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Abstract

Constraints provide a useful mechanism for maintaining relations in user interface toolkits. Garnet

is a widely-used user interface toolkit with considerable functionality, based on one-way, required

constraints. Multi-Garnet extends Garnet by adding support for multi-way constraints and con-

straint hierarchies with both required and preferential constraints. This document contains three

chapters describing Multi-Garnet:

� Chapter 1 presents a high-level overview of Multi-Garnet. To motivate the development of

Multi-Garnet, we examine the Garnet constraint system, present some realistic user interface

problems that are di�cult to handle in Garnet, and demonstrate how Multi-Garnet addresses

these problems. We provide details on how Multi-Garnet supports some of the features of

Garnet, including constraints with pointer variables, and inheritance of constraints.

� Chapter 2 contains a reference manual for the current version of Multi-Garnet (version 2.1).

This includes information on compiling and loading Multi-Garnet, as well as documentation

for the functions and macros used to create and manipulate Multi-Garnet constraints. This

chapter also contains additional details on the implementation of Multi-Garnet.

� Chapter 3 describes a large Multi-Garnet example: a scatterplot displaying a set of points.

Multi-Garnet constraints are used to maintain relationships between the data values, the screen

positions of the points, and the positions of the X and Y-axes. Multiple interaction modes

allow manipulating the scatterplot points and axes in di�erent ways.
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Chapter 1

Multi-Garnet: Integrating

Multi-Way Constraints with

Garnet

1.1 Introduction

Constraints have become generally accepted as providing a useful mechanism for maintaining re-

lations in user interface toolkits. Constraints can be used, for example, to maintain consistency

between application data and a display of that data, to maintain consistency among multiple views

of data, to maintain layout relationships among graphical objects, and to compose complex user in-

terface components from simpler ones. Giving the system responsibility for maintaining the various

relationships in a user interface frees the programmer from the tedious and error-prone task of main-

taining these relationships by hand, making it easier to develop and maintain complex graphical user

interfaces. User interfaces and user interface construction systems that use constraints include Peri-

dot [Mye87], GROW [Bar86], Garnet [MGD

+

90a, MGD

+

90b], MEL [Hil90], RENDEZVOUS [Hil92],

GITS [Ols90], Animus [Dui87], ThingLab II [Mal91], the Constraint Window System (CWS) [EL88],

the FilterBrowser user interface construction tool [EMB87], and the Cactus statistics exploration

environment [MSB90].

One signi�cant di�erence among the constraint systems used in these user interface toolkits is

whether they support one-way or multi-way constraints. For example, suppose we have a con-

straint that window1 should be directly above window2. A one-way constraint would allow a new

location for one of the windows (e.g. window2) to be determined given a change to the other window

(window1), but not vice versa; a multi-way constraint would allow either window1 or window2 to be

changed, and adjust the other window to re-satisfy the constraint. Similarly, a one-way constraint

that c = a+ b would only allow a new value to be found for one of the variables (e.g. c) that satis�es

the constraint, while a multi-way constraint could in general be used to �nd a new value for any of

a, b, or c given values for the other two variables. Some one-way solvers allow cycles so that the

c = a + b constraint could be represented as three one-way constraints that can be used to �nd a

value for a, b, and c respectively. In this case, multi-way constraints are preferable from the point
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of view of software engineering, since what is conceptually a single relation can be represented as a

single object in the system rather than three. Other one-way constraint satis�ers don't allow cycles

in the constraint graph, in which case multi-way constraint systems are clearly more powerful and

expressive than one-way ones.

Constraint hierarchies extend the basic theory of constraints to allow preferential constraints as well

as required ones, with an arbitrary number of levels of preference [BMMW89]. In user interface ap-

plications, constraint hierarchies are useful for expressing declaratively the programmer's preferences

about what is to be adjusted when resatisfying constraints after a change (since there are typically

many ways of doing this), and for expressing defaults that can be overridden if necessary. An e�-

cient incremental algorithm|DeltaBlue|is available for satisfying constraint hierarchies using local

propagation [FBMB90].

Despite the advantages of multi-way constraints and constraint hierarchies, there is some feeling in

the UI community that multi-way constraint solvers are signi�cantly slower than one-way ones; or

that even if they can be made e�cient, they can only be embedded in systems with specialized and

severely restricted architectures, thus rendering them unsuitable for general use. We attempt to

dispel both of these impressions in this chapter.

Garnet is a widely-used user interface toolkit, built on Common Lisp and X windows, with consider-

able functionality [MGD

+

90a, MGD

+

90b]. However, Garnet supports only one-way constraints, all

of which must be required (no hierarchies). In Multi-Garnet, we integrate both multi-way constraints

and constraint hierarchies with Garnet. In the remainder of this chapter, we discuss the problems

that arose in making this integration, and our solutions to these problems|information that should

be of interest not only to the Garnet community, but also to other researchers who may wish to make

use of multi-way constraints in user interface toolkits. In particular, Garnet supports pointer vari-

ables in constraints [VZMGS91], a facility that has proven useful for the dynamic runtime creation

and manipulation of application objects. Our previous algorithms and systems haven't supported

fully general pointer variables; Multi-Garnet does. In addition, Multi-Garnet uses a new constraint

satisfaction algorithm, SkyBlue, which incorporates some important advances over DeltaBlue. We

also discuss realistic user-interface problems that Garnet's constraint system cannot handle that are

addressed by Multi-Garnet. We present information on the performance of Multi-Garnet, and show

that it is competitive in performance with the existing system. We describe directions for future

work, including the use of Multi-Garnet in a system for debugging constraint networks.

Multi-Garnet represents an advance over Garnet, since it includes multi-way constraints and con-

straint hierarchies. General support for pointer variables also makes it more powerful than our

own previous systems such as ThingLab II. Because Multi-Garnet is built on top of Garnet, it has

access to many other useful features not directly related to constraint technology, such as a library

of pre-de�ned widgets and applications. This library will be used to create further Multi-Garnet

applications, including debugging tools.

1.2 Local Propagation Solvers

A variety of techniques are available to solve collections of constraints. In user interface toolkits,

by far the most common such technique is local propagation. (It is used in all of the systems

cited in Section 1.1 except GITS.) For use with a local propagation solver, the object representing

a constraint includes one or more methods, where each method takes the values of a subset of
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the constrained variables (the method inputs) and calculates values for a disjoint subset of the

constrained variables (the method outputs). If the output variables are set to these values, the

constraint will be satis�ed. For example, the constraint a + b = c would in general include three

methods: c a + b, a c� b, and b c� a. If the value of a or b were changed, the constraint solver

could maintain the constraint by executing the �rst method to calculate a new value for c. If c

were also constrained by c+ d = e, then one of this other constraint's methods (e c+ d) could be

executed, and this process would continue until the change had propagated through the network of

constrained variables.

Local propagation solvers cannot maintain all possible sets of constraints, for example, those in-

volving simultaneous equations. However, local propagation solvers have the advantage that they

are e�cient and very general, since the code de�ning a method can do arbitrary computation. For

example, in a user interface one might want to maintain the relationship between a string naming

a font, and the object representing the font. The methods representing this constraint could call

system functions for scanning font directories and reading in font de�nitions, in order to create a

new font object that corresponds to a given font name string.

1.3 The Garnet Constraint System

The Garnet user interface development system is built on a prototype-based object system that

supports one-way constraints between the slots (�elds, instance variables) of objects. In addition to

containing a value, each object slot may have an associated formula that calculates the slot value as

a function of other slot values. When a slot value is changed, a local propagation solver can maintain

the constraints by evaluating the code in the formulas.

(create-instance 'rect-proto opal:rectangle

(:left 0) (:top 0) (:width 10) (:height 10)

(:right (formula (+ (gvl :left)

(gvl :width)))))

(create-instance 'rect1 rect-proto

(:left 50) (:top 10))

(create-instance 'rect2 rect-proto

(:main rect1)

(:left (formula (gvl :main :left)))

(:top 30))

Figure 1.1: Garnet Objects and Formulas

Figure 1.1 shows the de�nitions of several rectangle objects with formulas associated with some of

their slots. Formulas reference other slots in the object using the gvl form (gvl stands for \get

value starting from local slot"). In the rect-proto object, the :right slot is calculated using the

values of the :left and :width slots. The gvl form can also reference slots in other objects, by

specifying a series of slots. In rect2, the :left slot value is calculated by accessing the :main slot

which contains an object, and then accessing the :left slot of this object. In this case, the formula
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causes rect2 to be left-aligned with rect1. If the :left slot of rect1 is changed, rect2's :left

formula will be recalculated using this new value. The :main slot can also be changed, to make

rect2 line up with a di�erent object. This demonstrates the use of pointer variables in formulas.

Because the object system is prototype-based, any object can be used as a parent of further objects.

The constraint system is fully integrated with the inheritance mechanism, allowing formulas to be

inherited, in addition to slot values. In Figure 1.1, the formula associated with rect-proto's :right

slot is de�ned once in rect-proto, and inherited by the other rectangle objects. Inherited formulas

reference local slots|the inherited formula for :right in rect1 references the :left and :width

slots of rect1, not rect-proto. In this case, the :width slot value of rect-proto is also inherited

by rect1.

1.3.1 Some Problems with Garnet Formulas

Garnet formulas are a powerful tool for constructing user interfaces. However, there are some

useful constraints that are hard to represent with formulas. For example, consider the de�nition of

rect-proto in Figure 1.1. The :right slot formula allows calculating this slot from the :left and

:width slots. Suppose that sometimes one wanted to position this rectangle by specifying the :left

and :right slot values, or the :width and :right slots. Formulas could be added to the :left

and :width slots to calculate each slot from the other two, and Garnet would correctly terminate

the propagation cycles introduced. However, this may not always produce the expected results. If

the :left slot value is changed, either the :width slot or the :right slot might be changed to

maintain the constraint between these slots. It is possible to obtain either result, by setting and

accessing slots in a certain order. However, to take advantage of this one has to understand the

implementation of Garnet formulas. It would be much easier to maintain a user interface built with

formulas if these choices could be speci�ed as part of the formula de�nitions, so that they could be

understood without reference to the internals of the system.

Another problem with using multiple formulas to represent multi-way constraints between slots is

that the formulas to calculate each slot are de�ned separately, perhaps in di�erent objects. As noted

in Section 1.1, this represents a software engineering problem, placing the additional burden on the

programmer of ensuring that all of the formulas representing a multi-way constraint are de�ned

consistently, and are inherited together. It would be easier to de�ne and use a multi-way constraint

if all of the multiple formulas (methods) were bundled together into a single unit.

A more serious problem with Garnet formulas arises from the restriction that only one formula can

be associated with a slot. In Figure 1.1, rect2 is left-aligned with rect1. If rect1's :left slot

is changed, rect2's :left slot will be changed accordingly. Suppose that one also wanted this to

work in the other direction, so that changes to rect2's :left slot would propagate to rect1's :left

slot. This could be done by adding a formula to rect1's :left slot, producing a cycle between the

two slots. Now, suppose that one wanted to add one or more new rectangles, left-aligned with both

rect1 and rect2, so that any of the object's :left slots could be changed while maintaining the

alignment. This could be done by changing the existing formulas to construct a cycle between the

:left slots of all of the objects, but it would require changing the existing network of formulas every

time another object is added. It would be more convenient to add new left-aligned objects by simply

adding formulas between each new object's :left slot and rect1's :left slot. But this cannot be

done with Garnet formulas, because rect1's :left slot can only have one formula associated with

it.
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These problems suggest that Garnet could pro�tably use a more powerful constraint solver that

allows de�ning the methods of a multi-way constraint in one place, and manages situations where

multiple constraints can set a single slot.

