delete on close on success. A return value

of pmc delete on close indicates that the �le has been cached on the local system

and that the calling application should delete the cached copy when done with it. Any

other return code indicates failure.

pfs open(vl,ags,mode) and FILE *pfs fopen(vl,type) are identical to open and

fopen in the C library except that instead of a �lename, they take a pointer to a Prospero

virtual link structure and open the �le referenced by the link.

B.2 PFS Library

The PFS library includes procedures for allocating and freeing Prospero data structures,

resolving names using Prospero, reading directories, retrieving attributes, adding and

deleting links, and creating directories. Only those procedures needed by application

programmers are described here. The remaining routines are called internally.

154

Entry points: atalloc, atfree, atlfree, vlalloc, vlfree, vllfree, add vlink,

del vlink, get vdir, mk vdir, pget am, pget at, rd vdir,

and rd vlink.

atalloc() and vlalloc() allocate structures for storing attributes and virtual links, re-

turning null on failure. atfree(at) and vlfree(vl) free the storage allocated to at and

vl. atlfree(at) and vllfree(vl) free at and vl and all successors in a linked list of such

structures.

add vlink(direct,lname,l,ags) adds a new link l to the directory named direct with

the new link name lname. direct is a string naming the directory that is to receive the

link. If ags is avl union, then the link is added as a union link. add vlink returns

psuccess (0) on success and an error code on failure.

del vlink(path,ags) deletes the link named by path. At present, ags is unused.

del vlink returns psuccess (0) on success and an error code on failure.

get vdir(dhost,d�le,components,dir,ags,�lters,acomp) contacts the Prospero server

on host dhost to read the directory d�le, resolving any union links that are returned and

applying �lters. If components is a non-null string, only those links with matching names

are returned. dir is a Prospero directory structure that is �lled in. ags can suppress the

expansion of union links (gvd union), force their expansion (gvd expand), request

the return of link attributes (gvd attrib), and suppress sorting of the directory links

(gvd nosort). acomp should normally be null. One should normally not need to call

this procedure. Use rd vdir and rd vlink instead. The arguments to this procedure

will be changing in a future release. get vdir returns psuccess (0) on success and an

error code on failure.

mk vdir(path,ags) creates a new virtual directory with the new name path in the

currently active virtual system. ags is not presently used. mk vdir returns psuccess

(0) on success and an error code on failure.

pget am(link,ainfo,methods) returns the access method that should be used to ac-

cess the object referenced by link. ainfo is a bu�er that is �lled in with additional

155

information required for the selected access method. methods is a bit-vector identifying

the methods that are acceptable to the application. The methods presently supported

are anonymous FTP (p am aftp), Sun's Network File System (p am nfs), and the

Andrew File System (p am afs). pget am returns p am error (0) on failure and

leaves an error code in perrno.

PATTRIB pget at(link,atname) returns a list of values of the atname attribute for

the object referenced by link. If atname is null, all attributes for the referenced object

are returned. pget at returns null on failure, or when no attributes are found. On

failure, an error code is left in perrno.

rd vdir(dirarg,comparg,dir,ags) lists the directory named by dirarg (relative to the

current working directory or the root of the active virtual system) returning the links

whose names match comparg. dir is a Prospero directory structure that is �lled in.

ags can suppress the expansion of union links (rvd union), force their expansion

(rvd expand), request the return of link attributes (rvd attrib), suppress sorting of

the directory links (rvd nosort), suppress use of cached data when resolving names

(rvd nocache), or request the return of a reference to the named directory, suppressing

the return of its contents (rvd dfile only). rd vdir returns psuccess (0) on success

and an error code on failure.

VLINK rd vlink(path) is an alternative interface for resolving names. rd vlink

returns the single link named by path. Its function is equivalent to calling rd vdir with

comparg set to the last component of the path and dirarg set to the pre�x. rd vlink

returns null on failure leaving an error code in perrno.

