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Double Exponential Inseparability

Of Robinson Subsystem Q

+

From The Unsatisfiable Sentences

In The Language Of Addition

y

Giovanni Faglia Paul Young

One of the �rst and seminal results in the study of the complexity of logical theories is the work

by Fischer and Rabin [FR74] which proves the double-exponential complexity of the set S

+

of

true sentences of addition.

The set S

+

is a logical theory|namely the theory studied by Presburger in [Pre29] and

proposed as a �rst signi�cant stage in the foundation of mathematics by Hilbert and Bernays

in [HB34]. In particular S

+

is a complete and decidable �rst order theory.

This interesting theory is in several ways very powerful. On the one hand all true state-

ments of the arithmetic of addition can be proved in it. On the other hand, being a complete

theory, S

+

is a maximal consistent set and cannot be extended to any stronger consistent sys-

tem. The power of S

+

simpli�es the mathematical constructions needed to prove its double

exponential complexity, but somehow implies that the result may be limited.

How deeply does the Fischer and Rabin lower bound really a�ect the possibility of a feasible

theory of arithmetic? How strong must the logical system be for the lower bound to apply, and

how much is this due to being a logical theory instead of a more general set of sentences?

In [You85] a �nitely axiomatizable subtheory of S

+

called ADDAX is given for which any

set of sentences that separates ADDAX from the logically false sentences in the language of

addition is exponentially di�cult. Compton and Henson obtained in [CH90] a hereditary lower

bound for S

+

, which implies that any subset of S

+

which contains all logically valid sentences

cannot be recognized by a Turing machine working in double exponential time.

In this work we prove a double exponential time inseparability result for a �nitely ax-

iomatizable theory Q

+

that is weaker than ADDAX. Every set that separates Q

+

from the

logically false sentences of addition is not recognizable by any Turing machine working in double

exponential time. This implies also that any theory of addition that is consistent with Q

+

|

in particular any theory contained in S

+

|is at least double exponential time di�cult. The

result also subsumes both the hereditary lower bounds in [CH90] and the single exponential

inseparability in [You85].

y

The results presented here will be included as part of the �rst author's doctoral disser-

tation [Fag93] written under the direction of Alberto Bertoni, Pierangelo Miglioli and Paul

Young. The research was performed partly while Young was a visiting Professor at Univer-

sit�a degli Studi di Milano|supported by Consiglio Nazionale delle Ricerche|and partly while

Faglia|supported by an Italian Dottorato di Ricerca scholarship|was a visiting scholar in the

Department of Computer Science and Engineering at the University of Washington, Seattle,

USA.
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Thus the inseparability result we give is an improvement on the known lower bounds

for arithmetic theories. It is stronger than the inseparability in [You85] because the lower

bound is higher and the inseparability wider (since Q

+

is a proper subset of ADDAX), and the

computational model more general|alternating versus non-deterministic Turing machines.

It is also strictly stronger than the hereditary lower bound in [CH90]. The hereditary

lower bound in [CH90] is equivalent to the double exponential inseparability of the complete

theory S

+

, (which contains Q

+

), from the unsatis�able sentences of the language, while the

inseparability forQ

+

implies in particular that every consistent theory extending Q

+

, (including

S

+

in particular), is double exponentially inseparable from the unsatis�able sentences.

Historically, our result is expecially pleasing. In early work, Raphael Robinson extended

G�odel's famous results on the undecidability of Peano Arithmetic by showing that his weaker

theory Q is recursively inseparable from the logically false sentences of the language of Peano

Arithmetic, [Rob50]. The axioms for our theory Q

+

are obtained from the axioms for Robin-

son's system by simply eliminating all axioms which refer to multiplication. Our results are

then exactly analogous to Robinson's: not only is Presburger Arithmetic double exponentially

di�cult, as shown by Fischer and Rabin, but the weaker theory Q

+

is double exponentially

inseparable from the logically false sentences of the language of Presburger Arithmetic.

1: OVERVIEW

The material in this report is organized in the following way. As shown by a careful analysis

in the �rst sections, a small set of properties of addition and successor are su�cient to de�ne

an exp(3; k)-representation `


k

' of the multiplication function in the sense of [FY92]. These

properties can be expressed by a �nite set of sentences, and these sentences are then taken as

axioms of a simple theory Q

+

.

A proof of double-exponential multiplicative inseparability in the sense of [You85]|which

in turn implies the standard non-deterministic Turing machine lower bound|almost immedi-

ately follows for the stronger theory ADDAX from the exp(3; k)-representability of the multi-

plication function.

Some proofs of the inseparability result for Q

+

are then shown in detail. All the con-

struction that has been done in [FR74] for the complete theory S

+

can be done for Q

+

, or

for any other �nitely axiomatizable system in which all of the necessary properties of addition

are provable, with the major di�erence that this much weaker theory is not complete and we

cannot refer to truth in a `standard' model to decide membership to Q

+

: A double-exponential

alternating time and linear alternation lower bound for Q

+

is derived in this way.

A hereditary lower bound in the sense of [CH90] for any theory extending Q

+

can be

immediately inferred as a by-product of the above construction.

Finally the result is proven by reducing the decision problem of the complete Presburger

theory to the problem of deciding any separating set.
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2: A SUFFICIENT SET OF AXIOMS

In this section the theory Q

+

is de�ned, and all the relevant properties that are needed in

the following sections are described and proven.

First of all, Q

+

is a theory in the �rst order language L

+

with two function symbols, that

are `+' for addition and `S' for successor, one constant symbol `0' and one predicate symbol,

namely `=' for equality. Only + and = are strictly necessary, while S and 0 can be eliminated.

2:1 A small set of axioms.

Like S

+

, Q

+

also has to be a theory with equality, that is a theory where the symbol =

means standard identity of elements. The formulas corresponding to the desired properties of +

and S|that in �rst order arithmetic are usually proven using the induction schema|here are

taken as axioms (namely d: and e:):

a: 8x x = x

b: 8xy x = y ! y = x

c: 8xyz (x = y ^ y = z)! x = z

d: 8xy x = y ! Sx = Sy

e: 8x

1

x

2

y x

1

= x

2

! (x

1

+ y = x

2

+ y ^ y + x

1

= y + x

2

)

Also the noninductive Peano axioms for S and + are included in the axiomatization of Q

+

:

f: 8x :Sx = 0

g: 8xy Sx = Sy ! x = y

h: 8x x+ 0 = x

i: 8xy x+ Sy = S(x + y)

One major property of the structure of natural numbers characterizes the theory Q

+

,

namely the existence of predecessor for positive numbers. This property implies that x � n is

equivalent to the disjunction x = 0_x = S0_� � �_x = n of all �nite possible cases and this will

be used in several situations to eliminate quanti�ers from formulas. It implies also that in every

model each element denoted by a numeral is comparable to every other element|even if the

order happens to be partial. This sort of totality is used in the construction of x


k

y = z, where

it guarantees that an element is uniquely determined by the property of being denoted by a

numeral and of being minimal in a certain set. Finally the existence of predecessor implies that

the theory decides every divisibility statement: for any integers m and n either njm or n 6 jm is

a theorem.

The following sentence, which expresses the existence of predecessor, is the last axiom of

the theory Q

+

:

1

j: 8x x = 0 _ (9y x = Sy):

1

The theory ADDAX studied in [You85] can be given by the axiom system a:{j: plus the

additional tricotomy axiom 8x8y x < y_x = y_y < x, where the symbol < may be considered

to be either primitive or de�ned from + in a standard way. Since tricotomy is not a theorem

of Q

+

, the latter is strictly weaker than ADDAX.
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Note that axioms a: through j: happen to be exactly the axioms for + and S in the well-

known Robinson system Q (cf: [Rob50])|hence the choice of the name Q

+

. Our purpose has

been to obtain from the Fischer and Rabin's work a result similar to the one obtained by

Raphael Robinson from the G�odel theorem, and it is worth noting that we came out with the

same kind of inseparability result for exactly the corresponding theory!

The theory Q

+

is contained in S

+

, because all of its axioms are true in the standard model.

On the other hand a very simple model of Q

+

that is not a model of S

+

can be constructed.

Consider the normal model|i:e: a model in which `=' means identity|obtained adding a limit

element ! on top of the natural numbers:

! �


.

.

.

2 �

�

�

�

1 �

�

�

�

0 �

Let S! be ! and n + ! = ! + n = ! + ! = ! for each integer n. Axioms a: through j: hold

in this model, but the sentence 8x:x = Sx is false here, although it is true in the standard

interpretation. Hence this model is not a model of S

+

and Q

+

6= S

+

.

The �nite system Q

+

is then strictly smaller than the complete theory

2

S

+

|indeed it

is much weaker. A model of Q

+

similar to the preceding one falsi�es commutativity and

associativity of addition, which are not provable in Q

+

:

Q

+

6` 8xy x+ y = y + x

Q

+

6` 8xyz x+ (y + z) = (x + y) + z

To see this, this time add three limit elements !

1

; !

2

and !

3

on top of the natural numbers,

and for any integers i; j and n, 1 � i; j � 3, let S!

i

= n+ !

i

= !

i

+ n = !

i

and

!

i

+ !

j

=

�

!

i

if i + j is odd

!

j

otherwise.

Again, this is a model of Q

+

. But (!

1

+ !

2

) + !

3

= !

3

6= !

1

= !

1

+ (!

2

+ !

3

) and !

1

+ !

2

=

!

1

6= !

2

= !

2

+ !

1

:

2:2 Properties of Q

+

Several well-known properties of Q

+

will be used to prove our inseparability result. Some

of these are logical properties due to axioms a: through e: and some are simply due to Q

+

being

a �rst order theory. These axioms guarantee that substitutivity of equality

x = y ! ('(x; x)! '(x; y)) for all formulas '

2

The complete theory S

+

in any case is not �nitely axiomatizable (cf: [BS69]). We are

grateful to Paola D'Aquino and Angus Macintyre for pointing out this reference.
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holds in Q

+

(cf: [Men87, p: 76]), which is then by de�nition a theory with equality.

Some properties, as already mentioned, come instead from the arithmetical power of the

theory, and most of them are already well studied in the literature (cf: [Rob50], [TMR53]

or [Men87]).

Properties of the �rst kind are needed to apply several tools|which are commonly used in

the �eld of the complexity of logical theories|for example to replace long formulas with shorter

forms. Usually, in order for the substitution to operate soundly, each shorter form is shown to

be equivalent to the original formula with semantical arguments.

These tools can be used when dealing with any �rst order theory with equality. In all

�rst order theories the substitution of a subformula with an equivalent form gives rise to an

equivalent formula, as stated by the equivalence and replacement theorems.

Theorem(Equivalence and Replacement)

Let �(X) be a formula of the �rst order language L(X) obtained by adjoining to the generic

language L a new atomic 0-ary predicate symbol X, that works as place holder, and let �; 


be formulas of the plain L. If fz

1

; : : : ; z

n

g = bound(�(X)) \ free(� $ 
) is the set of bound

variables in �(X) that are free in � or in 
, then the following statements hold for any �rst

order theory T in the language L:

T ` [8z � $ 
] ! [�(�)$ �(
)] (equivalence theorem)

If T ` � $ 
 then T ` �(�)$ �(
) (replacement theorem)

where �(�) [�(
)] is the result of replacing all occurences of X in � with � [
].

Since we need to systematically abbreviate formulas, the preceeding theorem guarantees

that each success that we obtain in one place extends immediately to many other places by

replacement. Note in particular that for the antecedent of the replacement theorem to hold, it

is not necessary that � $ 
 be logically valid; the formula need just be a logical consequence

of the theory T .

Several ways to create equivalent shorter forms of a formula are known in theories with

equality. It is worth noting that a common matrix can be ascribed to most of these equivalencies;

indeed there is a well-known property valid for all languages and theories with equality:

Proposition

In any theory with equality T

=

, for any formula '(x; y) and variable z not appearing

in '(x; y) the following are theorems:

T

=

` 8z ['(z; y)$ 8x (x = z ! '(x; y))]

T

=

` 8z ['(z; y)$ 9x (x = z ^ '(x; y))]:

where '(z; y) is the result of replacing all occurences of x in ' with z. Hence for any for-

mula '(x; y) and term t free for x in ' the following are theorems:

T

=

` '(t; y)$ 8x (x = t! '(x; y))

T

=

` '(t; y)$ 9x (x = t ^ '(x; y)):
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For example '(t

1

) ^ '(t

2

) is equivalent to 8x (x = t

1

! '(x)) ^ 8x (x = t

2

! '(x)) and

�nally to 8x [(x = t

1

_ x = t

2

) ! '(x)]. The original formula can be twice as long as the last

form, and this widely known technique will be used again and again in this work.

Let us now look at the arithmetical properties of Q

+

, and list those that are used to prove

the inseparability result.

Some common abbreviations have to be introduced at this point.

The expression � � � will be used as an abbreviation for 9u [� + u = �], and � < �

for 9u [�+ u = � ^ :u = 0], taking u as a distinct variable that without loss of generality can

be taken to appear only in such contexts. Note that � does not necessarily have in Q

+

the

properties of an order relation. For example, one of the previous models shows that � is not

necessarily anti-symmetric.

For any positive integer n and expression �, n �� will be used instead of the term �+(�+

(� � �+ (� + �) � � �) with n occurrences of �. Since commutativity and associativity of addition

are not provable in Q

+

, a di�erent abbreviation is needed for terms like ((�+�)+�)+ (�+�)

in which n occurrences of � appear but they are structured in a generic tree instead of a list,

as is in n � �. Let n �

�

� be a notation for such terms; in each case it will be explicitly stated

whether the notation stands for a particular term of that kind or for any such term. For a

matter of homogeneity, in some expressions 0 �� and 0 �

�

� will be used as another name of the

closed term 0.

For any integer expression a|in the meta-language|with value n, a is an abbreviation

for the numeral SS � � �S0 with n occurrences of the successor symbol: e:g: if q � m + r = n

then q �m+ r is an abbreviation for S

n

0.

Proposition

For all integers n;m; q and r the following are theorems of Q

+

:

1: Q

+

` 8z [n �m = n �

�

z $ z = m] for each term n �

�

z

2: Q

+

` 8z [q �m + r = m �

�

z + r$ z = q] for each term m �

�

z

3: Q

+

` 8y [y � n$ (y = 0 _ y = S0 _ � � � _ y = n)]

4: Q

+

` 8y [n = m �

�

y ! (y = 0 _ y = S0 _ � � � _ y = n)], for m > 0

5: Q

+

` :9z n = m �

�

z if m does not divide n (non-divisibility)

6: Q

+

` t = t for each closed term t, being t the numeral corresponding to the integer denoted

by t in N

7: Q

+

` :t = s for each closed term t and numeral s distinct from t

8: Q

+

` 8z f[8y y � t! '(y; z)]$ ['(0; z) ^ � � � ^ '(t; z)]g for each closed term t

9: Q

+

` 8z f[9y y � t ^ '(y; z)]$ ['(0; z) _ � � � _ '(t; z)]g for each closed term t

10: Q

+

` z � n _ n � z (totality, with respect to numerals)

proof Properties 1: and 2: are proven by a straightforward induction, using substitutivity of

equality when necessary. Statement 3: has a simple proof by induction on n.

Property 4: can be proved by induction on m|simultaneously for each n. For m = 1 the

proof is immediate. If m > 1 and m �

�

y is m

1

�

�

y +m

2

�

�

y then Q

+

` n = m �

�

y ! 9zn =

m

1

�

�

y + z. Hence Q

+

` n = m �

�

y ! (m

1

�

�

y = 0 _m

1

�

�

y = S0 _ � � � _m

1

�

�

y = n), and

the inductive hypothesis can be applied to each disjunct m

1

�

�

y = s.

The non-divisibility property is a direct consequence of the previous one. Property 6: can

be easily proven by induction on the length of the term t, using axioms h: and i:, and 7: is a
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consequence of 6: and axiom j:

By 3:, 6: and the replacement theorem, the result of substituting the subformula y � t

with (y = 0 _ y = S0 _ � � � _ y = t) in 8: or 9: is equivalent to the original form. Then both

properties 8: and 9: can be proven from the properties of theories with equality stated in a

previous proposition.

Totality of � with respect to numerals is proven by n applications of the axiom j:, noting

that 9y z = S

n

y implies n � z.

Let '(z) 2 L

+

be a formula with free variables in the set fzg, in which some quanti�ed

variables are bounded by a closed term t, like for example x in 8x[(x � S(S0+S0)) ! x+ z

1

�

z

2

]. Then there exists a formula �(z)|with free variables in the set fzg|that is equivalent

to '(z) in Q

+

:

Q

+

` 8z ['(z)$ �(z)]

in which the bounded quanti�cations have been replaced by the equivalent conjunctions or

disjunctions of all possible values.

Theorem(Bounded Quanti�er Elimination)

Let '(z) 2 L

+

be a formula with free variables in the set fzg, such that each quanti-

�ed variable in '(z) is bounded by some closed term t. Then there exists a quanti�er free

formula �(z)|with free variables in the set fzg|that is equivalent to '(z) in Q

+

:

Q

+

` 8z ['(z)$ �(z)]:

If fzg is ; and ' is a sentence, then either ' or :' is provable in Q

+

:

Q

+

` ' if and only if Q

+

6` :':

3: THE DEFINITION OF PRODUCT

In this section a sequence of formulas is built that is intended to represent the product

function in Q

+

, simplifying and adapting the construction made in [FR74] for the complete

theory S

+

. The sequence has linear growth, i:e: there exists a positive integer c such that for

all k the length of the k-th formula in this sequence, denoted by x


k

y = z, is less than c � k.

The formula x


k

y = z has exactly three free variables and is equivalent in Q

+

to a quanti�er

free formula, namely:

Q

+

` 8xyz (x


k

y = z $

_

n;m�m

k+4

�

x = n ^ y = m ^ z = n �m

�

)

where m

k+4

>> exp(3; k) is for each k the least common multiple of f2; : : : ; exp(2; k + 4)� 1g :

In particular for all numerals r; s and n

Q

+

` r


k

s = n i� Q

+

6` :r


k

s = n i� [r; s � m

k+4

& n = rs]:

3:1 De�nition of minor times

The construction of x


k

y = z starts with the inductive de�nition of a weaker linear se-

quence fM

k

(x; y; z)g

k�0

that in Q

+

represents the product function provided the �rst argu-

ment x belongs to the initial segment f0 � � �exp(2; k)� 1g of the natural numbers. It is shown
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in particular that a sequence like the one described in [FR74] for the complete theory S

+

is

appropriate for the theory Q

+

, because in this theory it is provably equivalent to a quanti�er

free formula:

Q

+

` 8xyzM

k

(x; y; z)$

_

s<exp(2;k)

[x = s ^ z = s �

�

y]:

for some terms of the form s �

�

y, one for each s.

