
Monitoring Timing Constraints in Distributed Real-time Systems

Sitaram C. V. Raju

�

Ragunathan Rajkumar

y

Farnam Jahanian

Department of Computer Science and Engineering IBM T. J. Watson Research Center

University of Washington P.O. Box 704

Seattle WA 98195 Yorktown Heights, NY 10598

Abstract

In this paper, we describe a run-time environment

for monitoring distributed real-time systems. In par-

ticular, we focus on the problem of detecting vio-

lations of timing assertions in an environment in

which the real-time tasks run on multiple processors,

and timing constraints can be either inter-processor

or intra-processor constraints. Constraint violations

are detected at the earliest possible time by deriving

and checking intermediate constraints from the user-

speci�ed constraints. If the violations must be detected

as early as possible, then the problem of minimizing

the number of messages to be exchanged between the

processors becomes intractable. We characterize a sub-

class of timing constraints that occur commonly in dis-

tributed real-time systems and whose message require-

ments can be minimized. We also take into account

the drift among the various processor clocks when de-

tecting a violation of a timing assertion. Finally, we

describe an implementation of a distributed run-time

monitor.

1 Introduction

As embedded real-time systems become more so-

phisticated, the ability of the system to provide de-

pendable and timely service becomes critical. The

unpredictability of the physical environment and the

inability to satisfy design assumptions can cause unex-

pected conditions or violations of system constraints

at run-time. It is highly desirable that under these er-

ror conditions, total system failure does not occur and

critical system functions of the system are still per-

formed. In other words, constraint violations must be

detected and appropriate action taken. For example,

an estimate on the worst-case execution time of a task

or a minimum interarrival time for an asynchronous

signal may be violated at run-time. Despite the con-

tributions of formal veri�cation methods and recent

real-time scheduling results, the need to perform run-

time monitoring of these systems is not diminished

due to the inherent complexity of these systems and

�

Supported in part by the O�ce of Naval Research under

grant number N00014-89-J-1040 and by NSF under grant num-

ber CCR-9200858.

y

Currently at Software Engineering Institute, Carnegie-

Mellon University.

the non-determinism in dealing with the external en-

vironment. In earlier work [2], we have presented a

general framework for formal speci�cation and moni-

toring of run-time constraints in time-critical systems.

We also described a single-processor implementation

of a monitoring subsystem for an IBM RS/6000 work-

station running the AIXv.3 operating system

1

. In this

paper, we consider the problem of run-time monitor-

ing in a distributed real-time system.

Monitoring a timing constraint becomes more com-

plicated in a distributed system due to the occurrences

of events on multiple processors. This has several im-

plications. First, detecting a violation as early as pos-

sible may require partial evaluation of a timing con-

straint as time progresses. Secondly, extra messages

may have to be exchanged to propagate the occurrence

of an event on a processor to others. Finally, in the

absence of perfectly synchronized processor clocks or a

global system clock, the meaning of a timing assertion

on distributed events must be de�ned precisely.

Our run-time monitor for distributed real-time sys-

tems is based on the Real-time Logic (RTL) model

proposed in [7], and our prototype is an extension of

the uniprocessor implementation of [2]. In this model,

a system computation is viewed as a sequence of event

occurrences. The design assumptions and system

properties that must be maintained are expressed as

invariant relationships between various events, which

are monitored during run-time. If a violation of an

invariant is detected, the system is noti�ed so that

suitable recovery options can be taken. The invari-

ants are speci�ed using a notation based on RTL, and

timing constraints are allowed to span processors. Our

run-time monitoring facility monitors and detects vi-

olations in a distributed fashion. This distribution

prevents any single monitoring process from becom-

ing a bottleneck. In addition, monitoring of events on

the processors where they occur allows violations to

be detected as early as possible. A clock synchroniza-

tion algorithm ensures that event occurrence times on

di�erent processors can be meaningfully compared.

1.1 Related Work

Despite extensive work on monitoring and debug-

ging facilities for parallel and distributed systems, run-

1

RS/6000 and AIX are trademarks of IBM Corporation.

2 seconds deadline

0.5 seconds deadline

display
commands

Radar C&T
Controller Processor

DisplayCommon
ConsoleInterface

Host

Processor

filtering

number
crunching

preprocessing

Figure 1: An Aircraft Tracking System

time monitoring of real-time systems has received lit-

tle attention with a few exceptions. Special hardware

support for collecting run-time data in real-time ap-

plications has been considered in a number of recent

papers [6, 14]. These approaches introduce specialized

co-processors for the collection and analysis of run-

time information. A related work [5] studies the use

of monitoring information to aid in scheduling tasks.

A work closer to our approach is a system for col-

lection and analysis of distributed/parallel (real-time)

programs [9]. The work is based on an earlier sys-

tem for exploring the use of an extended E-R model

for speci�cation and access to monitoring information

at run-time [11]. A real-time monitor developed for

the ARTS distributed operating system is presented

in [13].

The rest of this paper is organized as follows. Sec-

tion 2 describes an aircraft tracking system and dis-

cusses issues in detecting a violation of a timing as-

sertion. Section 3 presents our event-based computa-

tion model, and discusses speci�cation of timing asser-

tions. Section 4 presents a solution to the problem of

minimizing extra messages to propagate event occur-

rences to other processors, and discusses the e�ect of

synchronized clocks on detecting a violation. Section

5 describes a prototype implementation of a monitor

for a network of RS/6000s running AIXv.3 operating

system. Finally, section 6 presents our concluding re-

marks.

2 Motivation and Research Issues

In a distributed real-time system, there can be tim-

ing constraints imposed on events across multiple pro-

cessors. These interprocessor timing constraints are

among the hardest to enforce as well as to verify. This

section motivates the problem by describing an air-

craft tracking system with end-to-end requirements.

2.1 Aircraft Tracking System

The structure of an aircraft tracking system is

shown in Figure 1. A radar signal is received by a

radar controller, which is a special-purpose processor.

The signal is fed into a general-purpose processor that

does calibration and tracking. Next, the signal is sent

to a host interface that does some preprocessing and

sends the signal to a console processor

2

, which per-

forms some �ltering and number-crunching in paral-

lel. Finally, the signal is sent to a special-purpose

display processor that displays the appropriate track-

ing information on the monitor. There is a 2 seconds

end-to-end deadline from the time an event is received

by the radar controller to the time it is displayed by

the display processor. In addition, there is an inter-

mediate 0.5 second deadline on the display commands

step on the display processor from the preprocessing

step on the host interface processor.

2.2 Issues in Monitoring of Distributed

Constraints

Several issues need to be addressed by a distributed

monitor that checks interprocessor timing constraints.

� Time of detection of violations: Detecting viola-

tions as early as possible is a desirable property

because it can allow the system to take corrective

action before the violation actually happens. We

address this issue in Section 3.4.

� Number of messages: Since events happen on dif-

ferent processors and timing constraints can span

processors, some form of interprocessor commu-

nication is needed to propagate this information.

In a distributed environment, event occurrences

must be communicated using messages. Minimiz-

ing the number of extra messages is crucial for re-

ducing overhead. We address this issue in Section

4.1.