Appendix C

Directory and File Attributes

This appendix describes the object and directory information maintained by the Prospero

�le system.

C.1 Objects

A Prospero object is any item that can be referenced in a directory. The most common

kinds of objects are �les and directories. An object has a native representation and a

set of attributes describing it.

C.1.1 Attributes

Prospero maintains the following attributes about the objects it maintains.

� Closure. The name of the virtual system to be used when resolving names em-

bedded in the object.

� Owning virtual system (optional). Used to decide whether changes should be

customizations or modi�cations.

� Owner. The principal responsible for the object.

� Access control information (optional).

157

� Last writer, write date, etc.

� Version info (optional). Number of versions to keep, version number, etc.

� Attributes or keywords (optional). User speci�ed.

� Short description (optional).

� Locks (optional).

� List of replicas (optional).

� Replication type (optional).

� Other replication information (optional).

� Access methods.

� Time to live. The lifetime for newly created or refreshed links to the object.

� Time in future when TTL expires. This is the TTL plus the time that a link

to the object was last created or refreshed.

� Back links. A possibly incomplete list of directories with links to the object.

Note that the object's name is not one of its attributes. The object's name is the

concatenation of the names starting from the active virtual system. An object may

have di�erent names in di�erent virtual systems, or even multiple names within a single

virtual system

1

.

C.1.2 Persistence

An object continues to exist until the last non-expired link referencing the object is

removed. If a user wishes to recover the storage space for an object, it is agged for

1

Despite this, well known names from agreed upon starting points might be entered

as user-de�ned attributes for objects.

158

removal. When links to the object are refreshed, noti�cation is sent that the object is

about to disappear, and anyone wanting to maintain their reference must copy the object

elsewhere. Subsequent users have the option of making their own copy, or updating their

link to refer to one of the new copies.

C.1.3 Mobility

Objects may move from one site to another. If they do, a forwarding pointer must remain

at the old location until the time-to-live expires. This enables anyone with a non-expired

link to the object to refresh the link and record the object's new location.

C.2 Directories

A directory is an object and as such, everything that applies to objects also applies to

directories. The physical representation of a directory is interpreted by the Prospero

server on the system storing the directory. The Prospero protocol de�nes the interface

through which a directory is accessed.

C.2.1 Additional Attributes

The Prospero implementation maintains the following additional attributes about the

directories it maintains.

� Directory format version number.

� Access control information. This includes an access control list for the directory

itself and a default access control lists for links within the directory.

� Links to the objects included in the directory.

� Anything else required by the local directory server.

159

C.2.2 Link Attributes

Prospero directories contain links to the objects that are included in the directory. The

following information is maintained for each link.

� Name. This is the single component of the object's path relative to the current

directory.

� Short description of link (Optional).

� Type (union/normal). The type of a link can be either normal [L] or union [U].

In the case of a normal link, an entry for the link is visible when the directory is

listed. In the case of a union link, which can only be made to another directory,

the links from the target directory appear as part of the directory from which the

union link originates when the originating directory is listed. If multiple objects

have the same name, the order in which the union links appear determines which

object is visible.

Two types of links which may appear locally (either in the server, or on the client)

are [-] deleted, and [N] native. It is not legal for these codes to be sent across the

network. Type [N] links are converted to [L] and type [-] are skipped entirely.

Two additional types of links are reserved for future use. They are replicate [R]

and propagate [P]. A replicated link is a link to a replica of the present directory.

All changes should be propagated to the replica. A propagate link is like a replica

except that only some of the links are replicated. Changes should be propagated,

but received changes from other directories should only be used to update the

information on existing links, not to create new ones. Directory replication is

approximate, and it may take a while for changes to propagate. If consistency

is required for certain links, then P links instead of R links should be used, and

the important links should only appear in one place. In the future, an alternate

mechanism will be available to provide strong consistency for replicated directories.