The de�nition is given by induction:

M

0

(x; y; z) is (x = 0 ^ z = 0) _ (x = S0 ^ z = y):

Recall that for each integer n < m

2

there exists a triple hs

1

; s

2

; s

3

i, s

i

< m, such that n =

s

2

+ s

3

+ s

1

� s

1

and s

2

� s

3

� s

1

^ s

3

� s

2

� 1. This property is crucial to understand the

inductive step of the de�nition. The step de�nes M

k+1

(x; y; z) in such a way that

` 8xyz

�

M

k+1

(x; y; z) $

9u

1

u

2

u

3

u

4

u

5

u

6

u

7

u

8

u

9

M

k

(u

1

; u

1

; u

4

) ^ u

1

= u

3

+ u

9

^ (u

3

= u

2

_ u

3

= Su

2

) ^ x = u

2

+ u

3

+ u

4

^

M

k

(u

1

; y; u

5

) ^M

k

(u

1

; u

5

; u

6

) ^M

k

(u

2

; y; u

7

) ^M

k

(u

3

; y; u

8

) ^ z = u

6

+ u

7

+ u

8

�

:

The formula on the right-hand side of the previous implication is logically equivalent to

9u

1

u

2

u

3

u

4

u

5

u

6

u

7

u

8

u

9

x = u

2

+ u

3

+ u

4

^ z = u

6

+ u

7

+ u

8

^ u

1

= u

3

+ u

9

^ (u

3

= u

2

_ u

3

= Su

2

) ^

[8x

0

y

0

z

0

(x = x

0

^ y = y

0

^ z = z

0

)!

M

k

(u

1

; u

1

; u

4

) ^M

k

(u

1

; y

0

; u

5

) ^M

k

(u

1

; u

5

; u

6

) ^M

k

(u

2

; y

0

; u

7

) ^M

k

(u

3

; y

0

; u

8

)]

which is logically equivalent to

9u

1

u

2

u

3

u

4

u

5

u

6

u

7

u

8

u

9

x = u

2

+ u

3

+ u

4

^ z = u

6

+ u

7

+ u

8

^ u

1

= u

3

+ u

9

^ (u

3

= u

2

_ u

3

= Su

2

) ^

[8x

0

y

0

z

0

(x = x

0

^ y = y

0

^ z = z

0

)!

8xyz[(x = u

1

^ y = u

1

^ z = u

4

) _ (x = u

1

^ y = y

0

^ z = u

5

) _

(x = u

1

^ y = u

5

^ z = u

6

) _ (x = u

2

^ y = y

0

^ z = u

7

) _

(x = u

3

^ y = y

0

^ z = u

8

)]!M

k

(x; y; z)]

De�ne then M

k+1

(x; y; z) to be the formula above. As k increases, the length of M

k

(x; y; z)

increases linearly in k.

Theorem

The formula M

k

(x; y; z) is equivalent in Q

+

to

_

s<exp(2;k)

[x = s ^ z = s �

�

y]

for some terms of the form s �

�

y, one for each s.

8



proof The base is straightforward. As for the induction step, as noticed above the for-

mula M

k+1

(x; y; z) is logically equivalent to:

9u

1

u

2

u

3

u

4

u

5

u

6

u

7

u

8

u

9

M

k

(u

1

; u

1

; u

4

) ^ u

1

= u

3

+ u

9

^ (u

3

= u

2

_ u

3

= Su

2

) ^ x = u

2

+ u

3

+ u

4

^

M

k

(u

1

; y; u

5

) ^M

k

(u

1

; u

5

; u

6

) ^M

k

(u

2

; y; u

7

) ^M

k

(u

3

; y; u

8

) ^ z = u

6

+ u

7

+ u

8

that is equivalent in Q

+

, using the replacement theorem and the inductive hypothesis, to the

following formula|for some terms s

1

�

�

u

1

; s

0

1

�

�

y; s

00

1

�

�

u

5

; s

2

�

�

y; s

3

�

�

y:

9u

1

u

2

u

3

u

4

u

5

u

6

u

7

u

8

u

9

W

s

1

<exp(2;k)

[u

1

= s

1

^ u

4

= s

1

�

�

u

1

] ^

x = u

2

+ u

3

+ u

4

^ u

1

= u

3

+ u

9

^ (u

3

= u

2

_ u

3

= Su

2

) ^

_

s

0

1

<exp(2;k)

[u

1

= s

0

1

^ u

5

= s

0

1

�

�

y] ^

_

s

00

1

<exp(2;k)

[u

1

= s

00

1

^ u

6

= s

00

1

�

�

u

5

] ^

_

s

2

<exp(2;k)

[u

2

= s

2

^u

7

= s

2

�

�

y]^

_

s

3

<exp(2;k)

[u

3

= s

3

^u

8

= s

3

�

�

y]^ z = u

6

+u

7

+u

8

:

Using distributivity of ^ over _ the above formula is shown to be logically equivalent to

9u

1

u

2

u

3

u

4

u

5

u

6

u

7

u

8

u

9

W

s

1

<exp(2;k)

W

s

0

1

<exp(2;k)

W

s

00

1

<exp(2;k)

W

s

2

<exp(2;k)

W

s

3

<exp(2;k)

�

u

1

= s

1

^ u

4

= s

1

�

�

u

1

^ x = u

2

+ u

3

+ u

4

^ u

1

= u

3

+ u

9

^ (u

3

= u

2

_ u

3

= Su

2

) ^

u

1

= s

0

1

^ u

5

= s

0

1

�

�

y ^ u

1

= s

00

1

^ u

6

= s

00

1

�

�

u

5

^ u

2

= s

2

^

u

7

= s

2

�

�

y ^ u

3

= s

3

^ u

8

= s

3

�

�

y ^ z = u

6

+ u

7

+ u

8

�

As shown in the preceeding proposition (part 7:), Q

+

proves the negation of each disjunct

corresponding to integers s

1

; s

0

1

; s

00

1

; s

2

; s

3

such that not s

1

= s

0

1

= s

00

1

: From :B ` [A _ B] $

[(A_B)^:B] and ` [(A_B) ^:B]$ [A^:B] it follows that the formula displayed above is

equivalent in Q

+

to the following

3

:

9u

1

u

2

u

3

u

4

u

5

u

6

u

7

u

8

u

9

_

s

1

;s

2

;s

3

<exp(2;k)

�

u

1

= s

1

^ u

2

= s

2

^ u

3

= s

3

^

u

1

= u

3

+ u

9

^ (u

3

= u

2

_ u

3

= Su

2

) ^ u

4

= s

1

�

�

u

1

^ x = u

2

+ u

3

+ u

4

^

u

5

= s

1

�

�

y ^ u

6

= s

1

�

�

u

5

^ u

7

= s

2

�

�

y ^ u

8

= s

3

�

�

y ^ z = u

6

+ u

7

+ u

8

�

:

Since 9x [�(x) _ �(x)] $ [9x�(x) _ 9x�(x)] is logically valid, the preceding is logically

equivalent to:

_

s

1

;s

2

;s

3

<exp(2;k)

�

9u

1

u

2

u

3

u

4

u

5

u

6

u

7

u

8

u

9

[u

1

= s

1

^ u

2

= s

2

^ u

3

= s

3

^

u

1

= u

3

+ u

9

^ (u

3

= u

2

_ u

3

= Su

2

) ^ u

4

= s

1

�

�

u

1

^ x = u

2

+ u

3

+ u

4

^

u

5

= s

1

�

�

y ^ u

6

= s

1

�

�

u

5

^ u

7

= s

2

�

�

y ^ u

8

= s

3

�

�

y ^ z = u

6

+ u

7

+ u

8

]

�

:

3

Each term of the form s

0

1

�

�

� or s

00

1

�

�

� can be considered to be also of the form s

1

�

�

�,

if s

1

= s

0

1

= s

00

1

.

9



Q

+

is a theory with equality, hence Q

+

` '(t; y)$ 9x (x = t^'(x; y)) for any formula '(x; y)

and term t free for x in '. Applying this property to each disjunct, the formula displayed above

can be shown equivalent to:

_

s

1

;s

2

;s

3

<exp(2;k)

�

9u

4

u

5

u

6

u

7

u

8

u

9

[u

4

= s

1

�

�

s

1

^ x = s

2

+ s

3

+ u

4

^ s

1

= s

3

+ u

9

^ (s

3

= s

2

_ s

3

= S s

2

) ^

u

5

= s

1

�

�

y ^ u

6

= s

1

�

�

u

5

^ u

7

= s

2

�

�

y ^ u

8

= s

3

�

�

y ^ z = u

6

+ u

7

+ u

8

]

�

:

Applying again the same property to the quanti�ed variables u

4

through u

8

|in the natural

order, so that u

6

is correctly eliminated after u

5

|the following equivalent formula is derived:

_

s

1

;s

2

;s

3

<exp(2;k)

�

9u

9

x = s

2

+ s

3

+ (s

1

�

�

s

1

) ^ z = s

1

�

�

(s

1

�

�

y) + s

2

�

�

y + s

3

�

�

y ^

(s

3

= s

2

_ s

3

= S s

2

) ^ s

1

= s

3

+ u

9

�

The last existential quanti�er can be carried inside in order to obtain the logically equivalent:

_

s

1

;s

2

;s

3

<exp(2;k)

�

x = s

2

+ s

3

+ (s

1

�

�

s

1

) ^ z = s

1

�

�

(s

1

�

�

y) + s

2

�

�

y + s

3

�

�

y ^

(s

3

= s

2

_ s

3

= S s

2

) ^ 9u

9

s

1

= s

3

+ u

9

�

Using an instance of Q

+

` 8y [y � n $ (y = 0 _ y = S0 _ � � � _ y = n)] and replacement, the

following formula can be shown equivalent in Q

+

to the one above:

_

s

1

;s

2

;s

3

<exp(2;k)

�

x = s

2

+ s

3

+ (s

1

�

�

s

1

) ^ z = s

1

�

�

(s

1

�

�

y) + s

2

�

�

y + s

3

�

�

y ^

(s

3

= s

2

_ s

3

= S s

2

) ^ (s

3

= 0 _ s

3

= S0 _ � � � _ s

3

= s

1

)

�

Finally Q

+

` :� for each disjunct � such that s

3

6� s

1

or (s

2

6= s

3

6= s

2

+ 1), and as before

the preceding formula can be shown equivalent in Q

+

to the following one|where the last two

conjuncts of each disjunct have been suppressed, being provable in Q

+

:

_

s

1

;s

2

;s

3

<exp(2;k)

s

3

�s

1

;(s

3

=s

2

_s

3

=s

2

+1)

�

x = s

2

+ s

3

+ (s

1

�

�

s

1

) ^ z = s

1

�

�

(s

1

�

�

y) + s

2

�

�

y + s

3

�

�

y

�

For each triple hs

1

; s

2

; s

3

i, Q

+

` s

2

+ s

3

+ s

1

�

�

s

1

= s

2

+ s

3

+ s

1

� s

1

, and s

1

�

�

(s

1

�

�

y) +

s

2

�

�

y + s

3

�

�

y is by de�nition a term of the form (s

1

� s

1

+ s

2

+ s

3

) �

�

y. Hence each disjunct

in the previous formula is equivalent in Q

+

to the corresponding disjunct in the following:

_

s

1

;s

2

;s

3

<exp(2;k)

s

3

�s

1

;(s

3

=s

2

_s

3

=s

2

+1)

�

x = s

2

+ s

3

+ s

1

� s

1

^ z = (s

1

� s

1

+ s

2

+ s

3

) �

�

y

�

(y)

For each n < exp(2; k)

2

= exp(2; k+1) there exists exactly one triple hs

1

; s

2

; s

3

i, s

i

< exp(2; k),

such that n = s

2

+ s

3

+ s

1

� s

1

and s

3

� s

1

^ (s

3

= s

2

_ s

3

= s

2

+ 1). Then the previous formula

can be written

4

_

n<exp(2;k+1)

�

x = n ^ z = n �

�

y

�

4

At this point it should be clear why the conjuncts:

(9u

9

u

1

= u

3

+ u

9

) ^ (u

3

= u

2

_ u

3

= Su

2

);

10



3:2 De�nition of major times

We are next going to raise the upper limit from a double to a triple exponential. Since we

will need to refer to the number of primes �(n) less than or equal to a given number n, we �rst

report the derivation of a lower bound on �(n) (namely

p

n < �(n) if n is big enough) that is

very simple and su�cient to our purposes. Let m be any integer and p a prime less than or

equal to m and consider the factors p

h

and p

k

in the prime decomposition of m and m!|i:e: h

is the greatest power of p that divides m and so is k for the factorial of m. Each multiple of p

less than or equal to m appears in the product m!, and increments k of a unit; indeed some

multiples of p are also multiples of p

2

, and they contribute twice to k; some are multiples of p

3

,

and so on. The following expression can be seen to hold:

k =

�

m

p

�

+

�

m

p

2

�

+ � � �+

�

m

p

s

�

where s equals h or is any integer greater than it|in this case the additional items after the h-th

do not contribute to the overall sum.

Consider then the binomial

�

2n

n

�

=

(2n)!

n!n!

=

2n

n

�

2n� 1

n� 1

� : : : �

n+ 1

1

> 2 � 2 � : : : � 2 = 2

n

:

Let h

1

; k

1

and h

2

; k

2

be de�ned as above for the integers n; 2n and their factorials, and let k

be the greatest power of p that divides

�

2n

n

�

. Then

k = k

2

� 2k

1

=

�

2n

p

�

+

�

2n

p

2

�

+ � � �+

�

2n

p

h

2

�

� 2

��

n

p

�

+

�

n

p

2

�

+ � � �+

�

n

p

h

2

��

since h

2

� h

1

. For all �, b2�c�2b�c � 1; then k � h

2

. This means that the greatest power of p

that divides

�

2n

n

�

> 2

n

is not greater than the greatest power of p that divides 2n. In particular

all factors in the prime decomposition of

�

2n

n

�

are less than or equal to 2n, and no prime greater

than 2n can appear in it. The following inequality holds:

2

n

<

�

2n

n

�

� (2n)

�(2n)

have been added to the original de�nition (cf: [FR74], [MY78, pp: 194{5], [HU79] and [You85])

ofM

k+1

(x; y; z) for S

+

. They guarantee uniqueness of decomposition of n as a sum s

1

�s

1

+s

2

+s

3

.

If this were not the case, for each n less than exp(2; k)

2

several disjuncts of the form:

x = s

2

+ s

3

+ s

1

� s

1

^ z = (s

1

� s

1

+ s

2

+ s

3

) �

�

y

would appear in (y), one for each possible decomposition of n. Distinct terms s

1

�

�

(s

1

�

�

y) +

s

2

�

�

y+ s

3

�

�

y correspond to di�erent decompositions, and two distinct terms of the form n �

�

y

cannot be proved equal, since commutativity and associativity do not hold. (In order to see

a countermodel e:g: to x+ (x + x) = (x + x) + x|and to associativity and commutativity as

well|add two limit elements !

0

and !

1

to N and de�ne successor and addition as before, but

for !

i

+!

j

which is !

1�i

if i = j, !

i

otherwise: then !

0

+(!

0

+!

0

) = !

0

6= !

1

= (!

0

+!

0

)+!

0

.)

Then we could not get rid of the duplicated disjuncts by just appealing to the tautology A$

B ! [(A _B)$ A].

11



which implies

n

dlog

2

2ne

< �(2n) � �(2n+ 1)

Every integer m is either odd or even and matches one of the two right-hand sides.

�(m) >

�

m�1

2dlog

2

(m�1)e

se m = 2n+ 1

m

2dlog

2

me

se m = 2n

�

�

m� 1

2dlog

2

(m � 1)e

We are taking m to be odd in order to consider the worst case, i:e: the smallest possible right-

hand side. In any case the following inequality holds:

m� 1

2(1 + log

2

(m� 1))

�

m � 1

2dlog

2

(m � 1)e

< �(m):

The left-hand term is !(

p

m); in particular for m � 2

9

:

5

p

m <

m � 1

2(1 + log

2

(m � 1))

< �(m):

Consider now the least common multiplem

k

of all positive integers less than exp(2; k). We

know that the factorization of this number contains the greatest power less than exp(2; k) of

each prime. If k is big enough the lower bound derived above guarantees that exp

1=2

(2; k) <

�(exp(2; k))|and exp

1=2

(2; k) � �(exp(2; k)� 1). Indeed k � 4 is enough, as can be immedi-

ately veri�ed. Since exp

1=2

(2; k) happens to be exp(2; k � 1), we know that the least common

multiple m

k

is the product of at least exp(2; k� 1) factors each greater than 2|indeed greater

than the square root exp

1=2

(2; k) = exp(2; k� 1) but this is useless. Hence exp(3; k� 1) < m

k

:

Note that the factorial exp(2; k)! would not be a substantial improvement over m

k

, since it

cannot be greater than exp(3; k+ 1).

We have at least proved that exp(3; k+3) < m

k+4

; since k+4 � 4. Consider the following

formula �

k

(z), whose length increases linearly in k

8w

�

w = z $

�

0 < w � z ^ 8n f[:n = 0 ^M

k+4

(n; 0; 0)]! 9v M

k+4

(n; v; w)g

��

:

The intended meaning of �

k

(z) is \z is minimal in the set of all elements that are divisible by

all integers less than exp(2; k+4)." Using the equivalence proven for the minor times and using

the existence of predecessor it can be proved that the (element denoted by the numeral m

k+4

corresponding to the) least common multiple of f2; : : : ; exp(2; k+ 4)� 1g is minimal in this

5

The �rst author learned this simple proof of the lower bound on the number of primes during

a class given by Paul Beame at the University of Washington, (cf: [BHC86]). This argument

proving an !(n= logn) lower bound on the number of primes is much simpler than other proofs,

for example the proof using the Chebychev inequality. In [BHC86] the multiplication of n n-bit

integers is e�ciently performed solving a related system of equations modulo a su�ciently wide

set of prime numbers, in a way similar to the construction of approximations for multiplication

in [FR74], but this approach greatly simpli�es the overall proofs.

12



set, i:e: �

k

(m

k+4

) can be proven. On the other hand if totality of order holds (with respect to

numerals) then uniqueness is provable, that is 8z[�

k

(z)$ z = m

k+4

].

Finally consider the formula x


k

y = z below, whose length is again linear in k:

8u

1

u

2

(�

k

(u

1

) ^ �

k+2

(u

2

)) !

�

(x � u

1

) ^ (y � u

1

) ^ (z < u

2

) ^

8ntk

1

k

2

k

3

k

4

r

1

r

2

r

3

r

4

q

1

q

2

q

3

q

4

�
�

^

i=1;2;3;4

�=hx;y;z;ti

�

M

k+6

(n; q

i

; k

i

) ^ k

i

+ r

i

= �

i

^ r

i

< n

�

^M

k+6

(r

1

; r

2

; t)

�

! r

3

= r

4

�
�

This formula asserts that for each number n, not necessarily a prime, that is less than exp(2; k+

6) the values of x, y and z are such that the product of the remainders of x and y modulo n

is equivalent modulo n to the remainder of z; in other words in the ring of residues Z

n

the

product [x]

n

[y]

n

equals [z]

n

.

The input variables x and y are bounded by m

k+4

and the ouptut z by m

k+6

. Note that

for all h (m

h

)

2

< m

h+2

, and the formula expresses multiplication for all inputs x and y up

to m

k+4

. Indeed each prime power in the factorization of (m

h

)

2

is the square of the same prime

power in the factorization of m

h

: since the latter is an integer less than exp(2; h), the former

is less than exp(2; h)

2

= exp(2; h+ 1). On the other hand the same prime appears also in the

factorization of m

h+2

as a prime power that is greater than the square root of exp(2; h + 2),

namely exp(2; h+ 1): this implies that for each factor in the factorization of (m

h

)

2

there is a

greater factor in the factorization of m

h+2

.