1.4 DeltaBlue and SkyBlue

The DeltaBlue constraint solver addresses the problems with Garnet formulas mentioned above. In

DeltaBlue, a constraint between a set of variables is represented by a set of methods, each of which

calculates the value of an output variable using the values of the remaining variables so that the

constraint is satis�ed. More than one constraint may have methods that output to a given variable:

it is the responsibility of the constraint solver to decide which methods to execute to satisfy the

constraints.

DeltaBlue also solves networks containing both required and preferential constraints, allowing an

arbitrary number of levels in the constraint hierarchy. All of the required constraints must be

satis�ed; if one cannot, DeltaBlue signals an error. At the non-required levels, a weak constraint is

satis�ed only if it doesn't conict with a stronger one. Two or more constraints at the same level

may also be in conict; in this case, DeltaBlue arbitrarily picks one or the other to satisfy. (In the

terminology of the constraint hierarchy theory given in [BMMW89, FBMB90], DeltaBlue produces

a single locally-predicate-better solution to the hierarchy.)

Another important distinction between DeltaBlue and the Garnet constraint solver is that DeltaBlue

supports separate planning and execution stages. During the planning stage, methods from the con-

straints are chosen and ordered; during the execution stage, given one or more starting input values,

these methods are actually used to compute new values for the variables that will again �nd a locally-

predicate-better solution to the constraints. In contrast, Garnet uses blind local propagation, with

no separate planning stage. There are two advantages to DeltaBlue's approach. First, planning is

necessary to �nd correct solutions if constraint hierarchies are permitted|otherwise blind propaga-

tion may choose the wrong constraint propagation path, resulting in some preferential constraints

left unsatis�ed that should be satis�ed. Second, in a typical interactive graphics application, often a

new input value is repeatedly fed into the same network of constraints|for example, when moving

a part of a picture with the mouse. In such a case, the same plan can be executed many times,

resulting in much better performance [Mal91].

We recently revised DeltaBlue to produce SkyBlue. Like its predecessor, SkyBlue �nds a single

locally-predicate-better solution to a constraint hierarchy, using local propagation and separate plan-

ning and execution stages. However, whereas DeltaBlue methods can only have one output variable,

SkyBlue allows constraint methods to have multiple output variables. This is useful for expressing

a number of important classes of constraints, in particular bidirectional constraints that can unpack

a compound data structure into multiple variable values, or (running in the other direction) pack a

suitable set of values into a compound object. SkyBlue also handles cycles of constraints in a more

graceful fashion than DeltaBlue, which will make it possible to link in specialized, more powerful

constraint solvers as needed (see Section 1.6.3). Additional details of SkyBlue are given in [San92].
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1.5 Multi-Garnet

At the beginning of the project, we set a number of goals for Multi-Garnet:

1. To extend Garnet to use the SkyBlue constraint solver.

2. To change Garnet's programming style as little as possible, so that existing Garnet programs

could be adapted without major changes. In particular, two subgoals were to continue support-

ing constraints with pointer variables, and to continue supporting inheritance of constraints in

Garnet's prototype-based object system.

3. To allow the SkyBlue constraint solver to coexist with the Garnet formula constraint solver.

For now, it is useful to be able to run existing Garnet programs without change, and build

Multi-Garnet debugging tools using the Garnet library of pre-de�ned widgets. Eventually, it

should be possible to replace all formulas with SkyBlue constraints, and remove the formula

solver from Multi-Garnet.

These goals have been achieved. The following sections describe how constraints are represented

and maintained in this system. These details are not just of interest to Multi-Garnet users. The

strategies used to integrate multi-way hierarchical constraints into Garnet could be applied when

extending other systems to handle these types of constraints, or to integrate a constraint solver into

a system that doesn't support constraints at all.

The development of Multi-Garnet is continuing. As additional user interfaces are developed using

this system, we will gain experience about which features are most useful, and the best syntax for

accessing these features.

1.5.1 Multi-Garnet Constraints

Figure 1.2 shows the de�nitions of several rectangle objects that de�ne Multi-Garnet constraints

among their slots; they are analogous to the Garnet de�nitions given in Figure 1.1. The object

rect-proto contains a multi-way constraint between its :left, :right, and :width slots, which is

also inherited by rect1 and rect2. The object rect2 contains a multi-way constraint equating its

:left slot value with rect1's :left slot (referenced indirectly through its :main slot).

The m-constraint form de�nes a constraint by specifying its strength, the slots constrained, and

one or more methods containing code to calculate output slot values in terms of the other slots. In

this chapter, we use the strengths :required, :strong, :medium, and :weak. Each constrained slot

is speci�ed by a gvl form for accessing the slot, along with a variable name used to refer to this slot

in the methods. Local slots within the object containing the constraint may be speci�ed by simply

giving the slot name, as with the :left slot of the :left-cn constraint in rect2.

The m-stay-constraint form de�nes a special type of constraint that speci�es that its output

variable should not change. In the example above, a :medium strength stay constraint anchors the

:width slot of the rectangles, so that the constraint solver will change the :left or :right slots

rather than the :width slot, if this can be done without violating stronger constraints.

This example addresses all of the problems with Garnet formulas raised in Section 1.3.1. The

constraint in slot :left-right-width-cn allows the rectangle to be positioned by setting any two
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(create-instance 'rect-proto opal:rectangle

(:left 0) (:top 0) (:width 10) (:height 10) (:right 10)

(:lrw-cn (m-constraint :required (left right width)

(setf left (- right width))

(setf right (+ left width))

(setf width (- right left))))

(:width-stay (m-stay-constraint :medium width)))

(create-instance 'rect1 rect-proto

(:left 50) (:top 10) (:right 60))

(create-instance 'rect2 rect-proto

(:left 50) (:top 30) (:right 60)

(:main rect1)

(:left-cn (m-constraint :required ((main-left (gvl :main :left))

left)

(setf left main-left)

(setf main-left left))))

Figure 1.2: Multi-Garnet Constraints

of the three slots :left, :right, and :width, calculating the third value from the other two. If

the :left slot value is changed by itself, the stay constraint on the :width slot determines that

the :right slot will be changed to maintain the constraint between these slots. By specifying all of

the methods of the constraint in one place, it is easier to ensure that they are de�ned consistently.

Finally, additional constraints can reference rect1's :left slot, allowing an arbitrary number of

left-aligned rectangles to be created without changing the existing constraint network. For example,

a third rectangle could be de�ned as an instance of rect2, inheriting its :left-cn constraint and

:main slot to keep it left-aligned with rect1. In this case, setting the :left slot of any of the three

rectangles will cause the other two to be changed, to keep the three left-aligned.

There are some subtle di�erences between Multi-Garnet constraints and Garnet formulas. Formulas

are \associated" with the output slot whose value is calculated by the formula. Multi-Garnet con-

straints are stored as the actual value of an object slot, referring to both the input and output slots

of the constraint methods indirectly. Constraints can be added and removed from objects using the

same operations used to access regular slot values. For example, (s-value rect2 :left-cn nil)

will remove the constraint between rect1's and rect2's :left slots. In contrast, Garnet requires a

special operation to remove a formula from a slot.

Multi-Garnet methods can reference both input and output slots using multiple-slot indirect refer-

ence paths. This is more symmetric than formulas, which can only reference input slots indirectly.

This means that it is possible to create a constraint in one object constraining slots that are all in

other objects. This gives the programmer more exibility in choosing which object to use for storing

a constraint.

One useful feature of Garnet formulas that is not supported by Multi-Garnet constraints is that

formulas can specify which input slots they access on the y, as the formula code is being executed.

In contrast, Multi-Garnet requires that the constrained slots be speci�ed separately from the method

de�nitions. The reason for this restriction is because SkyBlue currently needs to know which slots
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are being constrained before it adds the constraint to the network. In the future, it may possible

to extend SkyBlue to lift this restriction for slots that are only accessed as inputs. In any case,

we believe that the other bene�ts provided by the SkyBlue solver more than compensate for this

restriction.

1.5.2 Constraint Propagation

Garnet evaluates formulas using lazy evaluation when a slot determined by a formula is read. In

contrast, Multi-Garnet maintains multi-way constraints using eager evaluation, so constraint prop-

agation may occur whenever a constraint is added or removed from the network. Propagation may

also occur when a slot value is set directly. This case is handled specially, so that the constraints

are correctly maintained.

In Garnet, the macro s-value is used to set a slot to a value, detecting any formulas that need to

be reevaluated. Multi-Garnet modi�es the meaning of s-value so that setting a constrained slot

may cause values to propagate through the constraint network. When a constrained slot is set with

s-value, the following occurs: (1) an input constraint is created that will set the slot to the speci�ed

value, (2) this constraint is added to the network, possibly setting the slot and propagating the value

through the network if the input constraint is strong enough,

1

(3) this constraint is removed, possibly

allowing the slot to be set by another constraint.

A few techniques are used to make this process more e�cient. Input constraints are saved and

reused, so that a new constraint isn't created every time a slot is set. Also, an input constraint is

not even added to the constraint network if it can be determined that it is not strong enough to be

satis�ed.

An important result of this implementation is that s-value is not guaranteed to set the slot to the

given value. If the slot value is determined by stronger constraints, then it will not be possible to

satisfy the input constraint. Even if the input constraint is satis�ed, other constraints may reset the

slot value when the input constraint is removed. If one wants to ensure that a slot is set to a given

value, and is not changed, it is necessary to create a required constraint that sets the slot to the

value. Multi-Garnet supplies macros that can be used to temporarily install constraints that set a

slot to a given value, during the execution of a form.

1.5.3 Indirect Reference Paths

Garnet formulas can reference input slots by specifying an indirect reference path such as

(gvl :main :left). As noted above, continuing to support pointer variables was one of our design

goals for Multi-Garnet. However, at �rst glance this seems incompatible with the DeltaBlue and

SkyBlue algorithms, which assume that a constraint always constrains the same variables. Finding

a solution to this problem is important not just for Multi-Garnet, but for any system that includes

both multi-way constraints and pointer variables. Some of our earlier systems, in particular the

original ThingLab [Bor81], made extensive use of paths for specifying which slots were a�ected by a

constraint; in addition these paths interacted correctly with inheritance. However, they were always

1

The input constraints used by s-value have a default strength (normally :strong). A slot can be set using

an input constraint of any strength by calling the function s-value-strength, which takes an additional strength

parameter.
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relative to the part-whole hierarchy of the object that owned the constraint. Garnet pointers can

specify arbitrary references, not necessarily just to a subpart, and can also be changed dynamically.

Multi-Garnet implements constraints with pointer variables by transforming them into constraints

with �xed references to the �nal slots speci�ed by the indirect reference paths. Such �xed-reference

constraints can be added and removed from the network by calling SkyBlue. If one of the slots along

an indirect reference path is changed, the associated �xed-reference constraint is removed from the

network, this constraint is changed to refer to the new slots speci�ed by the indirect reference paths,

and the constraint is added to the network to constrain these new slots.

This approach raises some interesting issues. What should happen if indirect reference paths from

more than one constraint use a particular slot that is changed? The order in which these constraints

are removed and added to the network can a�ect the propagation path chosen and exact constraint

solution found. Also, what should happen if an indirect reference path is broken, i.e. the path

cannot be followed because one of the slots along the path does not contain a legitimate Garnet

object? Garnet can simply ignore a formula with a broken path, but removing a constraint with a

broken path from a constraint hierarchy may cause other constraints to be satis�ed, and values to

propagate. Finally, what should happen if a slot along an indirect reference path is constrained?