� Clocks and Timer Granularity: When an event

occurs there must be a way of recording the oc-

currence time of the event. The granularity of

timestamping determines the minimum observ-

able spacing between 2 consecutive events on a

processor. Timestamping is typically done by

reading the clock on the local processor. A dis-

tributed system must also deal with the fact that

the clocks on di�erent processors are not perfectly

synchronized. The processor clocks, however, can

be kept synchronized within a known maximum

bound on the deviation between them. Clock

synchronization allows controlled comparison of

timestamps from di�erent clocks. In particular,

one must take into consideration the deviation

between clocks when evaluating a timing asser-

tion at run-time. We address this issue in detail

in Section 4.2.

� Resource management: Another fundamental as-

pect of a distributed monitor involves the need to

2

In a real system, the signal may be sent to one of many

consoles. In this paper, we assume a single console for the sake

of simplicity.

quantify the timing intrusiveness of the monitor-

ing activities on the timing behavior of the real-

time application. A discussion of our approach

to scheduling the monitoring activities is beyond

the scope of this paper and interested readers are

referred to [8]. This approach allows the run-time

monitoring processes to be scheduled as time-

constrained activities and therefore can be part

of the schedulability test for the system. In addi-

tion, it may be necessary to record multiple oc-

currences of an event to detect timing violations.

The size of an event history, however, must be

bounded to guarantee a worst-case time bound

on insertions/deletions. We assume that an ap-

proach that bounds the number of occurrences of

an event is being used as advocated in [7].

2.3 Approach

Run-time monitoring of a system requires times-

tamping and recording of the relevant event occur-

rences, analyzing the past history as other events are

recorded and providing feedback to the rest of the sys-

tem. In di�erent situations, one can envision a mon-

itoring system that provides feedback to the opera-

tor, the application tasks or the scheduler at run-time.

Our goal is to monitor constraints that may span sev-

eral processors and to detect and notify a violation as

early as possible.

Our distributed monitor consists of a set of cooper-

ating monitor processes (daemons), one on each pro-

cessor. Application tasks on a processor inform the

local monitor daemon of events as they occur. The

monitor daemon on a processor checks for a violation

as local events happen; it also sends the information

about certain event occurrences that are needed by

remote monitors to other processors. The monitor

daemons detect a violation of a timing constraint in

distributed fashion.

3 Timing Constraints in Real-Time

Systems

We express the timing constraints in a notation

based on RTL [7, 2]. In this section, we present an in-

formal overview of the computational model and then

discuss the representation of a timing assertion as a

directed constraint graph. Finally, we introduce the

conditions under which a timing assertion can be vio-

lated.

3.1 Speci�cation of Timing Assertions

An application consists of a set of cooperating

tasks, perhaps running on multiple processors. The

monitoring subsystem views a computation of the sys-

tem as a partially-ordered sequence of event occur-

rences. Informally, events represent things that hap-

pen in a system. For example, an event may denote

the start/completion of a program segment, reading a

new sensor value into a program variable or receiving

a message from another task. An event occurrence de-

�nes a point in time at which a particular instance of

the event happens in a computation. Thus, a safety

property or a timing constraint can be expressed as an

assertion about the relationship between event occur-

rences in a computation. For example, suppose event

E denotes the invocation of a task T and another event

E' denotes the completion of the task, and task T is

executed periodically. Each invocation of the task cor-

responds to an occurrence of the event E. Similarly,

when a particular invocation of task T completes, it

corresponds to an occurrence of event E'. A timing

constraint, such as a deadline, speci�es the relation-

ship between the occurrences of event E and E'. A

deadline of 100ms on the execution of task T requires

that the corresponding occurrences of E and E' should

be within 100ms.

To detect timing constraints, it may be necessary to

record multiple occurrences of an event. For example,

to check a constraint on the interval between two suc-

cessive instances of an event, the past two instances

of the event must be stored. The occurrences of an

event are stored in a circular queue called its event

history, which maintains the last n occurrence times

of the event. The value of n depends on the assertion.

We provide two functions for accessing the event

histories: the occurrence function @(e; i), which re-

turns the time of the ith occurrence of event e, and

@val(v; i), which returns the value of the ith assign-

ment to a variable v. A positive occurrence index is

absolute with respect to the beginning of the compu-

tation sequence. For example, @(e; 5) refers to the 5th

occurrence of event e. When the index i is negative,

it refers to the ith most recent occurrence of the event

in a computation. For example, @(e;�1) denotes the

time of the most recent occurrence of e. An occurrence

index of 0 is unde�ned. We present two examples to

illustrate how the notation can be used.

Example: Consider two events e

1

and e

2

which must

always occur in pairs and within 5 time-units of each

other. The following formula speci�es such a con-

straint.

8i @(e

1

; i) � @(e

2

; i)+5 _ @(e

2

; i) � @(e

1

; i)+5 (1)

Example: The value of the occurrence indices in a

timing constraint need not be a variable or a positive

integer. It can be relative to the current index in a

computation. Consider an event whose successive oc-

currences must be separated by at least 5 time-units.

The following RTL formula speci�es such a constraint.

@(response;�2) � @(response;�1) � 5

If this constraint is checked whenever a response event

occurs, then it is equivalent to

8i > 1 @(response; i � 1) � @(response; i) � 5

3.2 Graph Representation of Timing

Constraints

If a timing assertion is in a disjunctive normal

form as in Equation 1, each conjunct can be repre-

sented as a directed, weighted graph, called a con-

straint graph. Each constraint graph represents a con-

junction of predicates, and each edge in the graph is

a predicate of the form:

@(e; i) � @(f; j) �C

@(response, -2) @(response, -1)
-5

Figure 2: Delay constraint

@(send, i) @(ack, i)12

Figure 3: Deadline constraint

such that i, j are integer variables/constants

3

and C

is an integer constant.

Intuitively, a predicate in a conjunct represents ei-

ther a delay or a deadline constraint on a pair of

events. The vertices of the constraint graph corre-

spond to unique occurrence functions; the weighted

edges denote the constraints between event pairs. For

example, the following delay constraint:

@(response;�2) � @(response;�1) � 5

is represented by an edge with weight -5 as shown in

Figure 2. A predicate of the form @(response; 1) � C

where C is an absolute time value is translated to an

edge 0

C

�! @(response; 1) where 0 is a special \zero

vertex" designed to take care of constants. Similarly,

a predicate of the form C � @(response;1) is repre-

sented by an edge @(response; 1)

�C

�! 0.

As an example of a deadline constraint, consider

the following assertion:

8i @(ack; i) � @(send; i) + 12

This constraint speci�es that an ack event must occur

within 12 time-units of its corresponding send event,

and is represented by an edge with positive weight 12

as shown in Figure 3.

A path between two vertices u and v in the graph is

a sequence of edges from u to v. The length of a path

is the sum of the weights of all edges along the path.

In the rest of the paper, without loss of generality,

we do not associate any occurrence indices to events.

This is possible because a speci�c constraint graph is

instantiated for a set of event occurrence indices before

checking for a violation.

3.3 Implicit Constraints

In addition to the explicit delay or deadline edges

in a constraint graph, we can derive certain implicit

constraints often as an intermediate deadline or delay.

3

We assume that indices are not arithmetical expressions.