Using the properties of Q

+

, x


k

y = z can be proven equivalent in Q

+

to:

_

n;m�m

k+4

�

x = n ^ y = m ^ z = n �m

�

:

3:3 The formula �

k

(x)

In this section it is shown that the formula �

k

(x) is equivalent in Q

+

to x = m

k+4

. This

is shown by using non-divisibility and total order with respect to numerals. We �rst replace

in �

k

(x) the minor-times subformulas with the equivalent quanti�er free disjunctions and then

prove that this simpli�ed expression has the required property. For each k, the formula �

k

(x)

8w

�

w = x $

�

0 < w � x ^ 8n f[:n = 0 ^M

k+4

(n; 0; 0)]! 9v M

k+4

(n; v; w)g

��

is equivalent to

8w

h

w = x $

n

0 < w � x ^ 8n

h�

:n = 0^

_

s<exp(2;k+4)

[n = s ^ 0 = s �

�

0]

�

!

9v

_

u<exp(2;k+4)

[n = u ^ w = u �

�

v]

ioi

;

since Q

+

` M

k

(x; y; z)$

W

s<exp(2;k)

[x = s ^ z = s �

�

y]. For all integers s, Q

+

` 0 = s �

�

0, and

this atomic formula can be dropped in the conjunction above. Using the tautology

�

W

A

i

�

!

13



B $

V

�

A

i

! B) and afterwards the property ` 8x

V

'

i

(x) $

V

8x'

i

(x), the formula

above is equivalent to the following:

8w

h

w = x $

�

0 < w � x ^

^

0<s<exp(2;k+4)

8n

�

n = s! 9v

_

u<exp(2;k+4)

[n = u ^ w = u �

�

v]

��i

:

Now remove the universal quanti�er 8n substituting s for n in the quanti�ed subformula, in

order to obtain the logically equivalent:

8w

h

w = x $

�

0 < w � x ^

^

0<s<exp(2;k+4)

9v

_

u<exp(2;k+4)

[s = u ^ w = u �

�

v]

�i

:

If s 6= u, Q

+

` :s = u; hence all disjuncts corresponding to u di�erent from s can be dropped.

Furthermore s = s is provable and can be deleted from the rightmost conjunction. This �nally

gives the following expression, equivalent to �

k

(x) in Q

+

:

8w

h

w = x $

�

0 < w � x ^

^

0<s<exp(2;k+4)

9v[w = s �

�

v]

�i

:

Using the above expression for �

k

(x) we can now prove the �rst direction of the desired

equivalence, namely 8x [x = m

k+4

! �

k

(x)], that is logically equivalent to �

k

(m

k+4

):

8w

�

w = m

k+4

$

�

0 < w � m

k+4

^

^

0<s<exp(2;k+4)

9v[w = s �

�

v]

��

:

Again, in order to prove this equivalence we split it in its two directions, and �rst prove:

8w

�

w = m

k+4

!

�

0 < w � m

k+4

^

^

0<s<exp(2;k+4)

9v[w = s �

�

v]

��

:

This is logically equivalent to

�

0 < m

k+4

� m

k+4

^

^

0<s<exp(2;k+4)

9v[m

k+4

= s �

�

v]

�

which is a logical consequence of the following theorem of Q

+

�

:m

k+4

= 0 ^m

k+4

+ 0 = m

k+4

^

^

0<s<exp(2;k+4)

[m

k+4

= s �

�

m

k+4

=s]

�

:

Next we prove the other direction:

8w

��

0 < w � m

k+4

^

^

0<s<exp(2;k+4)

9v[w = s �

�

v]

�

! w = m

k+4

�

which is equivalent in Q

+

to

8w

��

:w = 0 ^

_

u�m

k+4

[w = u] ^

^

0<s<exp(2;k+4)

9v[w = s �

�

v]

�

! w = m

k+4

�

:

14



Distribute

W

over ^ and afterwards apply again the tautology

�

W

A

i

�

! B $

V

�

A

i

! B)

and the property ` 8x

V

'

i

(x) $

V

8x'

i

(x): the following logically equivalent formula is

derived

^

u�m

k+4

8w

��

:w = 0 ^ w = u ^

^

0<s<exp(2;k+4)

9v[w = s �

�

v]

�

! w = m

k+4

�

:

This formula is logically equivalent to

^

u�m

k+4

8w

�

w = u !

��

:w = 0 ^

^

0<s<exp(2;k+4)

9v[w = s �

�

v]

�

! w = m

k+4

��

and to

^

u�m

k+4

�
�

:u = 0 ^

^

0<s<exp(2;k+4)

9v[u = s �

�

v]

�

! u = m

k+4

�

:

For each positive integer u, if s does not divide u then for any term s �

�

y, Q

+

` :9y u = s �

�

y.

Then the formula above can be derived in Q

+

from the theorem

^

0<u<m

k+4

:

�

^

0<s<exp(2;k+4)

9v[u = s �

�

v]

�

:

Finally we prove 8x [�

k

(x) ! x = m

k+4

]. This sentence is equivalent|using totality of

order with respect to numerals|to:

8x

��

[(m

k+4

� x) _ (x � m

k+4

)] ^ �

k

(x)

	

! x = m

k+4

�

and to

8x

��

(m

k+4

� x) ^ �

k

(x)

	

! x = m

k+4

�

^ 8x

��

(x � m

k+4

) ^ �

k

(x)

	

! x = m

k+4

�

using some tautology and logically valid property. The second conjunct is easily proved,

since Q

+

` :�

k

(u) if u < m

k+4

. The �rst conjunct

8x

��

(m

k+4

� x) ^ 8w

�

w = x $

�

0 < w � x ^

^

0<s<exp(2;k+4)

9v[w = s �

�

v]

��	

!

x = m

k+4

�

is logically equivalent to

8x9w

��

(m

k+4

� x) ^

�

w = x $

�

0 < w � x ^

^

0<s<exp(2;k+4)

9v[w = s �

�

v]

��	

!

x = m

k+4

�

since the variable w does not appear in the implication consequent x = m

k+4

. Then the �rst

conjunct follows from the Q

+

theorem:

8x

��

(m

k+4

� x)^

�

m

k+4

= x $

�

0 < m

k+4

� x^

^

0<s<exp(2;k+4)

9v[m

k+4

= s�

�

v]

��	

!

x = m

k+4

�

:

This concludes the proof of Q

+

` 8x [�

k

(x)$ x = m

k+4

].
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3:4 The formula x


k

y = z

We prove in this section that the formula x


k

y = z is equivalent to the disjunction of all

triples of arguments less than m

k+4

and the corresponding product:

_

n;m�m

k+4

�

x = n ^ y = m ^ z = n �m

�

:

Consider the de�nition of x


k

y = z:

8u

1

u

2

(�

k

(u

1

) ^ �

k+2

(u

2

)) !

�

(x � u

1

) ^ (y � u

1

) ^ (z < u

2

) ^

8ntk

1

k

2

k

3

k

4

r

1

r

2

r

3

r

4

q

1

q

2

q

3

q

4

��

^

i=1;2;3;4

�=hx;y;z;ti

�

M

k+6

(n; q

i

; k

i

) ^ k

i

+ r

i

= �

i

^ r

i

< n

�

^M

k+6

(r

1

; r

2

; t)

�

! r

3

= r

4

��

:

The above formula is logically equivalent to

(x � m

k+4

) ^ (y � m

k+4

) ^ (z < m

k+6

) ^ 8ntk

1

k

2

k

3

k

4

r

1

r

2

r

3

r

4

q

1

q

2

q

3

q

4

�
�

^

i=1;2;3;4

�=hx;y;z;ti

�

M

k+6

(n; q

i

; k

i

) ^ k

i

+ r

i

= �

i

^ r

i

< n

�

^M

k+6

(r

1

; r

2

; t)

�

! r

3

= r

4

�

which is equivalent in Q

+

to

_

r;m�m

k+4

s<m

k+6

�

(x = r) ^ (y = m) ^ (z = s) ^ 8ntk

1

k

2

k

3

k

4

r

1

r

2

r

3

r

4

q

1

q

2

q

3

q

4

��

^

i=1;2;3;4

�=hx;y;z;ti

�

M

k+6

(n; q

i

; k

i

) ^ k

i

+ r

i

= �

i

^ r

i

< n

�

^M

k+6

(r

1

; r

2

; t)

�

! r

3

= r

4

��

:

Using the tautology [A ^ B] $ [A ^ (A ! B)] and substitutivity three times, this is shown

equivalent to

_

r;m�m

k+4

s<m

k+6

�

(x = r) ^ (y = m) ^ (z = s) ^ 8ntk

1

k

2

k

3

k

4

r

1

r

2

r

3

r

4

q

1

q

2

q

3

q

4

�
�

^

i=1;2;3;4

�=hr;m;s;ti

�
�

M

k+6

(n; q

i

; k

i

)

�

^ k

i

+ r

i

= �

i

^ r

i

< n

�

^M

k+6

(r

1

; r

2

; t)

�

! r

3

= r

4

�
�

which is equivalent in Q

+

to

_

r;m�m

k+4

s<m

k+6

�

(x = r) ^ (y = m) ^ (z = s) ^

8ntk

1

k

2

k

3

k

4

r

1

r

2

r

3

r

4

q

1

q

2

q

3

q

4

�
�

^

i=1;2;3;4

�=hr;m;s;ti

�
�

_

n

i

<exp(2;k+6)

[n = n

i

^ k

i

= n

i

�

�

q

i

]

�

^ k

i

+ r

i

= �

i

^ r

i

< n

�

^

_

c<exp(2;k+6)

[r

1

= c ^ t = c �

�

r

2

]

	

! r

3

= r

4

�
�
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Consider the last two formulas, and in particular each disjunct|corresponding to a particu-

lar choice of r;m and s|of the main disjunction. Each individual variable in the last of the four

conjuncts can be shown to equal the numeral that it should mean, e:g: q

1

= r=n; r

4

= [r]

n

� [m]

n

.

This universal formula corresponds to a huge system of exp(2; k + 6) � 1 equations, saying

that [s]

n

= [r]

n

[m]

n

for all integers n, 0 < n � exp(2; k + 6) � 1. Since for each r;m the

di�erence between each two solutions of the exp(2; k+ 6)� 1 conditions speci�ed is a multiple

ofm

k+6

, then for each r;m there exists exactly one integer s less thanm

k+6

that simultaneously

satis�es all the conditions speci�ed, and furthermore, the integer r �m does this. So for all r;m

and s, if s 6= r �m the negation of the corresponding main disjunct can be proved in Q

+

|and

the disjunct can be dropped. Otherwise the universal conjunct is provable and can be removed

from the formula. At the end only the disjuncts corresponding to the correct s remain, and

they have the form (x = r) ^ (y = m) ^ (z = s), that is:

Q

+

` 8xyz x


k

y = z $

_

n;m�m

k+4

�

x = n ^ y = m ^ z = n �m

�

:

4: DOUBLE-EXPONENTIAL INSEPARABILITY

In this section we give our �rst proof of an inseparability result, for the stronger the-

ory ADDAX, with respect to a certain programming system and a complexity measure that are

more natural in this arithmetical framework than Turing machines and time complexity. We

then show how this inseparability implies for ADDAX the one referring to non-deterministic

Turing machines.

The technique applied in this section is derived from the work in [You85], where this double

exponential inseparability is listed as an open problem. Some new technical questions had to

be solved in order to raise the lower bound to a double exponential.

A min-program H (cf: [MY78] and [You85]) is a syntactic expression to which a number n

of arguments and a partial function f

H

from N

n

to N are associated. The function f

H

is the

meaning of H|the function computed by the program.

For every integer n and j � n, P

n

j

is a primitive program of n arguments; the meaning

of P

n

j

is a function from N

n

to N that associates to each n-tuple its j-th component. Primitive

min-programs of two arguments are +;� and c

=

. The characteristic function of equality is

associated to the program c

=

, addition and multiplication are associated to + and �.

If H is a program of m arguments and G

1

through G

m

are all programs of n arguments,

then the composition H(G

1

; : : : ; G

m

) is a program of n arguments. The associated function

from N

n

to N is the obvious composition of functions.

Finally if H is a program of n + 1 arguments then min H is a program of n arguments,

and the value that the partial function associates to a

1

; : : : ; a

n

is the least integer m such

that f

H

(a

1

; : : : ; a

n

; i) is de�ned and positive for all i � m and f

H

(a

1

; : : : ; a

n

;m) = 0. If no

such m exists then f

minH

is unde�ned on the arguments a

1

; : : : ; a

n

.

A coding of min-programs can be de�ned in such a way that to each program H an

integer h is uniquely assigned. The binary representation of the coding h could be simply the

binary representation of the string of symbols of H. But we prefer a slight variation of this

coding. Let us de�ne our coding to be the previous one, but padded by the pre�x 0

kHk

2

1,

where kHk is the length of the string of symbols of H. In this way an expression whose length

would be almost quadratic in kHk will be linear in the length jhj of the coding of H.
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For each program H of n arguments, and each n-tuple of integers hv

1

; : : : ; v

n

i, if H con-

verges on v

1

; : : : ; v

n

let �(H; v

1

; : : : ; v

n

) be the greatest number that is the argument of a mul-

tiplication during the computation of H on inputs v

1

; : : : ; v

n

, which is de�ned in the obvious

way.

6

Let � be the set of programs of one argument which converge on each input a and never

multiplies any number greater than exp(3; jaj)|where jaj is the length of the binary represen-

tation of a. The function computed by each H 2 � is then a total function of one argument,

and for each a �(H; a) � exp(3; jaj).

Let �

0

� � be the set of programs H of one argument that on input h, their own coding,

converge to f

H

(h) = 0 without multipling numbers greater than exp(3; jhj), and let �

1

be the

set of those that get value 1. By the Russell paradigm (cf: [You85, pp: 503{4]) no element in �

can separate �

0

from �

1

.

We will show an e�cient reduction of the problem of separating �

0

from �

1

to the problem

of separating ADDAX from the unsatis�able sentences. In this way, if an e�ciently recognizable

set separating ADDAX from the unsatis�able exists, than �

0

can be separated from �

1

by a

program in �, a contradiction. The core of the inseparability result is then the following lemma,

in which the reduction f

R

is built.

Lemma

Let UnsL

+

be the set of unsatis�able sentences of L

+

. There exists an integer c

1

(c

1

> 1)

and a total function f

R

: N �! N with the following properties:

- For each w 2 N f

R

(w) is the coding of a sentence �(w) such that:

j�(w)j � c

1

� jwj

- For each q 2 N that is not the coding of a program:

�(q) 2 UnsL

+

:

- For each h 2 N that is the coding of some program H:

H 2 �

0

) �(h) 2 ADDAX

H 2 �

1

) �(h) 2 UnsL

+

:

- There exists a program R of one argument that has meaning f

R

and is such that for

every w 2 N :

�(R;w) < exp(3; jwj):

proof We know how to give a de�nition of representability of a function by open formulas

of a theory with equality. For example we know that in the Peano arithmetic S all recursive

functions are representable. For every recursive function f of n arguments there exists a formula

in the language of arithmetic that has exactly n + 1 free variables such that every instance

6

This di�ers from the complexity measure chosen in [You85], where only the smaller argu-

ment of each multiplication was relevant.
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corresponding to a n + 1-tuple in f is a theorem of S, and it is provable in S that only one

value corresponds to each n-tuple of arguments.

There are not as many functions representable in this sense in the quite small the-

ory ADDAX. But many functions are representable, in a weaker sense, if formulas have to

represent only initial segments and their instances are to be provable only on bounded argu-

ments (cf: [FY92]). We say that a formula '

k

exp(3; k)-represents a function when it is provable

at least on arguments less than exp(3; k).

The reduction f

R

will be built on the base of a function that e�ectively associates to the

coding h of each min-program H a formula that represents the function computed by H if on

all inputs H does not require too large multiplication. We have already proved the key fact,

that x


k

y = z exp(3; k)-represents multiplication in Q

+

, and therefore in ADDAX as well. We

can then recursively associate to each program H of n arguments a formula '

H

(x

1

; : : : ; x

n

; z):

- '

P

n

j

(x

1

; : : : ; x

n

; z) is z = x

j

;

- '

+

(x

1

; x

2

; z) is z = x

1

+ x

2

;

- '

�

(x

1

; x

2

; z) is x

1




k

x

2

= z;

- '

c

=

(x

1

; : : : ; x

2

; z) is (x

1

= x

2

^ z = 0) _ (:x

1

= x

2

^ z = S0);

- '

H(G

1

;:::;G

m

)

(x

1

; : : : ; x

n

; z) is

9y

1

� � � 9y

m

�

^

i�m

8z [y

i

= z ! '

G

i

(x

1

; : : : ; x

n

; z)] ^

8x

1

� � � 8x

m

^

i�m

[y

i

= x

i

] ! '

H

(x

1

; : : : ; x

m

; z)

�

- '

minH

(x

1

; : : : ; x

n

; z) is

8x

n+1

fx

n+1

� z ! 9z

0

[(z

0

= 0$ z = x

n+1

) ^ 8z(z = z

0

! '

H

(x

1

; : : : ; x

n

; x

n+1

; z))]g

The formula '

H

in general depends on the parameter k chosen for '

�

. Let us write '

k

H

to stress this fact.

The proof that '

k

H

represents in ADDAX the meaning ofH for all arguments x with �(H;x) <

exp(3; k), proceeds by induction on the structure of H. A meaningful application of the trico-

tomy axiom is needed in order to prove functionality in the last clause of the step.

7

The length of '

k

H

is !(kHk�k); and roughly O(kHk�[k+logkHk]); for there can be O(kHk)

occurrences of � in H and O(kHk) new variables. Hence the length of the formula representing

7

To avoid this, one could de�ne '

minH

(x

1

; : : : ; x

n

; z) as

z


k

0 = 0 ^ 8x

n+1

fx

n+1

� z ! 9z

0

[z

0

� S0 ^

(z

0

= 0$ z = x

n+1

) ^ 8z(z = z

0

! '

H

(x

1

; : : : ; x

n

; x

n+1

; z))]g

in such a way that all quanti�ers are bounded, and can be eliminated. Instead of considering the

complexity measure � of the arguments of multiplication, we would need to take into account

also the output of minimalization. In any case the class of programs would be powerful enough

and the whole construction in this section could be done for Q

+

, yielding an inseparability

result for this weaker theory|which we will prove in a di�erent way in the next section.

19



the meaning of H grows too quickly, because at the end of the construction f

R

shall associate

to each coding h a formula built on the base of '

jhj

H

; which would be !(jhj) long.

