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Abstract

The e�cient satisfaction of constraints is essential to the performance of constraint-based user

interfaces. In the past, most constraint-based user interfaces have used one-way rather than multi-

way constraints because of a widespread belief that one-way constraints were more e�cient. In

this paper we argue that many user interface construction problems are handled more naturally

and elegantly by multi-way constraints than by one-way constraints. We present pseudocode for an

incremental multi-way constraint satisfaction algorithm, DeltaBlue, and describe experience in using

the algorithm in two user interface toolkits. Finally, we provide performance �gures demonstrating

that multi-way constraint solvers can be entirely competitive in performance with one-way constraint

solvers.

This is a preprint of a paper that will appear in the journal Software|Practice and Experience

in 1993. It is a slightly revised version of Technical Report 92-07-05, July 1992.



1 Introduction

A constraint describes a relationship that should be maintained, for example, that the equality

A + B = C hold among three numbers. In user interfaces, constraints can be used to maintain

consistency between application data and a display of that data, to maintain consistency among

multiple views of data, to maintain layout relationships among graphical objects, and to compose

complex user interface components from simpler ones [3, 31]. Giving the system responsibility for

maintaining the various relationships in a user interface frees the programmer from the tedious and

error-prone task of maintaining these relationships by hand, making it faster to develop complex

graphical user interfaces.

In this paper, we focus on solving systems of constraints using local propagation. In this technique,

some constraint is used to determine the value for a variable. Once this variable's value is known,

the system may be able to use another constraint to �nd a value for another variable, and so forth.

To support local propagation, the object representing a constraint includes one or more pieces of

code (methods). Each method is a function whose arguments are input variables, and that calculates

a value for an output variable that will satisfy the constraint. For example, the constraint A+B = C

would, in general, include three methods: C  A+ B, A C � B, and B  C �A. If the value

of A or B were changed, the constraint solver could maintain the constraint by executing the �rst

method to calculate a new value for C. If C were also constrained by C +D = E, then one of this

other constraint's methods (E  C +D) could be executed, and this process would continue until

the change had propagated through the network of constrained variables.

Local propagation solvers cannot solve all possible sets of constraints, for example, those involving

simultaneous equations. However, local propagation solvers have the advantage that they are e�cient

and very general|in particular, such solvers can handle non-numeric constraints|since the code

de�ning a method can perform an arbitrary side-e�ect-free computation. For example, in a user

interface system one might want to maintain the relationship between a string naming a font,

and the object representing the font. The methods representing this constraint could call system

functions for scanning font directories and reading in font de�nitions, in order to create a new font

object that corresponds to a given font name string.

One signi�cant di�erence among local propagation solvers is whether they allow multi-way con-

straints, or merely one-way constraints. A one-way constraint has a single method for maintaining

that constraint, which calculates a new value for a single output variable. Satisfying one-way con-

straints is easy if there are no circularities in the constraint network: the obvious algorithm is to

update the output variable of a constraint when any of its inputs changes. Most spreadsheets support

this form of one-way constraint. A multi-way constraint will in general have a method for calculating

a value for each of the variables it constrains, in terms of the values of the other variables.

Multi-way constraints have a number of advantages over one-way ones. First, any one-way

constraint can be represented as a multi-way constraint with all but one of its variables annotated

as read-only (as we will show later), so multi-way constraints are more general. Second, when a

variable value is changed, a multi-way constraint satis�er often has a choice of which methods to use

to propagate the change. This choice can be used to satisfy constraints in situations where one-way

constraint solvers would be stymied. Third, and most importantly, multi-way constraints provide a

clearer and more uniform way to specify relationships than one-way constraints. On the other hand,

it may be more di�cult to predict and control the behavior of a network of multi-way constraints.

We believe that, for many applications, the greater expressive power of multi-way constraints justi�es

the additional complexity.

Designers of user interface frameworks have often employed one-way constraints because they

believe that solvers restricted to one-way constraint systems are adequate for user interface toolk-

its, that multi-way constraint systems are too di�cult to implement, or that multi-way constraint
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systems are not e�cient. We claim these beliefs are erroneous, and in the remainder of the paper

we argue that:

� Multi-way constraints are signi�cantly more powerful than one-way systems. Certain practical

problems in user interface construction are handled more naturally and elegantly by multi-way

constraints than by one-way constraints.

� Local propagation solvers for multi-way constraints are not di�cult to implement. We present

pseudocode for the DeltaBlue multi-way constraint satisfaction algorithm, which has been suc-

cessfully implemented in several di�erent languages, both by ourselves and other researchers,

and used in a number of research and commercial applications.

� Local propagation solvers for multi-way constraints can be implemented e�ciently. DeltaBlue

has excellent performance in both theory and practice. We describe the results of several

benchmark programs, as well as performance �gures from real user interfaces constructed using

DeltaBlue. Choosing a one-way constraint satisfaction algorithm on grounds of e�ciency is

simply not supported by the facts.

2 Constraints and Constraint Solvers

It is important to distinguish between the declarative semantics of constraints and the algorithms

for satisfying them. Declaratively, a constraint is simply a relation over some domain. For user

interface applications, it is useful to express constraints over the union of a number of subdomains,

including the real numbers, strings, booleans, and bitmaps.

There is a large body of work applying constraints in di�erent domains. Constraints have been

applied to geometric layout in drawing programs including COOL [29], IDEAL [47], the IntelliDraw

program from Aldus Corporation, Juno [36], Magritte [20], the celebrated Sketchpad system [44],

and ThingLab I [2].

Constraints have been used in a fair number of user interfaces and user interface construction

systems, including Animus [10], the Cactus statistics exploration environment [33], the Constraint

Window System (CWS) [12], Coral [45], Fabrik [26], the FilterBrowser user interface construction

tool [11], Garnet [35], GITS [37], GROW [1], Peridot [34], Picasso [38], RENDEZVOUS [21, 22], the

RTL/CRTL tiled window layout system [7], and ThingLab II [31, 32].

Finally, researchers have developed several general-purpose languages that use constraints, in-

cluding Bertrand [30], Kaleidoscope [14, 18], Siri [23, 24], as well as a number of languages integrating

constraints with logic programming including CAL [42], CHIP [9, 46], CLP(R) [27, 28], CLP(�*)

[48], HCLP(R) [6, 49], Prolog III [8], and the cc (concurrent constraint) languages [41, 40].

2.1 Re�nement versus Perturbation

We can roughly classify constraint-based languages and systems as using one of two approaches:

the re�nement model or the perturbation model. In both cases constraints restrict the values that

variables may take on. In the re�nement model, variables are initially unconstrained; constraints

are added as the computation unfolds, progressively re�ning the permissible values of the variables.

This approach has been more or less universally adopted by the logic programming community in

the languages integrating constraints with logic programming cited above.

In contrast, in the perturbation model, at the beginning of an execution cycle variables have

speci�c values associated with them that satisfy the constraints. The value of one or more variables

is perturbed by some outside in
uence, such as an edit request from the user, and the task of the
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constraint solver is to adjust the values of the variables so that the constraints are again satis�ed.

The perturbation model has often been used in constraint-based applications such as the interactive

graphics systems cited above, and in spreadsheets. The DeltaBlue algorithm presented in this paper

is based on the perturbation model.

Several features of the perturbation model make it more attractive for developing user inter-

faces. First, it better matches the semantics of the domain: variables in a typical user interface

application do have speci�c values associated with them, which are then perturbed by some outside

in
uence. Indeed, not restricting variables to have a unique value (as is generally allowed in the

re�nement model) would not be suitable for e.g. an interactive graphics application in which a line

must be displayed at a speci�c location. Second, systems based on the perturbation model usually

allow adding and removing constraints in any order. Constraint-based logic programming languages

typically only allow removing constraints during backtracking. Neither of these problems is insur-

mountable, however, and some work has been done on implementing user interfaces in systems using

the re�nement model [49].

2.2 Constraint Hierarchies

For constraint systems that are restricted to non-circular, one-way constraints, when a variable value

is perturbed, it is clear how to compute new values for the variables so that all the constraints are

again satis�ed. However, if the constraints are multi-way, or if there are cycles in the constraint

graph, there may be many ways to update the current state so that the constraints are again satis�ed.

As a trivial example, suppose we have a constraint A+B = C, and edit the value of A. Should we

change just B, change just C, change both B and C, undo the change to A, or what?

Earlier systems used a variety of heuristics in making this decision. In ThingLab I [2] the local

propagation methods of a constraint were ordered to indicate which ones should be used in preference

to others. In Magritte [20], the system performed a breadth-�rst search to change as few variables

as possible. However, none of these methods was entirely satisfactory: sometimes they gave counter-

intuitive solutions. Worse, it was di�cult to specify declaratively which solutions were preferred,

and to alter these preferences, since the heuristics were buried in the procedural code of the satis�er.

Constraint hierarchies were originally devised to solve the problem of specifying declaratively

what to change when perturbing a constraint system. In a constraint hierarchy, the programmer

or user can state both required and preferential constraints. The required constraints must hold.

The system should try to satisfy the preferential constraints if possible, but no error condition arises

if it can't. There may be multiple levels of preferential constraints, each successive level being

more weakly preferred than the previous one. By using preferential stay constraints to indicate

which variables should not be changed, it is possible to specify declaratively which of many possible

solutions is most preferred.

