
Improving the Performance of
Message-Passing Applications by Multithreading�

Edward W. Felten and Dylan McNamee
Department of Computer Science and Engineering

University of Washington
Technical Report 92-09-07

Abstract

Achieving maximum performance in message-passing
programs requires that calculation and communication be
overlapped. However, the program transformations re-
quired to achieve this overlap are error-prone and add sig-
nificant complexity to the application program. We argue
that calculation/communication overlap can be achieved
easily and consistently by executing multiple threads of
control on each processor, and that this approach is prac-
tical on message-passing architectures without any special
hardware support. We present timing data for a typical
message-passing application, to demonstrate the advan-
tages of our scheme.

1 Introduction

The most natural way to program many scientific al-
gorithms on message-passing machines is in the loosely
synchronous, or coarse-grain data parallel, style. Such
programs alternate between phases of pure calculation and
pure communication. This approach is easy for the pro-
grammer to understand, so the resulting programs are rel-
atively simple to debug and maintain [4]. Unfortunately,
the performance of these programs suffers because they are
unable to overlap communication with calculation.

Programmers have responded to this performance prob-
lem by restructuring their programs to allow greater com-
munication/calculation overlap. This may involve rear-
ranging computations so that communicated data are avail-
able earlier or are used later; it may also involve the use of
nonblocking communication. These transformations tend
to increase the complexity of programs, which makes un-
derstanding, debugging, and maintaining them more diffi-
cult.

Essentially, there is a choice between two programming

�This paper appeared in Proceedings of the Scalable High Performance
Computing Conference, pages 84-89, April 1992.

models: the “blocking” model, which leads to simple pro-
grams, and the “nonblocking” model, which leads to com-
plex programs that perform well.

In this paper we argue that the benefits of both program-
ming models can be achieved by using multiple threads of
control on each processor. Each thread is programmed in
the blocking style, and a runtime scheduler switches be-
tween threads in order to overlap the calculation of one
thread with the communication of others. Furthermore, we
show this strategy is practical on ordinary message-passing
hardware.

Multiple threads of control, managed in software at the
user level, are a well-known technique for expressing con-
currency on uniprocessors and shared-memory multipro-
cessors [1]. Thread systems also have been implemented
on message-passing machines. However, we believe we are
the first to propose the routine use of threads for scientific
applications on multicomputers.

Processors like the transputer [8] provide hardware sup-
port for fast switching between threads of control;machines
based on such processors are meant to be programmed in
a multithreaded style. Our results provide evidence that
hardware support for multithreading may not be necessary.

2 How to use threads

For loosely synchronous algorithms, threads can be used
to emulate virtual processors. For example, a program run-
ning on p nodes may start two threads on each node, and
have each thread emulate a single node on a 2p-node ma-
chine. Since programs are typically structured to run on
a variable number of nodes anyway, this should require
only minimal changes to the program. Normal schedul-
ing of threads by the runtime system will provide calcula-
tion/communication overlap.

We emphasize that these threads are not necessarily em-
ulating the virtual processors found in some parallel pro-
gramming systems. Such systems offer virtual processors



for the programmer’s convenience in expressing fine-grain
parallelism; the virtual processors are then aggregated into
larger units by a compiler. In contrast, our virtual pro-
cessor emulation is intended to improve performance; we
advocate using only a few virtual processors per physical
processor, so the overhead of thread management is low.

For work-heap algorithms like parallel tree-search, each
node can run several worker threads. While one worker is
waiting for the central work-heap to give it more work, the
others workers can run. This effectively hides the latency
of requests to the work-heap.

3 Structure of the runtime system

Our runtime system manages multiple threads of control
on each node of the message-passing machine; our imple-
mentation of these functions is similar to previous thread
systems for uniprocessors and shared-memory multipro-
cessors [1]. The system provides primitives to create and
start threads, and to synchronize threads on the same node
using standard synchronization primitives like locks and
barriers. Our runtime system also allows threads to com-
municate via message-passing, either between nodes or on
the same node. We provide primitives to send and receive
messages; these operations are blocking, but they block
only the thread executing the communication. This allows
us to overlap one thread’s calculation with other threads’
communication.

Our runtime system is called NewThreads. NewThreads
runs on the iPSC/2, on networks of workstations, and on
shared-memory multiprocessors. See section 6 for further
description of NewThreads and its implementation.