Using the fact that ADDAX is a theory with equality|in which it is provable that two

distinct elements exist, e:g: 0 and S0|we can modify the de�nition of '

k

H

in such a way that

only two occurrences of the formula x


k

y = z do appear in it. Let Q

1

u

1

� � � Q

m

u

m

 

k

H

be

obtained from the prenex normal form of '

k

H

by replacing each occurrence of '

k

�

(u

i

1

; u

i

2

; u

i

3

) in

it with a shorter formula, namely the i-th occurrence with v

i

= 0. In every model of ADDAX,

the formula:

9v

1

: : : v

n

2

4

^

i�n

v

i

= 0$ u

i

1




k

u

i

2

= u

i

3

3

5

^  

k

H

is equivalent to the matrix of the prenex formula from which the quanti�er free formula  

k

H

was

derived. The following formula �

k

H

is then equivalent in ADDAX to '

k

H

(cf: [CH90, pp: 15{16]

or [FR79, pp: 155{157]) and represents in ADDAX the meaning of H if �(H;x) < exp(3; k) for

all possible arguments x:

Q

1

u

1

� � � Q

m

u

m

9v

1

: : : v

n

2

4

8v xyz

0

@

_

i�n

v = v

i

^ x = u

i

1

^ y = u

i

2

^ z = u

i

3

1

A

! (v = 0$ x


k

y = z)

3

5

^  

k

H

Two distinct expressions can be recognized, one depending only on H and the other one|

namely x


k

y = z|only on k. We have chosen to pad the coding h of H in such a way

that the �rst expression grows as O(jhj). The overall length of �

k

H

is then O(jhj + k)|

indeed O(kHk logkHk+ k).

For each integer a whose binary representation has length k or less, the formula W

k

a

(x):

9x

0

(x

0

= a[k]^ 9x

1

(x

1

= 2 � x

0

+ a[k � 1] ^ 9x

0

(x

0

= 2 � x

1

+ a[k� 2]^ � � �

^ 9x

i

(x

i

= 2 � x

1�i

+ a[1]^ x = 2 � x

i

+ a[0]) � � �)));

where a[n] is the n-th bit in the binary representation of a, has length linear in k and is

equivalent in ADDAX, as well as in Q

+

, to x = a.

Next consider for each coding h of a program H the O(jhj) sentence �(h):

�

+

^ 8x

1

W

jhj

h

(x

1

)! [9z z = 0 ^ �

jhj

H

(x

1

; z)]

where the sentence �

+

is the conjunction of the �nite axioms of ADDAX. The formula �(h) is

equivalent in ADDAX to �

jhj

H

(h; 0), which is provable in the theory if f

H

(h) = 0 and �(H;h) <

exp(3; jhj). On the other hand, if f

H

(h) = 1 and �(H;h) < exp(3; jhj) then ADDAX `

�

jhj

H

(h; S0) and then, using functionality of representation, ADDAX ` :�

jhj

H

(h; 0). This implies

that if f

H

(h) = 1 then �(h) belongs to Uns L

+

.
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To conclude the proof note that the formula �

jhj

H

(x

1

; z) has a quite simple structure. From

a computational standpoint, given an integer h it is quite simple to check that it is a correct

coding of a program of one argument, and then compute jhj and '

jhj

H

, its prenex form and the

formula  and �nally �. It is even simpler to compute the coding of the formula W

jhj

h

(x

1

).

On the other hand|as will be shown in the next section|the set of min-programs whose

complexity is bounded by a triple exponential is quite powerful. All common string manipula-

tion functions are computable by a program of this class, and the class of functions computed by

programs in � contains all language in NTIME(exp(2; cn)) for some c > 0. Then a program R

matching the theorem statement can be built that computes on input h the formula �(h)|which

will be a �xed contradiction in case h is not the coding of a program of one argument.

The existence of a translation f

R

that is easily computable implies that ADDAX is

not separable from UnsL

+

by any min-program whose multiplicative complexity is smaller

than exp(3; c � jwj), for some c > 0.

Theorem(Inseparability for Programs)

There exists a constant c

2

> 0 such that, for each set T � L

+

, if T separates ADDAX

from UnsL

+

then there is no program G such that:

8w �(G;w) < exp(3; c

2

� jwj) & f

G

(w) =

n

0 if w 2 T

1 otherwise

proof Let c

2

be 1=c

1

and consider �rst the case in which T � ADDAX and T \ UnsL

+

= ;.

The proof is by contradiction. Suppose that a min-program G exists such that

8w �(G;w) < exp(3; c

2

� jwj) & f

G

(w) =

n

0 if w 2 T

1 otherwise

From the preceding lemma we know that there exists a program R such that

8w �(R;w) < exp(3; jwj)^ f

R

(w) = �(w):

Consider the program G(R):

8w �(G(R); w) < exp(3; jwj �max(1; c

1

c

2

)) = exp(3; jwj):

For each h 2 N that is the coding of some program H:

H 2 �

0

) �(h) 2 ADDAX) f

G

(�(h)) = 0

H 2 �

1

) �(h) 2 UnsL

+

) f

G

(�(h)) = 1:

For each q 2 N that is not the coding of a program:

�(q) 2 UnsL

+

) f

G

(�(q)) = 1:

By the Russell paradigm, this is a contradiction.

The case T � UnsL

+

and T \ ADDAX = ; reduces to the previous one considering the

complement L

+

n T .
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In order to show that this inseparability result for programs implies inseparability for

Turing machines, we have to de�ne many simple programs which compute the most common

string manipulation functions, and we have to show that Turing machines may be simulated

e�ciently by min-programs. In the next section we show in particular that there exists a

constant c

3

(c

3

> 1) such that for each language L(M ) � �

�

accepted by a non-deterministic

Turing machine M working in time exp(2; c � n) for some c > 0, there exists a program H such

that for all w 2 �

�

:

�(H;w) < exp(3; c

3

c � jwj)^ f

H

(w) =

n

0 if w 2 L(M )

1 otherwise

If the existence of a Turing machine implies the existence of an equivalent program, then no

Turing machine can separate ADDAX from the logically false sentences.

Theorem(Inseparability for Non-Deterministic Turing Machines)

There exists a constant c

4

> 0 such that for all c � c

4

, for each set T � L

+

, if T

separates ADDAX from UnsL

+

then there is no non-deterministic Turing machine M working

in time exp(2; c � n) such that T = L(M ).

proof Let c

4

be a constant such that c

3

�c

4

� c

2

where c

3

is the factor in the preceding statement

and c

2

is the constant in the inseparability result for programs. If T were as in the hypothesis,

then there would be a program G such that for all w 2 �

�

:

�(G;w) < exp(3; c

3

c

4

� jwj)^ f

G

(w) =

�

0 if w 2 L(M ) = T

1 otherwise,

a contradiction by the inseparability result for programs, since exp(3; c

3

c

4

�jwj) � exp(3; c

2

�jwj)

4:1 The computational power of min-programs and a Turing machine simulation

In this section it will be shown that string manipulations and exponential functions are com-

putable by min-programs without multiplying very large numbers, and that a non-deterministic

Turing machine can be e�ciently simulated by a min-program.

After developing programs for some useful numeric functions and predicates, we recall the

basic properties of the coding of strings introduced in [MY78]. We consider integers to be

strings, as happens with binary notation, and show programs that compute several string ma-

nipulations without performing costly operations (i:e: requiring multiplication of big numbers)

on any string longer than a linear factor of the inputs. In this way we can build a program for

the exponentiation function through an application of the standard technique to remove a prim-

itive recursion from a function de�nition. As soon as we have exponentiation at a cheap cost,

we can simulate a non-deterministic Turing machine with a program of bounded multiplicative

complexity.

Let us start by verifying that several numeric functions and predicates, including primality,

can be e�ciently computed by min-programs. It is easy to construct, for all integers n and m,

a program of m arguments that computes the constant function n. We will use simply the

number n, e:g: 0, to denote the corresponding program when necessary.

22



The logical operations AND; OR; NOT and IMPLIES are computed by programs that do not

perform multiplication at all. Comparison between numbers and the inverse

_

� of addition are

computed at no cost as well, as shown by the three following programs:

GREATER-EQ :=

c

=

(P

2

2

;minOR(c

=

(P

3

1

; P

3

3

); c

=

(P

3

2

; P

3

3

)))

GREATER :=

AND(GREATER-EQ; NOT(c

=

))

MINUS :=

min GREATER-EQ( + (P

3

3

; P

3

2

); P

3

1

)

The functions f

GREATER-EQ

; f

GREATER

and f

MIN

are total and for all arguments n;m�(GREATER-EQ; n;m) =

�(GREATER; n;m) = �(MIN; n;m) = 0.

The usual integer operations of division and remainder can be e�ciently performed if

multiplication is. This implies that primality can be checked e�ciently:

Proposition

There exist min-programs which compute the following functions, within the speci�ed

multiplicative complexity bounds:

� MOD, of two arguments; for all integers m;n, �(MOD;m; n) � max(n;m) and f

MOD

(m;n) =

m mod n

� DIV, of two arguments; for all integers m;n, �(DIV;m; n) � max(n;m) and f

DIV

(m;n) =

m � n

� DIVIDES, of two arguments; for all integers m;n, �(DIVIDES;m; n) � max(n;m)

and f

DIVIDES

is the characteristic function of the divisibility predicate

� IS-PRIME, of one argument; for all integers n, �(IS-PRIME; n) � n and f

IS-PRIME

is the

characteristic function of the `n is prime' predicate

� IS-POWER, of one argument; for all integers p; n, �(IS-POWER; p; n) � max(p; n)

and f

IS-POWER

is the characteristic function of the predicate `p is prime and n is a power

of p'

� IS-POWER

m

, of one argument; for all integers p; n, �(IS-POWER

m

; p; n) � max(p; n + c

m

)

and f

IS-POWER

m

is the characteristic function of the predicate `p is prime and n is a power

of p

m

'

proof We simply show the programs and analize their complexity:

DIV :=

min GREATER-EQ( + ( � (P

3

3

; P

3

2

); P

3

2

); P

3

1

)

If the second argument is positive then the function f

DIV

is de�ned and �(DIV;m; n) �

max(m;n).

MOD :=

min c

=

(P

3

1

;+(P

3

3

;�(P

3

2

; DIV(P

3

1

; P

3

2

))))
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If the second argument is positive then the function f

MOD

is de�ned and �(MOD;m; n) �

max(m;n).

DIVIDES :=

c

=

(0; MOD(P

2

2

; P

2

1

))

If the �rst argument is positive then the function f

DIVIDES

is de�ned and �(MOD; n;m) �

max(m;n).

IS-PRIME :=

c

=

(P

1

1

;

+ (2;minOR(GREATER-EQ( + (2; P

2

2

); P

2

1

);

DIVIDES( + (2; P

2

2

); P

2

1

))))

The function f

IS-PRIME

is total and �(IS-PRIME; n) � n.

IS-POWER :=

AND(IS-PRIME(P

2

1

); c

=

(P

2

2

;

+ (2;minOR(c

=

(P

3

2

;+(2; P

3

3

));

NOT(IMPLIES(

DIVIDES( + (2; P

3

3

); P

3

2

);

DIVIDES(P

3

1

;+(2; P

3

3

))))))))

The function f

IS-POWER

is total and �(IS-POWER; n;m) � max(n;m).

IS-POWER

m

:=

AND(IS-POWER; c

=

(P

2

2

;

� (� ( � � � � (P

1

1

; P

1

1

) � � � ); P

1

1

) % m times

(min GREATER-EQ( � ( � ( � � � � (P

3

3

; P

3

3

) � � � ); P

3

3

); P

3

2

))))

If the �rst argument is positive, then the function f

IS-POWER

m

is de�ned. To bound �(IS-POWER

m

; p; n)

consider that the greatest integer multiplied during the computation of IS-POWER on input p; n, p

a prime less than n, is in any case a

m�1

, where a is such that (a � 1)

m

< n � a

m

. Consider

an a

0

such that b

m�1

< (b� 1)

m

for all b � a

0

, and let c

m

be a

m�1

0

. Then a

m�1

� n+ c

m

and

for all p; n �(IS-POWER

m

; p; n) � max(p; n+ c

m

).

We will introduce and use a coding of strings di�erent from the usual binary representation,

or n-ary representation.

De�nition (Coding)

Given a �nite alphabet A, arbitrarily assign to each character in A a number between 1

and the set cardinality a. Denote by c

i

the character corresponding to integer i. Then the

function C:A

�

�! N de�ned by

C(�) =

(

0 if � = �

P

1�j�n

i

j

a

n�j

if � = c

i

1

: : : c

i

n

is a coding of the strings in A

�

:
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The coding of � is then its position in the lexicographical order. This coding appears

in [MY78] and will be useful for its property that any sequence of characters denotes an integer,

and every integer is denoted by exactly one string of characters.

You should note that in the previous section all proofs refer to binary coding, for it is more

familiar to everybody. Two characteristics of binary coding are used in those proofs, namely

that an integer n, which is the coding of its binary representation, codes a string whose length

is logarithmic in n, and that string manipulations are easily performed on the string codings.

In this section, during the construction of min-programs computing string manipulations, it

will be clear that our new coding have the same properties as the one associated with binary

representations. In particular we will see that for each alphabetA of cardinality a the number a

k

codes a string of length k. Then the result in the previous section should be read as if this

coding were used instead of the one associated with binary representation. In any case it will

become clear that there are e�cient programs which translates each coding into the other.

Since we will encode di�erent objects, such as function arguments and values, in single

strings, it will be convenient to separate them with characters that do not appear in the original

language. Thus we use two di�erent alphabets, and it is useful to choose them in such a way

that their cardinalities are successive powers of a prime number. We can add to a small alphabet

some new distinct characters|e:g: `�; �; : : :'|so that the �rst alphabet that we choose has a

prime power p

m

of symbols, for example a = 2

7

. As second alphabet we take a superset of the

�rst that contains ap symbols, ap = 2

8

in the previous example, including for our convenience

some character that can be used as separator, e:g: `#' and `$'. The smaller alphabet will be

called the `ground alphabet' and the larger one the `work alphabet'.

If the cardinality of the alphabet is a prime power, many string-manipulation functions are

easily computed in that alphabet. It is also easy to switch between the coding of one string in

two alphabets whose cardinalities are successive powers of a prime number. This is stated in

the following:

Proposition

For each m there exists c

m

(with c

1

= 0 and c

j

< c

j+1

) such that if the cardinality a of

the alphabet is a power p

m

of a prime number then there exist min-programs which compute

the following functions, within the speci�ed multiplicative complexity bounds:

� EQ-LENGTH, of two arguments; for all integers v; w, �(EQ-LENGTH; v; w) � min(v; w) + c

m

and f

EQ-LENGTH

is the characteristic function of the predicate `the strings with coding v

and w have the same length.'

� PWR-FLOOR, of one argument; for all integers v, �(PWR-FLOOR; v) � (a � 1) � v + 1 + c

m

�

a

jvj+2

+ c

m

and f

PWR-FLOOR

(v) is a

jvj

, a to the length of v.

� APPEND, of two arguments; for all integers v; w, �(APPEND; v; w) � max(v; (a � 1) � w +

1 + c

m

) � a

max(jvj;jwj)+2

+ c

m

and f

APPEND

(v; w) is the coding of the concatenation of the

strings with coding v and w.

� STRBEG, of two arguments; for all integers v; w, �(STRBEG; v; w) � max(v; (a� 1) �w+ 1 +

c

m

) � a

max(jvj;jwj)+2

+ c

m

and f

STRBEG

(v; w) is the characteristic function of the predicate

`the string with coding v is an initial segment of the string with coding w.'

� STREND, of two arguments; for all integers v; w, �(STREND; v; w) � max(w; (a� 1) � v + 1 +

c

m

) � a

max(jvj;jwj)+2

+ c

m

and f

STREND

(v; w) is the characteristic function of the predicate
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`the string with coding v is a �nal segment of the string with coding w.'

� SUBSTR, of two arguments; for all integers v; w, �(SUBSTR; v; w) � (a� 1) �max(v; a

3

�w) +

1+c

m

� a

max(jvj;jwj)+5

+c

m

and f

SUBSTR

(v; w) is the characteristic function of the predicate

`the string with coding v is a substring of the string with coding w.'

� WORK, of one argument; for all integers v, �(WORK; v) � (a�1)v

2

+1+c

m+1

� a

2jvj+3

+c

m+1

and f

WORK

is the function which, given an input number v, outputs the coding in the

alphabet with a � p characters of the string whose coding in the alphabet with a characters

is v.

� IS-GROUND, of one argument; for all integers v, �(IS-GROUND; v) � (ap� 1)v+ 1+ c

m+1

�

a

jvj+3

+ c

m+1

and f

IS-GROUND

is the characteristic function of the predicate `every character

of the string which has coding v in the larger alphabet is also a character of the smaller

one.'

� GROUND, of one argument; for all integers v, �(GROUND; v) � (ap � 1)v + 1 + c

m+1

�

a

jvj+3

+ c

m+1

and f

GROUND

is an inverse of f

WORK

. More precisely if � is the string which

has coding v in the larger alphabet, then f

GROUND

(v) is 0 if some character greater than a

appears in �, otherwise it is the coding of � in the smaller alphabet.

proof For each integer s, the �rst coding f

s

of a string of length s is the coding of c

1

c

1

: : : c

1

while the last one l

s

is the coding of c

a

c

a

: : : c

a

. Since l

s

= af

s

, two integers n and m are the

coding of strings of equal length if and only if there exists an integer f which is the coding of

a sequence of c

1

's and such that f � n;m � a � f .

In order to be able to verify that an integer is the coding of a sequence of c

1

's we can

reason in the following way. Consider the coding of an n-long string � = c

i

1

: : : c

i

n

:

C(�) = i

1

� a

n�1

+ i

2

� a

n�2

+ : : :+ i

n�k

� a

k

+ i

n�(k�1)

� a

k�1

+ : : :+ i

n

| {z }

k terms

We would like to access i

n�k

, the k+1-st coe�cient from the right-hand side of this expression,

to verify that it is c

1

. In general the value of C(�) � a

k

will depend also on the k rightmost

terms in C(�), because their partial sum can be in many cases greater than a

k

|e:g: for a = 7

and k = 2 consider 6 � 49 + 7 � 7 + 1. So we cannot claim that in general i

n�k

can be derived

immediately from [C(�) � a

k

] mod a, but we can do it in case the right-most coe�cients are

small enough that they do not give any disturbance|for example if they are all 1. Then the

condition � 2 fc

1

g

�

can be proven equivalent to 8k < n [C(�) � a

k

] mod a = 1 by induction

on the length n of �.

IS-C-ONE := % of two arguments, a string and a position

IMPLIES(IS-POWER

m

(p; P

2

2

); c

=

(1; MOD(DIV(P

2

1

; P

2

2

); a)))

IS-C-ONE-STAR := % of one argument

IS-C-ONE(P

1

1

;

min OR(c

=

(P

2

1

; P

2

2

);

NOT(IS-C-ONE(P

2

1

; P

2

2

))))
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FIRST-STR := % returns the right c

1

c

1

: : : c

1

, if any, a wrong string otherwise

min OR(GREATER-EQ(P

3

3

; P

3

1

);

GREATER-EQ(P

3

3

; P

3

2

);

AND(GREATER-EQ(a � P

3

3

; P

3

1

);

GREATER-EQ(a � P

3

3

; P

3

2

);

IS-C-ONE-STAR(P

3

3

)))

EQ-LENGTH :=

AND(GREATER-EQ(P

2

1

; FIRST-STR);

GREATER-EQ(P

2

2

; FIRST-STR);

GREATER-EQ(a � FIRST-STR; P

2

1

);

GREATER-EQ(a � FIRST-STR; P

2

2

);

IS-C-ONE-STAR(FIRST-STR))

The function f

EQ-LENGTH

is total and it is the characteristic function of the predicate `the strings

of coding v and w have the same length.' All occurrences of a and p which appear in the

programs above can be eliminated, substituing multiplications and divisions with addition and

minimalization. The program EQ-LENGTHmay be modi�ed in this way in order to establish that,

since all minimalizations are bounded by both v and w, for each v; w �(EQ-LENGTH; v; w) �

min(v; w) + c

m

.