Multi-Garnet addresses these issues by distinguishing between active and inactive constraints. When

a constraint is created and stored in a slot, its indirect reference paths are followed to determine

which slots are being constrained. If none of the paths is broken, then the constraint is activated,

and added to the constraint network. If a slot accessed along an indirect reference path changes, (1)

all active constraints with an indirect reference path using that slot are removed from the constraint

network and deactivated, (2) the indirect reference paths for all inactive constraints whose paths

access that slot are re-evaluated, and (3) any of these constraints whose paths are now unbroken are

activated and added to the constraint network. This scheme will automatically remove constraints

when their indirect reference paths are broken, and add them again whenever the paths are re-

connected.

The order in which the inactive constraint paths are evaluated and the constraints are added is

deliberately left unspeci�ed. If the order matters, this indicates that there are multiple possible

ways to solve the constraint network, and the user may want to alter the constraint network to

select a single desired solution.

Slots along an indirect reference path can be constrained by other constraints. When constraint

propagation causes such a slot to be changed, constraint propagation is completed using the existing

constraint network, then any constraints whose indirect reference paths have changed are updated

as described above. This may cause further constraint propagation, and indirect reference path

invalidation, etc. Note that it is possible that a constraint that will be removed (because a slot on

its indirect reference path has changed) can still inuence the constraint graph, and can still be used

to propagate variable values, up until the moment it is removed.

This implementation of indirect reference paths may seem suspiciously simple, compared to the

elaborate algorithms described in [VZMGS91]. There are two reasons for this simplicity. First, all

constraint propagation is handled by the SkyBlue algorithm as constraints are added and removed

from the network, so propagation wasn't explicitly described above. Second, in this scheme constraint

value propagation and indirect pointer updates are completely separate|if a slot along an indirect

reference path is changed during constraint propagation, the propagation is completed using the

current constraint graph before any indirect pointers are updated. This is distinctly di�erent from

the Garnet constraint solver and the algorithms described in [VZMGS91], which allow the edges
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in the constraint graph to be changed during constraint evaluation (which accounts for some of

the complexity of these algorithms). Eventually, it may be possible to modify SkyBlue to directly

support indirect pointers, interleaving constraint propagation and indirect pointer updates.

1.5.4 Interactors

User interaction is implemented in Garnet using interactors [Mye90] that interpret input events, such

as key presses and mouse movements, and set speci�ed slots in graphic objects, such as the position

of an icon being moved by the mouse. These slots are set using s-value, so constraint propagation

will occur if these slots are constrained by Multi-Garnet constraints. In most situations, normal

Garnet interactors can be used in Multi-Garnet without change.

2

Some interactors may behave

di�erently if the slots they set are constrained. For example, if an interactor tries to move a object

being dragged with the mouse by setting its :box slot with s-value (which uses a default :strong

input constraint), and this slot is constrained by a :required stay constraint, the object will not

move.

1.5.5 Coexistence of Garnet and Multi-Garnet

Multi-Garnet was implemented by slightly modifying some of Garnet's internal functions to detect

and handle Multi-Garnet constraints, while taking care not to remove any of the formula handling

code. Regular Garnet applications that use formulas can be loaded and run in Multi-Garnet, coex-

isting with applications built entirely using Multi-Garnet constraints.

Garnet formulas and Multi-Garnet constraints can also be mixed in the same application, although

all possible combinations of formulas and constraints are not supported. It is possible to create

Garnet formulas that read the values of slots constrained by Multi-Garnet constraints. However, it

is not always possible for Multi-Garnet constraints to constrain slots that are set by Garnet formulas.

The latter functionality has been implemented on an incomplete and experimental basis to allow

Multi-Garnet applications to use the existing library of Garnet gadgets built using formulas, without

rewriting all of the formulas as constraints.

1.5.6 Inheritance

Multi-Garnet implements inheritance of multi-way constraints and constrained slots slightly di�er-

ently than Garnet handles inheritance of formulas. First, constraints are only inherited when an

object is created, by copying any constraints in the parent object slots down to the child. After a

child is created, adding or removing constraints from the parent has no e�ect on the child. Second,

any inherited slots accessed while following indirect reference paths (including the �nal slot to be

constrained) are copied down when they are �rst accessed.

Eventually, it may be possible to modify Multi-Garnet to implement more sophisticated inheritance

behavior, such as Garnet's ability to modify inherited formulas when the parent formula is changed.

However, this raises some issues about the meaning of multi-way constraints in an object-oriented

2

A few interactors needed to be slightly modi�ed for use with Multi-Garnet because they destructively update

data structures stored in a slot, rather than setting the slot using s-value. Garnet also had to take special steps to

make formulas work properly in these situations.
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system. For example, if a child object inherits a slot value, should it be able to constrain this slot

without copying it down? If so, then this would violate the idea that the status of child objects

should not a�ect the parent.

1.5.7 Performance

Performance is an issue for any system used as a base for interactive graphics applications. Our

experience has been that applications built using Multi-Garnet constraints are just as fast as similar

ones built using Garnet formulas. To test this impression, we constructed instrumented Garnet

and Multi-Garnet versions of the demo-manyobjs program. This program, one of the standard test

programs in the Garnet library, repeatedly moves a box connected by lines to other boxes, thus

causing Garnet formulas (or Multi-Garnet constraints) to be re-evaluated repeatedly to determine

the endpoints of the connecting lines. In addition to comparing the performance of Garnet and

Multi-Garnet running demo-manyobjs, we measured the performance of Multi-Garnet when it was

modi�ed to use the DeltaBlue algorithm instead of SkyBlue. We also compared the performance

of Multi-Garnet when it created and reused a single plan, versus when it calculated the constraint

propagation paths repeatedly. The results, shown in Figure 1.3, give the time to move a box and

update the screen 500 times.

These numbers were measured using Multi-Garnet (version 1.5), Garnet (version 1.4) and Allegro

Common Lisp (version 4.0.1), running on a SUN SPARCstation IPX.

version time (seconds)

Garnet 8.84

Multi-Garnet & DeltaBlue (no plan) 8.17

Multi-Garnet & DeltaBlue (plan) 7.54

Multi-Garnet & SkyBlue (no plan) 15.31

Multi-Garnet & SkyBlue (plan) 7.99

Figure 1.3: Garnet and Multi-Garnet Timings for demo-manyobjs

For this benchmark, the modi�ed version of Multi-Garnet using DeltaBlue was faster than the Garnet

version. Reusing plans caused even greater speed-up. Multi-Garnet with SkyBlue is not currently

as fast as Multi-Garnet with DeltaBlue. However, the SkyBlue algorithm has not been optimized

for speed; once this is done, we expect that it will be about as fast as DeltaBlue. Even with the

unoptimized SkyBlue, however, when reusing saved plans the result is faster than standard Garnet.

The demo-manyobjs benchmark is a good test of simple constraint propagation. However it does

not test all of the facilities of Multi-Garnet, since it only uses one-way required constraints, and

does not dynamically change indirect reference pointers. It is di�cult to directly compare Multi-

Garnet programs using multi-way constraints and multiple strength levels to Garnet, since the

Garnet program would have to be written di�erently to provide the same functionality (perhaps

explicitly adding and removing constraints to correspond to di�erent Multi-Garnet solutions). The

technique Multi-Garnet uses to implement indirect references (Section 1.5.3) is probably slower than

that of Garnet, but even in this case it is di�cult to make a direct comparison, since Multi-Garnet

also supports indirect reference paths on method outputs. Meaningful comparisons of Garnet and

Multi-Garnet performance will have to measure the performance of real user interfaces.
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One situation in which Multi-Garnet (or any other system using SkyBlue) could encounter perfor-

mance problems is when the constraint network contains numerous constraints with multi-output

methods. It was proved in [Mal91] that the problem of �nding a locally-predicate-better solution

to a constraint hierarchy is NP-complete when methods have multiple outputs. However, we hy-

pothesize (and will be attempting to prove) that SkyBlue is in the worst case exponential-time only

in the number of constraints with multi-output methods, not in the total number of constraints.

Further, in the applications we have written so far in Multi-Garnet, in practice there is very little

backtracking during SkyBlue's planning stage (the algorithm includes a potential backtracking step

associated only with multi-output constraints). This suggests that even for multi-output constraints,

this exponential-time behavior arises only for pathological cases. In any event, performance has not

been a problem so far.

1.6 Future Work

Multi-Garnet is being developed as part of the �rst author's Ph.D. dissertation research, and work on

Multi-Garnet itself, on underlying constraint satisfaction algorithms, and on tools and applications

that use Multi-Garnet, is continuing.

1.6.1 Generalized Slot Accessers

Accessing a constrained slot by following an indirect reference path is a special case of the more

general facility of accessing slots by evaluating an arbitrary form. Garnet formulas can contain

conditionals and loops to calculate which input slots are accessed. For example, the formula that

calculates the bounding box of an aggregate can loop through the list of children objects, accessing

an arbitrary number of child bounding boxes. Based on experience with this feature in Garnet,

we plan to extend Multi-Garnet to allow the constrained slot speci�cations to include arbitrary

expressions. As these expressions are executed, they would access slots using a special form (such

as gvl) that records the slots used. If a constrained slot cannot be accessed, the reference would

be marked as \broken," and the constraint deactivated. This same mechanism could be used to

implement activation conditions, forms associated with a constraint whose value determines whether

a constraint should be active or not.

1.6.2 Initializing Slots

When creating an object with constraints between its slots, one would like to specify initial values

for some of the slots, and use the constraints to set the other slots to corresponding values. For

example, when creating a rectangle with a constraint between its :left, :right, and :width slots,

one might want to specify two of these three slots, and have the other one computed.

This issue is currently not addressed in Multi-Garnet. When creating objects with constraints

between their slots, it is best to initialize all of the slots to corresponding values, to prevent the

solver from using the values of uninitialized slots. To address this problem, we plan to extend the

create-instance operation to create temporary stay constraints on slots with initial values, to

hold them constant while other constraints are added that reference these slots. This constraint
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system initialization problem is not unique to Multi-Garnet, but has been noted by a number of

other researchers (see e.g. [Mal91]); a solution to it would be of general utility.

1.6.3 Constraint Cycles

Local propagation works well in many situations, but runs into problems when the constraint network

contains a cycle. Some local propagation solvers (including Garnet's formula solver) handle cycles

by executing the methods once around the cycle, or repeatedly executing the methods around the

cycle until the variable values stabilize. Neither of these techniques can guarantee that all of the

constraints will be correctly maintained.

When the SkyBlue solver detects a cycle of methods, it prints a warning and marks as invalid all

variables in the cycle (and all variables derived from these variables). If the cycle is later broken,

the invalid variables are recalculated and marked as valid. We plan to extend SkyBlue to examine

the constraints in a cycle, select a suitable constraint solver for these troublesome constraints, and

pass the cycle o� to that solver. For example, if all of the constraints in a cycle represent linear

equations, then the constraints could be passed o� to a linear equation solver that uses Gaussian

elimination.

1.6.4 Debugging Tools

Multi-Garnet has been developed as part of research on debugging tools for hierarchical constraint

networks. Constraint networks can be di�cult to understand. It may not be obvious to the pro-

grammer how the constraints are being maintained, and how changed values propagate through the

network. If a constraint network is not behaving as expected, it can be di�cult to isolate which

particular part of the network is causing the problem. We believe that this situation can be improved

by creating debugging tools to manipulate and display the constraint network.