10
e2e1

e3

-4

Figure 4: Intermediate deadline from e1 to e3

In fact, it is possible that an implicit constraint is

violated before an explicit deadline or delay becomes

unsatis�able at run-time.

For example, consider the simple constraint graph

in �gure 4. It consists of two explicit timing con-

straints: a deadline edge and a delay edge. Events

e1, e2 and e3 occur on processors 1, 2 and 3, respec-

tively. There is an explicit deadline from e1 to e2.

In addition, since there is a path from e1 to e3 of

length 6, there is an implicit, intermediate deadline

of 6 from e1 to e3. If the intermediate deadline is not

met, then either the explicit deadline or the delay con-

straint from e3 to e2 will eventually be violated. If the

violation of the implicit constraint between e1 to e3

is detected, the system can be noti�ed before any of

the two user-speci�ed constraints are violated. As a

result, corrective action can potentially be taken even

before the application-level constraint is violated.

3.4 Checking Constraint Graphs

The constraint graphs must be checked for poten-

tial violations at certain discrete points in time. We

establish these discrete points of time in this section.

When an event occurs that may a�ect the satis�a-

bility of a timing assertion, a satis�ability checker is

invoked to check for violations. The checker instanti-

ates the vertices of the graph from event histories. For

example, the vertex @(response, -1) will be replaced

by the occurrence time of the most recent response

event. The vertex @(send, i) will be replaced by the

occurrence time of the current activation of send event.

Vertices that have been instantiated are merged with

the 0 vertex as follows: Every edge with weight w in-

coming to a vertex, to which a time value t has been

assigned, is replaced with an edge with weight w-t in-

cident on the 0 vertex. Conversely, every edge with

weight w outgoing from a vertex, to which time t has

been assigned, is replaced with an edge of weight w+t

outgoing from the 0 vertex. Vertices that have not yet

occurred are not instantiated. Instead, an edge from

the uninstantiated vertex to the 0 vertex, of weight

equal to -current time is added. This is an assertion

that the event has not happened since system startup.

The actual algorithm for checking violations will be

discussed in section 4.2.

We state a lemma that establishes the conditions

under which a timing assertion (constraint graph) may

be violated.

Lemma 1 In a constraint graph, the earliest time a

constraint can be violated is as follows:

1. A delay constraint will be violated, if for a path

of negative length �T (T � 0) from vertex e

n

to vertex 0, the event corresponding to vertex e

n

happens before time T .

2. A deadline constraint will be violated if the min-

imum length T (T � 0) of all shortest paths from

vertex 0 to all other vertices is to a vertex e

m

and the event corresponding to vertex e

m

does

not happen at or before T .

Proof: We �rst prove a lemma regarding violations

in a constraint graph when all the events occur on a

single processor.

Lemma 2 A negative cycle in a constraint graph im-

plies a constraint violation and vice versa.

Proof of Lemma 2 In the following, @(e) refers to

the occurrence time of event e.

If part: Let there be a negative cycle of length l in

the constraint graph. Consider a node e

j

in the cycle.

The negative cycle implies

@(e

j

) + l < @(e

j

)

This can never be satis�ed. Hence, a violation has

occurred.

Only if part: Say a constraint violation has oc-

curred. The constraint can either be a deadline or

delay violation. In either case we will show the exis-

tence of a negative cycle.

Delay: Consider a delay P between e

i

and e

j

. In

order for the delay to be violated, e

j

must occur less

than P units after e

i

, i.e.

@(e

j

)�@(e

i

) < P

Hence, there is an edge from e

i

to e

j

of length Q where

Q < P . Thus there is a cycle of length

= Q� P < 0

Deadline: Consider a deadline P between e

i

and e

j

.

In order for the deadline to be violated e

j

must occur

later than P units after e

i

, i.e.

@(e

j

) > @(e

i

) + P

Hence, there is an edge from e

j

to e

i

of length �Q

where Q > P . Thus there is a cycle of length

= P �Q < 0

Q.E.D.

Proof of Lemma 1

Part 1. First we show that if e

n

happens before time

T then the constraint graph is violated. Next, we show

that there cannot exist a time Q, where Q < T , such

that the constraint is violated and event e

n

has not

happened yet.

 ne
t

-T

0

Figure 5:

q ne

-T

0

Figure 6:

Say e

n

happens at t < T . This implies that we can

insert an edge of weight t from vertex 0 to e

n

. The

relevant portion of the constraint graph is shown in

Figure 5. There is a cycle of length t � T which is

negative. Hence, the constraint graph is violated.

Now assume that e

n

has not happened, but there

is a violation at time Q before T . By lemma 2, there

must exist a negative cycle at time Q. Let the length

of path from vertex 0 to vertex e

n

be q (Figure 6).

Now,

�T + q < 0

) q < T

This means that vertex e

n

has happened at a time less

than T . This contradicts the assumption that e

n

has

not happened before T . Hence, no such Q can exist.

Part 2. Let the path length P from vertex 0 to

vertex e

n

be the minimum of all shortest paths from

vertex 0 to all other vertices. First we prove that if

e

n

does not happen by time P , then a constraint has

been violated. Next, we show that there cannot exist

a time Q, where Q < P , such that if any event e

k

does

not occur by Q then the constraint graph is violated.

If e

n

does not happen at time P , then e

n

can hap-

pen at P+� or later (� is in�nitesimally small). Hence

we can insert an edge of weight �(P +�) from vertex

e

n

to vertex 0 (Figure 7). There is a cycle from vertex

0 to vertex e

n

and back to vertex 0 of length,

P � P � � = ��

Hence the constraint graph is violated.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

..
.
.
.
.
.
..
.
.
..
..
..
..
...
..............

....
..
..
..
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
...
...
.............

...
...
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

..
.
.
.
.
.
..
.
.
..
..
..
..
...
..............

....
..
..
..
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
...
...
.............

...
...
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
...
..
..
...
..
....
..
..
...
..
...
..
..

.
..
...
..
..
...
..
..
.....
..
..
...
..
...
..
..

P

-(P + �)

n

e

0

Figure 7:

Now assume that there is a time Q, such that if

some event e

k

does not happen by Q, then the con-

straint graph is violated. At time Q, there exists a

negative cycle involving e

k

, since the constraint has

been violated. Since e

k

has not happened by Q, an

edge of weight �(Q) from e

k

to vertex 0 can be added.

Say the path from vertex 0 to vertex e

k

is P

0

. Since

there is a negative cycle,

P

0

� Q < 0

) P

0

< Q

Since Q < P ,

) P

0

< P

Hence there is path from vertex 0 to vertex e

k

that

is shorter than P . Thus P is not the minimum of

shortest paths from vertex 0 to all other vertices. This

is a contradiction. Hence no such Q can exist.

Q.E.D.

Lemma 1 states that delay violations need only be

tested whenever an event occurs, and deadline viola-

tions need not be tested before some timeout value.

Hence, a constraint graph must be checked for viola-

tions after the occurrence of any event in the graph.

The event occurrence is instantiated in the graph with

its occurrence time and the graph is checked for vio-

lations. If the graph is not violated, the length of the

minimum of the shortest paths from vertex 0 to all

uninstantiated vertices is computed. If this length P

is not in�nity then a timer that expires at time P is

set. The graph is again checked for violations when the

timer expires or when an event happens, whichever is

earlier.