In order to build the program PWR-FLOOR, which on input w computes the jwj-th power

of a, consider that if n is positive, then

a

n

= (a� 1)a

n�1

+ (a � 1)a

n�2

+ : : :+ (a� 1)a+ a:

This means that if w > 0 then a

jwj

is the coding of the jwj-long string c

a�1

c

a�1

: : : c

a�1

c

a

,

which is the unique string of this length that has coding a perfect power of a.

PWR-FLOOR :=

min OR(AND(c

=

(P

2

1

; 0); c

=

(P

2

2

; 1));

AND(GREATER(P

2

1

; 0); IS-POWER

m

(p; P

2

2

); EQ-LENGTH(P

2

1

; P

2

2

)))

The function f

PWR-FLOOR

is total, and for all v �(PWR-FLOOR; v) � (a� 1) � v+ 1+ c

m

, removing

the dependence of the complexity from the constant p.

The de�nitions of APPEND, STRBEG and STREND are now straightforward:

APPEND :=

+ ( � (P

2

1

; PWR-FLOOR(P

2

2

)); P

2

2

)

STRBEG :=

c

=

(P

2

2

; APPEND(P

2

1

;

minGREATER-EQ(APPEND(P

3

1

; P

3

3

); P

3

2

)))

STREND :=

c

=

(P

2

2

; APPEND(

minGREATER-EQ(APPEND(P

3

3

; P

3

1

); P

3

2

);

P

2

1

))

27



SUBSTR :=

STREND(

APPEND(P

2

1

;

minOR(

c

=

(0; P

3

1

);

GREATER-EQ(P

3

1

; P

3

2

);

EQ-LENGTH(P

3

1

; P

3

2

);

GREATER-EQ(APPEND(P

3

1

; P

3

3

); P

3

2

);

STREND(APPEND(P

3

1

; P

3

3

); P

3

2

)))

P

2

2

)

The functions f

APPEND

; f

STRBEG

; f

STREND

and f

SUBSTR

are total. For all v; w �(APPEND; v; w) �

max(v; (a�1) �w+1+c

m

), �(STRBEG; v; w) � max(v; (a�1) �w+1+c

m

) and �(STREND; v; w) �

max(w; (a�1)�v+1+c

m

). In case v � w, �(STRBEG; v; w);�(STREND; v; w) � (a�1)�w+1+c

m

.

Consider the minimalization in the de�nition of SUBSTR. On input v; w, if 0 < jvj < jwj, the

increasing argument P

3

3

is always bounded by w, but APPEND(P

3

1

; P

3

3

) may eventually produce a

string t such that jtj = jwj+1. In any case a

jwj�1

< w < t < a

jwj+2

and t � a

3

�w. Otherwise P

3

3

takes only value 0. In any case

�(SUBSTR; v; w) �

max(�(EQ-LENGTH; v; w);�(APPEND; v; w);�(STREND; v; w);�(STREND; a

3

�w;w)) �

� max(min(v; w) + c

m

;max(v; (a � 1) �w + 1 + c

m

);max(w; (a� 1) � v + 1 + c

m

);

max(w; (a� 1)a

3

�w + 1 + c

m

)) �

� (a� 1) �max(v; a

3

�w) + 1 + c

m

Some utilities are now introduced in order to build the programs WORK and GROUND which

let us shift between the two adiacent codings relative to the alphabets with a and a�p characters.

The �rst one is ARE-SAME-PWR of two arguments v; and w, which computes the characteristic

function of the predicate `exists q such that v = a

q

and w = (ap)

q

.' Since this is equivalent to

`exists u such that u = p

q

is a power of p and v = u

m

; w = u

m+1

,' the program ARE-SAME-PWR

and its complexity closely resembles the de�nition of IS-POWER

m

:

MTH-POWER :=

� ( � ( � � � � (P

1

1

; P

1

1

) � � � ); P

1

1

) % m times

ARE-SAME-PWR :=

AND(IS-POWER(p; P

2

1

);

c

=

(P

2

1

; MTH-POWER(min GREATER-EQ(MTH-POWER(P

3

3

); P

3

2

)))

c

=

(P

3

1

;�(P

3

2

;minGREATER-EQ(MTH-POWER(P

3

3

); P

3

2

))))

The computed function is total, and �(ARE-SAME-PWR; v; w) � v + c

m

. The following pro-

gram CH-CHECK of three arguments v; w and n, checks that the strings of coding v and w,

respectively in the ground and work alphabet, match in the k-th position, if n = a

k

is a power

of a. It uses a program of two arguments that computes the initial segment of the �rst argument
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that is as long as the second one.

CH-CHECK :=

IMPLIES(IS-POWER

m

(p; P

3

3

);

c

=

(minAND(GREATER(P

4

4

; 0);

c

=

(MOD(P

4

4

; a); MOD(INITIAL(P

4

1

; P

4

3

); a)));

MOD(INITIAL

ap

(P

3

2

;minARE-SAME-PWR(P

4

3

; P

4

4

)); ap)))

INITIAL := min OR(AND(GREATER(P

3

2

; P

3

1

); NOT(EQ-LENGTH(P

3

2

; P

3

1

)));

AND(EQ-LENGTH(P

3

3

; P

3

2

); STRBEG(P

3

3

; P

3

1

)))

For each input v; w �(INITIAL; v; w) � (a�1)v+1+c

m

because in any case only two relevant

instructions are executed, namely EQ-LENGTH on arguments v; w and STRBEG on arguments v; v.

This implies that �(CH-CHECK; v; w; n) � max((a� 1)v + 1+ c

m

; (a� 1)w + 1+ c

m+1

; u+ c

m

).

We are now able to specify and analize the programs WORK,IS-GROUND and GROUND.

WORK :=

min CH-CHECK(P

2

1

; P

2

2

;

minOR(c

=

(P

3

1

; 0);

AND(IS-POWER

m

(p; P

3

3

); EQ-LENGTH(P

3

3

; P

3

1

));

NOT(CH-CHECK(P

3

1

; P

3

2

; P

3

3

))))

During the computation of WORK on argument v, the increasing value P

2

2

in the outer minimal-

ization is bounded by the coding in the work alphabet of the string of coding v|in any case

it is bounded by v

2

. The increasing value P

3

3

in the inner minimalization is bounded by the

�rst power of a that codes a string as long as jvj, which is in turn bounded by (a � 1)v + 1.

Hence �(WORK; v) � �(CH-CHECK; v; v

2

; (a� 1)v + 1) � (a � 1)v

2

+ 1 + c

m+1

:

IS-GROUND :=

GREATER-EQ(a; MOD(INITIAL

ap

(P

1

1

;

minOR(c

=

(P

2

1

; 0);

AND(IS-POWER

ap

(p; P

2

2

); EQ-LENGTH

ap

(P

2

2

; P

2

1

));

GREATER(MOD(INITIAL

ap

(P

2

1

; P

2

2

); ap); a)); ap)))

Computing on input argument v, the increasing value P

2

2

in the minimalization is bounded by

the �rst power of ap that codes a string as long as jvj

ap

, which is bounded by (ap � 1)v + 1.

Hence �(IS-GROUND; v) � �(IS-POWER

ap

; p; (a� 1)v + 1) � (ap� 1)v + 1 + c

m+1

:

GROUND :=

min OR(NOT(IS-GROUND(P

2

1

)); CH-CHECK(P

2

2

; P

2

1

;

minOR(NOT(IS-GROUND(P

3

1

)); c

=

(P

3

1

; 0);

AND(IS-POWER

m

(p; P

3

3

); EQ-LENGTH(P

3

3

; P

3

2

));

NOT(CH-CHECK(P

3

2

; P

3

1

; P

3

3

)))))

On argument v, the increasing value P

2

2

in the outer minimalization is bounded by the coding

in the ground alphabet of the string that has coding v in the work alphabet|in any case
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it is bounded by v. The increasing value P

3

3

in the inner minimalization is then bounded

by (a�1)v +1. Hence �(GROUND; v) � �(IS-GROUND; v) � (ap�1)v+1+ c

m+1

: This concludes

the proof of the theorem.

Before going on and building programs that compute the exponentiation function and

simulate a Turing machine computation, in order to simplify the complexity analyses to come,

it is useful to consider the preceding theorem in a di�erent way, as bounding the length of the

greatest string involved in the computation of any ordinary string manipulation. We can assert

that for each prime p and positive integer m, there exists a constant r

a

depending on a = p

m

such that each string manipulation among those speci�ed in the previous statement does not

involve multiplication on arguments greater than 2

r

a

jvj+r

a

, v being the greatest argument to

the program. All string manipulation programs that are listed in the theorem above involve

costly operations on strings whose length is at most linear in the maximum length of the input

arguments, and they also output strings whose length is at most linear in the sum of the length

of the inputs.

Suppose that H is a program of n arguments which computes a total function f

H

using

the string manipulations above only on strings whose length is bounded by some monotone

function g of the n arguments. The contribution of the string manipulations to the multiplicative

complexity �(H) of H is not greater than 2

r

a

�[dg(v

1

;:::;v

n

)+d]+r

a

|where d is derived from the

linear bound on the output of manipulations. This observation will simplify the complexity

analyses of the following programs, because bounding the length of the longest string involved

in a computation is often straightforward. For example we are going to build a program EXP

which computes the exponentiation function, and we are going to bound its complexity simply

by noting that the length of the longest string checked in the mainminimalization is proportional

to the square of the value v of the input argument|which will yield a 2

r

a

�(cv

2

)+r

a

upper bound.

We are going to use the exponentiation function in order to simulate a Turing machine

computation working in double exponential time, the reason will become clear later.

The recursive de�nition of exp(1; n) = 2

n

is an application of the recursive operator to

the multiplication function. We do not have a primitive program for exp(1; n) and we do not

have recursion among our program constructors. But still we can build a program EXP with an

application of the standard technique for removing primitive recursion from function de�nition.

Proposition

There exists a program EXP of one argument and a constant c such that for all n f

EXP

(n) =

exp(1; n) and �(EXP; n) < exp(1; c � n

2

+ c).

proof Let us �x an a = p

m

, e:g: a = 3, and use both the ground alphabet with a symbols and

the work alphabet with ap � a+2 symbols, containing the symbols # and $ not appearing in a.

Using these alphabets we build a program EXP, which will be safely used in several contexts

where a di�erent alphabet has been chosen, without a�ecting the constant c in the complexity

upper bound on EXP that we are going to establish.

For each integer n, the value 2

n

can be computed by multiplying n times the unity by 2. A

computation of this kind can be represented in the work alphabet by a string m of the following

form:

#$a

1

#a

1

$a

2

#a

2

$a

1

a

1

#a

3

$a

2

a

2

#a

1

a

1

$a

1

a

2

a

1

# : : :#f

WORK

(k)$f

WORK

(2

k

) : : : (y)
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Each portion #v$w# is such that v is an integer between 0 and n|represented by the string in

the work alphabet corresponding to the string that has coding v in the ground alphabet|and w

is 2

v

|represented in the same way.

The program EXP on argument n computes the minimum integer that contains a string

like (y) and that terminates with #n$w, for some w; then it outputs w. Let us suppose

that EXP-COMP is a program of one argument that given z, the coding in the work alphabet of

a ground string v, computes (y). Then EXP is simply the program:

EXP := GROUND(minSTREND

ap

(APPEND

ap

(\#"; WORK(P

2

2

)); EXP-COMP(WORK(P

2

1

))))

The program EXP-COMP on argument n will compute the shortest string that contains a string

like (y) and terminates with #n$w. In order to build EXP-COMP we need another auxiliary

program. The program EXP-NEXT of two arguments, which on inputs v and w of the form spec-

i�ed above shall output the string #v$w#v

0

$w

0

, where v

0

and w

0

are the strings corresponding

to v + 1 and 2 �w.

EXP-COMP :=

min AND(

STRBEG

ap

(\#$a

1

"; P

2

2

);

SUBSTR

ap

(APPEND

ap

(APPEND

ap

(\#"; P

2

1

); \$"); P

2

2

);

c

=

(P

2

2

;

minOR(c

=

(P

3

3

; P

3

2

);

NOT(c

=

(P

3

2

;

minOR(c

=

(P

4

4

; P

4

2

);

NOT(IMPLIES(

AND(

IS-GROUND(P

4

3

);

GREATER(P

4

1

; P

4

3

);

IS-GROUND(P

4

4

);

SUBSTR

ap

(APPEND

ap

(

APPEND

ap

(\#"; P

4

3

);

APPEND

ap

(APPEND

ap

(\$"; P

4

4

); \#"));

P

4

2

);

SUBSTR

ap

(EXP-NEXT(P

4

3

; P

4

4

); P

4

2

))))))))))

On input argument z, this program computes the shortest string � that correctly begins

with #0$2

0

and contains #z$, and which is such that for every substring of the form #v$w#,

with v < z and v; w containing only ground symbols, also the string #v$w#v + 1$2w is con-

tained in �. The �rst string with these properties is a computation like (y) that terminates

with $z#f

WORK

(2

f

GROUND

(z)

). The de�nition of EXP-NEXT follows:

EXP-NEXT :=

APPEND

ap

(

APPEND

ap

(APPEND

ap

(\#"; P

2

1

); APPEND

ap

(\$"; P

2

2

));

APPEND

ap

(

APPEND

ap

(\#"; WORK( + (1; GROUND(P

2

1

))));

APPEND

ap

(\$"; WORK( � (2; GROUND(P

2

2

))))))
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In order to bound the multiplicative complexity of EXP we may bound the length of the

string (y). On input v > 0, v strings (in the work alphabet) of the form#z$w are to be appended

to #$a

1

in order to give (y). Each z is a string in the work alphabet such that f

GROUND

(z) is an

integer between 1 and v; z is as long as f

GROUND

(z), hence jzj

ap

� dlog

a

ve. The string w is such

that f

GROUND

(w) = exp(1; f

GROUND

(z)) � a

v

; hence jwj

ap

� v.

On input v > 0, the longest string appearing in the computation of EXP has length bounded

by 2v

2

+ 3: Take c > 3 to be a constant greater than �(EXP; 0) and greater than 2d(r

ap

+

1); 2d(r

a

+ 1); then for all v �(EXP; v) � 2

cv

2

+c

For each n > 2 there exists a program POWER

n

of one argument which on input w

computes n

w

. The de�nition of POWER

n

di�ers from EXP just in the constant appearing in

the EXP-NEXT program, which will be n instead of 2. The complexity of POWER

n

is bounded

by 2

cv

2

+c

, c being a constant dependent only on n, since the corresponding (y) is bounded

by 2dlog

2

nev

2

+ 3.

Having constructed a program that computes exponentiation, we are able to measure the

length of strings and to extract the character in any given position of a string. A program LENGTH

of one argument can be de�ned which on input w computes the length jwj of the string whose

coding is w in the alphabet with a characters:

LENGTH :=

min OR(c

=

(P

2

1

; 0);

AND(NOT(c

=

(P

2

1

; 0)); EQ-LENGTH(POWER

a

(P

2

2

); P

2

1

)))

The complexity �(LENGTH; v) is bounded by 2

cjvj

2

+c

for some c depending only on a, since jvj is

the greatest argument to the POWER

a

program. Finally, a program STR of two arguments can be

de�ned that on input arguments v; w|with w in the range 0 � w < jvj|computes the w+1-st

character v[w] from the left

8

STR := minOR(GREATER-EQ(P

3

2

; LENGTH(P

3

1

));

AND(GREATER(P

3

3

; 0); c

=

(MOD(P

3

3

; a); MOD(

minOR(GREATER-EQ(P

4

2

; LENGTH(P

4

1

));

AND(STRBEG(P

4

4

; P

4

1

); EQ-LENGTH(P

4

4

;

POWER

a

(minOR(GREATER-EQ(P

5

2

; LENGTH(P

5

1

)); c

=

(P

5

5

;+(P

5

2

; 1)))))));

a))))

The function f

STR

is total, and takes value 0 in case the second argument speci�es a position

that is out of range. The complexity �(STR; v; w) is bounded by 2

cjvj

2

+c

for some c depending

on a, because the argument to the POWER

a

instruction is either 0 or w < jvj.

For each string manipulation function in the set of functions that are needed to simulate

a Turing machine computation, a min-program has been shown which computes that function

without multipling too large a number. We can no longer delay dealing with the cumbersome

details of a standard simulation of a non-deterministic Turing machine working in bounded

time:

8

That is the character that is the coe�cient of the higher power of a in the coding of v. This

unfamiliar use may seem odd, but it is consistent with the fact that the characters appearing

in an initial segment of v are those that more heavily contribute to the coding v.
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Theorem

There exists a constant c

3

(c

3

> 1) such that for each language L(M ) � �

�

accepted by a

non-deterministic Turing machine M working in time exp(2; c � n) for some c > 0, there exists

a program H such that for all w 2 �

�

:

�(H;w) < exp(3; c

3

c � jwj)^ f

H

(w) =

n

0 if w 2 L(M )

1 otherwise

proof Let M be a non-deterministic Turing machine, with one tape, in�nite in both directions,

working alphabet �, states Q and transition relation �. The machine starts in an initial state q

0

and computes according to �, that is a set of �ve-tuples. Each tuple hq; r;H; r

0

; q

0

i in � speci�es

that the machine being in state q and reading the bit r, may (non-deterministically) write the

bit r

0

, enter state q

0

and move the head according to H, either to the left, L, or to the right, R,

or may keep it unchanged, S. We can suppose without loss of generality that M has only one

�nal state f , and that the transition relation speci�es that when M enters state f , it does not

change its con�guration anymore.

We may code a description of a possible computation of M , on input w and

length exp(2; cjwj), with a couple of strings h�; �i, � 2 �

�

and � 2 (Q [ f#g)

�

.

The �rst string � will describe the tape contents at each instant of the computation,

and will simply be a concatenation of exp(2; cjwj) tape images, each of length 2 exp(2; cjwj)|

because exp(2; cjwj) tape cells are relevant on each side of the starting head position. Hence �

has length 2 exp(2; cjwj)

2

= 2 exp(2; cjwj+ 1).

The string � contains a description of the head position and of the machine state at each

instant of the computation. It is a concatenation of exp(2; cjwj) strings of length 2 exp(2; cjwj),

each concerning a particular step of the computation. The character �[m], 0 � m <

2 exp(2; cjwj)

2

, is q if and only if at the n-th step of the computation, n = m � 2 exp(2; cjwj),

the head is in position h = m mod 2 exp(2; cjwj), and the machine is in the state q|

otherwise �[m] =`#'. In this way, since # is not in Q, � is # everywhere but in the head

positions, one for each step of the computation, where it evaluates to the current machine

state q.

Then � and � are obtained concatenating exp(2; cjwj) snapshots of the machine con�gura-

tion at successive steps, each one being 2 exp(2; cjwj) long.

The machineM accepts w in time exp(2; cjwj) if and only if there exists a couple of strings

of length exp(2; 2cjwj+ 2) � 2 exp(2; cjwj+ 1) that codes an accepting computation of M of

length greater than exp(2; cjwj) starting on the input w|because we know that M cannot

accept after the exp(2; cjwj)-th step.