Multi-way hierarchical constraints are a particularly good domain for developing debugging tools,

because the possible constraint propagation paths are speci�ed precisely and declaratively by the

constraint hierarchy. Debugging tools can use this information to analyze the constraint network and

provide information to pinpoint possible trouble spots. For example, a debugger for Multi-Garnet

could examine a constrained slot, and determine whether s-value could successfully change its

value. In some simpler constraint systems, explaining the behavior of a constraint network requires

exposing more details of the implementation of the constraint solver, since the speci�cation of the

solutions chosen is only implicit in the solver's code, and not given by a separate, declarative theory.

Debugging tools can provide many di�erent types of information to a programmer trying to un-

derstand or debug a constraint network. Network display tools can be used to examine the state

of the constraint network|prototype display tools were used to create Figure 1.4, which displays

the constraint network used to relate the axes of a scatterplot to a single point. History tools can

maintain information on how the slot values and the constraint network changes while an interac-

tion is in progress, and provide facilities for tracing and undoing these changes. Explanation tools

can analyze the network, to answer questions such as why a particular constraint is satis�ed or

unsatis�ed. Using this information, network editing tools can allow the programmer to change the

constraint network interactively, to �x bugs in a running system, and to experiment with possible

changes to the constraint network.
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Figure 1.4: Scatterplot X-Axis and Y-Axis Networks

1.6.5 Applications

Multi-Garnet provides a good base for building complex user interfaces. One area where we plan to

apply this system is to construct interactive data analysis systems [MSB90]. For example, Figure 1.5a

shows a scatterplot displaying a collection of object measurements. Multi-Garnet constraints are

used to maintain relations between the object measurements, the positions of points in the scatter-

plot, and the positions and ranges of the scatterplot axes. Figure 1.5b shows the same scatterplot,

after the scatterplot points and axes have been moved and resized. This is still a meaningful scat-

terplot, displaying the same data. Figure 1.4 displays the constraint network used to relate the x

and y-axes of this scatterplot to a single point.

0.00 100.00A
0.00

100.00

B

25.76 101.93A
-40.79

130.54

B

(a) The Original Scatterplot (b) After Moving Points and Axes

Figure 1.5: A Scatterplot Built Using Multi-Garnet Constraints

Another planned application is the Electronic Encyclopedia Exploratorium (E

3

), a new, multi-

investigator project in which we are building \how things work" articles for an electronic encyclopedia

[ABB

+

92]. Multi-Garnet will be used in constructing E

3

's user interface. Typical articles in E

3

will

describe such mechanisms as refrigerators, engines, telescopes, and mechanical linkages. Each article
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will provide simulations, 3-dimensional animated graphics that the user can manipulate, laboratory

areas that allow a user to modify the device or experiment with related artifacts, and a facility for

asking questions and receiving customized, computer-generated English language explanations.
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Chapter 2

Multi-Garnet Version 2.1

Reference Manual

2.1 Introduction

The Multi-Garnet package integrates hierarchical multi-way constraints into Garnet. It is based

on the SkyBlue algorithm, which supports multi-output constraints, and includes some support for

cyclic constraints.

Multi-Garnet v2.1 has been developed and tested under Garnet version 2.0 and Franz Allegro Com-

mon Lisp version 4.1. It may require small changes to run under other versions of Lisp. It may

require signi�cant changes to run with newer versions of Garnet. As of this writing, it appears that

Multi-Garnet v2.1 works correctly under the alpha release of Garnet v2.1. It will probably run under

the �nal release of Garnet v2.1. Beyond that, we can't make any guarantees. We hope to update

Multi-Garnet to work with future releases of Garnet.

The Multi-Garnet v2.1 release consists of the following �les:

load-multi-garnet.lisp Loads Multi-Garnet.

compile-multi-garnet.lisp Compiles and loads Multi-Garnet.

object-rep.lisp Object de�nitions.

sky-blue.lisp SkyBlue constraint solver.

multi-garnet.lisp Modi�cations to Garnet.

examples.lisp Multi-Garnet examples.

scatterplot.lisp Extended example.

The Multi-Garnet system code is de�ned in the �les object-rep.lisp, sky-blue.lisp, and

multi-garnet.lisp. To compile and load these �les, load the �le compile-multi-garnet.lisp.

Once these �les have been compiled, loading the �le load-multi-garnet.lisp will load the Multi-

Garnet system. Both of these �les check that Garnet v2.0 is already loaded, and signal an error if

it is not.

The �les examples.lisp and scatterplot.lisp contain example code that uses Multi-Garnet.

examples.lisp contains many small examples, that can be individually executed. To try them
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out, load examples.lisp (which will load a few auxiliary functions), and then select and execute

examples from the text of the �le. scatterplot.lisp is described in detail in Chapter 3 of this

document (\A Scatterplot in Multi-Garnet").

All of the Multi-Garnet system code is loaded into the package :multi-garnet (nicknamed :mg). All

of the functions, macros, and variables mentioned in this document are exported from this package.

*multi-garnet-version* [Variable]

Value is a string identifying the currently-loaded version of Multi-Garnet. For Multi-Garnet v2.1,

this is the string "2.1".

2.2 The SkyBlue Constraint Solver

This version of Multi-Garnet is based on the SkyBlue constraint solver. The most signi�cant dif-

ferences in functionality between SkyBlue and the previously-used constraint solver (DeltaBlue) is

that SkyBlue is more tolerant of cycles (see Section 2.12), and SkyBlue supports multiple-output

methods. A few notes:

� The SkyBlue algorithm code is still somewhat rough (i.e. read it at your own risk). Soon we

hope to restructure the code, and publish it in a technical report, along with more explanatory

material and a proof of correctness.

� The SkyBlue code has not been optimized for speed yet. Therefore, any benchmark measure-

ments made using this code would be particularly suspect.

� If there are constraints with multiple-output methods in the constraint network, adding and

removing constraints may cause backtracking. It has been proved that solving such networks

may take exponential time in the worse case, but usually this is not a problem.

*sky-blue-backtracking-warning* [Variable]

If this variable is non-NIL, a warning message will be printed whenever SkyBlue backtracking occurs.

Initially NIL.

2.3 Creating Constraints

Constraints are created using the following macro:

(m-constraint strength paths &rest methods) [Macro]

The strength of the constraint is speci�ed by strength, which should be one of the keywords

:required, :strong, :medium, or :weak. Multi-Garnet currently only supports this �xed hierarchy

of strengths. Future versions of Multi-Garnet may support changing the strength hierarchy.

paths is a list of indirect reference path speci�cations, each of the form (var-name (gvl . slots)),

specifying the series of slots to follow to access one of the constraint variables. Indirect reference

paths are interpreted by starting at the \root" object containing the constraint, and accessing each
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slot in turn (see Section 2.8). If an indirect reference path is just speci�ed by a symbol, this is

equivalent to (symbol (gvl keyword-symbol)), i.e. xyz is the same as (xyz (gvl :xyz)).

methods is a list of forms, each de�ning a single method for the constraint. Single-output methods

are speci�ed by method de�nitions of the form (setf var-name . forms), where var-name is one

of the variable names de�ned in paths, and forms is a series of arbitrary lisp forms that can access

any of the paths variable names as free variables. When the method is run, the forms are evaluated,

and the value of the last form is stored in the speci�ed variable.

Multiple-output methods are speci�ed by method de�nitions of the form (setf var-names .

forms), where var-names is a list of variable names de�ned in paths, and forms is a series of arbitrary

lisp forms that can access any of the paths variable names as free variables. When the method is

run, the forms are evaluated, and the multiple values returned by the last form are stored in the

speci�ed variables.

Note: The symbols \gvl" and \setf" are just used to make the form easier to read. The macro

kr:gvl is not executed to interpret the indirect reference paths.

Some examples:

(m-constraint :required (a b) (setf a b) (setf b a))

The above required constraint equates the value of the :a and :b slots of the constraint's root object.

(m-constraint :strong ((oleft (gvl :obj :left))

left delta)

(setf left (+ oleft delta))

(setf oleft (- left delta))

(setf delta (- left oleft)))

The above strong constraint maintains a relationship between the slots :left and :delta of the

constraint's root object, and the :left slot of whatever object is stored in the :obj slot of the root

object.

(m-constraint :required (left top width height box)

(setf box (list left top width height))

(setf (left top width height)

(values (first box)

(second box)

(third box)

(fourth box))))

The above required constraint speci�es that the :box slot of the the constraint's root object should

contain a list of the values of the :left, :top, :width, and :height slots. If any of these four slots

is changed, the �rst method changes the :box slot. If the :box slot value is changed, the second

method (a multiple-output method) \unpacks" the :box list and sets the four other slots.
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2.4 Creating Stay Constraints

A stay constraint is used to \anchor" the value of a variable, so it will not be changed unless the

stay constraint is overridden by a stronger constraint. Stay constraints can be created using an

m-constraint form such as (m-constraint :required (a) (setf a a)), which has the e�ect of

creating a required stay constraint on the :a slot of the constraint's root object. However, it is

better to de�ne stay constraints explicitly using the m-stay-constraint macro:

(m-stay-constraint strength &rest paths) [Macro]

strength is the strength keyword, just as in m-constraint. paths is a list of indirect reference path

speci�cations, either simple symbols (specifying a local slot name of the constraint's root object),

or \gvl" forms (specifying a slot to be accessed indirectly).

Examples:

(m-stay-constraint :required a)

This creates a required stay constraint on the :a slot of the constraint's root object.

(m-stay-constraint :strong (gvl :a :b) (gvl :a :c))

This creates a strong stay constraint on the :b and :c slots of the object stored in the :a slot of the

constraint's root object. Note that a stay constraint may specify multiple slots whose values should

not be changed. In this case, the stay constraint will only be satis�ed if all of the variables can be

\anchored" simultaneously. If another stronger constraint overrides one of the variables anchored by

a multiple-output stay constraint, the other variables will not be constrained by the stay constraint.

2.5 Storing and Using Constraints

To use a constraint, it must be stored in a slot of a KR object. This object provides the \root

object" used to interpret the indirect reference paths used to access the constraint's variables. It is

not necessary to explicitly activate a constraint. When a slot is set to a constraint by s-value or

create-instance, the constraint is activated (unless one of its indirect reference paths is \broken,"

see Section 2.8). To remove a constraint, simply store something else in its slot, such as NIL.

At any given time, a particular constraint object can only \belong" to one root object and slot. For

example, suppose that a constraint has been created and stored in the :cn slot of the object foo.

At this point, the root object of this constraint is foo, and its home slot is :cn. If a pointer to

the constraint is copied to the :cn slot of bar with (s-value bar :cn (g-value foo :cn)), the

constraint will not be activated with root object bar. The association between the constraint and

its root object can only be removed by explicitly storing something else in the :cn slot of foo, such

as (s-value foo :cn nil). The correct way to copy a constraint from foo to bar is to execute

(s-value bar :cn (clone-constraint (g-value foo :cn))). The function clone-constraint

takes a constraint, and returns a new copy without a root object or home slot, that can be set into

a slot to be activated.
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Most of the time, constraints are simply created and stored in a single object slot, so keeping track

of the association between the constraint and its root object is not an issue. However, programs that

explicitly manipulate constraints need to take account of this behavior. The current root object and

slot of a constraint can be determined by calling constraint-state (see Section 2.13).

Note that constraints are stored as the actual value of an object slot, as compared to formulas which

are \associated" with a slot. This means that the slot containing a constraint cannot be used as one

of the constraint's variables. Unlike formulas, a multi-way constraint does not have a distinguished

output variable whose value is stored in the constraint's slot.

The reason for storing constraints in particular object slots is because the slots provide names for

the constraints that can be used to access the constraints, remove them, and override inherited

constraints. This is simpler than Garnet, which requires a special operation to remove a formula

from a slot.