4 Performance of multithreaded applica-
tions

We have measured the performance of an example mul-
tithreaded application on our 32-node iPSC/2. The applica-
tion is a two-dimensional partial differential equation solver
using relaxation on a five-point stencil. We measured the
performance of three implementations of this algorithm: a
standard message-passing program using Intel’s NX prim-
itives, a NewThreads program using one worker thread per
processor, and a NewThreads program using two threads
per processor.

Figure 1 shows the speedup of the PDE solver as a
function of problem size. The NX and single-threaded
NewThreads times are approximately equal, and the two-
thread times are somewhat worse for small problems and
significantly better for big problems. The NX and single-
thread programs suffer a sharp drop in performance when

log(gridpoints/node)

sp
e

e
d

u
p

 o
n

 3
2

-n
o

d
e

 iP
S

C
/2

11 12 13 14 15 16 17
16

20

24

28

32

2 threads/proc
1 thread/proc
NX

Figure 1: Performance of the PDE solver on a 32-node
iPSC/2, as a function of problem size.

the entire dataset no longer fits in cache. The two-thread
program seems immune to this cache effect. We hypoth-
esize that the two-thread program has poorer locality of
reference for small problem sizes, so in effect it has already
suffered a drop in cache hit rates at problem sizes smaller
than those on the graph. In any case, all three programs
have low cache hit rates for the largest problem sizes; these
data points show the true benefit of multithreading.

Cache effects complicate the evaluation of multithread-
ing. We believe that the large cache effects observed in our
experiments are due to the iPSC/2 architecture, and will not
be as large on future machines. High-performance RISC
processors [5, 6] tend to have small first-level caches, and
the most important cache statistic is the hit rate in this first-
level cache. Since these fast processors will be working
on larger datasets, it seems unlikely that one processor’s
dataset will fit entirely in the first-level cache. Efficient use
of small first-level caches will require support in the com-
piler for blocking of array operations [7]. With only a few
threads per processor, the compiler should be able to block
the operations of each thread, and achieve comparable hit
rates for single-threaded and multithreaded programs.

It would be natural to expect the performance of the one-
thread program to be identical to that of the NX program.
The difference is due to extra data copying done in the
current NewThreads implementation of remote message-
passing: incoming NewThreads messages are buffered in
kernel memory rather than being received directly into user-
level buffers. This extra copy is unnecessary and could



be eliminated, which would further improve the relative
performance of NewThreads benchmarks.

5 A performance model for multithreaded
programs

We can construct a performance model in order to under-
stand the performance implications of multithreading. For
simplicity, we will restrict our discussion to loosely syn-
chronous programs that have perfect load balance. We will
also consider only the case with two threads per processor.

Each thread in the program executes an alternating se-
quence of calculation and communication phases. Each
calculation phase requires time calc(n), where n is the
number of datapoints per thread. Each communication
phase consists of a thread sending some constant number k
of messages and then receiving k messages; each message
is of length comm(n). This model applies to our example
program.

We model communication latency for a message of
length � as �

R

+�

R

� for a remote message and �
L

+�

L

�

for a local message. We assume that remote message trans-
mission can be overlapped with computation (if computa-
tion is available), but local communication cannot be over-
lapped since it uses the CPU. A scheduling operation that
switches between threads costs time c. The total number
of datapoints is N , and the program runs on p processors,
requiring a total of �(p) phases. For convenience, we will
define n =

N

p

to be the number of data points per processor.
For the PDE solver, calc(n) = n, comm(n) =

p

n,
k = 4, and �(p) is some large constant. The standard
blocking program requires time

T

b

(n; p) = n+ 4�

R

+ 4�

R

p

n (1)

per update.
With two threads per node, each thread has n

2

gridpoints
and transmits and receives three remote messages and one
local message. If the threads are scheduled correctly, the
calculation of one thread overlaps perfectly with the remote
communication latency of the other thread. Each phase is
divided into two subphases in which one thread uses the
CPU while the other is communicating. Thus, the time
per subphase is the maximum of the CPU time of the first
thread and the communication latency of the second thread.
The time per update is

T

2

(n; p) = 2max

�

c+ n=2 + �

L

+ �

L

p

n=2;

3�

R

+ 3�

R

p

n=2

(2)

The model makes three qualitative predictions. For small
values of n the constant terms dominate, so the blocking

program is better. For very large values of n, both methods
tend toward n operations per update; in this limit compu-
tation time dominates everything else. For intermediate
values of n, though, the multithreaded program is faster
since the multithreading overhead can be amortized over a
large number of operations, and the advantage of calcula-
tion/communication overlap is realized.