160

� Hidden/Not-Hidden/Externally-Hidden By default, a hidden link is not dis-

played when a directory is listed. It is, however, returned by the directory server,

and is traversed if the actual name is speci�ed in a pathname. An Externally-

Hidden link is a hidden link that will be displayed if the current virtual system is

the same as the owning virtual system for the directory containing the link. The

user may override the hidden option, causing hidden links to be listed. Note that

it is also possible to hide a link by specifying its protection as non-listable. Such

links will only be returned by the directory server when the actual name of the

link has been speci�ed.

� Filter (program, data) (optional). Multiple �lters allowed. The �lter attribute

is a pointer to a program that can be used to �lter the contents of directories to

which links are made. data is the set of optional arguments passed to the �lter

program. In addition to the linked directory and arguments, the �lter has access

to all other information available from the current directory.

Filters come in several types. By default, a �lter is a directory �lter, and is applied

when searching directories. A hierarchy �lter is similar to a directory �lter. The

di�erence is that a directory �lter is applied to a single directory, while a hierarchy

�lter is applied to the entire hierarchy (including subdirectories) reached through

a link. Directory and hierarchy �lters come in two types. The default is post-

expansion. The �lter is applied after all union links have been expanded. A

pre-expansion �lter is applied before union links are expanded. An object �lter

is applied when accessing an object other than a directory, and might be used,

for example, to cause some operation to be performed on the object before it is

accessed. Note, however, that all types of �lters are associated with links.

Filters are applied to a directory in the order of pre-or post expansion, decreasing

depth of the links to which they are attached (for hierarchy �lters), and �nally in

the order that the �lters are speci�ed on the traversed links.

161

� Attributes (optional). User de�ned attributes to be associated with the link.

This allows a user to add (or override) attributes to the linked object (which might

be owned by someone else, and thus not modi�able).

� Destination host name. The name of the host on which the �le can be found.

� Destination host type. The type of the hostname. In particular, whether the

hostname is an Internet address, a domain style name, or a name in some other

naming system.

Note that a symbolic link is a link where the destination host is a virtual system,

and the destination object name is a name relative to that virtual system.

� Destination object name. The name of the object relative to the destination

system.

� Destination name type. The type of destination name. Di�erent types of names

include �le IDs, names relative to the root of the local �le system, etc.

� Version number (optional). By specifying a version number in a directory link,

the link is made to a speci�c version of the object, and changes to the object will

not be visible through the link.

� Access control info (optional). Allows restrictions on who can read or modify

individual directory entries.

� Destination expiration date. This entry indicates how long the information in

the link should be considered valid. When an object is accessed through a link, the

destination expiration date should be set to the current time plus the destination

time-to-live.

Note that expired directory entries do not disappear. Typically they remain valid.

The expiration means that there is no longer a guarantee that the object originally

referenced can still be found.

162

� Object identi�er. When a new object is created, a unique object identi�er may

be assigned. This identi�er can be included in links, and used to further verify

that the named object is the one that is actually desired. It allows one to reference

objects after their expiration dates with the guarantee that if these identi�ers

match, it is the same object. In the prototype, the object identi�er is a random

number.

� Valid-till (optional). If a link is a cached value, then this �eld indicates how long

the entry should be considered valid. For example, a symbolic link may have a

corresponding cached hard link. Until its expiration a cache entry may be used

instead of searching based on the symbolic link. If this �eld is 0, then the link is

not a cached entry.

� Last-update (optional). This is the time the link was last updated. Its expected

use is for resolving conicting updates in replicated directories.

C.2.3 Replication

When support for replication is added to Prospero, a directory might include multiple

links with the same name for the same object. Not all replicas need be listed, however,

because each replica will maintain its own list of siblings. Multiple entries are important

to increase reliability and availability.

Appendix D

The Prospero Protocol

This appendix describes the Prospero protocol. Communication with directory servers

uses a reliable datagram protocol described in Appendix E. Requests and responses are

human readable commands and multiple commands may be sent in a single message.