Examples:

(create-instance 'foo nil

(:a 5)

(:b 6)

(:eq-cn (m-constraint :required (a b)

(setf a b)

(setf b a)))

)

The above form creates an object foo, which includes a required constraint in its :eq-cn slot that

ensures that its :a and :b slot contain the same value. If one of the slots is changed using s-value,

then the change is propagated to the other slot.

(s-value foo :eq-cn nil)

This removes the above constraint, so :a and :b can be changed independently.

(s-value foo :stay-cn (m-stay-constraint :required a))

This adds a required stay constraint that anchors slot :a.

2.6 Setting a Constrained Slot

Garnet evaluates formulas using lazy evaluation when a slot determined by a formula is read. In

contrast, Multi-Garnet maintains multi-way constraints using eager evaluation, so constraint prop-

agation may occur whenever a constraint is added or removed from the network. Propagation may

also occur when a slot value is set directly. This case is handled specially, so that the constraints

are correctly maintained.

Garnet allows s-value to set the cached value of a slot with an attached formula, and uses an

unintuitive set of rules to determine when the cached value is reset. With multi-way constraints,

setting a slot that has an attached constraint may cause constraint solving and propagation.
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In Multi-Garnet, when a constrained slot is set with s-value, the following occurs: (1) an \input

constraint" is created (with strength *default-input-strength*, normally :strong) that will set

the slot with the speci�ed value, (2) this constraint is added to the network, possibly setting the

slot and propagating the value through the network if the constraint's strength is strong enough,

(3) this constraint is removed, possibly causing the slot to be set by another constraint.

A few techniques are used to make this process more e�cient. Input constraints are saved and

reused, so that a new constraint isn't created every time a slot is set. Also, if Multi-Garnet can

determine that the input constraint will not be satis�ed (because its strength is too low), then it is

not even added to the network.

An important result of this implementation is that s-value is not guaranteed to set the slot to the

given value. If the slot value is determined by stronger constraints, then it will not be possible to

satisfy the input constraint. Even if the input constraint is satis�ed, other constraints may reset the

slot value when the input constraint is removed.

(s-value-strength obj slot value strength) [Function]

The function s-value-strength sets an object slot the same as s-value, except that the speci�ed

strength is used when attempting to set the value of the slot, instead of *default-input-strength*.

2.7 Temporarily Setting and Anchoring Slots

Often, it can be useful to temporarily anchor slots, or set them to a particular value, during the

execution of some forms. This could be done by explicitly creating constraints, storing them in

object slots, and then removing them, but the following macros make this easier:

(with-stays stay-specs &rest forms) [Macro]

stay-specs is a list of lists of the form (obj slot strength), specifying the object slots that are to have

stay constraints with the speci�ed strength applied to them. If strength is not speci�ed, it defaults

to the value of *default-input-strength*, initially :strong.

(with-slots-set slot-set-specs &rest forms) [Macro]

slot-set-specs is a list of lists of the form (obj slot value strength), specifying the object slots that

are to be constrained, the value that the slot should be constrained to have, and the strength of

the constraint. If strength is not speci�ed, it defaults to the value of *default-input-strength*,

initially :strong.

When either with-stays or with-slots-set is executed, each of the speci�ed constraints are applied

to the slots (in an unspeci�ed order), then the forms in forms are evaluated, then the constraints

are removed. The value returned by the last form in forms is returned by the with-stays or

with-slots-set form. These macros call unwind-protect so the constraints are removed even if

an error occurs in the evaluation of the forms.

Note that these forms do not guarantee that the constraints will be satis�ed during the evaluation

of the forms. They may be overridden by stronger constraints.

22



Examples:

(with-stays ((recta :left)

((g-value recta :next) :left :weak))

(s-value recta :right 200))

The above form adds a :strong stay constraint to the :left slot of recta, and a :weak stay to

the :left slot of whatever object is stored in the :next slot of recta, evaluates the form (s-value

rectb :left 200), and then removes the stay constraints.

Currently, the with-stays or with-slots-set macros do not allow specifying a indirect reference

path via a series of slots to follow to �nd the slot being constrained. It is necessary to explicitly �nd

the object containing the slot, using g-value, to add a constraint to such a slot.

(with-slots-set ((recta :left 50 :required)

(recta :right 200 :required))

(s-value recta :cn2 (m-constraint :required (left right width)

(setf right (+ left width))

(setf left (- right width))

(setf width (- right left))))

)

The above example shows how the with-slots-set macro might actually be used. One important

use for temporary constraints is to control which slots are changed when other constraints are initially

added. In the above example, we want to add a constraint between the :left, :right and :width

slots of recta. When this constraint is added, Multi-Garnet may try to maintain it by executing

any of the three methods, to calculate any one of these three slots from the values of the other two.

The with-slots-set form is used in this case to set the :left and :right slots to the speci�ed

values, and ensure that the :width slot is initially computed when the new constraint is added.

2.8 Indirect Reference Paths

Multi-Garnet constraints specify each constrained slot by means of an \indirect reference path," a

sequence of slot names. An indirect reference path may simply specify a single local slot in the

\root object" containing the constraint, or may specify a sequence of slots leading to the �nal slot to

be constrained. Multi-Garnet implements constraints with indirect reference paths by transforming

them into constraints with �xed references to the �nal slots speci�ed by the indirect reference

paths. If any of the slots along an indirect reference path are changed, the associated �xed-reference

constraint is removed from the network, this constraint is changed to refer to the new slots speci�ed

by the indirect reference paths, and the constraint is added to the network to constrain these new

slots. If any of the indirect reference paths of a constraint is \broken," (the path cannot be followed

because one of the slots along the path does not contain a legitimate Garnet object), then the

constraint is not considered part of the constraint network.

Multi-Garnet implements indirect reference paths by distinguishing between active and inactive

constraints. When a constraint is created and stored in a slot, its indirect reference paths are
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followed to determine which slots are being constrained. If none of the paths is broken, then the

constraint is activated, and added to the constraint network. If a slot accessed along an indirect

reference path changes, (1) all active constraints with an indirect reference path using that slot

are removed from the constraint network and deactivated, (2) the indirect reference paths for all

inactive constraints whose paths access that slot are re-evaluated, and (3) any of these constraints

whose paths are now unbroken are activated and added to the constraint network. This scheme

will automatically remove constraints when their indirect reference paths are broken, and add them

again whenever the paths are re-connected.

The order in which the inactive constraint paths are evaluated and the constraints are added is

deliberately left unspeci�ed. If the order matters, this indicates that there are multiple possible

ways to solve the constraint network, and the user may want to alter the constraint network to

select a single desired solution.

Slots along an indirect reference path can be constrained by other constraints. When constraint

propagation causes such a slot to be changed, constraint propagation is completed using the existing

constraint network, then any constraints whose indirect reference paths have changed are updated

as described above. This may cause further constraint propagation, and indirect reference path

invalidation, etc. One can thus have multiple levels of constraint networks each setting indirect

reference path slots for constraints on the level below it. Note that it is possible that a constraint

that will be removed (because a slot on its indirect reference path has changed) can still inuence

the constraint graph, and can still be used to propagate variable values, up until the moment it is

removed.

Within this system, it is possible to cause in�nite loops, by creating constraints that directly or

indirectly set their own indirect reference path slots. For example, consider the code:

(create-instance 'bar nil)

(create-instance 'baz nil)

(s-value bar :b baz)

(s-value baz :b bar)

(create-instance 'foo nil

(:a bar)

(:c (m-constraint :strong ((yy (gvl :a))

(xx (gvl :a :b)))

(setf yy xx)))

)

When the constraint is created, it will set foo's :a slot to baz, which will cause the constraint to be

removed and added, which will set foo's :a slot to bar, and back and forth forever.

It is very unlikely that in�nite loops such as this would occur in normal Multi-Garnet programs.

Still, if such a loop did occur, it would be di�cult to debug the program. To help detect such loops,

Multi-Garnet imposes an arbitrary limit on the number of times that invalid indirect reference

paths are processed as the result of a single value propagation. When this limit is reached, the list of

invalidated indirect reference paths is cleared, leaving the constraint network in a strange state where

some constraints will not actually constrain the slots speci�ed by their indirect reference paths. This

is admittedly an ad-hoc solution to this (rare) problem. In a future version of Multi-Garnet it may

be possible to detect such loops by analyzing the interactions of the constraint network and the

indirect reference paths.
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The loop-termination mechanism is controlled by the following global variables:

*max-path-updates* [Variable]

Value speci�es the number of times that invalid indirect reference paths will be processed as the

result of a single value propagation. Initially 10.

*max-path-updates-warning* [Variable]

Value determines whether warnings are printed when indirect reference paths are processed more

than *max-path-updates* times. If the value is NIL, nothing is printed. If the value is :error, a

continuable error is signaled. If the value is T, a warning message is printed. Initially T.

2.9 Inheriting Constraints, Indirect Path Slots, and Vari-

able Slots

Multi-Garnet implements inheritance of multi-way constraints and constrained slots slightly di�er-

ently than Garnet handles inheritance of formulas. First, constraints are only inherited when an

object is created, by copying any constraints in parent slots down to the child. After a child is

created, adding or removing constraints from the parent has no e�ect on the child. In particular, if

a constraint is set to a slot in a parent, it is not automatically copied down to all children. Second,

any inherited slots accessed while following indirect reference paths (including the �nal slot to be

constrained) are copied down when they are �rst accessed.

After an object instance is created and initialized, any constraints in the slots of the parent instance

are copied down to the child object (unless the child object overrides the slot value). These con-

straint copies are added to the child object using s-value (in an unspeci�ed order), so they are

activated if their indirect reference paths are unbroken. Note that the child's copy of a constraint

is completely independent of the parent's copy of the constraint. The e�ect is as if a copy of the

original m-constraint de�nition form had been used to create a new constraint, and it had been

assigned to the child object's slot.

Note: A constraint in a parent object slot is only copied down and activated if the object and slot

are that constraint's root object and slot (see Section 2.5).

If constraint variable slots and indirect reference path slots are inherited, their value is copied down

when they are �rst accessed while following the indirect reference paths.
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2.9.1 The Duplicate Constraint Problem

If a constraint is inherited, and all of its indirect reference paths slots are inherited, then it will

de�ne a duplicate constraint. For example, consider the situation:

(create-instance 'foo nil (:a 5))

(create-instance 'bar nil (:b 6))

(create-instance 'baz nil

(:obj1 foo)

(:obj2 bar)

(:cn (m-constraint :required ((a (gvl :obj1 :a))

(b (gvl :obj2 :b)))

(setf a b)

(setf b a))))

The constraint in baz's :cn slot ensures that foo's :a slot is equal to bar's :b slot. However, suppose

that now a child instance is made of baz via (create-instance 'baz2 baz). The constraint :cn

will be copied down to baz2, and the contents of slots :obj1 and :obj2 will be inherited, so the

new constraint in baz2's :cn slot will also try to equate foo's :a slot and bar's :b slot. This will

cause a cycle, which the current system cannot handle correctly. It seems unfortunate that one can

get into problems simply by making an instance of an object, without overriding any slots.

It might be possible to extend Multi-Garnet to handle such duplicate constraints specially, perhaps

by changing create-instance to inactivate duplicate constraints automatically. However, this

would change the semantics of inheritance. Currently, it seems reasonable to consider duplicate

constraints as programming errors.