The observed data match these conclusions. The block-
ing program dominates for small problem sizes, but multi-
threading performs significantly better for larger problems.
Our machine does not have enough memory to operate in
the large-n region.

5.1 Modeling the optimal handcoded program

We also have a model for the “optimal handcoded” pro-
gram that overlaps communication and calculation by rear-
ranging the single-threaded program and using nonblock-
ing messages. For clarity, we will present a simplified
nonblocking algorithm that is not quite optimal, but per-
forms as well as the optimal nonblocking algorithm for
large problem sizes. We note that finding the truly optimal
nonblocking program is quite difficult.

The handcoded program divides each update into two
parts. In the first part, nodes simultaneously exchange
boundary data (using nonblocking communication) and up-
date their non-boundary points; in the second part boundary
points are updated. The time per update is

T

opt

(n; p) = max

�

n� 4

p

n;

4�

R

+ 4�

R

p

n

�

+ 4

p

n: (3)

The first term represents the update of the node’s non-
boundary points, overlapped with communication of edge
data, and the second terms are the update of the boundary
data.

It is interesting to compare the multithreaded program
with the optimal handcoded program. Their performance
is similar, but there are some extra overheads in the multi-
threaded program. First, the multithreaded program must
switch between threads twice per update. Second, the mul-
tithreaded program initiates six remote messages per up-
date, while the handcoded program sends four. (The total
volume of data sent is the same.) Finally, the multithreaded
program uses local communication operations, which are
not strictly necessary. Context switches and local messages
have been made inexpensive by careful implementation of
the runtime system, and the effect of sending extra mes-
sages is small (most of the cost of these remote messages
has been overlapped with calculation). Thus, while the
handcoded program is significantly more complex than the
multithreaded program, this added complexity does not lead
to much difference in performance.



6 NewThreads

NewThreads, our runtime system, is implemented in
C++, and consists of a collection of object classes that
implement the basic abstractions of the programming sys-
tem. NewThreads is not an operating system, since it is
not designed to protect users from each other or to arbitrate
access to shared resources; NewThreads merely provides
runtime support to a single application program running
within some operating system. It is entirely user-level code,
and doesn’t require kernel modification to run on any of its
platforms1. A consequence of this implementation is that
the system is easy to modify or extend to support specific
needs of advanced users.

6.1 Threads

The Thread class defines a thread of control. A thread
is started by giving it a procedure to execute and a set of
arguments for that procedure. Some time later, the thread
will acquire the CPU and start running. From time to time,
the thread may block waiting for some event, and another
thread will be scheduled. When the thread’s start procedure
returns, the thread is removed from service. A program
initially has a single thread, running the Main procedure.

NewThreads normally uses nonpreemptive scheduling;
this means that a thread runs until it finishes, blocks waiting
for some event, or deliberately gives up the CPU to another
thread.

6.2 Communication

NewThreads provides primitives to send and receive
messages between threads on the same node, or on remote
nodes. These operations are blocking, but they block only
the thread that calls them; other threads on the same node
can still run. Message-passing operations are designed to
be very fast in the local case so the programmer doesn’t
have to worry about eliminating local message-passing op-
erations.

6.2.1 Ports

A Port is a receptacle for messages. Messages are sent to
ports, rather than to nodes or threads. Each port is named
by a globally unique portID; a thread on any node can send
a message to any port, regardless of location, given just that
port’s ID.

Since Ports are encapsulated as a C++ class, threads need
a pointer to a Port object to invoke the member functions.
Each node has a port table, which takes a portID and returns

1NewThreads currently runs on the iPSC/2, Sequent Symmetry, and
networks of DECstation 3000 series workstations.

the corresponding Port, which may then be used to send
messages to the port, or retrieve messages from the port.

From a single node’s point of view, Ports are similar
to message types in Intel’s NX system. Each node in an
NX program can expect to receive messages with different
meanings; some message types may be synchronization
events, and other types may be transmitting various subsets
of an application’s data. A NewThreads programmer would
create a distinct port for each of these types of messages, and
might optionally decide to use separate threads to handle
the messages arriving on these ports.

6.2.2 Remote procedure call

Remote procedure call (RPC) [2] has been a popular and ef-
fective method of programming on distributed systems. For
many purposes, RPC has advantages over direct message
passing. RPC’s semantics are already familiar to sequential
programmers; an RPC invocation acts like a procedure call.
RPC has been carefully studied, and very efficient imple-
mentation techniques are known. Finally, the machinery
to make messages appear to the programmer as procedure
calls can be automated through the use of stub generators.