We choose as alphabet a superset of � [Q [ f#g with a prime number of characters and

build a program H

0

of one argument which on input w 2 �

�

generates all strings that are at

most exp(2; 2dcjwje+2) long and check whether they code an accepting computation ofM with

input the string of coding w. In the worst case, when M does not accept w, a string as long

as exp(2; 2dcjwje+ 2) is generated. Hence �(H

0

; w) � exp(1; c

a

(d exp(2; 2dcjwje+ 2) + d) + c

a

)

which is in any case de�nitively less than exp(3; c

3

cjwj) for some constant c

3

independent of a

and M . We can then modify H

0

in such a way that all input exceptions are treated separately

without any multiplication but using only the program c

=

and the logical operators; in the

33



modi�ed program H all minimalizations will also perform an initial check which truncates the

computation at the �rst step whenever the input argument is treated as an exception, and all

inputs to expensive operations will be forced to 0|in the same way we implemented in the

de�nition of STR|whenever the input is among the exceptions. Then the modi�ed program H

will have complexity �(H; v) � exp(3; c

3

cjwj) and f

H

= f

H

0

.

In the rest of the proof we build the program H

0

. We need a program INITIAL-SNP of two

arguments, which returns an initial machine snapshot. The �rst argument is the input to the

Turing machine, and is used to select the right con�guration length, 2 exp(2; cjwj). The second

argument is used to initialize the right-hand side of the snapshot|it is meant to be either the

input or the initial state.

INITIAL-SNP :=

APPEND(

minAND(

c

=

(LENGTH(P

3

3

); EXP2(LENGTH(P

3

1

)));

IS-BLANK(P

3

3

));

APPEND(P

2

2

;

minAND(

c

=

(LENGTH(APPEND(P

3

2

; P

3

3

)); EXP2(LENGTH(P

3

1

)));

IS-BLANK(P

3

3

))))

The program IS-BLANK of one argument v is intended to compute the characteristic function

of the predicate `v is a blank string'. Let c be

n

m

. The program MAX-COMPUTATION

c

of one

argument, the Turing machine input w, computes exp(2; 2cjwj+ 2), without multiplying too

large numbers:

MAX-COMPUTATION

c

:= EXP(EXP( + (2; DIV( � (2n; LENGTH);m))))

The program H

0

is made of two nested cycles of minimalization. Together they generate all

couples of strings h�; � i of appropriate length and check whether there is one that codes an

accepting computation of M on input w. In this case the program will output 0, otherwise it
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will output 1.

NOT(c

=

(MAX-COMPUTATION;

LENGTH(

min OR(c

=

(LENGTH(P

2

2

); MAX-COMPUTATION(P

2

1

));

AND(

SUBSTR(\f"; P

2

2

);

STRBEG(INITIAL-SNP(P

2

1

; \q

0

"); P

2

2

);

LESS-EQ(LEFT-DISPLACEMENT(P

2

1

); LENGTH(

minAND(

IS-BLANK(P

3

3

);

OR(

SUBSTR(APPEND(\a

0

"; APPEND(P

3

3

; \a

0

")); P

3

2

);

SUBSTR(APPEND(\a

0

"; APPEND(P

3

3

; \a

1

")); P

3

2

);

.

.

.

SUBSTR(APPEND(\a

n

"; APPEND(P

3

3

; \a

n

")); P

3

2

)))));

NOT(c

=

(MAX-COMPUTATION(P

3

1

);

LENGTH(

minOR(c

=

(LENGTH(P

3

3

); MAX-COMPUTATION(P

3

1

));

AND(

STRBEG(INITIAL-SNP(P

3

1

; P

3

1

); P

3

3

);

c

=

(MAX-COMPUTATION(P

3

1

);

min OR(c

=

(P

4

4

; MAX-COMPUTATION(P

4

1

));

NOT(IMPLIES(

c

=

(STR(P

4

2

; P

4

4

); BLANK);

c

=

(STR(P

4

3

; P

4

4

);

STR(P

4

3

;+(STILL-DISPLACEMENT(P

4

1

); P

4

4

)))))));

NOT(OR(

IS-MOVE

�

0

;

.

.

.

IS-MOVE

�

n

))))))))))))

IS-MOVE

hq;r;H;r

0

;q

0

i

:=

AND(

c

=

(\q"; STR(P

4

2

; P

4

4

));

c

=

(\r"; STR(P

4

3

; P

4

4

));

c

=

(\q

0

"; STR(P

4

2

;+(P

4

4

;H-DISPLACEMENT(P

4

1

))));

c

=

(\r

0

"; STR(P

4

3

;+(P

4

4

; STILL-DISPLACEMENT(P

4

1

)))))

The programs LEFT-DISPLACEMENT; STILL-DISPLACEMENT, and RIGHT-DISPLACEMENT of one

argument, on input w compute the numbers 2 exp(2; cjwj)�1;2 exp(2; cjwj), and 2 exp(2; cjwj)+

1, and are de�ned in the obvious way.

This concludes the proof that min-programs can \e�ciently" simulate non-deterministic

Turing machines, and hence also the proof of our �rst inseparability result.
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5: A CLASSICAL PROOF USING TURING MACHINES

In [FR74], Fischer and Rabin proved the di�culty of the complete Presburger theory S

+

by showing that for each non-deterministic Turing machineM and input w there exists a short

and easy sentence '

M;w

in the language of addition that is true in the standard model|i:e:

provable in S

+

|if and only ifM halts on input w within exp(2; jwj) steps. In this section some

steps of that construction are carried out for the theory Q

+

in order to show that the whole

work can be done in this system, yielding an inseparability result.

Some modi�cations are necessary to obtain this goal. The �rst one is closely related to

the fact that we are not dealing with a complete theory, and hence whenever the behavior of

a Turing machine must be linked to the provability of a sentence in the theory, the arguments

cannot rely upon the system's ability to prove the negation of false statements.

In order to overcome this, we restrict ourselves to using only formulas with bounded quan-

ti�ers, so that each formula is equivalent in Q

+

to a quanti�er free matrix. In particular the

formulas representing functions, such as x


k

y = z, are equivalent to the disjunctions of all

relevant input/output descriptions.

For each non-deterministic Turing machine M , polynomial g and input w it will be shown

that a sentence '

M;g;w

can be constructed as in [FR74], in which only bounded quanti�ers

occur. In this way M accepts w within exp(2; g(jwj)) steps if and only if Q

+

` '

M;g;w

, and M

does not accept w within exp(2; g(jwj)) steps if and only if Q

+

` :'

M;g;w

|since bounded

quanti�ers can be eliminated.

The multiplication function, as represented by x


k

y = z, is not the sole function that

we need in order to simulate a Turing machine in the way of [FR74]. We need functions

to manipulate strings, considered as binary representations of integers, predicates to express

bounds and a way to shorten representation of integers, for numerals are too lengthy for our

purposes.

This last matter has an immediate solution, since for each integer a whose binary repre-

sentation has length k or less, the formula W

a

k

(x):

9x

0

(x

0

= a[k]^ 9x

1

(x

1

= 2 � x

0

+ a[k � 1] ^ 9x

0

(x

0

= 2 � x

1

+ a[k� 2]^ � � �

^ 9x

i

(x

i

= 2 � x

1�i

+ a[1]^ x = 2 � x

i

+ a[0]) � � �)))

has length linear in k and is equivalent in Q

+

to x = a.

Using x


k

y = z and M

k

(x; y; z), we can easily build sequences of formulas that express the

necessary predicates, which happen to be just x < exp(2; k)

2

, x = exp(2; k) and exp(2; k)jx ^

x < exp(2; k)

2

. Let I

k

(x) be the sequence M

k+1

(x; 0; 0), J

k

(x) be 9y [M

k

(y; 0; 0) ^ Sy =

x ^:M

k

(x; 0; 0)] and Z

k

(x) be 9su [J

k

(u) ^ s < u^M

k+2

(s; u; x)]. Replacing M

k

(x; y; z) with

the disjunction that is equivalent to it in Q

+

, we see that

Q

+

` J

k

(x)$ x = exp(2; k)

Q

+

` I

k

(x)$

_

s<exp(2;k)

2

x = s

Q

+

` Z

k

(x)$

_

s<exp(2;k)

x = s � exp(2; k)
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This guarantees that I

k

; J

k

and Z

k

actually have in Q

+

their intended meaning.

Only one string-manipulation function is indeed necessary to simulate a Turing machine in

the way of [FR74], the function S(a; i) that for all integers a and i returns a[i], the i-th bit in

the binary representation of a. To express this function we need to compute the exponentiation

function 2

i

. The sequence that in Q

+

expresses exponentiation cannot be immediately built

from the sequence x


k

y = z, but the construction is not very long either.

Using the de�nition of the major times a sequence of formulas E

k

(x; y; z)|whose length

is linear in n|has to be de�ned such that

E

k

(x; y; z)$

_

a<exp(2;k)

b;b

a

�m

k+4

[x = a ^ y = b ^ z = b

a

]:

The construction ofE

k

(x; y; z) starts with the inductive de�nition of formulasE

k

i

(x; y; z; u; v; w)

for all i and k, with 0 � i � k. Roughly speaking, the meaning of these formulas is:

x < 2

2

i

and z = y

x

� m

k+4

and u


k

v = w:

The formulas E

k

i

(x; y; z; u; v; w) are built inductively on i for each k, and it is proved that

each E

k

i

is equivalent in Q

+

to

_

a<exp(2;i)

b;b

a

�m

k+4

[x = a ^ y = b ^ z = b

a

] ^

_

A;B�m

k+4

[u = A ^ v = B ^w = A �B]: (y)

Afterwards a straightforward de�nition of E

k

(x; y; z) can be E

k

k

(x; y; z; 0; 0; 0), i:e: the following

sequence of formulas is used for the exponentiation function:

E

0

0

(x; y; z; 0; 0; 0);E

1

1

(x; y; z; 0; 0;0); E

2

2

(x; y; z; 0; 0;0); : : :

For each k, two clauses inductively de�ne E

k

i

(x; y; z; u; v; w):

E

k

0

(x; y; z; u; v; w) is:

[(x = 0 ^ z = S0) _ (x = S0 ^ z = y)] ^ u


k

v = w ^ y


k

0 = 0 ^ z


k

0 = 0;

and E

k

i+1

(x; y; z; u; v; w), i < k, is:

9u

1

u

2

u

3

u

4

u

5

u

6

u

7

u

8

u

9

x = u

2

+ u

3

+ u

4

^E

k

i

(u

1

; y; u

5

; u

1

; u

1

; u

4

) ^

E

k

i

(u

1

; u

5

; u

6

; u

6

; u

7

; u

9

) ^E

k

i

(u

2

; y; u

7

; u

8

; u

9

; z) ^E

k

i

(u

3

; y; u

8

; u; v; w)

The formula E

k

i+1

(x; y; z; u; v; w) expresses the power y

x

in terms of the product (y

u

1

)

u

1

�y

u

2

�

y

u

3

, giving x = u

2

1

+u

2

+u

3

in any decomposition of x into smaller elements u

j

< 2

2

i

. The four

occurences of E

k

i

can be reduced to one with the same transformation that was used for the

minor times, in order to have a sequence E

k

i

(x; y; z; u; v; w) whose elements have length that

grows linearly in k + i.
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The proof of the equivalence of E

k

i

(x; y; z; u; v; w) with the disjunction (y) can be carried

out by induction on i. The base is straightforward, because

[(x = 0 ^ z = S0) _ (x = S0 ^ z = y)] ^ u


k

v = w ^ y


k

0 = 0 ^ z


k

0 = 0

is equivalent in Q

+

, by replacement, to

_

a<exp(2;0)

b;b

a

�m

k+4

[x = a ^ y = b ^ z = b

a

] ^

_

A;B�m

k+4

[u = A ^ v = B ^w = A �B]:

Note now the role of the bounds on y and z expressed by y


k

0 = 0 ^ z


k

0 = 0.

The step can be proved checking that in the next expression|which is equivalent in Q

+

to E

k

i+1

(x; y; z; u; v; w)|all trailing existential quanti�ers can be eliminated, reducing it to the

desired disjunction as has been done in the analogous proof for the minor times.

9u

1

u

2

u

3

u

4

u

5

u

6

u

7

u

8

u

9

x = u

2

+ u

3

+ u

4

^

_

a

1

<exp(2;i)

b

1

;b

a

1

1

�m

k+4

[u

1

= a

1

^ y = b

1

^ u

5

= b

a

1

1

] ^

_

A

1

;B

1

�m

k+4

[u

1

= A

1

^ u

1

= B

1

^ u

4

= A

1

�B

1

] ^

_

a

2

<exp(2;i)

b

2

;b

a

2

2

�m

k+4

[u

1

= a

2

^u

5

= b

2

^u

6

= b

a

2

2

]^

_

A

2

;B

2

�m

k+4

[u

6

= A

2

^ u

7

= B

2

^ u

9

= A

2

�B

2

]^

_

a

3

<exp(2;i)

b

3

;b

a

3

3

�m

k+4

[u

2

= a

3

^ y = b

3

^ u

7

= b

a

3

3

] ^

_

A

3

;B

3

�m

k+4

[u

8

= A

3

^ u

9

= B

3

^ z = A

3

�B

3

] ^

_

a

4

<exp(2;i)

b

4

;b

a

4

4

�m

k+4

[u

3

= a

4

^ y = b

4

^ u

8

= b

a

4

4

] ^

_

A

4

;B

4

�m

k+4

[u = A

4

^ v = B

4

^ w = A

4

�B

4

]

Now that we have builtE

k

(x; y; z) which represents exponentiation in Q

+

, we can construct

a sequence S

k

(x; y; z) for the function S(a; i). Roughly, the meaning of S

k

(x; y; z) has to be:

jxj; y+ 1 �

�

2

2

k

�

2

and z = x[y]

and the value z = S(x; y) can be simply taken to be (x � 2

y

) mod 2|because strings are

represented in binary notation. In the following, let � < exp(3; k) stand for 9uv[J

k

(u) ^

E

k+1

(u; 2; v) ^ � < v], and de�ne S

k

(x; y; z) to be:

[x < exp(3; k + 1) ^ I

k

(y) ^ (z = 0 _ z = S0)] ^

9mqrtw [m < exp(3; k + 1) ^ � � � ^ w < exp(3; k+ 1) ^E

k+1

(y; 2;m) ^

x = w + r ^ q 


k+1

m = w ^ r < m ^ q = 2 � t + z]:

Then S

k

(x; y; z) is equivalent in Q

+

to

_

a=0;1;10;11;:::;exp(3;k+1)�1

n=0;1;2;:::;exp(2;k+1)�1

c=a[n]

x = a ^ y = n ^ z = c;

which implies that S

k

(x; y; z) has the intended meaning in Q

+

.
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We have now collected enough material to simulate a non-deterministic Turing machine

within the theory Q

+

.

Lemma

There exists a constant d and a polynomial p(n) such that for each polynomial g(n) and non-

deterministic Turing machineM there exists a p(n+g(n))-time O(n+g(n))-space deterministic

Turing machine P

M

g

such that for each input w for M , P

M

g

(w) is a sentence '

M;g;w

such

that j'

M;g;w

j � d � [jwj+ g(jwj)] and

M accepts w within exp(2; g(jwj)) steps () Q

+

` '

M;g;w

() Q

+

6` :'

M;g;w

:

proof Once the function S and the predicates I; J; Z andW have been de�ned, the proof follows

the line of the construction given in [FR74] for the complete theory S

+

.

LetM be a non-deterministic Turing machine, with one tape, working alphabet � = f0; 1g,

set of states Q and transition relation �. The machine starts in an initial state q

0

and computes

according to �, that is a set of �ve-tuples. Each tuple hq; r;H; r

0

; q

0

i in � speci�es that the

machine being in state q and reading the bit r, may (non-deterministically) write the bit r

0

,

enter state q

0

and move the head according to H, either to the left, L, or to the right, R, or let

it stand still, S. We can suppose without loss of generality that M has only one �nal state f ,

and that the transition relation speci�es that when M enters state f , it does not change its

con�guration anymore.

Let k equal g(jwj). We may code a description of a possible computation ofM , on input w

and length exp(2; g(jwj)) = exp(2; k), with a tuple h�; �

0

; : : : ; �

l�1

i of 1 + dlog(1 + jQj)e strings

in f0; 1g

�

.

The �rst string, � will describe the tape contents at each instant of the computation, and

will simply be a concatenation of exp(2; k) tape images, each of length exp(2; k). Hence � has

length exp(2; k)

2

= exp(2; k + 1).

The remaining l = dlog(1 + jQj)e strings contain altogether a description of the head

position and the machine state at each instant of the computation. Each �

i

is a concatenation

of exp(2; k) strings of length exp(2; k), each concerning a particular step of the computation.

In some unique fashion associate a number in f1; : : : ; 1 + jQjg to each machine state. The

bit �

i

[m], 0 � m < exp(2; k)

2

, is 1 if and only if at the n-th step of the computation, n =

m� exp(2; k), the head is in position h = m mod exp(2; k) and the machine is in a state q such

that the i+1-st bit in the binary representation of the integer associated to q is 1. In this way,

since 0 is not associated to any q 2 Q, we can look at h�

l�1

; : : : ; �

0

i as a unique string �, in the

alphabet � =

�

0; : : : ; 2

l

� 1

	

� f0g[Q, that is 0 everywhere but in the head positions, one for

each step of the computation, where it evaluates to the current machine state q.

Then � and � are obtained concatenating exp(2; k) snapshots of the machine con�guration

at successive steps, each one being exp(2; k) long.

M accepts w in time exp(2; g(jwj)) if and only if there exists a tuple of strings that codes

an accepting computation of M of exact length exp(2; g(jwj)), starting on the input w. Let us

write M

w

(�; �) to mean that � and � code such a computation.
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Using the string manipulation function S, it is possible to express in Q

+

that a certain

tuple e�ectively encodes an accepting computation of the appropriate length. More speci�cally,

formulas with free variables t; s

0

; : : : ; s

l�1

can be designed whose meaning is that the values of t

and s encode an accepting computation of M on input w:

� Let '

a

(t; s) specify that t and s are binary strings of the appropriate length:

8 i I

k

(i)! [9 d S

k

(t; i; d) ^ 9 d S

k

(s; i; d)]:

Since I

k

(i) means that i is in the correct range

�

0; : : : ; exp(2; k)

2

� 1

	

, the formula '

a

says

that for each position i there is a corresponding character in t and s|S

k

(s; i; d) being an

abbreviation for

V

n<l

S

k

(s

n

; i; d

n

). It is equivalent in Q

+

to the disjunction:

Q

+

` 8 t s '

a

(t; s)$

_

�;�

0

;:::;�

l�1

=

0;1;10;11;:::;exp(3;k+1)�1

t = � ^ s

0

= �

0

^ : : :^ s

l�1

= �

l�1

:

We write this in the following more compact way:

Q

+

` 8 t s '

a

(t; s)$

_

���

�

;���

�

j�j=j�j=exp(2;k)

2

t = � ^ s = �:

� Let '

b

(t; s) specify that t and s start with an initial con�guration of M on input w:

'

a

(t; s) ^ S

k

(s; 0; q

0

) ^

8uvx f(W

w

jwj

(x) ^ J

k

(u) ^ v < u)! 8j [S

k

(x; v; j)$ S

k

(t; v; j)]g;

with q

0

the initial state of M . Since J

k

(j) is equivalent to j = exp(2; k), that is the length

of a snapshot description in the strings � and �, the formula '

b

requires that q

0

be the �rst

character of �, and that each tape cell in the �rst computation step match the input w.