2.10 Interactors and Multi-Garnet Constraints

Garnet interactors operate by setting speci�ed slots in graphic objects (like feedback objects), and

formulas are used to distribute this information to other parts of the user interface. If these slots are

constrained by Multi-Garnet constraints, or are indirect reference path slots, setting these slots will

trigger Multi-Garnet constraint propagation and/or changes in the constraint network. Therefore,

in most situations, normal Garnet interactors can be used with Multi-Garnet, without change.

One exception is interactors which use destructive operations to change data structures. For e�-

ciency, inter:move-grow-interactor and inter:two-point-interactor reuse the list structures

stored in the :box slot of the item (or feedback object) being dragged. Since s-value isn't used,

Multi-Garnet value propagation isn't triggered. In addition, Multi-Garnet stays are not able to

prevent the value from being changed. Note that Garnet formulas have the same problem: These

interactors have to call mark-as-changed to invalidate any formulas depending on the :box slot,

when they destructively change this list.

This problem was handled in the current Multi-Garnet system by changing the interactors so they

will check if the :box slot is constrained by a Multi-Garnet constraint. If it is not constrained, then

the normal destructive list operation is done. If it is constrained, then the :box slot is set to a

copy of the new points list (using an input constraint with strength *default-input-strength*).

Presumably, the cases where this happens are few enough that they can be handled individually.
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Since setting a value to a constrained slot is implemented by adding and removing a constraint, this

can cause unexpected behavior with some interactors. For example, if a weak constraint equates the

value in a :box slot to a particular value, then dragging the object with move-grow-interactor

will not change the position of the object, because after each time the interactor sets the value

(adding and then removing a strong constraint), the weak constraint will set the value back to

the original value. If (opal:update) is called after each constraint operation, then the object will

appear to bounce between the original and new positions, as the weak constraint and the interactor

alternatively determine its position.

2.11 Coexistence of Garnet and Multi-Garnet

In implementing Multi-Garnet, some of Garnet's internal functions were modi�ed to detect and

handle Multi-Garnet constraints, while taking care not to remove any of the formula handling code.

Regular Garnet applications that use formulas can be loaded and run in Multi-Garnet, coexisting

with applications built entirely using Multi-Garnet constraints.

Garnet formulas and Multi-Garnet constraints can also be mixed in the same application, although

all possible combinations are not supported. Speci�cally, it always possible for Garnet formulas to

read the values of slots constrained by Multi-Garnet constraints, but it is somewhat more problematic

for Multi-Garnet constraints to constrain slots that are set by Garnet formulas. This is a di�cult

situation because of the di�erent evaluation styles used by formulas (lazy evaluation) and Multi-

Garnet constraints (eager evaluation), as well as the desire to respect Multi-Garnet constraints. For

example, if a slot is constrained by a required stay, it should not be changed, even if it has an

associated formula that is invalidated.

Currently, formulas associated with constrained slots are handled as follows: When such a formula

is invalidated, an input constraint (with strength *formula-set-strength*, normally :strong)

is created and temporarily added and removed to set the slot. If the input constraint is strong

enough, the formula is evaluated, and the new value is propagated through the network. If the input

constraint is overridden by a stronger constraint, the formula is marked as valid (even though it is

not evaluated).

The situation is actually more complicated, since formula evaluation may cause constraint propaga-

tion, which may cause other formulas to be invalidated. It is possible to created loops between formu-

las and Multi-Garnet constraints. Formula evaluation is handled through the same mechanism used

to update invalid indirect reference paths (see Section 2.8), and the variable *max-path-updates*

is used to terminate possible in�nite loops.

This mechanism allowing formulas to be associated with constrained slots is new and experimental.

It was implemented primarily to allow the use of constraints with existing Garnet gadgets containing

formulas. Therefore, not all possible combinations of formulas and constraints are supported. In

particular, it is not possible to add a formula to a slot that is already constrained: the formula must

already be associated with the slot before it is constrained. Illegal combinations are detected, and

an error is signaled.
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2.12 Errors under Multi-Garnet

One of the goals for Multi-Garnet was to be as robust as possible, doing the most reasonable thing

rather than just crashing if an error occurs. In particular, it is very undesirable for an error to leave

the constraint solver data structures in a bad state, since it would be virtually impossible to �x

them up and continue. Here is how Multi-Garnet handles several di�erent types of errors:

1. Required-required conicts.

When a required constraint is added to the constraint network, and it cannot be enforced

because of a conicting required constraint, the newly-added constraint is left unsatis�ed (in

e�ect, reducing its strength to a strength between :strong and :required). If at some future

point the other conicting constraint is removed, the newly-added constraint will be enforced

at that time. Note that if a constraint network contains any unsatis�ed required constraints,

then by de�nition it is an unsolved network, and none of the variable values should be trusted.

*unsatisfied-required-constraint-warning* [Variable]

If this variable is non-NIL, a warning message will be printed when a required constraint is

added to the constraint network, and it cannot be enforced because of a conicting required

constraint. Initially T.

2. Constraint cycles.

The SkyBlue constraint solver is more tolerant of constraint cycles than the DeltaBlue solver.

Whereas DeltaBlue would signal a fatal error and halt if it encountered a cycle of constraint

methods, SkyBlue can handle this situation without halting. This does not mean that SkyBlue

will necessarily solve a cycle, producing correct values for the variables in the cycle. Given

a cyclic constraint network, SkyBlue may choose a set of methods containing a cycle. When

such a cycle is detected during constraint propagation, SkyBlue will stop propagating values.

*sky-blue-cycle-warning* [Variable]

If this variable is non-NIL, a warning message will be printed when a cycle is detected. Initially

NIL.

An area for future work is adding support for more powerful solvers for solving cycles of

constraints, which SkyBlue could call when such a cycle is detected.

If there is such a cycle, then by de�nition the constraint network is not solved, and the variable

values should not be trusted. However, if the cycle is later broken by removing constraints in

the cycle, then SkyBlue will propagate values to solve the network again.

3. Illegal mixtures of formulas/constraints/variables

Currently, there are a number of situations that Multi-Garnet cannot handle, such as installing

a formula on a slot containing a Multi-Garnet constraint, or a constraint being produced as

the output of a constraint method. When such a situation is detected, an error is signaled.

Unfortunately, in the current implementation it may not be safe to continue from the error.

For example, if a constraint method produces a constraint as its value while propagating values

around the constraint network, this may leave the constraint network structures in a bad state.

4. Errors while evaluating constraint methods.

If an error occurs while evaluating a constraint method, this can leave the system in a bad

state. This was also true when evaluating formulas in Garnet.
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2.13 Examining Constraints and Variables

The following functions can be used to examine the state of Multi-Garnet constraints and variables:

(constraint-p constraint) [Function]

Returns T if constraint is a constraint, NIL otherwise.

(constraint-state constraint) [Function]

Returns four multiple values: connection, enforced, object, and slot.

connection is one of the following keywords: :unconnected, connected, :graph, or :broken-path.

If connection is :unconnected, this means that the constraint does not have a root object, and would

be activated if it was stored in an object slot. If connection is :connected, this means that the

constraint's indirect reference paths have been successfully resolved, but it has not been added to the

constraint graph yet (this is a transitional state that should not be seen in normal circumstances). If

connection is :graph, the constraint is part of the constraint graph. If connection is :broken-path,

one of the indirect reference paths of the constraint is broken, so the constraint is not part of the

constraint graph.

enforced is T if the constraint is currently an enforced constraint in the constraint graph, NIL oth-

erwise. It should be enforced if it is in the graph, unless the constraint is overridden by a stronger

constraint.

object is the root object used when interpreting this constraint's indirect reference paths. If this is

NIL, then the constraint is not stored in any object. Usually, such constraints are :unconnected,

though there are some constraints, such as the input constraints used to implement s-value, that

do not have a root object.

slot is the slot in the root object containing this constraint.

(variable-state object slot) [Function]

Returns three multiple values: var-p, valid, and path-slot-p. var-p is T if the speci�ed object and

slot is used as a Multi-Garnet variable, NIL otherwise. valid is T if the variable value is valid, NIL

otherwise. path-slot-p is T if the speci�ed object and slot is used as a slot along a Multi-Garnet

indirect reference path, NIL otherwise.

Currently, the only situation where a variable will be marked invalid is when it is \downstream" of

a cycle of methods. In a future version of Multi-Garnet, each variable will be marked valid if and

only if its value is part of a correct solution to the constraint network (according to the hierarchical

constraint theory). In this case, if there is a cycle in the graph that SkyBlue cannot solve, or there

are two conicting required constraints that cannot both be satis�ed, then all variables in the graph

would be marked as invalid.

2.14 Creating and Using Plans

When the SkyBlue constraint solver adds or removes a constraint from the network, it performs

separate planning and execution operations to resatisfy the constraints. During the planning stage,

methods from the constraints are chosen and ordered; during the execution stage, these methods
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are actually executed to compute new values for the variables that will satisfy the hierarchy of

constraints. In many interactive graphics applications, new input values is repeatedly fed into the

same network of constraints, repeatedly executing the same sequence of methods. For example, when

dragging an object using inter:move-grow-interactor, the :box slot of the object being dragged

will be repeatedly set, followed by the same constraint propagation. In this case, it is possible to

improve performance by extracting the \plan" for the constraint propagation once, and repeatedly

executing it with di�erent values for the :box slot.

Multi-Garnet provides functions for extracting and reusing plans, and they can be used to improve

performance in some situations, but they should be used very carefully. A given plan is derived

from a given constraint network, and only has meaning for that set of constraints. If a constraint

is added or removed from the part of the network containing the constraints in the plan, this would

render the plan invalid, and the plan should not be executed. Multi-Garnet detects when a plan is

invalid, and refuses to execute invalid plans.

(create-plan constraints) [Function]

Given a list of constraints, creates and returns a plan that will propagate values starting with these

constraints. Any constraints that are not currently enforced are ignored.

(valid-plan-p plan) [Function]

Returns T if plan is currently valid, otherwise NIL.

(run-plan plan) [Function]

Executes the plan, if it is valid. If the plan is invalid, this signals a continuable error; continuing

from the error just returns from run-plan without executing the plan. Note that executing a plan

may cause indirect reference paths or formulas on constrained slots to be invalidated, which may

cause other constraints to be added and removed, which may invalidate the plan.

(propagate-plan-from-cn constraint) [Function]

This is a convenient function for generating and using a plan based on a single constraint. This

extracts a plan starting from the constraint, caches it, and runs it. If there is already a cached plan

that is valid, then this plan is used instead. In the typical case, when the constraint network is not

being changed between calls to this function, a plan will be generated on the �rst call, and reused on

the remaining calls. However, if the constraint network is being changed between calls, then this will

repeatedly extract and run a plan, which may be slower than simply repeatedly adding constraints

to inject new values into the network.

Here is an example showing how the plan functions can be used. Suppose that one wanted a version

of inter:move-grow-interactor that reused a plan to repeatedly set the :box slot of an object

being dragged. This could be done via:
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(create-instance

'my-inter inter:move-grow-interactor

(:start-action

#'(lambda (inter obj pts)

;; set up external input value

(setq *inter-box* (copy-list pts))

;; add input constraint to set :box of obj

(s-value obj :inter-box-cn

(m-constraint :strong (box) (setf box *inter-box*)))

))

(:running-action

#'(lambda (inter obj pts)

;; update new box value

(setq *inter-box* (copy-list pts))

;; extract and execute plan to propagate this new value

(propagate-plan-from-cn (g-value obj :inter-box-cn))

))

(:stop-action

#'(lambda (inter obj pts)

;; remove plan constraint

(s-value obj :inter-box-cn nil)))

...)