Prospero is implemented on top of a datagram protocol to reduce the overhead that

would otherwise be incurred when establishing connections to multiple directory servers.

The decision to use a datagram protocol directly, instead of through a higher level

mechanism such as remote procedure call, was made for reasons of portability. I did not

want Prospero to depend on another protocol, software package, or other resource, unless

that resource was almost universally supported by every computer on the Internet.

The use of humanly readable commands in the protocol has several advantages. It

eliminates problems with byte ordering, and it makes future changes or additions to

the protocol easier to incorporate while maintaining compatibility across versions; new

commands or additional options to existing commands can be easily added.

The ability to request multiple operations in a single message improves performance,

and it provides a simple way to request that a collection of operations (on a single server)

be performed atomically.

164

D.1 Commands

Commands are separated by the <LF>. Items sent in response are separated by <LF>s,

commas, spaces, or tabs. Characters (or null �elds) can be quoted using single quotes

('). While inside quotes, a quote can be included by doubling it. If multiple options are

to be speci�ed for a single command, the options are separated by a \+".

D.1.1 VERSION <version-number> <software-id>

This command requests or speci�es the protocol version number. If the speci�ed protocol

version number is not supported, the response will be:

VERSION-NOT-SUPPORTED TRY xx-yy,zz

Where xx-yy and zz lists those versions that are supported. If no arguments are supplied

(or if the argument is not a number), then the VERSION command will return the

current protocol version number being used by the server in the form.

VERSION <number>

The software identi�er is optional, but if speci�ed, it identi�es the software and

version of the software that is generating the request.

D.1.2 AUTHENTICATOR <type> <authenticator>

This command authenticates the principal making the request. The type is the type of

the authenticator. It might be password, a Kerberos authenticator, or data used by an

alternative authentication mechanism.

D.1.3 DIRECTORY <id-type> <object-id> [<version> [<magic-no>]]

This command speci�es the directory to be read or modi�ed by the commands that

follow as part part of the same request. This command does not generate a response

unless the selected directory is not a directory. In that case, the response:

165

NOT-A-DIRECTORY (being phased out) or

FAILURE NOT-A-DIRECTORY

is returned, and the remainder of the request ignored.

D.1.4 ATOMIC

This command speci�es that all commands that follow are to be completed atomically.

If one of the commands fails, then none of the commands are to have an a�ect. This

may require undoing the a�ects of commands which have already completed. Note that

this command works only for requests issued in the same message, and all commands

must be executable on the single server to which the message was sent.

D.1.5 LIST <options> COMPONENTS <optional-component>

LIST is used to look up information stored in a directory. <optional-component> is the

name of the component relative to the directory speci�ed in the DIRECTORY command.

The optional component can include wildcards, or can include multiple names separated

by a space. If a space is to be included in a name, the name must be quoted.

Multiple component names are allowed. The multiple components within a single

name are separated by the slash (/). If the result of the lookup of one component is

another directory at the same storage site, then the directory server will repeat the

process and look up the next component. When a lookup results in a dead-end, or a

directory at another site, the server will return an entry indicating which components

remain to be resolved by the client.

<options> contains a list of options to the LIST command. Among the options

supported are EXPAND which tells the remote directory server to expand any union

entries in the directory. By default, the response will contain the names of union links to

be included, and the client must submit a new query. A directory server can ignore the

EXPAND option to the list command if it so desires. The LEXPAND option is the same

as EXPAND, but indicates that the server should only expand union entries for local

166

directories. The LEXPAND option is implied if a multiple component name is being

resolved.

The VERIFY option tells the remote server that the purpose of the query is to

verify whether the remote directory exists and is a directory. No components are to be

returned.

The ONECOMP option tells the remote server that the component name should be

treated as a single component. This option is required only when a component of a name

includes a slash.