Constraint hierarchies have other applications as well, for example in planning and scheduling.

If all of the speci�ed constraints cannot be satis�ed, di�erent constraints can be placed at di�erent

preference levels to specify trade-o�s between which constraints should be enforced. Weak constraints

can be used to specify default relationships, which can be overridden by adding stronger constraints.

A complete discussion of a theory of constraint hierarchies is given in reference [5], with prelim-

inary versions in references [6, 4], and an alternative formulation in reference [18]. Brie
y, a labeled

constraint is a constraint labeled with a strength, written sc, where s is a strength and c is a con-

straint. These strengths are mapped onto the integers 0 : : :n, where n is the number of non-required

levels. Strength 0, with the symbolic name required, is always reserved for required constraints.

A constraint hierarchy is a set of labeled constraints. Given a constraint hierarchy H, H

0

denotes

the required constraints in H, with their labels removed. In the same way, we de�ne the sets

H

1

;H

2

; : : : ;H

n

for levels 1; 2; : : : ; n. We also de�ne H

k

= ; for k > n.
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A solution to a constraint hierarchy H is a valuation for the free variables in H, i.e., a function

that maps the free variables in H to elements in the domain D. We wish to de�ne the set S

of all solutions to H. Clearly, each valuation in S must be such that, after it is applied, all the

required constraints hold. In addition, we desire each valuation in S to be such that it satis�es the

non-required constraints as well as possible, respecting their relative strengths. To formalize this

desire, we �rst de�ne the set S

0

of valuations such that all the H

0

constraints hold. Then, using S

0

,

we de�ne the desired set S by eliminating all potential valuations that are worse than some other

potential valuation using the comparator predicate better. In the de�nition, c� denotes the boolean

result of applying the valuation � to c, and we say that \c� holds" if c� = true.

S

0

= f� j 8c 2 H

0

c� holdsg

S = f� j � 2 S

0

^ 8� 2 S

0

:better(�; �;H)g

The references listed above de�ne several useful comparators. In the work described here, we use

the locally-predicate-better comparator. This comparator considers each constraint in H individually,

and only concerns itself with whether or not a given constraint is satis�ed or not, rather than how

nearly satis�ed it is. Informally, a valuation � is locally-predicate-better than another valuation � if

� does exactly as well as � in satisfying the constraints through some level k � 1 in the hierarchy,

and strictly better at level k. More formally:

locally-predicate-better(�; �;H) �

9k > 0 such that

8i 2 1 : : :k � 1 8p 2 H

i

e(p�) = e(p�)

^ 9q 2 H

k

e(q�) < e(q�)

^ 8r 2 H

k

e(r�) � e(r�)

where e(c�) = 0 if c� holds, 1 otherwise

For an example of solving constraints using a locally-predicate-better comparator, consider im-

plementing the A + B = C example within a constraint hierarchy with strength levels required,

strong, medium, and weak . Suppose we de�ned a hierarchy with a required constraint A + B = C,

medium stay constraints that A and B remain unchanged, and a weak stay constraint that C remain

the same. Given this hierarchy, if we change A by adding a strong constraint to set its value, the

system will change C (overriding a weak stay) rather than changing B (overriding a medium stay)

to re-satisfy the constraints.

The locally-predicate-better comparator may produce multiple solutions. For example, if C was

constrained by a medium stay constraints instead of a weak one, then changing A would cause either

B or C to be changed. Neither of these two solutions is better than the other, according to the

locally-predicate-better comparator.

2.3 Read-only Annotations

In general, a constraint can be used to determine a value for any of the variables it constrains.

However, the constraint model can be extended to allow variables to be annotated as read-only,

specifying that the constraint should not be used to determine a value for the variables annotated
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as read-only. For example, in the constraint C = A? + B?, A and B have both been annotated as

read-only, so that the satis�er may only change C to satisfy this constraint. The annotations are

speci�c to this constraint, rather than to the variables, so that other constraints could cause A to

be changed. A declarative semantics for read-only annotations is given in reference [5].

3 Multi-way versus One-way Constraints

In this section, we will compare multi-way and one-way constraints, and argue that certain practical

problems in user interface construction are handled more elegantly by multi-way constraints than

by one-way constraints.

A one-way constraint system can easily be simulated by a multi-way one. For each one-way

constraint, we create a corresponding multi-way constraint, with all but one of its variables annotated

as read-only. This simulation is satisfactory both from the point of view of the declarative theory,

and as an implementation technique.

The reverse simulation also works from the point of view of the declarative theory. For each

multi-way constraint, we create a bundle of one-way constraints, one for each variable that isn't

annotated as read-only. For example, the multi-way constraint A+B = C would be simulated by a

bundle of three one-way constraints: C  A+ B, A C � B, and B  C �A. On the other hand,

the multi-way constraint A +B = C? would be simulated by two one-way constraints: A C �B

and B  C �A. The one-way constraint C  A + B would not be included, because C was

annotated as read-only in the original multi-way constraint.

Whether this simulation is also satisfactory as an implementation technique depends on the power

of the one-way constraint solver being used. The simulation introduces large numbers of cycles in

the graph of one-way constraints, even when the original multi-way constraint graph is acyclic. For

example, there is a cycle in the networks of one-way constraints in both of the above examples.

Some one-way solvers don't allow cycles; in this case, the multi-way system is clearly strictly more

powerful. Other one-way solvers do allow cycles, and handle them by a variety of techniques. Garnet

[35], Fabrik [26], RENDEZVOUS [21, 22], and Hudson's incremental attribute evaluation algorithm

[25] all use the \once around the loop" technique, in which updated values are propagated through

a cyclic network of one-way constraints until the loop is closed. This gives correct answers in many

cases, but can result in some constraints being left unsatis�ed.

It is possible for a network of multi-way constraints to be underconstrained (with multiple valid

solutions) or overconstrained (with no valid solution). When a constraint network has multiple

solutions, it may be di�cult to predict and control which solution is chosen. One approach to this

problem is to display the multiple solutions, and allow the user to select one [17]. Another approach

is to use preferential constraints within a constraint hierarchy to specify declaratively a preference

for one solution over another. Multiple solutions are not a problem with the simplest type of one-

way constraint system, which allow at most one constraint to output to a given variable, since there

will always be exactly one possible solution. However, more powerful one-way constraint systems,

which support de�ning multiple constraints that output to the same variable, must choose which

constraint to enforce, leading to similar problems with predictability.

If a one-way solver can handle cycles correctly, and allows de�ning multiple constraints that

output to the same variable, then the argument for multi-way constraints is a software engineering

one. It is clearer and more straightforward to represent what is conceptually a single relationship

by a single object in the implementation, rather than by many. When specifying a multi-directional

relationship with multiple one-way constraints, one has to be sure that the multiple constraints are

all set up together, and their methods are de�ned consistently. If the one-way constraints are de�ned

in separate places, coordinating these constraints can be a major software engineering problem. One
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A A2 A3 A4A1

B B1 B2 B3 B4

medium
C

weak

A+B=C

Figure 1: A Constraint Network That Requires Planning

could de�ne a macro or function that, given a single multi-way constraint, produced the needed

bundle of one-way constraints. It is probably most reasonable to regard this simply as a di�erent

implementation technique for multi-way constraints.

The addition of constraint hierarchies complicates the problem so that a planning step is essential

to �nd correct solutions; blind �ring of one-way constraints as soon as possible may lead to incorrect

results. For example, consider the network of constraints in Figure 1, where round-cornered boxes

represent variables and arcs represent constraints. This network contains a required constraint

A+B = C, and two chains of required equality constraints starting from A and B, one terminating

in a medium stay constraint and the other in a weak stay constraint. If a strong edit constraint is

added to change the value of C, the solver should change the value of B rather than A, since the

medium stay on A4 is stronger than the weak stay on B4. A solver that blindly changed either A

or B to satisfy the plus constraint would not be satisfactory. It is essential to perform a planning

step, considering the strengths of constraints downstream of A and B, before actually changing any

values. However, once planning becomes necessary, there is little point in using a one-way solver; a

multi-way solver is equally straightforward.

3.1 A User Interface Example

To illustrate the tradeo�s between one-way and multi-way constraints in a user interface, consider

an interactive data analysis system that generates various displays of data sets. Suppose that one

wants to create a scatterplot showing a particular data set. This could be implemented by a set of

one-way constraints between the numbers in the data set, and the positions of graphic symbols on a

display screen. If the user changed the numbers in the data set, then the constraints would update

the positions of the graphic symbols in the plot to show the changed information.

Suppose that the user also wants the capability of editing the data, by dragging the symbols on

the screen, and having the data set updated to correspond to the changed plot. There are several

ways that this could be handled using one-way constraints. (1) The dragging operation could

explicitly change the data set rather than the symbols, and then the original one-way constraints

would update the symbol positions. (2) During the dragging operation all of the one-way constraints

from the data set to the plot symbols could be disabled, and another set of one-way constraints from

the symbols to the data set could be enabled. (3) The one-way constraint system may support a

cycle of two one-way constraints (data set to plot and plot to data set), selecting the correct one to

enforce depending on whether the data set or the plot was being edited. All of these alternatives

are more complicated to specify and maintain than using multi-way constraints to represent the

two-way 
ow of information between the data set and the plot symbols.