4 A Monitor for Distributed Real-

Time Systems

In this section, we focus on our approach to deal

with the issues that arise in monitoring distributed

real-time systems such as the aircraft tracking system

of Figure 1.

We assume that interprocessor communication is

reliable. This assumption is valid whenever a reli-

able communication mechanism based on acknowledg-

ments is used. We also assume that there is no migra-

tion of application tasks among processors. This as-

sumption can be relaxed if as part of a mode change,

the constraints to be monitored and the new commu-

nication patterns are also re-established.

4.1 Minimization of Messages

Messages must be passed across processor bound-

aries to check interprocessor timing constraints. In

this subsection, we address the issue of minimizing

these message-passing requirements. We assume that

each monitor process knows every constraint graph

that contains one or more events happening on its local

processor. Whenever a local event occurs, a monitor

process must decide whether the event must be com-

municated to other monitors. We also assume in this

subsection that there is a single clock in the system.

5 3
e1 e5e4

-2

(a)

-6
e2 e3

e6

-4

5 3
e1 e5e4

-2

-6
e2 e3

e63

8

-10

(b)

-4

Figure 8: Determining the recipients of event e

1

(a)

The application-level constraint graph. (b) The short-

est path constraint graph for e

1

.

This assumption will be relaxed in the next subsec-

tion.

We shall use the following terminology. There is

a correspondence between an event e

n

, the processor

n on which the event happens and the monitor on

processor n. Hence, we will use the phrase e

i

's monitor

to mean the monitor local to the processor on which

e

i

occurs.

Given a constraint graph G and a vertex e

i

, the

list of monitors to whom the occurrence of e

i

must be

communicated can be determined as follows. Run the

shortest-path algorithm on the graph G such that the

shortest path from any vertex to every other vertex is

obtained. We refer to this resulting graph as the short-

est path graph. This transformation of the constraint

graph adds edges that represent implicit constraints.

Messages with event occurrence times may also need

to be sent over these additional edges. The shortest

path graph captures both explicit and implicit con-

straints. Since implicit constraints are derived from

explicit constraints, the violation of an implicit con-

straint implies the (potentially future) violation of an

explicit constraint. To detect violations as early as

possible, implicit constraints need to be considered.

Whenever an event e

i

occurs, its occurrence needs

to be communicated (directly or indirectly) to the

monitor of any vertex e

j

, if in the shortest path graph,

there exists a path with positive weight from e

i

to e

j

or a path with negative weight from e

j

to e

i

. This

procedure is illustrated in Figure 8(a), which shows a

constraint graph G. The shortest-path graph derived

for one vertex e

1

is shown in Figure 8(b). From this

graph, whenever event e

1

occurs, it must be communi-

cated (directly or indirectly) to the monitors of events

e

2

through e

6

.

Using the shortest path graph to determine the re-

cipient monitors of an event occurrence can be very

pessimistic. It is often possible that some of the mes-

sages can be eliminated as they are either redundant

or 2 (or more) messages can be combined into a single

message. For example in Figure 8(b), e

1

's occurrence

needs to be communicated to e

4

's monitor and to e

5

's

monitor. Also, e

4

's occurrence time needs to be com-

municated to e

5

's monitor. However, the weight of

the edge from vertex e

1

to vertex e

5

is the same as

the length of the path e

1

e

4

e

5

. As a result, the mes-

sage from e

1

's monitor to e

5

's monitor, containing the

occurrence time of e

1

, can be eliminated.

Again in Figure 8(b), e

1

's occurrence time needs

to be sent to the monitors of e

2

and e

3

. In addition,

e

2

's occurrence time needs to be sent to e

3

's monitor.

There is also an ordering of events, e

1

(�rst), e

2

(sec-

ond) and e

3

(last) such that if these events happen in

any other order, a constraint would be violated. As

a result, the message from e

2

's monitor to e

3

's mon-

itor can also carry the occurrence time of e

1

. Thus,

the message from e

1

's monitor to e

3

's monitor can be

eliminated.

Naturally, it is desirable that the maximum number

of messages are either removed or combined. However,

the problem of minimizing the number of messages for

arbitrary constraint graphs is intractable. We show

next that removing the maximum number of redun-

dant messages is NP-complete for constraint graphs

whose edges have positive weights only. The formal

statement of the problem called irredundant deadline

graph (IDG) problem is as follows:

Instance: Given a constraint graph G with posi-

tive weights for all edges, and a positive integer K �

number of edges in G.

Question: Is there a subset G

0

� G where the num-

ber of edges in G

0

is � K such that, for every ordered

pair of vertices, u; v 2 G, the shortest path from u to

v in graph G

0

is of length d, if and only if the shortest

path from u to v in G is also of length d ?

Theorem 1 Irredundant deadline graph (IDG) is

NP-complete.

Proof: By transformation from the minimum equiv-

alent digraph problem (MED) [4]. The formal state-

ment of the MED problem is as follows:

Instance: Directed graph G = (V;A), positive inte-

ger K � jAj.

Question: Is there a subset A

0

� A with jA

0

j � K

such that, for every ordered pair of vertices u; v 2 V ,

the graph G

0

= (V;A

0

) contains a directed path from

u to v if and only if G does ?

A nondeterministic algorithm can guess a set of jK

0

j

edges, compute the all pairs shortest paths for G and

G

0

and check them for equality. Hence IDG is in NP.

We can transform an arbitrary instance of MED,

M = (V;A), into an instance of IDG G

0

= (V;A

0

), by

assigning a weight of 0 to every edge of M . This can

be done in polynomial time. Clearly, the irredundant

deadline graph for G

0

will have a path between any

ordered pair of vertices u; v if and only if M has a

path between u; v. Hence the answer to IDG is yes if

and only if the answer to the corresponding MED is

yes. Hence IDG is NP-complete.

Q.E.D.

Given that the problem of minimizing the number

of messages is intractable, we next consider sub-classes

of constraint graphs that are likely to occur in real-

time systems, and whose message requirements can

be easily minimized.

De�nition: An event e

i

is said to precede event e

j

in

a constraint graph, if there exists a path from vertex

e

j

to vertex e

i

that consists of delay edges (i.e., edges

with negative weights) only.

Given this de�nition, we use the terms \delay

edges" and \precedence edges" interchangeably.

4.1.1 Precedence-Preserving Graphs

The delay edges impose precedence or partial ordering

on the set of event occurrences in a constraint graph.

Intuitively, the delay edges may represent the compu-

tation time of a task or causality between a pair of

events. For example, if there is a delay from event e

1

to e

2

(a negative edge from e

2

to e

1

), event e

1

must

occur before (precede) e

2

. Otherwise, the delay con-

straint is violated. In real-time systems, it is common

to have an event that triggers a task execution, which

in turn generates other events. For example, in the

aircraft tracking system described in Section 2, the

computation in each module triggers the computation

in the next module on completion. An incoming track

signal is processed by di�erent modules in pipelined

fashion. As a result, every data item that crosses

module/processor boundaries has delay or precedence

constraints, and deadline constraints tend to be end-

to-end deadlines.