The formula is equivalent to an appropriate disjunction, where t and s assume values �

and � such that � starts with a snapshot of the tape corresponding to the input w,

and �[0] = q

0

: Let �

b

(�; �) be an abbreviation for this statement about � and �; then:

Q

+

` 8 t s '

b

(t; s)$

_

j�j=j�j=exp(2;k)

2

�

b

(�;�)

t = � ^ s = �:

� Let '

c

(t; s) specify that t and s encode a sequence of exp(2; k) correct moves of M :

'

a

(t; s) ^

8 i j j

L

j

S

j

R

�

[I

k

(i) ^ J

k

(j) ^ SSj

L

= Sj = Sj

S

= j

R

]!

�

[S

k

(s; i; 0)! 8u S

k

(t; i+ j; u)$ S

k

(t; i; u)]^

�

:S

k

(s; i; 0)!

f:I

k

(i + j) ^ [8l (i < l ^ I

k

(l))! S

k

(s; l; 0)] _

I

k

(i + j) ^ [8l i < l < i + j

L

! S

k

(s; l; 0)] ^

_

�(q;r;H;r

0

;q

0

)

[Z

k

(i+ j

H

)! :j

H

= j

R

] ^ [Z

k

(i)! :j

H

= j

L

] ^

S

k

(s; i; q)^ S

k

(s; i+ j

H

; q

0

) ^ S

k

(t; i; r) ^ S

k

(t; i+ j; r

0

)g

�	�

:
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Let i be any available character position in the whole string t and in s, and let j be the

length of a snapshot description. Then if �[i] is 0, the head is not at that position, and the

corresponding character does not change during that step: � [i+ j] = � [i]. On the contrary,

if the character �[i] = q 6= 0 does not belong to the very last snapshot, because I

k

(i + j)

holds, then all the nearby characters of � are 0, and M must be allowed to move from the

current state to a new state according to some correct transition, that does not require the

head to move beyond the tape limits.

The formula '

c

(t; s) is equivalent to a disjunction where t and s assume values � and � that

describe an exp(2; g(jwj)) long computation ofM , starting and ending in any con�guration.

If no such computation exists, then '

c

(t; s) is equivalent in Q

+

to a contradiction|that

is Q

+

` :'

c

(t; s). Let us agree that an empty disjunction stands for a contradiction and

that �

c

(�; �) is an abbreviation for the above statement about � and �; then:

Q

+

` 8 t s '

c

(t; s)$

_

j�j=j�j=exp(2;k)

2

�

c

(�;�)

t = � ^ s = �:

� Let '

d

(t; s) specify that s contains the �nal state f of M :

'

a

(t; s) ^ 9 i [I

k

(i) ^ S

k

(s; i; f)]:

In the corresponding equivalent disjunction s assumes values � such that, for some i, �[i] =

f :

Q

+

` 8 t s '

d

(t; s)$

_

j�j=j�j=exp(2;k)

2

�

d

(�)

t = � ^ s = �:

Consider now the conjunction �

k

(t; s) given by '

b

(t; s) ^ '

c

(t; s) ^ '

d

(t; s). This for-

mula is equivalent in Q

+

to a disjunction where t and s assume values � and � that describe

an exp(2; g(jwj)) = exp(2; k) long computation of M , starting at an initial con�guration on

input w and ending in an accepting con�guration|if any such computation exists. Other-

wise �

k

(t; s) is equivalent in Q

+

to a contradiction|that is Q

+

` :�

k

(t; s). As before, let us

simply write:

Q

+

` 8 t s �

k

(t; s)$

_

j�j=j�j=exp(2;k)

2

M

w

(�;�)

t = � ^ s = �:

Take '

M;g;w

to be 9 t 9 s �

k

(t; s). If M accepts w then Q

+

` '

M;g;w

, otherwise Q

+

`

:'

M;g;w

. The length of '

M;g;w

is bounded by d[jwj+ g(jwj)], for some d. Indeed it has the

form �

0

�

k

1

�

2

W

w

jwj

(x)�

3

�

k

4

� � ��

s

, i:e: it may be simply computed by concatenating some �xed

patterns, some of which are repeated g(jwj) times, with the exception of W

w

jwj

(x). Since g(jwj)

can be computed in polynomial time, '

M;g;w

can certainly be computed deterministically by a

Turing machine in space O(jwj+ g(jwj)) and time p(jwj+ g(jwj)), for some polynomial p. This

concludes the proof.

The hypotheses of the preceding lemma are not the most general ones. In particular g

could be any function that is computable by a binary transducer on a unary input argument in

polynomial time.
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For g(n) = c � n, we have proven that there exists a d such that for each c and M there

exists a polynomial-time linear-space deterministic Turing machine P

M

c

such that for each

input w;P

M

c

(w) = '

M;g;w

and j'

M;g;w

j � d � (c + 1) � jwj. Also, if g(n) is a polynomial, there

exists a d such that for each M there exists a polynomial p and a polynomial-time deterministic

Turing machine P

M

g

such that for each input w;P

M

g

(w) = '

M;g;w

and j'

M;g;w

j � d � p(jwj).

These facts are used in the proof of the following theorem.

Theorem(Inseparability for Non-Deterministic Turing Machines)

Let T � �

�

be a set of strings, in the alphabet � � �

+

, that separates Q

+

from UnsL

+

. Then T is �

p�lin

-hard for each class NTIME(exp(2; c � n)) and is �

p

-hard for

each class NTIME(exp(2; n

c

)), and there exists a c

0

such that T 62 NTIME(exp(2; c

0

� n)):

[

0<c

NTIME(exp(2; c � n)) �

p�lin

T and

[

0<c

NTIME(exp(2; n

c

)) �

p

T and

exists c

0

s:t: T 62 NTIME(exp(2; c

0

� n)):

proof Recall that NTIME(f(n)) is the set of languages L such that there exists a non-

deterministic Turing machineM

L

that recognizes L in time f(n), i:e: there exists a machineM

L

such that for each word w 2 �

�

, if w 62 L then there is no accepting computation of M

L

on

input w, otherwise there exists an accepting computation of length f(jwj) or less. We may

assume as before that if L is in NTIME(f(n)) then there is a witnessing machine M

L

that has

only one �nal state that it never leaves once it has reached it, as in the proof of the preceding

lemma.

Let T � �

�

be any set of strings such that Q

+

� T and UnsL

+

� T

c

, the complement

of T . We prove that the lower bounds that are listed in the theorem statement hold for both T

and T

c

. In this way it is proven that they apply to any T that separates Q

+

from Uns.

We �rst prove that

[

0<c

NTIME(exp(2; c � n)) �

p�lin

T and

[

0<c

NTIME(exp(2; c � n)) �

p�lin

T

c

showing that for each constant c > 0 and language L in NTIME(exp(2; c � n)) there is a

polynomial time linear space reduction of L to T and of L to T

c

. Let L be a language

in NTIME(exp(2; c � n)), and M a witnessing machine. Let g(n) be c � n. Modify the poly-

nomial time linear space algorithm P

M

c

of the previous lemma in such a way that with the

same time and space bounds on input w it outputs the sentence �

+

^ '

M;g;w

|�

+

being the

conjunction of the �nitely many axioms of the theory. If M accepts w then Q

+

` '

M;g;w

and �

+

^ '

M;g;w

2 Q

+

� T , otherwise Q

+

` :'

M;g;w

and �

+

^'

M;g;w

2 UnsL

+

� T

c

.

On the other hand P

M

c

can be modi�ed to output �

+

^:'

M;g;w

. IfM accepts w then Q

+

`

'

M;g;w

and �

+

^ :'

M;g;w

2 UnsL

+

� T

c

, otherwise Q

+

` :'

M;g;w

and �

+

^ :'

M;g;w

2

Q

+

� T . This concludes the proof of the �rst statement of the theorem.
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We can prove in the same way that

[

0<c

NTIME(exp(2; n

c

)) �

p

T and

[

0<c

NTIME(exp(2; n

c

)) �

p

T

c

showing that for each constant c > 0 and languageL in NTIME(exp(2; n

c

)) there is a polynomial

time reduction of L to T and of L to T

c

. Let L be a language in NTIME(exp(2; n

c

)), and M a

witnessing machine. Let g(n) be n

c

and notice that the algorithm P

M

g

of the previous lemma

still works in polynomial time p(g(n)). Modify P

M

g

in such a way that with the same time

bound on input w it outputs the sentence �

+

^ '

M;g;w

: as before this reduces L(M ) to T .

Modifying P

M

g

to output �

+

^ :'

M;g;w

gives a polynomial reduction of L(M ) to T

c

.

In order to conclude the proof of the theorem, we need to modify the preceding lemma to

show that the programs P

M

g

, one for each machineM , could indeed be substituted by a unique

program P

g

, that takes the coding of a machine M and an input w to M , and outputs '

M;g;w

.

In general the coding of a binary Turing machine is a binary word whose length grows

as a function of the cardinalities jQj and j�j of the set of states and of the transition relation

respectively. A short and natural coding could be, for example, a simple concatenation of the

tuples in �, where log jQj bits are enough to denote each state q 2 Q; the length of such coding

would be a function of jQj and j�j that roughly is as �(j�j � log jQj).

In any case there are many ways of unequivocally associating a coding to each machine,

and we are free to choose one that �ts our needs. Let us suppose that we have de�ned a coding

of binary Turing machines such that the length jM j of the binary representation of the coding

of M is for example �(j�j

2

� jQj

2

), by possibly padding a more natural �(j�j � log jQj) coding

9

.

Furthermore let us choose the coding in such a way that we can append to it any binary word w

to get a string hM;wi where the border between M and w is clearly marked, without using

extra characters beyond 0 and 1|e:g: every second bit of the coding of M could be a 0, while

a pair 11 separates M from w in hM;wi.

We still need to prove that there exists a constant d such that for each linear func-

tion

10

g(n) = c � n there exists a polynomial-time deterministic Turing machine P

g

such that

for each non-deterministic Turing machine M and input w, P

g

(hM;wi) is a sentence equivalent

to '

M;g;w

whose length is bounded by d � (jM j + jwj + g(jwj)); the behavior of P

g

on an in-

put h�;wi such that � does not correctly specify the coding of a Turing machine is irrelevant,

we can for example state that P

g

does not terminate on such inputs.

Looking at the given construction of '

M;g;w

, it should be clear that building the sentence

from hM;wi in polynomial time is still not a problem. The crux is the linear bound that must

hold on the output, since one can say that the length of '

M;g;w

is O( jwj+ j�j � log jQj � g(jwj) )

but one certainly cannot say that it is O(jwj+ jM j+ g(jwj)). The point is that the number of

9

Indeed we could also choose some quite natural �(j�j � log jQj) coding, as it will turn out.

The point that we want to stress here is the fact that we are free to choose a coding as fat as

is needed to prove our statement.

10

Again, there is no need to limit this sentence to linear functions. But there is no point in

a more general statement, for it would not imply a stronger inseparability|as can be seen at

the end of the proof.
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occurrences in '

M;g;w

of formulas Z

k

and S

k

whose length grows as �(g(jwj)) does depend on

the machine M . Let us see how we can easily reduce these occurrences to a constant number

in two steps.

First of all, the writing S

k

(s; u; q) that appears time and again in �

k

(t; s) hides a conjunction

of l = dlog(1+ jQj)e occurrences of S

k

. Again use the fact that Q

+

is a theory with equality to

reduce these occurrences to only one:

Q

+

` 8u q s

^

i<l

S

k

(s

i

; u; q

i

) $ 8v

0

v

1

v

2

"

_

i<l

v

0

= s

i

^ v

1

= u ^ v

2

= q

i

#

! S

k

(v

0

; v

1

; v

2

):

Then we can substitute the right-hand side of the equivalence, call it S

0

k

(s; u; q), for S

k

(s; u; q)

throughout '

M;g;w;

obtaining an equivalent sentence '

0

M;g;w

.

Still '

0

c

(t; s) grows too quickly for our purposes. Indeed, the length of the last disjunctive

subformula of '

0

c

(t; s) still depends on k = g(jwj) and on the number of tuples in the transition

relation � in such a way that it is �(j�j � g(jwj)+ j�j � log(jQj)). Then '

00

c

(t; s) is taken to be the

logically equivalent formula obtained by reducing the occurrences of the formulas S

k

and Z

k

to

a constant number, independent from the cardinality of the transition relation �:

'

a

(t; s) ^

8 i j j

L

j

S

j

R

�

[I

k

(i) ^ J

k

(j) ^ SSj

L

= Sj = Sj

S

= j

R

]!

�

[S

0

k

(s; i; 0)! 8u S

k

(t; i+ j; u)$ S

k

(t; i; u)]^

�

:S

0

k

(s; i; 0)!

�

:I

k

(i + j) ^ [8l (i < l ^ I

k

(l))! S

0

k

(s; l; 0)] _

I

k

(i + j) ^ [8l i < l < i+ j

L

! S

0

k

(s; l; 0)] ^

9 v

�

[S

0

k

(v

0

; v

1

; v

2

) ^ S

0

k

(v

3

; v

4

; v

5

) ^ S

k

(v

6

; v

7

; v

8

) ^ S

k

(v

9

; v

10

; v

11

)] ^

[Z

k

(v

12

)! :v

13

= j

R

] ^ [Z

k

(v

14

)! :v

15

= j

L

] ^

_

�(q;r;H;r

0

;q

0

)

v

0

= s ^ v

1

= i ^ v

2

= q ^ v

3

= r

0

^ v

4

= i + j

H

^ v

5

= q

0

^

v

6

= t ^ v

7

= i ^ v

8

= r ^ v

9

= t ^ v

10

= i+ j ^ v

11

= s ^

v

12

= i+ j

H

^ v

13

= j

H

^ v

14

= i ^ v

15

= j

H

	��	�

:

The corresponding sentence '

00

M;g;w

now has length �(jwj+g(jwj)+ j�j � log jQj), that is O(jwj+

g(jwj)+ jM j) and we are done. In the following let us brie
y use '

M;g;w

to refer to this shorter

but equivalent sentence.

We can now show, for both sets T and T

c

, that there exists a constant e such that for each

Turing machineM that recognizes the set, a sentence can be built that belongs to it and is not

accepted by M in time exp(2; e � n).

Let M

T

be a non-deterministic Turing machine that accepts T . We do not start by �xing

an appropriate constant e, but instead we are going to look at a generic linear function g(n) =

e � n and see how we can mix the ingredients M

T

and P

g

in order to obtain a lower bound

of exp(2; e �n), for some e, on the length of any accepting computation ofM

T

on a certain worst

input|and then we show how e can be chosen a priori.

We can say, in some sense, that P

g

on input hM;wi outputs a sentence '

M;g;w

whose

meaning in Q

+

is \There is an accepting computation of M on input w, that is shorter
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than exp(2; g(jwj))." Starting from M

T

and P

g

we are going to build a sentence � whose

meaning is

11

roughly \There is no accepting computation of M

T

on input myself, that is

shorter than exp(2; e � j�j).".

Modify the machine P

g

to output �

+

^:'

N;g;N

on input any machine coding N , and com-

pose this new polynomial-time deterministic machine with the non-deterministic machine M

T

;

call M the resulting non-deterministic Turing machine and the corresponding coding. Then M

on input N that is the coding of a Turing machine, computes '

N;g;N

and starts M

T

on in-

put �

+

^ :'

N;g;N

|M does not accept an input N that is not a correct coding.

Let � be the sentence �

+

^ :'

M;g;M

and consider the sentences � and '

M;g;M

. Ei-

ther '

M;g;M

or :'

M;g;M

belongs to Q

+

. Then '

M;g;M

2 Q

+

if and only if � 2 UnsL

+

� T

c

;

'

M;g;M

62 Q

+

if and only if :'

M;g;M

2 Q

+

, if and only if � 2 Q

+

� T . This means that �

belongs to Q

+

and T if and only if there is no accepting computation of M

T

on input �

within exp(2; g(jM j)) steps.

If Q

+

` '

M;g;M

, then M accepts M (within exp(2; g(jM j)) steps), that is M

T

accepts �,

while � belongs to UnsL

+

� T

c

, a contradiction.

Then it must be the case that Q

+

6` '

M;g;M

and � belongs to T . Hence M

T

accepts �,

but it must take it a lot of time, for otherwise M would accept M within exp(2; g(jM j)) steps.

The length of � is [q + d � (2jM j + g(jM j))]|where q is j�

+

^ :j|and the time necessary to

generate � from M cannot exceed q+p(jM j+2+ jM j) = r(jM j) for some polynomials p and r.

Then the machine M

T

cannot accept � in less than exp(2; e � j�j) steps, for any e such that

r(jM j) + exp(2; e � [q + d � (2jM j+ g(jM j))]) � exp(2; g(jM j)):

Since exp(2; g(n)) grows super-polynomially and n is O(g(n)), we can �x a priori two

constants e and m such that the previous inequality holds whenever m � jM j; while building

the machineM we can make sure that jM j > m by adding enough dummy states and transition

tuples.

This concludes the proof of our statement. It is also clear at this point that considering a

polynomial instead of a linear g(n) is worthless, for in either case the above inequality contains

and bounds the term exp(2; e � j�j).

In order to prove the same lower bound for T

c

, take e and m as before, modify P

g

to

output �

+

^ '

N;g;N

for each input N , as before build on M

T

c

the machine M in such a way

that jM j > m and consider � to be the sentence �

+

^ '

M;g;M

.

Again '

M;g;
M

cannot belong to Q

+

, otherwise � would belong to Q

+

whileM

T

c

accepts �.

Then '

M;g;M

62 Q

+

and � is accepted by M

T

c

, but in time greater than exp(2; e � j�j).

6: THE INSEPARABILITY FOR ALTERNATING TURING MACHINES

We show in this section how we are going to develop the inseparability result for alternating

time and linear alternation (cf: [Ber80]). The proofs have not been written in full detail yet, but

11

In contrast to what we claim in the introduction of [FY92], this interpretation of the follow-

ing proof can be applied to the Fischer and Rabin proof as well. We realized that this is possible

while verifying that the proof given in [FR74] for the lower bound on the length of derivations

in complete axiom systems is indeed constructive|as pointed out to us by Egon B�orger, to

whom we are grateful for his observation.
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we do not think that any di�culty should arise, also because they follow closely the proof in the

preceding section|in the same way as the technique used to prove the lower bound in [Ber80]

comes directly from [FR74].

First of all the claimed reduction of the decision problem for Presburger Arithmetic to the

decision problem of any set T separating Q

+

from the unsatis�able sentences is derived from

lemma 4 of [FR75, p: 76]. A polynomial time linear space deterministic Turing machine can

transform any query for S

+

into an equivalent sentence in which all quanti�ers are bounded

by short formulas representing in Q

+

the necessary triple exponential values. These bounded

quanti�er sentences are decided by Q

+

, so that any query to S

+

can be transformed into a

query to T , T being any separating set.