To extend the example further, suppose that the user wants to display and modify multiple

scatterplots of the same data set. Using multi-way constraints, each plot can be implemented
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independently by setting up a set of multi-way constraints between the data set elements and the

graphic symbols in the plot. Using one-way constraints to maintain consistency between all of the

plots and the data set when any of the plots may be changed would be considerably more complicated.

(Reference [39] discusses one way to implement scatterplots using multi-way constraints.)

The capability of havingmultiple editable displays of application data was used to good advantage

in such systems as ThingLab I [2], Animus [10], ThingLab II [31, 32], and RENDEZVOUS [21, 22].

In both ThingLabs, for example, one could have multiple views of a numeric application variable, e.g.

a textual display of the number and a bar chart. If the variable were changed by some other part of

the application, both views would be updated; if either of the views were edited (by editing the text,

or dragging the top of the bar with the mouse), the other view and the application variable would

be changed as well. Similarly, in Animus, constraints were used to relate attributes of a simulated

operating system with animations of those attributes. The animation was updated automatically as

the simulation ran, but one could also grab a moving icon in 
ight, edit some attribute of it, and

have the change re
ected back to the simulation. This capability was used in tuning the performance

of a real-time operating system prior to its use in a Tektronix product.

4 The DeltaBlue Algorithm

When building interactive user interfaces, the set of constraints changes frequently. It is thus useful

to have an incremental constraint satisfaction algorithm, one that can take advantage of previous

computations rather than starting over each time there is a change in the set of constraints. We

have devised an e�cient incremental algorithm, DeltaBlue, for satisfying hierarchies of multi-way

constraints using local propagation.

Initially, the constraint hierarchy is empty. DeltaBlue is invoked by calling two procedures,

AddConstraint to add a constraint to the current constraint hierarchy, and RemoveConstraint to

remove a constraint from the hierarchy. As each constraint is added or removed from the hierarchy,

DeltaBlue executes constraint methods to set the constrained variables to a locally-predicate-better

solution of the constraint hierarchy. DeltaBlue is based on the perturbation model of constraint

solvers, adjusting existing variable values to satisfy the constraints when the constraint hierarchy is

changed.

DeltaBlue internally stores the current solution in the form of a solution graph, which describes

how to recompute values for variables in order to satisfy all the satis�able constraints. The key idea

behind DeltaBlue is to associate extra information with the constrained variables so that the solution

graph can be updated incrementally when a constraint is added or removed without examining, in

general, more than a small fraction of the entire constraint hierarchy.

Figure 2 is a graphical depiction of a solution graph. The round-cornered boxes represent vari-

ables. The arcs represent constraints, labeled with their strengths. Arrows on the arcs show which

methods are used, while dashed arcs indicate constraints that are unsatis�ed. When a new con-

straint is added, the information associated with each variable can be used to decide incrementally

which non-required constraints should be left unsatis�ed and which method should be used to satisfy

each satis�able constraint. Figure 3 is a graphical depiction of the solution graph after adding a

constraint to the solution graph in Figure 2.

DeltaBlue supports separate planning and execution stages. Given a constraint graph, the algo-

rithm can construct a plan for re-satisfying the constraints. The plan can be used repeatedly, with

di�erent input values, until the constraint graph changes. This can yield substantial performance

improvements if the input values change more frequently than does the constraint graph. This is

the case, for example, when dragging a part of a �gure with the mouse: new values of the mouse

location arrive repeatedly, but the constraint graph only changes when the mouse button is pressed
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Figure 2: Original Solution Graph

medium

required

required
weak

strong

weakest

required

Figure 3: Revised Solution Graph

or released.

The DeltaBlue algorithm has two important restrictions. First, it cannot handle cycles of con-

straints. When DeltaBlue �nds a cycle, it signals an error. For user interface construction, this

is not necessarily a major restriction. While some one-way local propagation systems can handle

cycles, in most cases these cycles are used to simulate the behavior of a multi-way constraint. Using

multi-way constraints, we have been able to build complex user interfaces without using cycles of

constraints. Second, DeltaBlue only handles methods with a single output variable. While meth-

ods with multiple output variables arise infrequently in user interfaces, when they are needed their

absence is annoying. A more serious problem is that DeltaBlue's inability to handle methods with

multiple outputs limits its ability to interact with more powerful constraint solvers. Easing these

restrictions is discussed in the section on future work.

The Appendix presents pseudocode for the DeltaBlue algorithm in enough detail to allow it to

be easily implemented in a variety of languages. The algorithm was originally devised by Bjorn

Freeman-Benson, and described in references [15] and [16], although in much less detail than given

here. A substantial amount of the analysis in this paper is adapted fromMaloney's Ph.D. dissertation

[31]. This dissertation also includes a proof that the DeltaBlue algorithm produces locally-predicate-

better solutions to the constraint hierarchy.

4.1 DeltaBlue Constraints

Most DeltaBlue constraints are represented by a set of side-e�ect free methods that calculate the

value of an output variable from the rest of the variables, with one method for each variable not
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annotated as read-only. There are three types of constraints that are di�erent: stay constraints,

input constraints, and edit constraints.

A stay constraint speci�es that a particular variable should not be changed. A stay constraint

can be represented by a DeltaBlue constraint with a single method, with no inputs and one output.

The method for a stay constraint actually doesn't do any computation. Unless the stay constraint

is overridden, it acts as a marker preventing another constraint from changing the variable.

All variables implicitly have a stay constraint with the special weakest strength that is weaker

than all of the other strengths. These constraints are virtual constraints: DeltaBlue behaves as if

they exist, although they have no explicit representation and consume no resources.

An input constraint is used to introduce external data to the constraint graph. For example, a

mouse input constraint would have a single method that reads the current position of the mouse

pointer, and sets the speci�ed variable to this value. Such constraint methods can be executed at

predictable times by building and executing a plan, as described later.

Another way to introduce external data is through an edit constraint, de�ned by a method with

no inputs that sets its output variable to a given constant value. In order to set a variable to a given

value, one can add an appropriate edit constraint to the constraint graph, and then remove it. If

the edit constraint is strong enough, it will be satis�ed, and the value will be propagated though

the constraint graph.

4.2 Walkabout Strengths

When a constraint is added or removed from a constraint hierarchy, DeltaBlue modi�es the solution

graph. To achieve e�cient performance, DeltaBlue considers each constraint at most once during

each incremental operation, using only information local to a constraint when deciding how to enforce

it. DeltaBlue does this by annotating every variable with an incrementally maintained value called

the walkabout strength and choosing a method for a constraint based only on the walkabout strengths

of that constraint's own variables.

The walkabout strength of a variable indicates the strength of the weakest constraint in the

current solution graph that could be retracted (i.e., removed from the solution graph) to allow some

other constraint to be enforced by changing that variable. The walkabout strength of a variable

may re
ect the existence of a constraint quite far away in the solution graph. This is precisely what

makes walkabout strengths so useful: they encapsulate information that DeltaBlue would otherwise

have to acquire by exploring the graph.

De�nition. A variable is a potential output of a constraint C if it is the output of any method

of C. The potential outputs of a constraint are the set of variables that can be changed to enforce

that constraint. Variables annotated as read-only aren't in the set of potential outputs.

De�nition. Let V be a variable. The walkabout strength of V is de�ned as follows:

� If V is determined by constraint C in the current solution graph, its walkabout strength is the

weaker of C's strength and the weakest walkabout strength among all potential outputs of C

except V itself.

� If V is not determined by any constraint, then its walkabout strength is weakest , because it is

determined by an implicit stay constraint of strength weakest.

Consider the solution graph shown in Figure 4. The variables are labeled with their walkabout

strengths. The current output of each constraint is indicated with an arrowhead and unenforced

constraints are shown as dashed lines. Each constraint has a method to compute each of its variables.

The walkabout strengths of variables W and X are determined by their stay constraints. The

walkabout strength of Y is the minimum of W 's walkabout strength, X's walkabout strength, and
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Figure 4: Computing Walkabout Strengths

C1's strength. The walkabout strength of Z is weak because C2 is weak . The implicit weakest stay

constraint on Z is not currently enforced, so it has no e�ect on any walkabout strength. Note that

weak walkabout strengths propagate through stronger constraints (W to Y ) but strong walkabout

strengths do not propagate through weaker ones (Y to Z).

4.3 Planning and Stay Optimization

The constraint solution graph maintained by DeltaBlue describes how to recompute values for vari-

ables to satisfy all the satis�able constraints. This graph can be topologically sorted to construct

a plan|an ordered list of constraint methods. Executing the methods of this plan in sequence re-

satis�es all constraints enforced by the solution graph (unless a run-time error is encountered while

executing a method).

Many of the constraints in a typical constraint hierarchy are stay constraints whose only purpose

is to indicate to DeltaBlue that a given variable should not change. Since these constraints do no

actual computation, they may be omitted from the plan. Variables determined by enforced stay

constraints will not change during plan execution. Such planning-time constants are the equivalent

of compile-time constants in a program. Furthermore, variables computed exclusively from planning-

time constants will also be planning-time constants. To make plan execution as fast as possible,

DeltaBlue precomputes the values of all planning-time constants and omits the constraints that

compute them from the plan. This is called stay optimization. Stay optimization can signi�cantly

reduce a plan's size and execution time.