In general, precedence relations are natural in real-

time systems where data streams are processed in

pipeline stages. Consider a distributed audio/video

system that processes its data in pipelined stages from

one node to another node via gateways and commu-

nication networks. More speci�cally, the audio/video

signal is digitized and compressed at a sender node

and transmitted to a receiver node where it is uncom-

pressed and displayed. The audio/video data must be

received/displayed at the receiver node at a precise

rate. Hence, there are precedence constraints between

the various stages. If the data corresponds to live in-

teraction such as video conferencing, latency require-

ments will force an end-to-end deadline as well.

Precedence relations among events also exhibit de-

sirable properties from the communication require-

ments viewpoint. For example, if event e

1

precedes

event e

2

, then e

2

's monitor must receive the occur-

rence time of e

1

before e

2

occurs. Otherwise a viola-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
..
...
.........

...
...
..
.
..
.
.
.
..
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...
............

...
..
..
.
..
.
.
.
..
.
.
.

.

.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
..
...
.........

...
...
..
.
..
.
.
.
..
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...
............

...
..
..
.
..
.
.
.
..
.
.
.

.

.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
..
.
..
..
..
...
.........

...
...
..
.
..
.
.
.
..
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...
............

...
..
..
.
..
.
.
.
..
.
.
.

.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
..
.
..
..
..
...
.........

...
...
..
.
..
.
.
.
..
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...
............

...
..
..
.
..
.
.
.
..
.
.
.

.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
..
.
..
..
..
...
.........

...
...
..
.
..
.
.
.
..
.
.
.
.
.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.
.
.
.
.
.
.
.
..
.
..
..
...
............

...
..
..
.
..
.
.
.
..
.
.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
..
...
.........

...
...
..
.
..
.
.
.
..
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...
............

...
..
..
.
..
.
.
.
..
.
.
.

.

.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.

..
..
..
.
..
..
..
.
..
..
..
.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
..
.
.
..
.
.
..
.
.
..
.
.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.

..
.
.
..
.
.
..
.
.
..
.
.
..
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
...
..
..
...
..
...
...
..
...
..
...
..
..
...
.

..
...
..
..
...
..
...
...
..
...
..
...
..
..
...
.

.

.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..
.
..
.
.
..
.
.
..
.
.
..
.
.
.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..
.

.

.

.

..

.

.

.

.
.
.

.

.

.

..

.

.

.
.

.

.

.

.
.
..

.

.
.
.
.
.
.
.

..

.
.
.
.
.
.
.
..
.
.
.
.
.
.
...
.
.
..
.
..
..
..
..
.
..
...
...
...
....
....
.........
..........

.......
.....
...
...
...
..
..
..
...
.
..
.
..
..
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.

.
.
.
.
.
.
..
.
.

.

.

.
.
.
.

.

..

.

.

.

.

.

.

.

.
.
.
..

.
.

.

.
..

.

.

.

.

.
..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.
..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.
.

.

.
.
.
.
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
..
...
..
.
...
..
...
.
..
...
..
..
..
..
..
...
..
...
.
..
...
..
..
...
..
...
..
.
...
..
.
...
.
...
..
.
...
.
...
..
.
...
..
..
..
.
...
..
..
..
...
..
..
..
..
..
..
..
..
.
...
..
..
..
..
..
..
..
...
..
..
.
..
...
..
..
..
...
..
..
..
...
.
..
..
...
..
.
..
...
..
..
...
..
..
..
...
.
..
..
...
..
..
...
..
...
...
.
..
..
...
..
..
...
..
.
...
..
..
....
..
..
...
..
..
...
..
..
...
..
...
..
..
...
..
...
..
..
...
..
...
...
...
..
..
....
..
...
...
...
...
...
..
...
....
..
...
...
...
..
....
...
..
.....
...
....
...
.....
...
...
....
....
.....
.....
....
......
......
.......
.....
..........
.............

................
..........
......
...
....
..
...
.
...
.
.
.
..
.
.
..
.
.
.
.
.
.
.
.
..
.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

��

CT

RC

��

�� ��

����

2

0.5� > 0

DP/ccHI/pp

CC/nc

CC/f

Figure 9: The Constraint Graph for the Tracking Sys-

tem of Figure 1

tion has taken place. Hence, e

2

's monitor always has

the potential to send the occurrence time of e

1

and e

2

in a single message to a third monitor. These combi-

nations can save messages. We present a sub-class of

constraint graphs called precedence-preserving graphs

where sending messages only along the delay edges is

su�cient to detect all violations at the earliest possible

time.

De�nition: A precedence-preserving graph is a con-

straint graph that satis�es the following condition: If

there is a shortest path from vertex e

i

to vertex e

j

of positive length, then the source vertices of deadline

edges on the path precede e

j

.

Recall the aircraft tracking system described in Sec-

tion 2.1. The corresponding constraint graph, shown

in Figure 9, is a precedence-preserving graph. The 2

seconds deadline edge is between the RC and DP=cc

vertices, where the former precedes the latter. Also,

the 0.5 seconds deadline is between the HI=pp and

DP=cc vertices, which also have a precedence order-

ing. As a result, in this graph, messages need be sent

only along the delay edges. For example, the node

RC will send its event only to node CT . If the short-

est path graph were used, there exists a positive path

from RC to every other node so that RC would have

to send 5 messages. The precedence-preserving graph

thus results in substantial savings of messages without

compromising the time at which a violation will be

detected. We now prove this property of precedence-

preserving graphs. The theorem is based on the as-

sumption that the message communication time be-

tween any two processors is less than the delay con-

straints between events on the two processors. We also

assume that a message carries the time of occurrence

of the local event and its predecessor events.

Theorem 2 In a precedence-preserving graph, if

messages are being sent only along the precedence

edges, then all violations will be detected at the earli-

est possible time.

Proof: The proof consists of showing that messages

along precedence edges carry the required information

of event occurrences to a vertex before delay or dead-

line violations can occur.

mepene
-p

d

Figure 10: Case where e

n

precedes e

m

ne

me

ke -r + t

-r

-p

t

Figure 11: Case where e

k

precedes e

n

and e

m

Delay violation: Consider a vertex e

n

in a precedence-

preserving graph. A delay constraint to another vertex

e

d

can be of 2 types:

1. there is a negative edge from e

d

to e

n

.

2. there is a path containing negative edges only

from e

d

to e

n

.

In the �rst case the occurrence time of e

n

is sent

to e

d

. Delay violations can be detected according to

Lemma 1. In the second case there are 2 possibilities:

1. The immediate predecessor of e

d

in the constraint

graph has already occurred. Hence e

d

will have

information about the occurrence time of the im-

mediate predecessor and its predecessors. Hence,

constraint violations, if any, can be detected by

Lemma 1.

2. The immediate predecessor of e

d

, say e

i

, has not

happened. This implies that the delay constraint

to e

i

has been violated. Hence the occurrence

time of e

i

and its predecessors is irrelevant.

Deadline violation:

Lemma 3 If there is a deadline from vertex e

n

to

vertex e

m

, then either e

n

precedes e

m

or there exists

a vertex e

k

that precedes both e

n

and e

m

.

Proof of lemma 3: Consider the path from e

n

to e

m

.