The ATTRIBUTES option indicates that the attributes associated with the link are

to be returned. ATTRIBUTES must be the last speci�ed option and is followed by the

names of the attributes to be returned as additional options (i.e. they are separated

by the +). If no attributes are listed, then all attributes are returned. If this option is

speci�ed, but the object resides on a di�erent host, then the attributes stored with the

link are returned, not those stored with the object referenced by the link.

On failure, a standard error responses will be returned. On success, the response will

be a sequence of entries containing information about the requested �les.

LINK <L/U/R/P> <type> <component> <host-type> <host-name> <id-type>

<object-id> <version> <magic-no> (opt: DEST-EXP <dest-expiration>

LINK-EXP <link-expiration>)

An UNRESOLVED response lists the components of the name that must be further

resolved relative to the returned link.

UNRESOLVED <components>

If a �lter is returned, it applies to the most recent link or union link that was returned.

FILTER <filter-type> <filter-host-type> <filter-host-name>

<filter-id-type> <filter-object-id> <version> <magic-no>

(opt: ARGS <filter-args>)

167

The types of �lters are: D=DIRECTORY, �lter is applied to the current directory;

H=HIERARCHY, �lter is applied to all directories reachable through the �ltered link;

O=OBJECT �lter is applied to an object other than a directory; U=UPDATE, �lter

is applied when updating the directory. If union links are to be expanded, �lters are

normally applied after the expansion. A lower case type code (d, or h) indicates that

the �lter is to be applied before any union links are expanded.

The optional list of arguments to a �lter is a single string. If there are multiple

arguments, then they are separated within the string by spaces. If there are multiple

arguments or if args contain special characters, then the list of arguments must be quoted

so that it will be passed as a single string.

If attributes were requested, the link will be followed by lines that specify the values of

the requested attributes. The form of the response will depend on whether the attribute

is associated with the link, or with the actual object. If the attribute is associated with

the link, the applies-to �eld indicates whether it applies to the LINK or the object, and

if the object whether it is a CACHED attribute, a REPLACEMENT attribute, or an

ADDITIONAL attribute. In case of conicts between attributes associated with the link

and those associated with the object, a cached attribute is superseded, a replacement

attribute takes precedence, and an additional attributes leaves both intact.

OBJECT-INFO <attribute> <type> <value> <optional-info>

LINK-INFO <applies-to> <attribute> <type> <value> <optional-info>

If the value of an attribute is a link, the link might itself have attributes. When

returned the names of such sub-attributes are enclosed in parenthesis to the appropriate

nesting level. If the name of an attribute is to begin with an open parenthesis, the

opening parenthesis must be quoted.

The order in which attributes are returned is signi�cant. Some attributes might

span multiple lines in which case, each line might appear as a separate attribute. This

does not preclude the inclusion of a multi-line value in a single attribute if the value is

168

appropriately quoted, but the existing implementation does not presently support such

a representation.

If no �les are found, the reply will be:

NONE-FOUND

D.1.6 LIST-ACL <options> <optional-component>

This request is used to list the access control list for the directory speci�ed in the previous

DIRECTORY command, or for a link within the directory. The optional component is

required only if requesting the ACL for a link within the directory (option = LINK). It is

to be left out when requesting the ACL for the directory itself (option=DIRECTORY).

The response will be zero or more lines for the form:

ACL <entry-type> <authentication-type> <rights> <principals>

D.1.7 GET-OBJECT-INFO <requested-attributes> ID <id-type>

<�le-id> <version> <magic-no>

This command requests information about an object. <requested-attributes> is a list of

those attributes that are desired. Valid attributes include access-methods, closure,

description, forwarding-pointer, keywords, last-referenced, last-writer,

locks, owner, replicas, size, storage-location, ttl, ttl-expires. version-

number, virt-sys, well-known-names, and write-date. all indicates that all

attributes are to be returned. Multiple attributes may be separated by commas (with

no intervening white space). The above are reserved attributes. User de�ned attributes

are also allowed and are accessed the same way.