DeltaBlue maintains a stay 
ag for each variable that is true when the variable is a planning time

constant. The stay 
ag of a variable is updated whenever its walkabout strength is recomputed. A

variable's stay 
ag is de�ned as follows:

� If the variable is determined by a stay constraint in the current solution graph, the stay 
ag

is true.

� If the variable is determined by an input constraint, the stay 
ag is false.

� If the variable is determined by any other type of constraint C, the stay 
ag is true if and only

if the stay 
ags of all inputs of the method used to enforce C are true.

� If the variable is not determined by any constraint, the stay 
ag is true. This re
ects the fact

that a variable that is not determined by any other constraint is considered to be determined

by its implicit stay constraint of strength weakest .

When the stay 
ag for a variable becomes true, the variable value is precomputed by executing

the selected method of the determining constraint. The values of the method inputs, if any, will

have already been precomputed, since their stay 
ags are true.

10



If the constraint hierarchy consisted entirely of stay constraints and ordinary constraints, then

every variable would be a planning-time constant and there would be nothing left to compute at

plan execution time. However, input constraints, such as mouse constraints, depend on the outside

world, so their outputs are never planning-time constants. Thus, if stay optimization is used, then

only those methods downstream of input constraints need be extracted in the plan, and executed at

plan execution time. Since these methods often represent just a small fraction of the overall solution

graph, the time savings may be considerable.

4.4 Time Complexity

Given an acyclic constraint hierarchy, the worst-case performance of a single call to DeltaBlue's

AddConstraint or RemoveConstraint procedures is O(MN ), where N is the total number of con-

straints in the hierarchy, and M is the maximum number of methods in a constraint. See refer-

ence [31] for more detailed analysis than given here.

For AddConstraint, in the best case the constraint cannot be enforced and the cost is just O(M )

to consider its M possible methods. In the worst case, every constraint in the hierarchy is retracted

and reconsidered at a cost of O(M ) each, resulting in a total cost of O(MN ). An intermediate case

occurs when no constraint is retracted, but the walkabout strength of every variable in the solution

graph is updated. The cost is still O(MN ), but the constant is smaller. An average case would

require a mixture of constraint retraction and walkabout strength recomputation involving only part

of the solution graph.

For RemoveConstraint, the best case occurs when the constraint being removed is not enforced,

in which case it can be removed from the hierarchy in constant time. In the worst case, the cost

of computing new walkabout strengths for all variables downstream of the removed constraint and

the cost of enforcing the strongest candidate constraint are both O(MN ), so the overall cost for

removing a constraint is O(MN ). Reference [31] includes a proof that enforcing the strongest

candidate constraint will result in a correct solution graph and, furthermore, that it will not be

possible to enforce any additional candidates.

Although the worst case performance of DeltaBlue grows as O(MN ), in typical user interfaces

the maximum number of methods per constraint M is bounded by a small constant k � N (k is

typically 3). Therefore, the cost of a given operation grows only linearly in the number of constraints,

O(N ). In addition, the worst case behavior is exceptional in user interfaces; it is more common for

an operation to involve only a small fraction of the constraint graph. All the DeltaBlue operations|

incrementally adding and removing a constraint, extracting a plan, and executing that plan|have

the same O(N ) worst case complexity, which makes the algorithm scale smoothly to handle large

problems.

4.5 Creation Time and Space Requirements

The DeltaBlue algorithm was designed to add and remove single constraints e�ciently from the

constraint hierarchy during the operation of a constraint-based user interface. It is also appropriate

to consider the time required to construct the constraint network when the user interface is initially

created. DeltaBlue can be used to construct a constraint network by starting with an empty network,

and adding each constraint in turn. Since adding a new constraint to a network with N constraints

takes time O(N ) in the worst case, creating a network with N constraints could take O(N

2

) in the

worse case.

The time to construct a constraint network can be dependent on the order that the constraints

are added. For example, when constructing a long chain of equality constraints, it is possible to

add the constraints in a particular order such that each AddConstraint operation causes values
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and walkabout strengths to be propagated to all of the existing constrained variables, giving a total

time of O(N

2

). By adding the constraints in a di�erent order, each AddConstraint operation only

needs to propagate information to one or two variables, leading to a total time of O(N ). The chain

example is a pathological worst-case one. In our experience constructing user interfaces, we have

found that the typical situation never approaches the worse-case time of O(N

2

), and that the order

of adding constraints is usually not important.

If excessive creation time is a concern, it is possible to create the constraint network without

using the DeltaBlue algorithm. For example, given a large constraint network, it is possible to save

the state of all of the constraints and variables, including information used by DeltaBlue such as

variable walkabout strengths. Given this information, a new copy of the constraint network could

be created quickly by allocating the DeltaBlue constraint and variable structures, and inserting the

correct �eld values.

In our experience, the time for constructing large constraint networks is dominated by storage

allocation operations as the DeltaBlue constraint and variable structures are created. In the C and

Lisp versions of DeltaBlue, a single constraint takes around 100 bytes. The Smalltalk version uses

150-200 bytes per constraint. Particularly in benchmarks with tens of thousands of constraints,

the DeltaBlue data structures may use a signi�cant amount of memory. Memory management can

become an important issue, particularly in a pointer-following algorithm like DeltaBlue that has

very little locality of reference.

These size numbers could probably be reduced further through careful engineering. One method

for reducing space, implemented in the Smalltalk version of DeltaBlue, is to use special optimized

representations of common constraints, such as stay(X), A = B, and A = B + K where K is a

constant.

4.6 Implementing DeltaBlue

The process of implementing DeltaBlue is eased considerably by the availability of a detailed pseu-

docode description of the algorithm (see the Appendix). This pseudocode has been translated into a

variety of target languages including C, C++, Smalltalk, Self, and several dialects of Lisp. C, Lisp,

and Smalltalk implementations are available via anonymous ftp.

A typical time to complete and debug an implementation of DeltaBlue from the pseudocode is

one to two person-weeks. In some cases, an additional week was required to tune the algorithm for

optimal performance. For example, the C storage allocator on several platforms imposed an overhead

that grew as the square of the number of constraints; to regain linear-time performance it was

necessary to implement our own storage allocator. DeltaBlue has also been successfully implemented

by independent researchers at DEC Paris Research Labs, Hewlett-Packard Labs, GMD (the German

Computer Science Research Lab), Apple Computer, Data I/O, and Chronology Corporation, as well

as elsewhere at the University of Washington.

DeltaBlue has been used extensively as part of the user interface toolkit ThingLab II [31, 32]. The

user interface examples discussed below were all implemented in ThingLab II. We have also used a

variant of DeltaBlue in another user interface toolkit: an extension to Garnet [35], a widely-used user

interface toolkit based on one-way constraints. This experimental version of Garnet, called Multi-

Garnet [39], has been developed as a base for further research on the use of multi-way constraints

in user interface construction, as well as a platform for research on constraint debugging tools. It

also serves as a demonstration that DeltaBlue can be integrated with a user interface system other

than ThingLab II.
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Figure 5: Chain Benchmark Network

5 Performance Measurements

We have measured the performance of the DeltaBlue algorithm on a number of test cases. First,

we measured a series of benchmarks using arti�cial \worst case" constraint hierarchies|those in

which a single change to the hierarchy must propagate throughout the entire solution graph. These

benchmarks demonstrate that DeltaBlue is extremely fast, even when the constraint hierarchy has

been designed to eliminate any advantage gained by stay optimization. Second, we measured a

number of real user interfaces that we have constructed using the ThingLab II system. Third,

we measured a simple user-interface built in both Garnet and Multi-Garnet, to provide a direct

comparison between two systems that are as similar as possible, except that one uses one-way

constraints and the other uses multi-way constraints. These benchmarks demonstrate that multi-way

constraints and the DeltaBlue algorithm are e�cient enough to be used in user interface construction.

The arti�cial test cases were measured using C, Smalltalk-80, and Lisp implementations of the

DeltaBlue algorithm; the realistic applications were written in ThingLab II, which is implemented

in Smalltalk-80. Garnet is implemented in Lisp, and Multi-Garnet is build on top of Garnet. The

measurements were made on a lightly loaded Sun Microsystems SPARCstation 2, using Gnu C

(version 1.94.3), ParcPlace Smalltalk (version 2.5), Allegro Common Lisp (version 4.0.1), Garnet

(version 1.4), and Multi-Garnet (version 1.5).

When measuring the DeltaBlue benchmarks, and the ThingLab II user interfaces built on

DeltaBlue, it is convenient to divide the times into two parts, the latency and the cycle time.

The latency is the time required to add a constraint and extract a plan, which corresponds to the

minimum time between a user action such as pressing a mouse button and the �rst visible response.

The cycle time is the time required to execute the plan once, which corresponds to the minimum

time to update graphical feedback during a continuous action such as moving a slider. In practice,

the total latency and cycle time for a given user interface are often dominated by other factors, such

as event processing, hit detection, and screen updating.