Let the path be e

n

, e

i

, e

i+1

, e

i+2

: : : e

i+p

, e

m

. If the

edge from e

n

to e

i

is positive, then from the de�nition

of precedence-preserving graphs, e

n

must precede e

m

.

If the edge from e

n

to e

i

is negative, then consider the

�rst positive edge in the path (there must be such an

edge as sum of weights on the path is positive). Say

the positive edge is from e

i+a

to e

i+a+1

. Now, from the

de�nition of precedence oriented graphs, e

i+a

precedes

e

m

. Also since there is a sequence of negative edges

from e

n

to e

i+a

, e

i+a

precedes e

n

. Thus, e

i+a

is the

vertex e

k

.

Q.E.D.

Consider the constraint graph of Figure 10 where

e

n

precedes e

m

. Let e

p

be the immediate predecessor

of e

m

. Let �p (p > 0) be the weight of edge from e

m

to e

p

. Hence there is a deadline d� p on e

p

. Since,

d� p < d

the deadline on e

p

is shorter than the deadline on e

m

.

Hence the occurrence time of e

n

needs to be communi-

cated to e

p

�rst. When e

p

occurs, the occurrence time

of e

p

and its predecessors events will be communicated

to e

n

. By extending this argument to e

0

p

s immediate

predecessor and so on, it can be seen that messages

need to be sent along precedence edges only.

Now consider the constraint graph of Figure 11

where a vertex e

k

precedes e

n

and e

m

. Consider the

deadline from e

n

to e

m

.

deadline = @(e

n

) � r + t

The deadline from e

k

to e

m

is

@(e

k

) + t

Assume,

@(e

n

) � r + t < @(e

k

) + t

then,

@(e

n

) < @(e

k

) + r

But this means that the delay constraint from e

k

to

e

n

is violated and it will be detected by e

n

. In the

absence of violation, the deadline on e

m

is not short-

ened. Hence, messages along the precedence edges will

su�ce.

Q.E.D.

If a constraint graph is not a precedence-preserving

graph, its message requirements cannot be (easily)

minimized but they can still be reduced. An edge

E from vertex e

i

to vertex e

j

can be deleted from a

shortest-path constraint graph G

s

, if the weight on

the edge is greater than or equal to the shortest path

from e

i

to e

j

in the graph G

s

� E. If an edge can be

removed, then the corresponding message along the

edge need not be transmitted. As a result, given an

arbitrary constraint graph G, the messages that need

to be communicated can be determined as follows:

1. Run the shortest-path algorithm on G to obtain

its shortest-path constraint graph G

s

. Let G

0

=

G

s

.

2. Pick an edge E in G

0

from vertex e

i

to vertex e

j

such that the following condition is satis�ed. If

the edge has a positive (negative) weight, the out-

degree (in-degree) of e

i

and the in-degree (out-

degree) of e

j

must be greater than 1. If there is

no such edge, the procedure ends.

3. Find the length of the shortest path p from vertex

e

i

to vertex e

j

in G

0

�E.

4. If p � weight on E, delete E from G

0

.

5. Go to Step 2.

The �nal graph G

0

determines what messages must be

transmitted when an event corresponding to a vertex

occurs. Messages must be sent from a vertex e

i

to a

vertex e

j

if there is a positive edge from e

i

to e

j

or a

negative edge from e

j

to e

i

.

4.2 E�ect of Approximately Synchro-

nized Clocks

The occurrence time of an event corresponds to the

local time at its time of occurrence on the processor

where the event occurs. In a distributed system, the

clocks on di�erent processors are not identical and de-

viate from one another. As a result, the checking of

constraint graphs must take these clock deviations into

account.

If the deviation between various clocks is not

bounded by a known value, it is di�cult (perhaps

impossible) to enforce in a meaningful way a tim-

ing constraint whose events span multiple processors.

We therefore use a clock synchronization algorithm

[1, 3, 10] to bound the deviations among the various

processor clocks. A clock process on each processor

synchronizes with the clock process on a master pro-

cessor (master clock) by exchanging messages.

Let � be the maximum deviation among the clocks.

We now state a theorem that gives the necessary

and su�cient condition for violations in a constraint

graph in which a constraint spans events on more

than one processor. The intuition behind the theo-

rem is as follows: If there is a constraint of length P

between events on two di�erent processors, the con-

straint length should be changed to P � � within the

system. For example, if event e

2

must happen within

10 time-units after event e

1

, the bounded clock devia-

tion requires that e

2

actually happen within 10-� after

e

1

. Otherwise, a violation may have occurred.

Theorem 3 Given a cycle spanning more than one

processor in a constraint graph, there exists a set of

clock deviations for which a constraint is violated, if

and only if the length of the cycle is less than �.

Proof: Since there is a cycle spanning more than one

processor, there must exist two adjacent vertices e

i

and e

j

in the cycle that are on two di�erent processors.

If part. Let there be a cycle of length < �. We con-

sider delay and deadline constraints between e

i

and e

j

,

and show that in either case the constraint is violated.

The occurrence time of any event is the time of its oc-

currence according to its local clock. Also, the local

clock of an event refers to the clock of the processor

on which the event happens.

1. Delay constraint of P (0 < P) between e

i

and e

j

,

i.e. e

j

must occur any time at or after P time-

units after the occurrence of e

i

. This means that

@(e

i

) + P � @(e

j

)

Let the local clock of e

j

be � ahead of the local

clock of e

i

. A violation takes place if e

j

occurs

on e

j

's processor any time before P + � after e

i

's

occurrence. Hence, the constraint between the

events must be adjusted as

@(e

i

) + (P + �) � @(e

j

) (2)

Since there is a cycle, there has to be a path from

e

i

to e

j

. Let the length of this path be Q. That is,

e

j

must occur any time at or before Q time-units

after the occurrence of e

i

. This means that

@(e

j

) � Q+ @(e

i

) (3)

For Equations (2) and (3) to be satis�ed, we must

have

Q� P � � (4)

This contradicts our assumption that the cycle

length is less than �, i.e. Q� P < �.

2. Deadline constraint of P (0 < P) between e

i

and

e

j

, i.e. e

j

must occur any time at or before P

time-units after the occurrence of e

i

. This means

that

@(e

j

) � @(e

i

) + P (5)

Let the local clock of e

j

be � behind the local clock

of e

i

. A violation takes place if e

j

occurs any time

after P�� after e

i

. Hence, the constraint between

the two events must be adjusted as

@(e

j

) � @(e

i

) + (P � �) (6)

Since there is a cycle, there has to be a path from

e

j

to e

i

of length �Q. This means that,

@(e

i

) +Q � @(e

j

) (7)

For Equations (6) and (7) to be satis�ed, we must

have

P � Q � � (8)

This contradicts our assumption that the cycle

length is less than �, i.e. P � Q < �.

Only if part. Let a constraint between vertices e

i

and e

j

be violated. The constraint can either be a

delay or a deadline constraint. We consider the 2 cases

separately and show that in either case there will be

a cycle of length < � in the constraint graph.