The response can be multiple lines, each containing a value for an attribute. The

form of the response will be.

OBJECT-INFO <attribute> <type> <value> <optional-information>

169

The order in which attributes are returned is signi�cant. Some attributes might

span multiple lines, in which case each line might appear as a separate attribute. This

does not preclude the inclusion of a multi-line value in a single attribute if the value

is appropriately quoted, but none of the existing implementations can deal with such a

representation.

D.1.8 EDIT-OBJECT-INFO <id-type><object-id><version> <magic

-no> ATTRIBUTE <attribute> <optional-type-modi�cation>

<type> <value>

This command is used to change information about a �le. <attribute> is the attribute

about the �le that is to be changed. Some attributes involve adding a new instance,

deleting an instance, or replacing an instance. In these cases, the <optional-type-

modi�cation> will be either ADD, DELETE, or REPLACE. The new value is <value>.

D.1.9 CREATE-LINK <L/U> <component><link-type><host-type>

<host-name> <id-type> <object-id> <version> <magic-no>

This command creates a new link in the current directory. If the link is a union link,

then the component name may be null. If �lters or other information must be added,

the MODIFY-LINK command should be used once the link has been created.

D.1.10 DELETE-LINK<options> <component> (opt: NUMBER <n>)

This command is used to remove an entry from a directory. Depending on the value of

the LINK-EXP, this may or may not actually delete the entry. If it does not, the entry is

agged for deletion once the link expires. The possible values for <options> are shown

in table D.1.

The optional NUMBER ag can be followed by the number of the link to be removed.

This is necessary if there are multiple links with the same name; it allows the desired

link to be speci�ed. NUMBER is only valid with the LINK and ULINK options.

170

Table D.1: Options for the delete command

Option Meaning

VLINK Virtual link (either conventional or union) with given component

name will be removed.

LINK Same as VLINK, but only conventional links are checked.

ULINK Same as VLINK, but only union links are checked

ANYLINK Link with given name will be removed, even if it is in

the native directory. If so, the contents of the �le

may be lost, and other links to the �le may become

dangling references.

D.1.11 MODIFY-LINK <component><attribute>

<optional-type-modi�cation> <value>

This command modi�es information associated with a link. <attribute> is the at-

tribute to be modi�ed and includes filter, dest-exp, link-exp, host-type, host-

name, id-type, and fileid. <optional-type-modi�cation> may be ADD, DELETE,

or

REPLACE for those attributes taking multiple values. <value> is the new value of

the speci�ed attribute.

D.1.12 MODIFY-ACL <options> <component><entry-type>

<auth-type> <rights> <principals>

This command is used to modify an access control list for a directory, or for a link within

a directory. The directory is speci�ed in the previous DIRECTORY command. The

component is null (but quoted) if modifying the ACL for the directory (option=

DIRECTORY). Options indicate whether the ACL to be changed is for a DIRECTORY,

or a LINK. Another option indicates the operations to be performed (one of ADD,

SUBTRACT, INSERT, DELETE, SET or DEFAULT), and whether to override the

automatic inclusion of the system ACL (NOSYSTEM), or administer access for the

client (NOSELF).

171

D.1.13 CREATE-OBJECT <options> <type><component>

ATTRIBUTE <attributes>

This command will create an object with the speci�ed name and will return the identi�er

that can be used to open it. If a �le, it is created empty. <attributes> allows the creator

of a �le to specify many of the attributes of the object at creation time. The form for

each attribute would be the same as in EDIT-OBJECT-INFO.

D.1.14 CREATE-DIRECTORY <options> <component>

ATTRIBUTE <attributes>

This command will create a directory with the speci�ed name. The directory is created

empty. <attributes> allows the creator of a directory to specify many of the attributes

of the directory at creation time. The form for each attribute would be the same as in

EDIT-OBJECT-INFO.