5.1 The Chain Benchmark

The chain benchmark involves adding a constraint on one end of a long chain of required bidirectional

equality constraints: v

1

= v

2

, v

2

= v

3

, : : : , v

n�1

= v

n

. There is a weak stay constraint on v

n

to

ensure that the constraint methods initially propagate from v

n

to v

1

(Figure 5(a)). Adding a strong

input constraint to set v

1

reverses this 
ow completely (Figure 5(b)). Thus, every constraint in

the chain must be examined when the new constraint is added. Similarly, a method from every

constraint must be invoked to execute the plan, to propagate the new input value from v

1

to v

n

.

Figure 6 compares the performance of the chain benchmark for three di�erent implementations

of DeltaBlue, in C, Lisp, and Smalltalk. The C implementation is signi�cantly faster than the
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DeltaBlue (C) DeltaBlue (Lisp) DeltaBlue (Smalltalk)

N latency cycle time latency cycle time latency cycle time

per constraint 0.021 0.003 0.164 0.019 0.240 0.012

5,000 104 15 845 94 1409 59

10,000 210 31 1599 216 2418 127

15,000 307 47 2472 350 3648 187

20,000 417 62 3277 383 4800 234

Figure 6: Chain Benchmark in DeltaBlue (milliseconds)

Garnet (Lisp) Multi-Garnet (Lisp)

N latency cycle time latency cycle time

per constraint 0.170 0.171 0.172 0.137

5,000 697 943 838 652

10,000 1600 1738 1728 1329

15,000 2555 2562 2579 2055

20,000 n/a n/a 3438 2734

Figure 7: Chain Benchmark in Garnet and Multi-Garnet (milliseconds)

Smalltalk and Lisp versions, which are approximately the same speed. Note that the DeltaBlue

algorithm can handle many thousands of constraints, and that its performance degrades linearly

with the number of constraints in the chain.

Figure 7 compares the performance of the chain benchmark in Garnet and Multi-Garnet. Garnet

does not support a hierarchy of constraint strengths, or explicitly create plans, so the benchmark

had to be modi�ed considerably. Speci�cally, the chain is constructed as a chain of objects, each

containing previous and next slots pointing to its neighbors in the chain, and a value slot set by

a formula (one-way constraint) accessing the value of the previous object's value slot. The latency

�gures are derived by measuring the time to reverse all of the one-way constraints in the chain

by switching the values of the next and previous slots in each object. The cycle time �gures are

derived by measuring the time to set the value slot of the object at one end of the chain (invalidating

formulas all the way through the chain), and then access the value slot of the object at the other end

(evaluating all of the formulas). For very long chains, the Garnet benchmark causes stack over
ows;

for this reason �gures are not given for chains with 20,000 elements.

The Multi-Garnet version of the chain benchmark is similar to the Garnet version. The elements

in the chain are represented by Garnet objects with previous, next, and value slots. However, each

chain element has a single multi-way constraint, setting its value slot to the previous object's value,

or vice versa. Comparing the �gures for the Lisp implementation of DeltaBlue in Figure 6 with the

Multi-Garnet �gures in Figure 7, the latency is about the same. This is to be expected, since most

of the latency time is spent doing DeltaBlue operations, choosing new methods and constructing

a plan. However, the Multi-Garnet cycle time �gures are considerably higher than the Lisp ones.

This is due to the high cost of accessing variable values stored in Garnet object slots, compared to

accessing them as �elds in the DeltaBlue variable record.

Comparing the Garnet and Multi-Garnet �gures, the latency for Multi-Garnet is slightly higher

than for Garnet, and the cycle time �gures for Multi-Garnet are lower than for Garnet. The exact
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DeltaBlue (C) DeltaBlue (Lisp) DeltaBlue (Smalltalk)

N latency cycle time latency cycle time latency cycle time

per constraint 0.025 0.004 0.123 0.053 0.303 0.023

5,000 119 20 549 250 1586 123

10,000 247 40 1105 471 3038 211

15,000 402 61 1694 678 4543 324

20,000 500 83 2466 1055 6066 459

Figure 9: Star Benchmark in DeltaBlue (milliseconds)

�gures are not too important here. The signi�cance of these numbers is that Multi-Garnet, built on

DeltaBlue, has comparable performance to Garnet with one-way formulas.

5.2 The Star Benchmark

The star benchmark adds an input constraint to a variable that is referenced by every constraint in

a star-shaped network. Speci�cally, it adds an input constraint to variable s (the scale factor) used

in a large number of required constraints: m

i

= d

i

� s where the d

i

are data points and the m

i

are

their images on the display. This network might be used in a viewer for statistical data in which a

single scaling factor controls how each point in a data set is mapped to the display. Figure 8 shows

the initial constraint network. Initially, the scale and the data points have weak stays to ensure that

the image values are computed from them. When a strong input constraint is added to change the

scale variable s, this overrides the weak stay on this variable, but otherwise the constraint solution

graph doesn't change.

Figure 9 compares the performance of the star benchmark for the C, Lisp, and Smalltalk im-

plementations of DeltaBlue. The �gures are comparable to those for the chain benchmark. This

benchmark shows that one can use high-fanout variables, accessed by many constraints, without

penalty.
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Figure 10: Tree Benchmark Network

DeltaBlue (C)

N latency cycle time

1,024 17 0.4

4,096 17 0.5

16,384 18 0.5

65,536 19 0.6

Figure 11: Tree Benchmark in DeltaBlue (milliseconds)

5.3 The Tree Benchmark

The tree benchmark adds an input constraint to the root of a complete binary tree of required

constraints, shown in Figure 10. Each constraint maintains the value of a node as the sum of the

values of its children. The leaf nodes of the tree have weak stays, so initially the constraint solution

graph 
ows from the leaves towards the root node. For the benchmark, a strong edit constraint

is added to the root node, which causes the propagation path to one of the leaves to be reversed,

overriding that leaf's stay constraint.

Unlike the previous benchmarks, the tree benchmark is not a worst case benchmark; only the

log

2

N constraints along the path from the root to one of the leaves need to be changed. Therefore,

both latency and cycle time for this benchmark are small, even for very large trees, as demonstrated

by the numbers in Figure 11.

5.4 Measurements of Real User Interfaces

The following three subsections describe several real user interfaces implemented using the

ThingLab II user interface construction system. ThingLab II is written in Smalltalk-80; Figure 6

can be used to predict how the constraint operation timings would change if ThingLab II were

implemented in C or Common Lisp.

For each of these examples, Figure 12 displays the latency and cycle time measured when directly

manipulating user interface elements such as buttons and sliders. These times are broken down into

two components, constraint processing time and other time. The constraint processing time measures
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Latency Cycle Time

Interface Widget constraints other constraints other

(a) Musical Radio Buttons 3 9 1 6

Instrument Slider 3 105 1 23

(b) Statistics Scale Slider 60 56 15 33

Tool X-O�set Slider 32 63 8 34

(c) MacDraw Dash Dragger 79 30 3 44

Figure 12: User Interface Latency and Cycle Times (milliseconds)

Figure 13: Musical Instrument Controller

DeltaBlue operations such as adding a constraint to the network and constructing or executing a

plan. The other category measures additional processing necessary to implement the user interface.

For the latency, this �gure includes time to locate the object being manipulated, and precompute

and cache parts of the graphical image, and for the cycle time this �gure includes the time to update

the screen.

5.5 A Musical Instrument Controller

Constraints were used in the construction of a real-time controller for African marimba music (Fig-

ure 13). The system allows controls to be manipulated while the music is being played. The sound
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Figure 14: Statistics Tool

is generated by a synthesizer that is controlled by the program through a MIDI connection. Latency

and cycle times for manipulating sliders and radio buttons are given in Figure 12(a). In both cases

the contributions of constraints to the latency and cycle time are minor.

5.6 A Statistical Visualization Tool

Constraints were used to construct a prototype statistical data visualization tool (Figure 14). The

tool allows two dimensions of a data set to be displayed as a point cloud. The user may use sliders

to control the x and y o�set and the scale factor. Latency and cycle times for manipulating these

sliders are given in Figure 12(b), for a data set of 100 elements. These measurements re
ect the

fact that the scale factor in
uences both the x and y coordinate of every point, whereas the x-o�set

in
uences only their x coordinates.

5.7 A Dashed Lines Dialog Box

As an example of an existing user interface, we reimplemented the MacDraw II Dashed Lines dialog

box using ThingLab II. This dialog box (Figure 15) is used to specify the pattern of black and white

dashes that make up a dashed line. Dashes are created by dragging the spare dragger to the left

from its resting position on the far right. Dashes are deleted by dragging the corresponding dragger

to the far right edge.

In our reimplementation of the dialog box (Figure 16), these behaviors are implemented using

constraints. There is an array of six dashes, each of which has a separately constrained isVisible

attribute. A dash can only be manipulated when displayed, and is only displayed when isVisible is
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Figure 15: MacDraw II Dialog Box

Figure 16: ThingLab II Dialog Box

true.

The original dialog box was implemented in approximately 360 lines of Object Pascal and took

two to three person-weeks to write. More than half the implementation e�ort was spent dealing

with unusual cases and manual enforcement of internal constraints [43]. Our reimplementation uses

fewer lines of code, and required only one day to implement and test. However, we note that only

the tricky \dashes" portion of the dialog box was implemented; the various buttons and other frills

were not. The latency and cycle times for manipulating the dashes are given in Figure 12(c). The

performance is adequate for a user interface, even when implemented in Smalltalk.