Note that the constraint added to set the :box slot, and to be the head of the plan, takes its value

from the global variable *inter-box*, external to the constraint network. This is important. If the

new value was accessed through the normal constraint slot access mechanisms, via a constraint such

as (m-constraint :strong (box new-val) (setf box new-val)), then any attempt to set the

:new-val slot would lead to adding an input constraint, and constraint propagation, and the plan

would be invalidated.

2.15 Enabling and Disabling Multi-Garnet

In implementing Multi-Garnet, a number of internal Garnet system functions were modi�ed to

recognize and handle Multi-Garnet constraints. When Multi-Garnet is loaded, the old versions of

these functions are saved, and new versions are installed. These modi�cations can be reversed using

the following functions. Under normal circumstances, it should never be necessary to call these

functions.

(enable-multi-garnet) [Function]

Modi�es Garnet system so that Multi-Garnet constraints can be handled. This function is called

when load-multi-garnet.lisp or compile-multi-garnet.lisp is loaded.

(disable-multi-garnet) [Function]

Restores the original Garnet function de�nitions. While Multi-Garnet is disabled, any Multi-Garnet

manipulations, such as adding constraints to slots, or setting values to constrained slots, will not

work correctly.
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(multi-garnet-enabled) [Function]

Returns T if Multi-Garnet is currently enabled, NIL otherwise.
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Chapter 3

A Scatterplot in Multi-Garnet

The �le scatterplot.lisp in the Multi-Garnet v2.1 release contains a large Multi-Garnet example:

a scatterplot displaying a set of points. Multi-Garnet constraints are used to specify relationships

between the data values, the screen positions of the points, and the positions of the X and Y-

axes. As the scatterplot points and axes are manipulated, Multi-Garnet maintains the constraints

by propagating values through the constraint network. The exact behavior of an interaction is

controlled by the current interaction mode, which \anchors" values that should not be changed

when satisfying the constraints.

This scatterplot program could have been written entirely in Garnet, using one-way formulas to

connect the di�erent elements, but it would not have been easy. Each di�erent interaction mode

would have to enable exactly the right set of formulas to propagate the values correctly. Adding

a new interaction mode would require examining the entire network of formulas. In contrast, the

Multi-Garnet scatterplot program declares the relationships between the scatterplot elements once,

and uses the Multi-Garnet constraint solver to choose which methods to execute to maintain the con-

straints. New interaction modes are speci�ed by adding a few stay constraints to control constraint

propagation.

To try this program, compile and load the �le scatterplot.lisp. Once this �le is loaded, execute

(user::create-scatterplot-demo) to create the window displaying the scatterplot. Depending

on the current interaction mode, dragging the scatterplot points and the axes will produce di�erent

results. The current interaction mode is speci�ed via the buttons on the left of the window.

This document describes how to operate this example, and explains how the di�erent interaction

modes are implemented using multi-way hierarchical constraints. The �le scatterplot.lisp in-

cludes many comments explaining details of the implementation.

3.1 The Scatterplot Window

Figure 3.1 shows the initial state of the scatterplot window. It contains two scatterplots displaying

various slots of a single collection of data objects. The left scatterplot displays the :a and :b slots

of the objects, and the right scatterplot displays the :c and :a slots.
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Figure 3.1: Initial Scatterplot Window

The scatterplot uses Multi-Garnet constraints to maintain relationships between the object �elds,

the positions of points in the scatterplot, and the positions and ranges of the scatterplot axes.

Figure 3.2 shows the same window, after the left scatterplot points and axes have been moved and

resized. This is still a meaningful scatterplot, displaying the same data.
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Figure 3.2: Scatterplot After Changes to Points and Axes

The buttons on the left control the interactors used to move and reshape the points and axes. At

any one time, only the single interaction mode speci�ed by the radio buttons is enabled. A real

data analysis system would probably link di�erent interaction modes to di�erent control-key and

mouse-button combinations. For the demo, it is less confusing to specify the interaction mode

explicitly.

The di�erent interaction modes specify di�erent ways that the various parts of the scatterplot should

be modi�ed as the points or axis bars are moved. For example, in the \Change Data" mode, moving

a point will actually change the data object being represented, without changing any other parts

of the scatterplot. On the other hand, in the \Move Points" mode, moving a point will drag all of

the scatterplot points the same distance, updating the axis range numbers appropriately. For any

given interaction (dragging a point, or reshaping an axis), there are multiple possible ways that the

constraints between the parts of the scatterplot can be maintained. The di�erent interaction modes

demonstrate some of these possibilities.
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3.2 The \Use Plans" Button

The button labeled \Use Plans" in the lower left of the scatterplot window controls whether the

interactors will construct and reuse constraint plans during an interaction. It is initially selected,

so plans are used. The speed of interactions with and without the use of plans can be compared by

switching the \Use Plans" button o�. This does not change the behavior of the interactions in any

way.

3.3 The Scatterplot Constraint Network

Figure 3.3 displays the network of constraints and slots used to relate the position and range of

the left scatterplot's x-axis and y-axis to the position of a single point, the one in the upper-right

corner. In the network diagram, the black boxes represent constraints, and the white ones represent

variables. The arrows indicate the input and output variables of the constraint method used to

maintain each constraint. All of the constraints have required strength, unless marked otherwise.

The point's :box-cn constraint relates its :box slot, specifying the size and position of the circle,

to the :x and :y slots, containing the coordinates of the center of the circle. The :x-cn constraint

relates the point's :world-x slot, containing the data value being measured by the x-axis, to the

point's x-coordinate, according to the values of the x-axis slots :offset and :scale. This is a multi-

way constraint, which can calculate any of the four slot values, given the other three. Likewise, the

:y-cn constraint relates the point's :world-y slot to the point's y-coordinate and the y-axis :offset

and :scale.
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Figure 3.3: Initial Scatterplot Constraint Network

:world-x and :world-y are derived from the datum object being represented by this point. In

this case, the connection between the datum and these slots is speci�ed by the :datum-x-cn and

:datum-y-cn constraints, which equate these values to the :a and :b slots of the datum object

respectively. These constraints could be more complex, calculating values using multiple slots of

the datum objects. The anchor symbols specify that the datum :a and :b slots are constrained by
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weak stay constraints. These weak stays prevent the data slot values from being changed, if this is

possible without violating stronger constraints.

The x-axis :axis-cn constraint maintains the relationship between the x-coordinates of the ends of

the axis (:screen-min and :screen-max), the data values at the ends of the axis (:world-min and

:world-max), and the :scale and :offset slots used to position points relative to the axis. This

constraint de�nes multi-output methods to calculate the values of each of these three pairs of slots

from the values of the other two pairs. Although the two ends are labeled \min" and \max", this is

just a convenient labeling. :screen-max can be less than :screen-min, as in the case of the y-axis,

where the y-coordinates increase downwards. :world-max can also be less than :world-min, if the

data values are ipped around an axis.

Finally, the x-axis :box-cn constraint packs the values of the :screen-min and :screen-max slots,

along with the x-axis :y slot determining the y-coordinate of the axis, into the x-axis :box slot,

determining the size and position of the x-axis.

The y-axis :axis-cn and :box-cn constraints are similar, except that the :screen-min and

:screen-max slots contain the y-coordinates of the ends of the axis, and the y-axis :x slot holds the

x-coordinate of the axis.

Given this constraint network, if any of the slots are changed, Multi-Garnet will maintain the

constraints by altering the values of other slots. However, there may be many possible ways to

satisfy the constraints. If a point's :x slot is changed, the :x-cn constraint could be satis�ed by

changing the x-axis :scale or :offset slots, or the point's :world-x slot (though this last option

would not be chosen unless some stronger constraint overrode the :weak stay on the datum :a slot).

One can restrict the propagation paths chosen by adding additional stay constraints to slots. By

anchoring di�erent combinations of slots, one can produce a number of di�erent behaviors.

3.4 The \Change Data" Interaction Mode

When the \Change Data" interaction mode is selected, dragging a point with the left mouse button

will actually change the datum being represented by the scatterplot point, without changing the

axes or the other data points. When such a point is changed in the left scatterplot, changing the

:a and :b slots of a datum object, it will also change the position of the corresponding point in the

right scatterplot. Because the right scatterplot displays the :a slot on the vertical axis, moving a

point horizontally in the left axis will move it vertically in the right axis.

Figure 3.4 shows the constraint network while this interaction is proceeding. The \circle and triangle"

symbol next to the \Pt :Box" box speci�es that there is a strong input constraint changing the value

of the :box slot as the Garnet interactor moves this point. The thick arrows indicate the \data

ow" from the :box slot of the point being moved to the datum object slots actually being changed.

Other constraints (not shown) use the value of the :a data �eld to position the corresponding point

in the right scatterplot.

While this interactor is running, stay constraints are added to other variables to control how the

constraints are maintained. During this interaction, required stay constraints are added to the

:scale and offset slots of the x and y-axes, so that neither of the axes will be changed during the

interaction. Since all of the other points in the scatterplot are positioned according to these slots,

they won't move either.
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Figure 3.4: Scatterplot and Constraint Network During \Change Data" Interaction Mode

Note: If an anchor is displayed without a strength, its strength is required. An anchor symbol

is only displayed if a stay constraint is currently anchoring the speci�ed variable. In Figure 3.4,

:datum-x-cn is determining the value of the datum :a slot, so the anchor symbol for its weak stay

constraint is not displayed.

3.5 The \Move Points" Interaction Mode

When the \Move Points" interaction mode is selected, dragging a point with the left mouse button

will drag all of the other points in the scatterplot along with it, maintaining their relative positions

(see Figure 3.5a). The axes will not move, but their range numbers will change to be consistent with

the position of the data cloud.
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Figure 3.5: Scatterplot and Constraint Network During \Move Points" Interaction Mode

Figure 3.5b shows the constraint network when this interaction is proceeding. Only the x-axis half
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of the network is shown: the y-axis network is symmetrical. Also the datum object slots are not

shown: in this and the following network diagrams, the datum objects are not changed.

While this interactor is running, required stay constraints are added to :world-x, so the data value

will not change, and to the x-axis :scale, so that the scale used to determine relative x-distances

does not change. Required constraints are also added to the axis :screen-max and :screen-min

slots, so the axis positions will not change. The only way to satisfy the constraints when the :box

slot changes is to modify the :offset slot, and then use this to modify the axis range numbers. As

the :offset slot is changed, this causes all of the points in the scatterplot to be moved by the same

amount, so their relative positions stay the same.

3.6 The \Scale Points" Interaction Mode

When the \Scale Points" interaction mode is selected, dragging a point with the left mouse button

will stretch the point cloud, scaling the point positions independently in both the x and y directions

(see Figure 3.6a). The axes will not move, but their range numbers will change to be consistent with

the position and size of the point cloud.
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Figure 3.6: Scatterplot and Constraint Network During \Scale Points" Interaction Mode

The scaling is done relative to the origin of the scatterplot (where :world-x and :world-y would

both equal 0). When the selected point is dragged to this position, the point cloud shrinks down to

a single point. The selected point can even be dragged to the \other side" of the origin, causing the

point cloud to be reversed.

Figure 3.6b shows the constraint network when this interaction is proceeding. It is similar to

Figure 3.5b, except that the anchor is on the :offset slot rather than the :scale slot.

3.7 The \Move Axis" Interaction Mode

When the \Move Axis" interaction mode is selected, dragging one of the axis bars with the left mouse

button will move it, without changing the scatterplot points or the other axis (see Figure 3.7a). The
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axis range numbers are changed to be consistent with the position of the axis relative to the data

cloud. This allows the axis to be used as a \ruler" to examine the position of particular points.
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Figure 3.7: Scatterplot and Constraint Network During \Move Axis" Interaction Mode

Figure 3.7b shows the constraint network when this interaction is proceeding. While this interactor

is running, required stay constraints are added to the :scale and offset slots of the x-axis, so that

the point positions will not be changed during the interaction. As the :box slot of the x-axis is

changed by the Garnet interactor, it is unpacked by the :box-cn constraint, and then these values

are used to update the axis range numbers.