<options> tells the directory server what else is to be done when the directory is

created. If options is VIRTUAL, then <component> is a name relative to the current

directory, and a link to the new directory is added to the current directory. If <options>

is PHYSICAL, then component is an absolute pathname relative to the root, and no link

to the new directory is created. It is up to the application to add the link.

The access control list for the new directory will be a copy of the access control list

for its parent. An entry will be automatically added to the ACL granting its creator all

rights. If the LPRIV option is speci�ed, only those rights needed to allow the creator

to set up the directory (list, read, insert, and administer) will be added, and only if the

creator does not already have such rights for the parent directory.

D.1.15 UPDATE <options> COMPONENTS <optional-component>

This command tells the server to check each of the named components in the current

directory for forwarding pointers. If the referenced object has moved, the link will be

updated. If <optional-components> is empty, all components in the directory will be

172

checked. On success, the UPDATE command returns the number of links that were

modi�ed.

UPDATED <number> links

D.1.16 STATUS

This command requests the current status of the server. A humanly readable multiple

line response is returned. The response may be presented to the user without additional

processing. The response must conform to the following requirements so that it may be

read by a program if desired.

The �rst line must include the server's software version identi�cation enclosed in

parenthesis, and the host name of the server. The name of the host should be the name

that appears on local links generated by the server, it might not be the primary name

of the host. The version identi�er must be the �rst string that appears in parenthesis,

and the host name must be the string that immediately follows the version identi�er.

If a line contains a colon (:), the string preceding the colon identi�es the meaning of

the text that follows the colon. Reserved identi�ers include Contact, Started, Memory,

Data, Root, AFTP, AFS, and DB. The identi�ers are case insensitive. If present, AFTP

identi�es the part of the �le system accessible by anonymous FTP.

Other than for the �rst line of the response, implementations are free to add or

modify lines that do not contain a colons. A sample status response follows:

Prospero server (Beta.4.2B) JUNE.CS.WASHINGTON.EDU

Requests since startup 4096 (3609+377+2 67+29+0 9 0+0+0 0 3) OF

Started: 26-Aug-91 15:14:56 UTC

Contact: bcn@cs.washington.edu

Memory: 0(118)vl 0(4)at 0(5)acl 0(1)fi 1(1)pr 2(2)pt 0(711)str

Data: /u1/vfs/pfsdat

Root: /

AFTP: /homes/june/ftp

173

D.2 Standard Responses

D.2.1 SUCCESS <identifying-info>

A command that does not generate any output returns this response if successful.

D.2.2 FORWARDED <host-type> <host-name><id-type>

<object-id> <version> <magic-no>

This response is returned when the object or directory that is the target of an operation

has moved. The client can retry the response using the corrected information.

D.2.3 ERROR <text>

This response is returned to indicate an error encountered when parsing the request.

The error might be a protocol error, or it might be the result of the server's inability to

recognize a keyword or data type. <text> describes the error.

D.2.4 FAILURE <identifying-info> <text>

This response is returned when an operation can not be performed. The de�ned values

for <identifying-info> appear below. <text> is optional text that provides additional

information about the failure.

NOT-FOUND [FILE,ACL]

ALREADY-EXISTS

NAME-CONFLICT

AUTHENTICATION-REQUIRED

NOT-A-DIRECTORY

NOT-AUTHORIZED

SERVER-FAILED

174

D.2.5 WARNING <identifying-info> <text>

This response is returned to indicate a warning condition which does not a�ect the

correctness of the response. This message can be used to indicate that the client is using

an old version of the protocol that, while supported, should be phased out. It can also

be used to inform the client of future changes on the server or scheduled downtime.

The de�ned values for <identifying-info> appear below. <text> is optional text that

provides additional information about the warning.

OUT-OF-DATE

MESSAGE

Appendix E

Reliable Datagram Protocol

This appendix describes the reliable datagram protocol (RDP) used by Prospero. As

used by Prospero, this protocol is layered on top of the Internet User Datagram Protocol

[Postel 80].