5.8 A Simple Garnet Example

Demo-manyobjs is a Garnet demo program that creates a chain of boxes connected by lines. Formulas

(one-way constraints) are used to set the endpoints of the lines to the centers of the two boxes

being connected. The boxes can be dragged around by the mouse, and the lines redraw themselves

appropriately. Several versions of this program were constructed to compare the performance of
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Figure 17: Demo-Manyobjs Window

Garnet to that of Multi-Garnet for a typical interactive graphics activity.

To measure performance, a chain of �ve boxes was positioned in a standard con�guration (a

simple vertical chain) and the left side of the second box was moved 500 times (Figure 17). Each

time the box was moved, the window was updated, so the two lines connecting this box to its

neighbors had to be redraw, evaluating the formulas or constraint methods to determine their new

endpoints.

For the Multi-Garnet version of demo-manyobjs, the formulas used to set the endpoints of the

lines were replaced with multi-way constraints. Two versions of demo-manyobjs were created using

Multi-Garnet. The �rst version moved the box by setting a slot within the box object. Every

time the slot was changed, Multi-Garnet temporarily added and removed a constraint to set and

propagate the changed value. The second version constructed a plan explicitly, which was executed

repeatedly to propagate the new value without requiring adding or removing any constraints.

Figure 18 presents the timings for these three versions. The di�erence between the timings for
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version time

Garnet 8628

Multi-Garnet (no plan) 7936

Multi-Garnet (plan) 7167

Figure 18: Garnet and Multi-Garnet Timings for Demo-Manyobjs (milliseconds)

the Garnet and Multi-Garnet (no plan) versions can be explained as the di�erence between lazy

and eager evaluation. The Garnet version eagerly invalidates formulas, and evaluates the formulas

when the display algorithm accesses the slot values, whereas the Multi-Garnet version uses eager

evaluation to propagate changed variable values whenever they are changed. In this benchmark, all

of the formulas or constraints are evaluated each time the box is moved, so Garnet's lazy evaluation

doesn't prevent any evaluations. Indeed, it spends additional time invalidating formulas.

The di�erence between the timings for the two Multi-Garnet versions is due to DeltaBlue con-

straint manipulation, which is done every time the box is moved in the no-plan version, but is only

done once in the version using plans, taking negligible time. This demonstrates that most of the time

for the Multi-Garnet (no plan) version is devoted to propagating values and updating the graph-

ics. This is a common case with interactive user interfaces built using constraints: the constraint

manipulation time is dominated by other elements of the processing.

This benchmark does not use many constraints, the constraints are all one-way, and all of the

constraints are required. Therefore, it is not a good example of the power of multi-way hierarchical

constraints. However, this benchmark indicates that Multi-Garnet has comparable performance

with Garnet for simple interactive tasks. In addition, if plans are reused, there is a potential for

some speedup. However, some of the techniques responsible for the time di�erence between the

Garnet and Multi-Garnet versions, such as eager evaluation and reusing plans, could just as easily

be implemented in a system using one-way constraints.

5.9 Other Systems

Hudson describes an algorithm for incremental attribute evaluation [25], which can be viewed as

one-way constraint propagation. For a system of evaluation rules hand-translated into C, running

on a DECstation 3100, a long linear chain of rules could be evaluated at more than 40,000 attributes

per second. Hudson's benchmark is very similar to our chain of equalities benchmark.

Consider the time it takes to propagate a variable change through a chain of 40,000 trivial equality

constraints. Using Hudson's �gure, and the timings in Figure 6 and Figure 7, we can roughly estimate

that Hudson's system (in C) would require about a second, whereas DeltaBlue (in C) would require

approximately 0.83 second planning time plus 0.12 seconds execution time. Garnet (in Lisp) would

require approximately 6.8 seconds, whereas DeltaBlue (in Lisp) would require approximately 6.6

seconds planning time plus 0.77 seconds execution time. Comparisons based on the �gures for

Hudson's system must be made with caution, since the hardware and compilers are di�erent. In any

case, however, it should be clear that multi-way constraint satisfaction using DeltaBlue is entirely

competitive with one-way constraint satisfaction.
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6 Future Work

As described previously, DeltaBlue has two important restrictions: all methods must have exactly one

output variable, and the constraint graph must be acyclic. These restrictions allow all of DeltaBlue's

operations|incrementally adding and removing a constraint, extracting a plan, and executing that

plan|to have O(NM ) worst case complexity, so that the algorithm scales smoothly to handle large

problems. References [31, 19] prove that removing either of these restrictions turns the constraint

satisfaction problem into an NP-complete one, making the worst case running time exponential in

the number of constraints.

While the restriction on methods with multiple outputs is not usually an obstacle, the occasional

user interface problem does arise that could be expressed more elegantly using such methods. For

example, suppose one has a point object that maintains its position as both hx; yi cartesian coor-

dinates, in addition to h�; �i polar coordinates. It would be convenient to specify a constraint that

keeps the two representations consistent, using two methods each with multiple outputs: one setting

x and y, the other setting � and �.

More signi�cantly, the single-output method restriction limits DeltaBlue's ability to interface to

a constraint compiler [13]. Suppose DeltaBlue could treat a subgraph of the constraint graph (e.g.,

one containing simultaneous equations) as a black box. Then a more powerful constraint solver,

one capable of solving simultaneous equations, could be called to �nd a solution for this subgraph.

The solution would, in general, treat some of the variables at the boundary of the subgraph as

independent variables, using their values to compute values for the remaining boundary variables.

A constraint compiler could be used to compile a number of methods to solve the subgraph for

various combinations of independent variables, and DeltaBlue could simply choose the appropriate

compiled method. However, this solution technique produces methods with multiple outputs, which

DeltaBlue cannot handle.

We are currently working on a successor to DeltaBlue, named SkyBlue, that supports constraints

with multiple outputs. Our preliminary results with SkyBlue seem to indicate that the new algo-

rithm is exponential only in the number of constraints with multiple outputs, not the total number

of constraints. We therefore hypothesize that this generalization can be added to a practical incre-

mental constraint satisfaction algorithm, and that the NP-completeness result cited above is not a

major stumbling block in practice. However, a substantial amount of further work, including both

theoretical and experimental performance analysis, is needed before this hypothesis can be validated

or refuted.

Cycles in the constraint graph can arise in two ways: from programmer error (adding the same

constraint twice, or otherwise creating redundant constraints); and from problems that demand

cycles (e.g. simultaneous equations and inequalities). Cycles arising from programmer error are

probably best handled by improved debugging facilities, rather than by augmenting the algorithm.

However, cycles due to simultaneous equations or inequalities|primarily linear ones|can arise in

realistic user interface applications. Local propagation, when applicable, is the clear technique of

choice for solving constraints, due to its speed and good support for separate planning and execution

stages. Completely replacing local propagation with a numeric constraint solver that could handle

simultaneous equations or inequalities would be unsatisfactory, since non-numeric constraints are

important in user interfaces. We have therefore begun investigating a hybrid constraint solver,

augmenting SkyBlue with the capability to detect a \snarl" of simultaneous constraints. When such

a snarl is encountered, it would use a simple rule base to select an appropriate specialized solver, pass

the snarl o� to that solver for processing, then make use of the results in further local propagation

steps.
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7 Conclusions

We have described some problems in user interface construction that are more easily solved using

multi-way constraints than with one-way constraints, such as the problem of presenting multiple,

editable views of a data set. We argue that such problems are common enough to make multi-way

constraints preferable to one-way constraints for user interface construction. Our description of the

DeltaBlue algorithm, and our experiences implementing it in several languages and integrating it into

Garnet, provide evidence that multi-way constraint systems are not di�cult to implement. Finally,

we have shown that the DeltaBlue algorithm has excellent incremental performance in both theory

and practice, so e�ciency is not a reason to choose a one-way constraint solver over a multi-way

one. Given all this, is there any reason to use a one-way constraint solver? There are two reasons

why the answer might be yes.

The �rst|and less compelling|reason is that the application at hand might include only con-

straints that are naturally one-way. Even in such applications, however, multi-way constraints might

add additional functionality or allow future enhancements that would be di�cult to implement using

one-way constraints. A good example of this is the current generation of spreadsheets. Spreadsheets

historically have used a one-way constraint mechanism. However, the latest versions of Microsoft Ex-

cel (Version 3.0) and Lotus 1-2-3 both incorporate solvers for simultaneous equations (i.e., multi-way,

cyclic constraints). Given the e�ciency of DeltaBlue, and its ability to simulate one-way constraints

with read-only annotations, one might as well support multi-way capability even if few uses for it

are apparent initially.

The second|and more compelling|reason is that, in general, the behavior of one-way constraint

systems is more predictable than that of multi-way constraint systems. Some early multi-way con-

straint systems sometimes produced unexpected \black hole" solutions. For example, a geometric

editor might satisfy the constraints that one line be horizontal and that another line be connected to

it and vertical by returning a solution in which both lines were zero-length [20]. This solution satis-

�es the constraints, but probably not in the way the user expected! In our recent work, constraint

hierarchies have let us express stability constraints to prevent this particular pitfall. Nevertheless,

we still occasionally �nd ourselves surprised by a correct solution that the system produces. A cur-

rent research project|the topic of Michael Sannella's forthcoming Ph.D. dissertation|is to improve

the debugging, explanation, and control capabilities provided to the user of a multi-way constraint

system.