3.8 The \Scale Axis" Interaction Mode

When the \Scale Axis" interaction mode is selected, clicking and dragging on one of the axis bars

with the left mouse button will stretch or shrink the axis, relative to the far end (see Figure 3.8a).

The axis range numbers are changed to be consistent with the position and size of the axis relative

to the data cloud. The scatterplot points and the other axis are not changed.

(a)

42.86 100.00A
0.00

100.00

B

(b)

X-Axis :Y
296

Pt :X-Cn

Pt :World-X
98.60

X-Axis :Offset
374.00

X-Axis :Scale
1.96

X-Axis :Axis-Cn

X-Axis :Screen-Min
458

X-Axis :Screen-Max
570

X-Axis :World-Min
42.86

X-Axis :World-Max
100.00

Pt :Box-Cn

Pt :Box
(561 50 12 12)

Pt :X
567.26

X-Axis :Box-Cn

X-Axis :Box
(458 296 112 11)str

Pt :Y
56.15

Figure 3.8: Scatterplot and Constraint Network During \Scale Axis" Interaction Mode

It is possible to ip an axis by reshaping it so its ends are reversed. The axis range numbers will be
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calculated correctly in this case. However, the axis rectangle will disappear, and warning messages

will be printed by the Garnet display routines, because the axis rectangle will have a negative width

(or height).

Figure 3.8b shows the constraint network when this interaction is proceeding. This is almost exactly

the same as the network during the \Move Axis" interaction mode (Figure 3.7b). Required stay

constraints are added to the :scale and offset slots of the x-axis, so that the point positions

will not be changed during the interaction, and the changed values of the :box slot propagate to

change the axis range numbers. The only di�erence between these two interactions is that the

move-grow-interactor used for the \Move Axis" interaction mode has its :grow-p slot set to NIL,

so it responds to mouse movements by setting the axis' :box slot to simply move the axis rectangle.

The move-grow-interactor used for the \Scale Axis" interaction mode has its :grow-p slot set

to T, so it responds to mouse movements by setting by setting the axis' :box slot to correspond to

reshaping the axis rectangle.

Sometimes the move-grow-interactor used for the \Scale Axis" interaction mode will set the fourth

number in the :box list (the height) to di�erent numbers. However, the constraints which unpack

the :box slot into the four :left, :top, :width, and :height slots (not shown in the constraint

networks here) always set the :height slot of a horizontal axis to a single constant value, so the

axis rectangle displayed will not actually change height.

3.9 The \Move Axis & Points" Interaction Mode

When the \Move Axis & Points" interaction mode is selected, dragging one of the axis bars with

the left mouse button will move it along with the scatterplot points (see Figure 3.9a). The axis'

range numbers are not changed, since it is still measuring the same range relative to the scatterplot

points. The other axis is unchanged.
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Figure 3.9: Scatterplot and Constraint Network During \Move Axis & Points Interaction Mode

One use for this mode is to allow combining multiple scatterplots. For example, in Figure 3.10,

the \C" axis and the points of the right scatterplot have been dragged over to the left scatterplot.

This mode would be particularly useful when trying to discover common patterns in data plotted in

multiple scatterplots.
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Figure 3.10: Overlaying Two Scatterplots

Figure 3.9b shows the constraint network while this interactor is running. Required stay constraints

are added to the :world-min and :world-max slots of the x-axis, so that the range numbers will

not change. As the axis is moved, new :scale and :offset values are calculated that correspond

to the same range numbers in the new position. All of the scatterplot points use the :world-min

and :world-max slots of the x-axis to calculate their x-position, so all of the points are repositioned

along with the axis.

Note that the length of the axis is not changed during this interaction, so the :scale value will

always be recalculated as the same number.

3.10 The \Scale Axis & Points" Interaction Mode

When the \Scale Axis & Points" interaction mode is selected, dragging on one of the axis bars with

the left mouse button will stretch or shrink the axis, relative to the far end, along with the scatterplot

points (see Figure 3.11a). The axis range numbers are not changed, since it is still measuring the

same range relative to the scatterplot points. The other axis is unchanged. This can be used to

adjust the scales of multiple scatterplots, to compare point clouds that may be shown with di�erent

scales. Unlike the \Scale Points" interaction mode, which changes the x and y scales independently,

this just changes the scale along one axis.

Figure 3.11b shows the constraint network while this interactor is running. This is almost exactly

the same as the network during the \Move Axis & Points" interaction mode (Figure 3.9b). Required

stay constraints are added to the :world-min and :world-max slots of the x-axis, so that the range

numbers will not change. As the axis is reshaped, new :scale and :offset values are calculated

that correspond to the same range numbers for the reshaped axis. All of the scatterplot points use

the :world-min and :world-max slots of the x-axis to calculate their x-position, so all of the points

are repositioned to move and scale the points along with the axis.

Note that it is possible for both the :scale and :offset slots to contain new numbers as an axis

is scaled. As an axis is scaled, this may move the 0:0 point along this axis, which would change the
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Figure 3.11: Scatterplot and Constraint Network During \Scale Axis & Points Interaction Mode

o�set value.

3.11 The \X-Scale = Y-Scale" Button

By adding additional constraints to the network, the behavior of some interactions can be modi�ed.

For example, suppose that the x and y axes were measuring the same basic units, such as inches

against inches. In this case, it might be desirable to restrict both axes to use the same scale in units

per pixel. When the \X-Scale = Y-Scale" button is selected, a strong constraint is added equating

the :scale slots of the X-axis and Y-axis of the left scatterplot. If these scales are not already equal,

the scatterplot points may be moved when the constraint is added.

X-Axis :Y
296

Pt :X-Cn

Pt :World-X
98.60

X-Axis :Offset
374.00weak

X-Axis :Scale
2.46

X-Axis :Axis-Cn

X-Axis :Screen-Min
374

X-Axis :Screen-Max
570

X-Axis :World-Min
0.00

X-Axis :World-Max
79.67

Pt :Box-Cn

Pt :Box
(611 50 12 12)

Pt :X
616.56

X-Axis :Box-Cn

X-Axis :Box
(374 296 196 4)

Pt :Y
56.15

Y-Axis :X
370

Y-Axis :Offset
296.00weak

Y-Axis :Scale
-2.46

Y-Axis :Axis-Cn

Pt :Y-Cn

Y-Axis :Screen-Min
296

Y-Axis :Screen-Max
50

Y-Axis :World-Min
0.00

Y-Axis :World-Max
100.00

Pt :World-Y
97.50

Y-Axis :Box-Cn

Y-Axis :Box
(370 50 4 246)

:Equal-Scale-Cn (str)

Figure 3.12: Constraint Network With \X-Scale = Y-Scale" Button Selected

Figure 3.12 shows the network when this constraint is added. When the button is selected, two

weak stay constraints are also added to the :offset slots of the two axes, as explained below.

Note that the :equal-scale-cn actually multiplies the y-axis scale by �1, to compensate for the

y-coordinates which increase downwards (opposite from the normal direction of increasing values on

a vertical axis).
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Figure 3.13: Constraint Network for \Change Data" Mode With Equal-Scale Constraint

Most of the interaction modes act the same when the scale equality constraint is added. For exam-

ple, the \Change Data" mode can be used to change data values as before. Figure 3.13 shows the

constraint network while this interaction is running. Because this interaction adds required stays to

the X-axis and Y-axis :scale slots, neither of the two methods of the :equal-scale-cn constraint

can be run (setting the x-axis scale from the y-axis scale, or vice-versa), so the constraint is unsat-

is�ed, as indicated by the dashed lines from the box for this constraint. Actually, in this case the

constraint is satis�ed, because both of the scales are equal, but the current constraint system does

not detect this. The :equal-scale-cn constraint was speci�ed as a strong constraint, rather than

a required constraint, in order to allow it to be overridden in this situation.
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Figure 3.14: Constraint Network for \Scale Points" Mode With Equal-Scale Constraint

The \Scale Points" interaction mode is essentially disabled when the scale equality constraint is

added. Figure 3.14 shows the constraint network while this interaction is running. Required stays

are added to the :world-x and :world-y slots of the point being moved, and to the :offset slots

of the x and y axes. Therefore, the only way to satisfy the point's :x-cn and :y-cn constraints is

to set the x-axis and y-axis :scale slots. However, in order to set both of these slots, the strong
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:equal-scale-cn constraint has to be overridden. It cannot be overridden by the strong input

constraint the interactor uses to set the point's :box slot, so the point is not moved at all.

Another way to look at this situation is that the \Scale Points" interaction mode cannot set the x

and y scales to two independent values, while the :equal-scale-cn constraint is ensuring that they

are equal. If the :equal-scale-cn constraint was weaker than the input constraint, say if it was a

medium constraint, the input constraint could override it during the interaction. However, when the

input constraint was removed, the scale values would be changed to satisfy the :equal-scale-cn

constraint again.
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Figure 3.15: Collapsing the Point Cloud

The behavior of the \Scale Axis & Points" interaction mode is changed in an interesting way when

the :equal-scale-cn constraint is added. As one axis is scaled, the other axis is scaled evenly,

collapsing or expanding the point cloud uniformly in both directions (see Figure 3.15).

X-Axis :Y
296

Pt :X-Cn

Pt :World-X
98.60

X-Axis :Offset
374.00

X-Axis :Scale
1.05

X-Axis :Axis-Cn

X-Axis :Screen-Min
374

X-Axis :Screen-Max
458

X-Axis :World-Min
0.00

X-Axis :World-Max
79.67

Pt :Box-Cn

Pt :Box
(472 187 12 12)

Pt :X
477.95

X-Axis :Box-Cn

X-Axis :Box
(374 296 84 4)str

Pt :Y
193.21

Y-Axis :X
370

Y-Axis :Offset
296.00weak

Y-Axis :Scale
-1.05

Y-Axis :Axis-Cn

Pt :Y-Cn

Y-Axis :Screen-Min
296

Y-Axis :Screen-Max
50

Y-Axis :World-Min
0.00

Y-Axis :World-Max
233.33

Pt :World-Y
97.50

Y-Axis :Box-Cn

Y-Axis :Box
(370 50 4 246)

:Equal-Scale-Cn (str)

Figure 3.16: Constraint Network for \Scale Axis & Points" Mode With Equal-Scale Constraint

Figure 3.16 shows the constraint network while this interaction is running. The modi�ed x-axis

:box slot propagates to the x-axis :scale slot, which the :equal-scale-cn constraint copies to the

y-axis :scale, which changes the y-axis range numbers. The changed x-axis :scale and :offset

values, as well as the y-axis :scale, are used to reposition the scatterplot point in the network (as

well as all of the other points in the scatterplot).
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The weak stay on the y-axis :offset prevents the system from selecting a propagation path where

the :y-cn constraint for one of the scatterplot points is satis�ed by modifying the y-axis :offset,

rather than the point's :y slot. If this happened, the e�ect would be that the rescaled point cloud

would shrink and expand around the y-position of this point, rather than around the (0; 0) point of

the scatterplot.

There is actually more than one possible propagation path that could have been chosen with this

network. It is possible for the y-axis :axis-cn constraint to be satis�ed by changing :screen-max

and :screen-min, moving and reshaping the y-axis while keeping the same range numbers. This

could be prevented by adding additional stay constraints.
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