Prospero implements its own RDP because I was unable to �nd any that were suitable

for general use. Most systems that use an RDP implement their own around the speci�c

needs of their application. Like these other systems, early versions of the Prospero

protocol de�ned the mechanisms needed for retries and packet sequencing. As these

mechanisms were re�ned, the functionality was moved to a separate protocol layer to

improve modularity, and in hope that this general and simple RDP can be used for other

purposes.

This RDP was designed so that in the common case, the additional overhead of

guaranteeing reliability is as small as possible. Unless special processing is required, the

header is kept small, and unless a packet is lost, no additional packets are sent. If a

�eld is not speci�ed, the default value is used in its place. All �elds up to and including

the last �eld speci�ed must be �lled in, but the header may be truncated at any point

from which all remaining �elds are the default values. The RDP header contains �elds

described on the next two pages.

176

Bytes 0 Version and header length: High order two bits are RDP

version number mod 4 (this is version 0). Low order six bits

are the header length including byte 0.

Bytes 1-2 Connection ID: Defaults to the expected connection ID. A

speci�ed value of 0 means use the default.

Bytes 3-4 Packet number: Defaults to 1 if not speci�ed. A speci�ed

value of 0 indicates an unsequenced control packet which

should not be passed to the application.

Bytes 5-6 Total number of packets: Defaults to 0 if not known, or re-

tains current value if it was provided in any earlier messages.

If the packet number was also not speci�ed, then it defaults

to 1. A speci�ed value of 0 means use the default.

Bytes 7-8 Received through: Total number of packets successfully re-

ceived by peer. Defaults to current value if speci�ed in pre-

vious message. Defaults to 0 otherwise. If a value of 0 is

speci�ed, then it means reset to 0 (i.e. it forgot the earlier

messages).

Bytes 9-10 Backo� (expected time to next packet): Defaults to current

value. Speci�ed value of 0 means use default. This is a hint.

The client can use a di�erent timeout if it has reason to be-

lieve messages are available which have been missed (e.g.,

gaps in the list of received packets). In any case, the client is

always free to use a timeout longer than that speci�ed here.

177

Bytes 11-12 Flags: Byte 11 is a bit vector, the high order bit (7) meaning

please acknowledge and the next bit (6) indicating that the

packet is a sequenced control packet only and should not be

returned to the application by the rdgram library. The low

order bit (0) means that a protocol ID for a higher level pro-

tocol follows. The next bit (1) means that a 2 octet priority

is speci�ed. Byte 12 speci�es 1 of up to 256 other ags. The

ags may themselves require additional �elds speci�c to the

ag. These �elds appear at the end of the header in the order

they are needed when reading ags from the low order bit to

the high order bit, followed by any extra �elds needed by the

ag speci�ed by the 12th byte. A value of 255 for the 12th

byte is reserved for future expansion.

Bytes 13 and above Fields speci�c to particular ags

Next 2 bytes Protocol ID (if protocol id ag speci�ed): These bytes iden-

tify the interpretation of the data carried in the packet. The

default and a value of 0 mean that it is not speci�ed, but has

been agreed upon externally (i.e. the applications know).

Next 2 bytes Priority (if priority ag speci�ed): These bytes are a signed

integer representing the priority of the request. Not all imple-

mentations understand this message, and many that do will

not honor requests for expedited handling. Negative numbers

indicate expedited handling while higher numbers indicate

greater delays. A priority of 0 is normal.

Vita

Barry Cli�ord Neuman was born in New York City on September 27, 1963, and grew

up in Orange County, New York (near West Point) where he graduated from Cornwall

Central High School in 1981. He received his Bachelor of Science from the Massachusetts

Institute of Technology in 1985 and worked for MIT's Project Athena for the next year.

In 1986 he began graduate studies at the University of Washington, receiving the Master

of Science degree in 1988 and completing his doctoral studies in 1992.