1. Delay constraint of P (0 < P) between e

i

and

e

j

. Since this has been violated, the separation

between e

i

and e

j

is less than P , i.e.,

@(e

j

)� @(e

i

) < P

Since the local clock of e

j

can be ahead of the local

clock of e

i

by a maximum of �, the constraint can

be violated if

@(e

j

)� @(e

i

) < P + �

or,

@(e

j

) < @(e

i

) + P + �

This implies that there is a path from e

i

to e

j

of

length Q, where Q < P + �. Thus there is a cycle

of length

= Q� P < P + �� P < �

2. Deadline constraint of P (0 < P) between e

i

and

e

j

. Since this has been violated, the distance be-

tween e

i

and e

j

is greater than P, i.e.,

@(e

j

) > @(e

i

) + P

Since the local clock of e

j

can be behind the local

clock of e

j

by a maximum of �, the constraint can

be violated if

@(e

j

) > @(e

i

) + P � �

This constraint implies that there is a path from

e

j

to e

i

of length �Q, where Q > P � �. Thus

there is a cycle of length

= P � Q < P � (P � �) < �

Q.E.D.

Theorem 3 implies that if processor clocks are syn-

chronized to within �, we only need to �nd cycles of

length less than � in a constraint graph to detect a vio-

lation. The Floyd-Warshall all-pairs shortest-path al-

gorithm [12] can be used to �nd the length of the short-

est cycles from all vertices in the constraint graph.

The complexity of the algorithm is O(n

3

), where n is

the number of vertices in the graph. Since constraint

graphs typically contain a relatively small number of

nodes, the algorithm's complexity typically does not

constitute a bottleneck.

5 A Distributed Run-Time Monitor

Prototype

We have implemented a prototype of the dis-

tributed monitoring run-time system on a network of

IBM RS/6000 workstations connected to a token-ring.

The workstations run AIXv.3, a Unix variant that sup-

ports the assignment of static priorities to real-time

processes, which can immediately preempt other user-

processes. Furthermore, a �ne-precision timer facility

violation()violation() event() event()

task1 task2

monitor1

clockprocess1

messages

clockprocess2

monitor2

get_logicaltime() get_logicaltime()

processor1 processor2

messages
event

clock synch

Figure 12: The Layered Interfaces of the Distributed

Run-time Monitor

is supported, and it is also possible to di�erentiate

local events that occur 1 �s apart.

The various components of the distributed moni-

tor and their communication links are shown in Fig-

ure 12. The clock synchronization layer synchronizes

the workstation clocks to within 4 ms. The run-time

system for the distributed monitor uses the synchro-

nized clocks for timestamping events, and performs

several functions. It keeps track of the history of

known events, transmits events of interest to other

processors, and checks for constraint violations. The

application-level processes run on top of this run-time

system and are noti�ed when a constraint violation oc-

curs. All communication between components on the

same processor, such as event history access and the

reading of the synchronized clock, is via shared mem-

ory. Message-passing is used only for inter-processor

communication. The monitor system, the clock syn-

chronization layer and an X window system based

user-interface consist of around 8000 lines of C code.

5.1 Clock Synchronization Layer

We implemented the probabilistic clock synchro-

nization algorithm described in [3]. Our implementa-

tion indicates that the message overhead for clock syn-

chronization is clearly acceptable. The message over-

head for achieving some clock synchronization bounds

is listed in Table 1. All entries assume that the worst

case drift rate for local clocks is 10

�5

and that the

probability of loss of synchronization is 10

�9

. \Nor-

mal" in Column 1 refers to a typical load situation on

the network where 98% of all round-trip delays take

less than or equal to 6ms. With a 2% probability for an

unsuccessful round-trip, a slave which does not receive

a response within 6ms from the master re-transmits

its request a maximum of 6 times. \High" refers to

a high-load situation (with �le transfers going on in

Net- Devia- Min Max Max Mesgs

work tion Interval Interval Atte- (avg.)

Load (ms) (secs) (secs) mpts

Normal 2 87 187 6 2.04

Normal 1 36 86 7 2.11

Normal 0.5 8.75 38.75 45 5.41

High
4 53 353 6 3.33

High 1 34 84 64 7.14

High
0.5 3.2 33.2 84 9.09

Table 1: The overhead of achieving synchronization

task1

task2

event
history

monitor
networkqueues

Figure 13: Application Process Interface to its Local

Monitor

parallel) where a slave waits for 10ms before it retries

a request. Under these conditions, 60% of all round-

trip delays were less than 10ms, and the distribution

of round-trip delays has a signi�cant tail with round-

trip delays of as high as 40ms. Column 2 gives the

actual synchronization obtained between the master

and a slave. Columns 3 and 4 give the minimum value

and maximum value of the interval between succes-

sive queries from a slave. Column 5 gives the maxi-

mum number of unsuccessful queries by a slave before

synchronization is lost. Finally, column 6 gives the av-

erage number of messages needed per synchronization,

where 2 is the minimum number of messages (one send

and one reply).

Every processor runs a clock-slave process that syn-

chronizes its local clock with the clock on a master pro-

cessor by periodically exchanging messages with the

clock-master process.

5.2 Run-Time System Layer

The run-time system for the distributed monitor

consists of a set of cooperating monitor processes, one

on each processor.

Application tasks inform the local monitor of an

event occurrence by putting the event into a queue in

shared memory (Figure 13).

If the occurrence time of an event has to be sent

to a remote monitor, the monitor puts the event and

its local occurrence time into a message and sends it

to other monitor processes. Similarly, the monitor re-

ceives events from other monitors. If a message arrives

from a remote monitor or a timeout occurs, a monitor

runs the satis�ability checker using Theorem 3. If a

violation is detected, it noti�es the application task

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
..
..
..
..
....
...........

....
..
..
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
..
..
..
..
....
...........

...
...
..
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
..
.
.
..
..
..
..
..
....
...........

....
..
..
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
...
...
.............

...
...
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.
.
.
.
.
.
..
.
.
.
..
.
..
..
..
...
.....
.......

.....
...
..
..
..
.
..
.
.
.
..
.
.
.
.
.
.
.
.

.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
...
...
.............

...
...
..
.
..
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
..
..
..
..
....
...........

....
..
..
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
..
..
..
..
....
..........

....
...
..
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
....
....
.....
....

.
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.

.
....
....
....
....
...
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.

..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.

.

.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
....
........
........

.
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
.

.
....
....
....
....
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.
.
.

.

..

.

.

.

.
.
.

.

..

.

.

.

.
.

.

..

.

.

.

.

.
.
..

.

.

.

.
.

..

.

.

.

.

.

..

.

.

.

.
.
.

.

.

.
..
.
.

.

.
.
.

.

.

..
.

.
.
.

.
.
..
.

.

.
.
.

..

.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
...
.
.
.
.
.
.
.
...
.
.
.
...
.
.
.
..
..
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
.
..
..
.
.
..
..
.
..
.
..
..
.
.
...
.
.
...
.
.
..
..
..
.
...
.
..
.
...
..
.
...
..
.
...
..
...
..
..
...
...
...
...
....
....
..
.....
.....
..................

.....
....
...
...
..
....
..
...
..
..
..
...
.
..
..
..
..
...
.
..
..
..
..
..
..
.
...
.
..
.
...
.
.
...
.
..
.
..
..
.
.
...
.
.
...
.
.
..
..
.
..
.
.
.
..
.
..
.
..
.
.
.
.
.
...
.
.
.
.
.
..
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.