In summary, multi-way constraints are more general than one-way constraints, comparable in

speed, and easy to implement: all strong arguments for basing future user interface work on multi-

way rather than one-way constraints.

We are optimistic that ongoing research will eliminate DeltaBlue's restrictions that prohibit

methods with multiple outputs and cyclic constraint graphs, and that will make the behavior of

multi-way constraint systems easier to understand. This additional expressiveness and ease-of-use

will make multi-way constraint systems even more attractive for the construction of constraint-based

user interfaces.
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A Appendix: DeltaBlue Pseudocode

This Appendix describes the DeltaBlue algorithm in enough detail to allow it to be easily imple-

mented in a variety of languages. The pseudocode procedures presented here have been coded and

tested in Smalltalk-80, Common Lisp, C, and C++.

A.1 Data Structures

�eld name type description

value any the value of this variable

constraints Set of Constraints all constraints that reference this variable

determinedBy Constraint the constraint that determines this variable, or none

walkStrength Strength the walkabout strength of this variable

mark Integer this variable's mark

stay Boolean true if this variable is computed at planning time

Figure 19: Variable Record Fields

Variable records (Figure 19) are the glue of constraint graphs. In addition to its value, a variable

has a set of all the constraints that refer to it (constraints) and a pointer to the constraint that

determines its value in the current solution graph (determinedBy). If no constraint determines the

variable's value, the determinedBy �eld is set to none. The �elds walkStrength and mark are used

in method selection and plan extraction. The stay �eld is used for constant propagation. This �eld

is true if the variable's value was precomputed at planning time and need not be recomputed at plan

execution time.

Variables are initialized at creation time as if they were determined by a virtual stay constraint

with a strength of weakest :

InitializeVariable(v: Variable, initialValue: any)

v.value := initialValue.

v.constraints := {}.

v.determinedBy := none.

v.walkStrength := weakest.

v.mark := 0.

v.stay := true.

DeltaBlue uses the variable mark �eld in several ways. During the process of adding a constraint

to the hierarchy, when a method is selected its output variable is marked. This prevents possible

loops in which a pair of constraints are alternately added and retracted. Marks are also used to

detect cycles in the constraint solution graph, in which case DeltaBlue will remove the o�ending

constraint. Finally, marking is used during plan extraction to indicate which variables have been

computed by methods already in the plan, allowing DeltaBlue to ensure that the inputs of a method

will be computed before that method is executed.

Variables are marked with monotonically increasing numbers rather than single bits, to save the

cost of clearing the mark �elds at the start of each operation. The price for this time savings is a

slight increase in space; the mark �eld must contain enough bits to ensure that mark values will

never be reused (current implementations of DeltaBlue use 32 bit marks).
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�eld name type description

variables Set of Variables the variables constrained by this constraint

strength Strength this constraint's level in the constraint hierarchy

inputFlag Boolean true for input constraints (e.g., mouse constraints)

methods Set of Methods the possible methods for enforcing this constraint

selectedMethod Method the method used to enforce this constraint, or none

Figure 20: Constraint Record Fields

A constraint record (Figure 20) represents a constraint on a set of variables. The methods

�eld contains the set of alternative methods for enforcing it. The selectedMethod �eld is used by

DeltaBlue to record which of these methods is used to enforce the constraint in the current solution

graph. If the constraint is not enforced, the selectedMethod �eld is set to none.

The inputFlag �eld is true for constraints that depend on the outside world, such as a mouse

constraint that sets a variable to the current position of the mouse.

�eld name type description

code Procedure a procedure that calculates the method output value

output Variable the output variable of this method

Figure 21: Method Record Fields

A method record (Figure 21) represents one of the possible ways to enforce a constraint. A

method has an enforcement procedure (code) and a reference to the constrained variable that it

changes (output). The code procedure contains pointers to the input variables accessed by the

method.

A constraint's methods determine its behavior. A new type of constraint is de�ned by writing

a procedure that allocates storage for the constraint, �lls in its variables, strength, inputFlag,

and methods �elds, and �lls in the code and output �elds of each method.

A.2 Entry Points

Initially, both the constraint hierarchy and the current solution graph are empty. The cur-

rent solution graph is incrementally updated as the constraint hierarchy is modi�ed by the

procedures AddConstraint and RemoveConstraint. There are several additional procedures

for constructing and executing plans for constraint resatisfaction: ExtractPlanFromVariables,

ExtractPlanFromConstraints, and ExecutePlan.

A.3 Adding Constraints

AddConstraint is the procedure for adding a new constraint to the constraint hierarchy. It simply

initializes the selectedMethod �eld of the constraint to none, registers the constraint with its

variables, and calls IncrementalAdd to attempt to enforce it.
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AddConstraint(c: Constraint)

c.selectedMethod := none

For each variable v in c.variables do

Add c to v.constraints

IncrementalAdd(c)

IncrementalAdd updates the solution graph when a constraint is added. First, it creates a new

mark for marking variables that have been used as method outputs during this operation. Then,

it calls Enforce to select a method to enforce the constraint. Enforcing the added constraint may

retract some other constraint. In such cases, it may be possible to enforce the retracted constraint

using a di�erent method. This may in turn retract another constraint, which must itself be considered

for enforcement. This process terminates when it reaches a constraint that cannot be enforced or

when Enforce does not retract a constraint. In either case, Enforce returns none, and the While

loop terminates.

IncrementalAdd(c: Constraint)

mark := NewMark()

retracted := Enforce(c, mark)

While retracted <> none do

retracted := Enforce(retracted, mark)

Enforce attempts to �nd a method to enforce the constraint c, retracting a weaker constraint

if necessary. If it succeeds, Enforce calls AddPropagate to update the walkabout strengths of all

variables downstream of the given constraint, and returns the retracted constraint (i.e., the one

that previously determined the output of the newly enforced constraint), if any. If AddPropagate

returns false, this indicates that a cycle has been detected, and the constraint c has been removed,

so Enforce simply returns none. If no method can be found and the constraint is required, an error

is raised. If no method can be found and the constraint is not required, the constraint is simply left

unenforced.

To guarantee eventual termination in the face of inadvertent cycles, the output of the se-

lected method is marked, and SelectMethod only selects methods whose outputs are not already

marked. The inputs of the selected method are also marked in order to allow detection of cycles in

AddPropagate.
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Enforce(c: Constraint, mark: Integer) : (Constraint | none)

SelectMethod(c, mark)

If Enforced(c) then

For all variables i in Inputs(c) do

i.mark := mark

retracted := c.selectedMethod.output.determinedBy

If retracted <> none then retracted.selectedMethod := none

c.selectedMethod.output.determinedBy := c

If not(AddPropagate(c, mark)) then

Error: "Cycle encountered"

Return none

c.selectedMethod.output.mark := mark

Return retracted

Else

If c.strength = required then

Error: "Failed to enforce a required constraint"

Return none

SelectMethod attempts to set the selectedMethod �eld of the given constraint to a method

such that:

1. the method's output is not marked,

2. the walkabout strength of the method's output is weaker than the given constraint, and

3. the method's output has the weakest possible walkabout strength.

If a method meeting these criteria cannot be found, then the selectedMethod �eld of the given

constraint is set to none.

SelectMethod(c: Constraint, mark: Integer)

c.selectedMethod := none

bestOutStrength := c.strength

For all methods m in c.methods do

If m.output.mark <> mark and

Weaker(m.output.walkStrength, bestOutStrength) then

c.selectedMethod := m

bestOutStrength := m.output.walkStrength

AddPropagate recomputes the walkabout strengths, the stay 
ags, and possibly the values of all

variables downstream of the given constraint. It also checks for inadvertent cycles by looking for

downstream variables that have been marked. Enforce marks the inputs of the constraint being

enforced before calling AddPropagate. Thus, if a marked variable is encountered then there is a

path from the output of the constraint back to one of its inputs, constituting a cycle. If a cycle

is detected, then the constraint being added is removed and false is returned. Otherwise, true is

returned.
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AddPropagate(c: Constraint, mark: Integer) : Boolean

todo := {c}

While todo <> {} do

Remove a constraint d from todo

If d.selectedMethod.output.mark = mark then

IncrementalRemove(c)

Return false

Recalculate(d)

Add all ConsumingConstraints(d.selectedMethod.output) to todo

Return true

A.4 Removing Constraints

RemoveConstraint is the procedure for removing a constraint from the constraint hierarchy.

If the constraint to be removed is enforced, then RemoveConstraint retracts it by calling

IncrementalRemove. Otherwise, the constraint is simply unregistered with its variables.

RemoveConstraint(c: Constraint)

If Enforced(c) then

IncrementalRemove(c)

Else

For each variable v in c.variables do

Remove c from v.constraints

IncrementalRemove removes the enforced constraint, by setting its selectedMethod �eld to

none and unregistering it from its variables. Then, it calls RemovePropagateFrom to set the stay

and walkStrength �elds of the constraint's output variable as if it were determined by a stay

constraint of strength weakest, and propagate this change to all downstream variables, collecting all

the unenforced downstream constraints in the process. Removing the given constraint may permit

one of these previously unenforced constraints to become enforced, so an attempt is made to enforce

each of them in turn. The unenforced constraints are processed in order of decreasing strengths,

as a heuristic. If they are processed in a di�erent order, the algorithm is still correct, but may do

unnecessary work.