The claimed hereditary lower bound in the sense of [CH90] for any theory T extending Q

+

can be inferred as a by-product of the given non-deterministic Turing machine simulation. The

formula S

k

(x; y; z) can be used in any model of T to obtain a monadic interpretation of the

classes T

2

n

3

(cf: [CH90, pp: 60{63]), which implies an ATIME(exp(2; cn); cn) hereditary lower

bound on T .

Let us see in detail the construction for alternating Turing machines corresponding to the

one given in the preceding section for non-deterministic Turing machines.

Let M be an alternating Turing machine, with one tape, working alphabet � = f0; 1g, set

of states Q = Q

^

]Q

_

(divided into universal and existential states) and transition relation �.

The machine starts in an initial state q

0

and computes according to �, that is a set of �ve-tuples.

Each tuple hq; r;H; r

0

; q

0

i in � speci�es that the machine being in state q and reading the bit r,

may (non-deterministically) write the bit r

0

, enter state q

0

and move the head according to H.

We do not restrict M to having only one �nal state, but we can suppose without loss of

generality that the transition relation speci�es that when M enters a �nal state, it does not

change its con�guration anymore. We can suppose that M does not change its con�guration

when it enters one for which the transition relation does not specify any possible move. In this

way, for each machine con�guration C and integer h � 0, the unique computation tree T (C; h)

of root C and height h|whose nodes are machine con�gurations and whose edges represent

one step reachability according to �|is such that every leaf has depth h.

The nodes in T (C; h) can be divided into two distinct sets, the set of accepting and the set

of rejecting nodes. We uniquely determine whether a node is accepting or rejecting by starting

from the leaves of T (C; h) and climbing the tree bottom-up by induction. Each leaf is accepting

if and only if it is a �nal con�guration, that is one in which M is in a �nal state. If h > 0 then

a node q 2 Q

^

of level l � 1 � h� 1 is accepting if and only if all its children, whose level is l,

are accepting, and a node q 2 Q

_

of level l � 1 is accepting if and only if it has an accepting

child.

As for the number of alternations in a computation tree, for technical reasons our de�nition

will di�er from the classical one. But this gives rise to a wider class of accepted languages, and

therefore the lower bound that we prove holds also for the usual measure on alternations. The

number of alternations in a computation tree is usually de�ned (cf: [Ber80] and [BDG90]) as

a function of all paths of computation trees. In [Ber80] it is the maximum number of times

that in any path of the minimum accepting computation tree the machine moves from a state
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in Q

^

to a state in Q

_

or vice versa. In [BDG90] it is the maximum number of times that in

any path of any accepting computation tree the machine moves from a state in Q

^

to a state

in Q

_

or vice versa. In any case, a machine M accepts an input w in time t(jwj) and with at

most a(jwj) alternations if and only if wherever there exists an accepting tree with root the

initial con�guration C

w

then T (C

w

; t(jwj)) is accepting and it has at most a(jwj) alternations.

A language L belongs to ATIME(t(n); a(n)) if there exists a machineM that accepts an input w

in time t(jwj) and with at most a(jwj) alternations.

We could give an inductive de�nition of the measure on alternations above. Each leaf

of T (C; h) has alternation depth 0. If h > 0 then the alternation depth of each node q 2 Q

^

of

level l � 1 � h � 1 is the maximum among the alternation depths of its universal children and

the alternation depths increased by 1 of its existential children. In the same way the alternation

depth of each node q 2 Q

_

of level l � 1 is the maximum among the alternation depths of its

existential children but with the alternation depths increased by 1 for its universal children. In

this way an integer is associated to the root C that coincides with the maximum number of

times that in any path of T (C; h) the machine moves from a state in Q

^

to a state in Q

_

or

vice versa.

In our de�nition the number of alternations in a computation tree depends on the accepting

nodes only. The number of alternations of a subtree whose root is a rejecting node is not

de�ned|or it can be taken to be in�nite. Each accepting leaf of T (C; h)|that is each leaf

corresponding to a �nal con�guration of M|has alternation depth 0. If h > 0 then the

alternation depth of each accepting node q 2 Q

^

of level l � 1 � h� 1 is the maximum among

the alternation depths of its universal children and the alternation depths increased by 1 of

its existential children. The alternation depth of each accepting node q 2 Q

_

of level l � 1

is the minimum among the alternation depths of its accepting existential children but with

the alternation depths increased by 1 for its accepting universal children. For any accepting

computation tree, the alternation depth measured in this way is less than or equal to the one

measured in the classical way. Note that, since M never leaves a �nal state after reaching it,

each �nal con�guration has alternation depth 0 at any level of any computation tree, and if C

is the root of some accepting computation tree, then all accepting T (C; h), h � 0, do not have

necessarily the same alternation depth, but the alternation depth may at most decrease as h

increases|while in the standard de�nition it may only increase, possibly inde�nitely.

12

12

The reason is that we have de�ned the number of alternations as being sort of `the minimum

among the alternations strictly needed to accept the input (i:e: the tree root) in the given time.'

An analogymay help to clearify this. Suppose for example that you want to de�ne the space used

by a non-deterministic Turing machine working in time t(n) to be the minimum among the space

used in each accepting path of the computation tree of depth t(n), while it is usually de�ned to

be the maximum space used in any con�guration of the computation tree of depth t(n). When

more time is allowed, say 2t(n), for the same input the depth of the computation tree increases

and some path that was not accepting may become accepting. If the machine uses very little

space in this path, the space used in the whole non-deterministic computation may decrease.

We can say that when the non-deterministic machine has more time to accept the input, it may

�nd `better' solutions, i:e: solutions that are not tape consuming.
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As before, a machine M accepts an input w in time t(jwj) and with at most a(jwj) al-

ternations if and only if in case there exists an accepting tree with root the initial con�gura-

tion C

w

then T (C

w

; t(jwj)) is accepting and its alternation depth is at most a(jwj). De�ne the

class ATIME

0

(t(n); a(n)) as ATIME, but referring to this new de�nition of alternation depth: a

language L belongs to ATIME

0

(t(n); a(n)) if there exists a machineM that accepts an input w

in time t(jwj) and with at most a(jwj) alternations.

IfM is a witnessing machine for L 2 ATIME(t(n); a(n)) then M accepts L and the number

of alternations is bounded by a(n) both if we look at all computation paths or only at some of

them. Then L belongs also to ATIME

0

(t(n); a(n)) and each ATIME

0

lower bound implies the

corresponding ATIME one.

In order to prove the lower bound, we have to prove for alternating machines the following:

Lemma

There exists a constant d and a polynomial p(n) such that for each polynomial g(n), each

linear function a(n) and alternating Turing machine M there exists a p(n + g(n))-time O(n +

g(n))-space deterministic Turing machine P

M

g

such that for each input w for M , P

M

g

(w) is a

sentence  

M;g;a;w

such that j 

M;g;a;w

j � d � [jwj+ g(jwj) + a(jwj)] and

M accepts w within exp(2; g(jwj)) steps and a(jwj) alternations ()

Q

+

`  

M;g;a;w

()

Q

+

6` : 

M;g;a;w

:

proof We are going to de�ne a sentence for each M;w, k and a that says that M accepts w

within exp(2; k) steps and with at most a alternations. The length of this sentence will be linear

in k+ a. Its core is a formula  

a

k

[C; j] meaning that C is the root of an accepting computation

tree T (C; j) (j � exp(2; k)) with at most a alternations.

The construction of  

a

k

[C; j] is a natural consequence of the de�nition of acceptance in

alternating Turing machines and of the construction of the formula '

c

given in the previous

section for non-deterministic machines. A formula �

k

(i; A;B) similar to '

c

can be de�ned

meaning that A and B are (appropriate snapshots of) two con�gurations such that B is reach-

able from A in exactly i steps, through a computation path that contains only states of the

same type of the state of A, either universal or existential, except for the state of B, which has

to be either a state of the opposite type or a �nal state. Another similar formula �

0

k

(i; A;B)

can be de�ned that di�ers from �

k

just because it requires that B be a non �nal state of the

same type of A. The de�nition of acceptance implies that for each a > 0 the root of T (C; i) is

accepting with alternation depth less than or equal to a if and only if

- the con�guration C speci�es that M is in a universal state q

c

and for all decomposi-

tions i

1

+ i

2

= i of i and all con�gurations B, if �

k

(i

1

; C;B) then T (B; i

2

) is accepting

with alternation depth less than or equal to a � 1, and no con�guration B exists such

that �

0

k

(i; C;B) holds;

We are not interested here in the class of languages accepted by this machines (which

by the way should correspond to the usual one). We introduce this de�nition of `number of

alternations' just for technical reasons, and in any case we are going to establish the lower

bound for the class ATIME(t(n); a(n)) de�ned in the standard way.
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- the con�guration C speci�es that M is in an existential state q

c

and there exists a de-

composition i

1

+ i

2

= i of i and a con�guration B, such that �

k

(i

1

; C;B) and T (B; i

2

) is

accepting with alternation depth less than or equal to a� 1.

Note that two negative requirements appears in the clause relative to universal states, one of

which is hidden by the implication.

The construction of  

a

k

[C; j] resembles the construction of the formula E

i

k

(x; y; z; u; v; w)

for the exponentiation function. Like E

i

k

, also  

a

k

has to be de�ned simultaneously for each k by

induction on the second parameter. At each inductive step in the de�nition ofE

i

k

we had to refer

to multiplication, but we could not use directly the formula x


k

y = z because at each step we

may add at most a constant number of symbols to obtain E

i+1

k

from E

i

k

. Instead we included

multiplication in the de�nition of E

0

k

, in particular for all i E

i

k

(1; 1; 1; u; v; w) is equivalent

to u


k

v = w. At each inductive step in the de�nition of E

i

k

we used E

i

k

(1; 1; 1; x; y; z) instead

of x


k

y = z, and �nally the properties of theories with equality implied that the inductive

de�nition of E

i+1

k

where several occurrences of E

i

k

appear can be substituted with an equivalent

de�nition with only one occurrence of E

i

k

, whose length is then linear in k.

In the same way we are going to de�ne  

a

k

[C; j], including all needed reachability predicates

in  

a

k

[C; j], and building  

a+1

k

using only some occurrences of  

a

k

, that can be reduced to just

one through the technique in [CH90, pp: 15{16] and [FR79, pp: 155{157]|the one we used in

the inseparability for programs. If positive and negative occurrences of  

a

k

appeared in  

a+1

k

, we

would be obliged to include the$ symbol in our �rst order language and in the decision problem

de�nition, obtaining a possibly weaker lower bound

13

. We will use only positive occurrences in

order to avoid adding the$ symbol, and we include instead in the de�nition of  

0

k

the negative

statements that are needed in the de�nition inductive step to deal with the universal states.

Using only bounded quanti�cation, we de�ne a formula  

a

k

(C; j; q; i; A;B;E; F;G) that

means the conjunction of:

- i; j � exp(2; k), q is a state, C;A;B;E;G are snapshots of con�guration of M of appro-

priate length (when simulating a machine with a single tape in�nite in one direction, it

is C;A;B;E;G � exp(2; k))

- C is the root of an accepting computation tree T (C; j) with at most a alternations

- �

k

(i; A;B) holds, and q is the current state in A

- :�

k

(i; E; F ) holds

- for all snapshots H :�

0

k

(i; G;H) holds

Suppose �

k

(A) is the formula speci�ng that A is a snapshot, �

k

(q; A) a formula meaning that q

is the current state in A, and Q(q); Q

^

(q); Q

_

(q); Q

f

(q) be appropriate disjunctions meaning

that q is a state, a universal one, an existential one or a �nal one respectively. Then the

13

Even if the Cooper algorithm, expounded in [FR75] and [Opp78], works also for the ex-

tended language, we think that the two problems should be kept distinct, for there is no way

of eliminating$ from formulas without increasing substantially their length, and the problem

with only ^;_;:;! could in principle be up to one exponential easier than the one which also

includes $. See also the remark in [CH90, p: 16].
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inductive de�nition of  

a

k

is as follows: the base  

0

k

is the formula

i; j � exp(2; k) ^ �

k

(C) ^ �

k

(A) ^ �

k

(B) ^ �

k

(E) ^ �

k

(G) ^ �

k

(q; A) ^

�

k

(i; A;B) ^ :�

k

(i; E; F ) ^ 8H(�

k

(H)! :�

0

k

(i; G;H)) ^

8q

�

[�

k

(q) ^Q

_

(q)]! 9h � j9D[Q

f

(D) ^ �

k

(h;C;D)

�

8q

�

[�

k

(q) ^Q

^

(q)]! 8h � j8D[:�

0

k

(j; C;D)^ �

k

(h;C;D)! Q

f

(D)

�

:

The step  

a+1

k

(C; j; q; i; A;B;E; F;G) is the following formula, where each � is a place holder

in each instance of  

a

k

for arguments that do not in
uence the meaning of the given instance.

It replaces either one of the available long expressions C; j; q; i; A;B;E; F;G or a short one, like

for example a �nal state or a short �nal con�guration

 

a

k

(�; j; q; i;A;B;E;F;G)^

[ 

a

k

(C; j; �;�; �; �;�;�;�)_ 9q

c

[ 

a

k

(�; �; q

c

; 0; C;C; �;�;�)^

[Q

^

(q

c

)! [ 

a

k

(�; �; �; j;�;�; �; �; C)^

8h

1

h

2

(h

1

+h

2

= j ! 8D f 

a

k

(�; �; �; h

1

; �; �;C;D; �)_ 

a

k

(D;h

2

; �; �; �;�;�;�; �)g)]]^

[Q

_

(q

c

)!

9h

1

h

2

9D (h

1

+ h

2

= j ^  

a

k

(�; �; q

c

; h

1

; C;D; �;�;�)^  

a

k

(D;h

2

; �; �;�; �; �;�;�))]:

All quanti�ers are bounded. In particular in the expression 8D f 

a

k

(�; �; �; h

1

; �; �;C;D; �) _

 

a

k

(D;h

2

; �; �; �; �;�;�;�)g D is bounded because the matrix is equivalent to

 

a

k

(�; �; �; h

1

; C;D; �; �;�)!  

a

k

(D;h

2

; �; �; �; �;�;�;�):

The sentence  

M;g;a;w

is easily constructed from  

a

k

[C; j].

In the same way as we proved the inseparability for non-deterministic Turing machines we

can then prove the following:

Theorem(Inseparability for Alternating Turing Machines)

Let T � �

�

be a set of strings, in the alphabet � � �

+

, that separates Q

+

from UnsL

+

.

Then T is �

p�lin

-hard for each class ATIME(exp(2; c � n); c � n) and is �

p

-hard for each

class ATIME(exp(2; n

c

); n

c

), and there exists a c

0

such that T 62 ATIME(exp(2; c

0

� n); c

0

� n):

[

0<c

ATIME(exp(2; c � n); c � n) �

p�lin

T and

[

0<c

ATIME(exp(2; n

c

); n

c

) �

p

T and

exists c

0

s:t: T 62 ATIME(exp(2; c

0

� n); c

0

� n):

7: CONCLUDING REMARKS

We have shown how in the additive fragment Q

+

of the Robinson axiom system Q a

sequence of formulas x


k

y = z can be de�ned that represents multiplication in large increasing

chunks of the integers. Using this construction, we have proved a double exponential time

with linear alternations inseparability result, which subsumes both the hereditary lower bound

in [CH90] and the single exponential inseparability in [You85].
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We have gained a substantial improvement on the known lower bounds for arithmetic

theories.

The proven inseparability is stronger than the inseparability in [You85] because the lower

bound is higher, the inseparability wider|since Q

+

is a proper subset of ADDAX|and the

computational model more general|alternating versus non-deterministic Turing machines.

It is also strictly stronger than the hereditary lower bound in [CH90] because it implies

double exponential hardness for any set of satis�able sentences which contains Q

+

and for any

theory contained in Q

+

as well.

The hereditary lower bound in [CH90] in its stronger original form is equivalent to the

double exponential inseparability of the complete theory S

+

, which contains Q

+

, from the

unsatis�able sentences, while the inseparability for Q

+

implies in particular that each complete

theory extending Q

+

, S

+

in particular, is double exponentially inseparable from the unsatis�able

sentences.

The techniques used here also yield interesting insights into the techniques for proving lower

bounds presented in [FR74], and gives a fully detailed application of the technique in [You85].

In particular, in order to simplify the construction of x


k

y = z, we have veri�ed that

there is no need to refer to the function g(k) representing the product of all prime numbers

less than exp(2; k). Instead we can refer to the least common multiple �(k) >> g(k) of all

integers less than exp(2; k). This gives rise to a de�nition of x


k

y = z that is shorter than the

one in [FR74] and the one suggested in [HU79, p: 371] and [MY78, pp: 200{1]. Also we have

veri�ed that a lower bound of 
(

p

n) on the number �(n) of primes less than n is su�cient and

that even the Chebychev lower bound 
(n= logn) is not strictly necessary.

The restriction to prime numbers in the construction given in [FR74] may seem dictated by

the requirements of the hypotheses of the Chinese Remainder Theorem. This theorem would

guarantee the existence of a solution of the system of �(exp(2; k)) equations involved in the

de�nition of the sequence of formulas Pr

k

(x; y; z) which in [FR74] correspond to x


k

y = z.

We have veri�ed in the construction of x


k

y = z that the Chinese Remainder Theorem is

not necessary to guarantee the existence of a solution, which is immediately derived in this

particular case by the construction of the system of equations|and that the same holds for

the construction of Pr

k

(x; y; z) in [FR74]. It is also obvious from the construction that two

solutions of the said systems of equations must di�er by at least �(k) >> g(k) >> exp(3; k). The

uniqueness of the solution is guaranteed without referring to the Chinese Remainder Theorem.

Based on the construction of the exp(3; k)-representation x


k

y = z we have given several

proofs of substantially the same inseparability result.

On the line of [You85] we have proven in detail that the theory ADDAX is doubly expo-

nentially inseparable from the unsatis�able sentences when the computational model is taken

to be the min-program and the complexity measure is based on the multiplication performed

during the computation. We have also shown in detail how this inseparability result implies the

one referring to standard non-deterministic double exponential time, as described in [You85].

We have then shown how the whole construction in [FR74] can be done with a theory

that is not complete. A sequence of formulas may be used to represent a function in an
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incomplete theory, if we are able to prove that each element of the sequence is equivalent to the

corresponding disjunction of bounded arguments and corresponding values, as is the case e:g:

of x


k

y = z:

Q

+

` 8xyz x


k

y = z $

_

n;m�m

k+4

�

x = n ^ y = m ^ z = n �m

�

:

A similar work can be done in the theory Q

+

for all the predicates and the functions which are

needed in the standard simulation of a Turing machine.

If the theory under examination has bounded quanti�er elimination, then the Turing ma-

chine simulation, which in any case involves only bounded quanti�ers, provides us with a sen-

tence '

M;T;w

that is decided by the theory and is provable exactly whenM accepts the input w

in time T (jwj). Based on this easily constructible sentence the inseparability result can be

derived, in case the theory be a �nitely axiomatizable one. We have also shown how the whole

proof can be intepreted as the construction of a self-referencing provable sentence meaning:

\there is no short accepting computation of the given machine on input myself."

Finally we have given a proof of double exponential alternating time with linear alternations

inseparability for Q

+

that do not make any non-dischargeable use of the `$' logical connective

and applies to the problem in its most general setting.
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