.

..

.
.
.
.

.

.
.
..
.

.

.
.

.

.

.
.

..

.

.

.

.

.

.

.
.
.

.

..

.

.

.

.

.

..

.

.

.

.
.
..

.

.

.

.

.

.

..
.

.

.

.

.

.
..

.

.

.

.

.

.

.

..

.

.

.

.

.
.

.

.

.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0.5

��

��

��

��

DP/cc

CC/f

HI/pp

CC/nc

Figure 14: Constraint Subgraph of Tracking System

(with termination as the default action). If there is

no violation, a timeout is set based on Lemma 1. The

monitor process on each processor executes the follow-

ing loop:

loop

wait for local events, or for messages from

other monitors, or for timeout

run the satis�ability checker (Theorem 3)

if (there is a violation) f

inform application tasks of the violation

g else f

set timeout if required (Lemma 1)

if (local event has happened) f

send times of local event and its

predecessor events to other monitors

g

g

endloop

We now illustrate the monitor activities using a

subgraph of the constraint graph representing the air-

craft tracking system (Figure 14). The monitors on

the 3 processors corresponding to HI/pp, CC and

DP/cc check the same constraint graph.

When event HI/pp with occurrence index say j hap-

pens on processor HI/pp, the corresponding monitor

instantiates the vertices of the constraint graph with

values from history using index j. Since the local his-

tory will have events for HI/pp only

4

, the values of

@(CC/f, j), @(CC/nc, j) and @(DP/cc, j) will be un-

de�ned. Vertices that correspond to events that have

not yet occurred are not instantiated. Instead an edge

from the unistantiated vertex to the 0 vertex of weight

- current time is added (Section 3.4). Next the sat-

is�ability checker based on Theorem 3 is run. The

checker ags a violation if there is a cycle of length

< � in a constraint graph. This is pessimistic as some

of the constraints in the graph can be between events

on a single processor and the other constraints can be

4

Monitors corresponding to CC and DP/cc do not send their

local events to HI/pp's monitor (Section 4.1.1).

between events on di�erent processors. In this case

there will not be a violation as the delay and dead-

line constraints are to non-local events only. Monitor

HI/pp sends the time of the j

th

occurrence of HI/pp

to the monitor on processor CC.

When monitor CC receives the message contain-

ing the occurrence time of event HI/pp, it stores the

occurrence time in its local history. Then it instan-

tiates the vertices of the constraint graph with val-

ues from history using index j and runs the satis�-

ability checker. If events CC/f, CC/nc have not yet

occurred, then it sets a timeout at (0:5 � �) seconds

from @(HI/pp, j). This timeout corresponds to an in-

termediate deadline on CC/f and CC/nc from HI/pp.

If the events CC/f and CC/nc do not occur by the

timeout then the constraint has been violated. This is

an example of an early detection of a violation. Oth-

erwise, when CC/f and CC/nc occur the constraint

graph is checked to ensure that the delay constraint

from HI/pp to CC/f and CC/nc is met. Then the oc-

currence times of CC/f, CC/nc, and their predecessor

event, i.e., the j

th

occurrence of HI/pp, are sent to

monitor DP/cc.

6 Conclusions

Run-time monitoring of a distributed real-time sys-

tem needs to address the issues of constraint speci�-

cation, clock synchronization, timer granularity, mes-

sage overhead and time of detection. In this paper

we have extended the uniprocessor monitoring model

of [2] to a distributed real-time system. The prin-

cipal advantage of our approach is that derived in-

termediate constraints can predict the violation of

a user-level constraint even before the violation oc-

curs. This can enable the application to take correc-

tive action to adapt to the error condition. We have

shown that the problem of minimizing of the num-

ber of messages exchanged between processors while

still detecting violations at the earliest possible time

is intractable. However, for one common class of con-

straints which arises whenever processing occurs in

pipelined stages, message-passing requirements can be

readily minimized. The drift among the various pro-

cessor clocks can also be taken into account with clock

synchronization.

This work can be extended in several directions.

A major concern in real-time systems is the need to

quantify the intrusiveness of the monitoring activi-

ties on the timing behavior of the real-time applica-

tion. Hence, monitoring activities must themselves be

scheduled and included in a scheduling analysis of the

system [8]. A higher-level programming interface is

needed to specify the monitored constraints and their

communication requirements. Executable speci�ca-

tions of real-time systems that automatically generate

run-time monitoring code are also of interest.

Acknowledgements

Wewould like to thank Alan Shaw for his comments

on an earlier draft of this paper.

References

[1] K. Arvind. A New Probabilistic Algorithm for

Clock Synchronization, Proc. IEEE Real-Time

Systems Symp., pp. 330-339, Dec. 1989.

[2] S. Chodrow, F. Jahanian, and M. Donner. Run-

Time Monitoring of Real-Time Systems, Proc.

IEEE Real-Time Systems Symp., pp. 74-83, Dec.

1991.

[3] F. Cristian. Probabilistic Clock Synchronization,

Distributed Computing 3, pp. 146-158, 1989.

[4] M. R. Garey and D. S. Johnson. Computers and

Intractability: A Guide to the Theory of NP-

Completeness, W. H. Freeman and Company,

1979.

[5] D. Haban and K. G. Shin. Application of Real-

Time Monitoring to Scheduling Tasks with Ran-

dom Execution Times, Proc. IEEE Real-Time Sys-

tems Symp., pp. 172-181, Dec. 1989.

[6] D. Haban and D. Wybranietz. A Hybrid Moni-

tor for Behavior and Performance Analysis of Dis-

tributed Systems. IEEE Trans. on Software Eng.

16,2, pp. 197-211, Feb. 1990.

[7] F. Jahanian and A. Goyal. A Formalism for Mon-

itoring Real-time Constraints at Run-time, Proc.

IEEE Fault-Tolerant Computing Symp., pp. 148-

155, June 1990.

[8] F. Jahanian and R. Rajkumar. An Integrated Ap-

proach to Monitoring and Scheduling in Real-Time

Systems, IEEE Workshop on Real-Time Operating

Systems and Software, May 1991.

[9] C. Kilpatrick, K. Schwan and D. Ogle. Using Lan-

guages for Capture, Analysis and Display of Per-

formance Information for Parallel and Distributed

Applications, International Conf. on Computer

Languages, March 1990.

[10] J. Lundelius and N. Lynch. An Upper and Lower

Bound for Clock Synchronization, Information and

Control 62, pp. 190-204, 1984.

[11] R. Snodgrass. A Relational Approach to Monitor-

ing Complex Systems. ACM Trans. on Computer

Systems 6,2, pp. 157-196, May 1988.

[12] R. E. Tarjan. Data Structures and Network Algo-

rithms, Society for Industrial and Applied Mathe-

matics, 1983.

[13] H. Tokuda, M. Koreta and C.W. Mercer. A Real-

Time Monitor for a Distributed Real-Time Oper-

ating System, ACM Sigplan Notices 24,1, pp. 68-

77, Jan. 1989.

[14] J. P. Tsai, K-Y Fang and H-Y Chen. A Non-

invasive Architecture to Monitor Real-time Dis-

tributed Systems, IEEE Computer 23,3, pp. 11-23,

March 1990.