Note: after this pseudocode was written, one of the authors proved that when a constraint

is removed, it is only necessary (and possible) to enforce one of the strongest eligible unenforced

constraints [31]. Thus, IncrementalRemove and RemovePropagate could be revised to record and

enforce only a single constraint, rather than a list of constraints. The decreased bookkeeping would

probably result in some improvement in the performance of RemoveConstraint. However, because

this pseudocode has been well-tested|it has been the basis of at least seven implementations of

DeltaBlue, including all the ones in this paper|we have resisted the temptation to change it now.

The reader who undertakes this optimization should be careful to record only the strongest of

the constraints that have actually been made eligible for enforcement (i.e., constraints that, after

walkabout strength propagation, have a strength greater than that of one of their potential output

variables).
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IncrementalRemove(c: Constraint)

out := c.selectedMethod.output

c.selectedMethod := none

For each variable v in c.variables do

Remove c from v.constraints

unenforced := RemovePropagateFrom(out)

For all constraints d in unenforced in order of decreasing strength do

IncrementalAdd(d)

RemovePropagateFrom sets the determinedBy, stay, and walkStrength �elds of the removed

constraint's output variable (out) as if it were determined by a stay constraint of strength weakest.

Then, this change is propagated to all downstream variables. During this process, all unenforced

downstream constraints are saved, and returned as the value of RemovePropagateFrom.

RemovePropagateFrom(out: Variable) : Set of Constraints

unenforced := {}

out.determinedBy := none

out.walkStrength := weakest

out.stay := true

todo := {out}

While todo <> {} do

Remove a variable v from todo

For all constraints c in v.constraints do

If not(Enforced(c)) then add c to unenforced

For all constraints c in ConsumingConstraints(v) do

Recalculate(c)

Add c.selectedMethod.output to todo

Return unenforced

A.5 Extracting Plans

ExtractPlanFromVariables and ExtractPlanFromConstraints are procedures that construct

plans to resatisfy the constraints. ExtractPlanFromVariables starts from a set of seed variables

provided by the client. ExtractPlanFromConstraints starts from a set of seed constraints, presum-

ably input constraints, provided by the client. Both techniques use an auxiliary function MakePlan

to do the actual work.

ExtractPlanFromVariables(variables: Set of Variables) : Plan

sources := {}

For all variables v in variables do

For all constraints c in v.constraints do

If c.inputFlag and Enforced(c) then add c to sources

Return MakePlan(sources)
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ExtractPlanFromConstraints(constraints: Set of Constraints) : Plan

sources := {}

For all constraints c in constraints do

If c.inputFlag and Enforced(c) then add c to sources

Return MakePlan(sources)

MakePlan extracts a plan by traversing the constraint graph starting from a set of enforced input

constraints. Because of stay optimization, only variables downstream of these constraints will change

at plan execution time; all other variables will have their stay �elds set to true, and will have been

computed incrementally as constraints were added and removed. The mark �eld is used to keep

track of which variables have been computed by the plan so far. When a constraint is added to the

plan, its output variable is marked and all constraints that use that variable as an input are placed

on a list of hot constraints. A hot constraint may only be added to the plan if all its inputs are

known and if it is not already in the plan (i.e., its output is not marked). If a hot constraint cannot

yet be added to the plan, it is safe to remove it from the hot list; it is guaranteed to be encountered

again later.

MakePlan(sources: Set of Constraints) : Plan

plan := {}

mark := NewMark()

hot := sources

While hot <> {} do

Remove a constraint c from hot

If c.selectedMethod.output.mark <> mark and InputsKnown(c, mark) then

Append c to plan

c.selectedMethod.output.mark := mark

Add all ConsumingConstraints(c.selectedMethod.output) to hot

Return plan

ExecutePlan is a procedure that executes the speci�ed plan, an ordered list of constraints. The

plan is executed by taking each constraint in order, executing the procedure associated with the

constraint's selected method, and setting the value of the method's output variable to the result.

A plan generated by ExtractPlanFromVariables or ExtractPlanFromConstraints will start

with an input constraint, such as a constraint that sets a variable to the current position of the

mouse, followed by other constraints to propagate the changed variable values through the network.

As long as the constraint solution graph is not changed by adding or removing a constraint, the

plan can be executed repeatedly to propagate new input values. Once the solution graph is changed,

however, the plan may be invalid, and should not be executed.

ExecutePlan(constraints: Plan)

For each constraint c in constraints do

c.selectedMethod.output.value := Execute(c.selectedMethod.code)
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A.6 Utility Functions

Inputs returns the set of variables that are inputs of the given constraint in the current solution

graph. This assumes that all of the constrained variables are inputs except for the output variable

of the selected method.

Inputs(c: Constraint) : Set of Variables

Return all variables v in c.variables such that

v <> c.selectedMethod.output

InputsKnown returns true if all inputs of the method selected for the given constraint are known.

A variable is known if either it is marked, indicating that it has been computed by a constraint

appearing earlier in the plan, or its stay 
ag is true, indicating that it will be a constant at plan

execution time.

InputsKnown(c: Constraint, mark: Integer) : Boolean

For all variables v in Inputs(c) do

If not(v.mark = mark or v.stay) then return false

Return true

Recalculate is called by both AddPropagate and RemovePropagateFrom. It updates the walk-

about strength and stay 
ag of the given constraint's output variable. If the stay 
ag is true, the

value of the output variable is precomputed. This variable will be considered a constant at plan

execution time.

Recalculate(c: Constraint)

c.selectedMethod.output.walkStrength := OutputWalkStrength(c)

c.selectedMethod.output.stay := ConstantOutput(c)

If c.selectedMethod.output.stay then

c.selectedMethod.output.value := Execute(c.selectedMethod.code)

OutputWalkStrength computes the walkabout strength to be assigned to the output variable

of the given constraint. The walkabout strength is the weakest of the constraint's strength and

the walkabout strengths of all the current inputs that could become outputs by choosing another

method.

OutputWalkStrength(c: Constraint) : Strength

minStrength := c.strength

For all methods m in c.methods do

If m.output <> c.selectedMethod.output and

Weaker(m.output.walkStrength, minStrength) then

minStrength := m.output.walkStrength

Return minStrength
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ConstantOutput returns true if the output of the given constraint will be a constant at plan

execution time. This is the case if (1) the constraint is not an input constraint such as a mouse

constraint, and (2) all the constraint's inputs are marked stay or the constraint has no inputs. A

stay constraint has no inputs, so its output variable will be considered a constant.

ConstantOutput(c: Constraint) : Boolean

If c.inputFlag then return false

For all variables v in Inputs(c) do

If not(v.stay) then return false

Return true

ConsumingConstraints returns the set of all enforced constraints on the given variable except

the one that currently determines its value.

ConsumingConstraints(v: Variable) : Set of Constraints

consumers := {}

For all constraints c in v.constraints do

If Enforced(c) and c <> v.determinedBy then

Add c to consumers

Return consumers

Enforced returns true if the given constraint is enforced. A constraint is enforced if DeltaBlue

has selected a method to enforce it.

Enforced(c: Constraint) : Boolean

Return c.selectedMethod <> none

Execute is a primitive function that evaluates a procedure, and returns the result of the pro-

cedure. This function is used to execute the procedure associated with a method, which contains

pointers to the input variables accessed by the method.

Precisely how methods are represented, bound to the variables of their constraint, and executed

are details that depend heavily on the facilities of the underlying implementation language.

Execute(code: Procedure) : <any>

<primitive>

NewMark is a primitive function that returns a previously unused mark value.

NewMark() : Integer

<primitive>

Weaker is a primitive function that returns true if s1 is a weaker strength than s1.

Weaker(s1, s2: Strength) : Boolean

<primitive>
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Figure 22: AddConstraint and RemoveConstraint Example

A.7 An Example

An example of the operation of AddConstraint and RemoveConstraint is shown in Figure 22. Row

(a) shows the initial state of the constraint graph. Five variables are linked in a chain by required

equality constraints, and a weak stay constraint has been added to the rightmost variable. Initially,

the �ve variables have walkabout strengths of weak due to the weak stay constraint. Suppose that

a strong edit constraint is then added to the middle variable. When this edit constraint is enforced,

SelectMethod �nds an acceptable method for the edit constraint, the constraint currently setting

that variable is revoked, and AddPropagate updates the walkabout strengths of the downstream

variables (b). Next, an attempt is made to enforce the retracted constraint, which causes yet

another constraint in the chain to be retracted (c). After another call to Enforce, the algorithm

terminates, leaving the weak stay constraint unenforced (d).

Now, suppose that this edit constraint is removed by a call to RemoveConstraint. After the

constraint is removed from the graph, RemovePropagateFrom sets the walkabout strength of its

former output variable to weakest , and propagates this to all of the downstream variables (e).

RemovePropagateFrom also discovers the unenforced weak stay constraint, and IncrementalAdd is

called to enforce it. This call enforces the weak stay constraint and updates the walkabout strength

of its output variable (f), retracting the constraint currently setting that variable. After two more

calls to Enforce, the algorithm terminates (g,h).
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