RPC provides the programmer with the illusion of in-
voking a procedure on a remote node. In reality, the pro-
grammer is calling a local “stub” procedure that copies its
arguments into a message buffer and sends them to the re-
mote node. The message is delivered to a server thread
on the remote node which unpacks the arguments and calls
the procedure. When the remote procedure finishes, its
return values are packed into a message and sent back to
the originating thread, which then returns from the stub
procedure.

An important advantage of RPC is that all the details of
the implementation are hidden from the programmer. The
programmer simply provides a list of procedures which can
be remotely invoked, along with the types of their argu-
ments and return values. A “stub compiler” then generates
all the code to manage the message-passing, packing and
unpacking of message buffers, creation of the server thread,
and so on.

We have implemented RPC in NewThreads. Program-
mers may use RPC for communication that requires a re-
quest/response pattern, or they may use RPC more directly
to implement the abstraction of a shared object providing
a service to a set of distributed threads. We do not advo-
cate using RPC for all communication, but we do believe
that RPC is a useful addition to the standard send/receive
facilities.



6.3 Naming Service

We have implemented a naming service built on top of
RPC. Using the naming service, a programmer can asso-
ciate a name string with a portID. Other threads can look
up the portID associated with that name and commence
communication with that port. Using ports and the naming
service makes it easy to dynamically determine the loca-
tion of a thread (or a set of data) rather than hard-wiring the
location into the program.

For example, a thread that manages the data for an object
called LocalSum1 can
advertise this to the other threads in the job by calling
rpc_nameRegister("LocalSum1",portID). A thread
on any node can find the portID of the thread managing this
data by calling id = rpc_nameLookup("LocalSum1").
A result of the location transparency of Ports is that the
programmer can balance the load of the computation by
placing any port on any node in the system.

6.4 Synchronization

NewThreads provides basic synchronization primitives
between threads on the same node, including Locks, Condi-
tions, Monitors and Barriers. In addition, the programmer
can use messages to synchronize local threads.

6.5 Performance of thread primitives

In NewThreads, thread creation and destruction, thread
context switch, thread synchronization, and message pass-
ing between threads on the same node, all are extremely
efficient. As an illustration, the cost of a create/destroy pair
(creating a thread which immediately destroys itself when
it runs) in the iPSC/2 implementation of NewThreads is
0.135 milliseconds, whereas the cost of the analogous op-
eration involving an NX process on the same hardware is
250 milliseconds — more than three orders of magnitude
slower. Message passing between nodes in NewThreads
on the iPSC/2 uses the underlying NX primitives so it is
no faster (and in fact is marginally slower). The key ad-
vantage of NewThreads, though, is that the dramatically
improved performance of most operations makes it possi-
ble to use multiple threads per node to efficiently overlap
the calculation of one thread with the communication of
others, yielding maximum performance in the context of a
simple programming model.

7 Implications for kernel structure

As Anderson [1] has argued, thread operations are in-
herently cheaper when implemented at the user-level rather

than in the kernel. Intel’s NX kernel, like most multicom-
puter operating systems, provides no particular support for
user-level threads. Although NX is flexible enough to allow
implementation of our runtime system, the kernel structure
could be changed to better support the needs of systems like
ours. The most important change would be to allow threads
to block in the kernel without blocking the entire process.
Kernel support for blocking message-passing operations by
threads would lower the overhead of our message-passing
operations substantially.

Supporting user-level scheduling in the presence of
unpredictable events like message arrival or page faults
presents a set of problems that have been described by
Anderson [1]. Anderson’s solution, called scheduler acti-
vations, solves these problems and would provide a suitable
mechanism for a multicomputer kernel. Scheduler activa-
tions also provide a fast and flexible mechanism for deliv-
ering messages to the application. A project to integrate
scheduler activations into the Mach 3.0 microkernel is cur-
rently underway in our department. Since Intel’s Paragon
system [3] will run an operating system based on Mach
3.0, we are optimistic that this mechanism can be made
available.

8 Conclusions

Overlapping calculation and communication is essential
if message-passing applications are to achieve maximum
performance. This overlap can be achieved by application-
specific program restructuring, but this is error-prone and
leads to poorly structured programs. Multithreading is a
general and natural way to express programs with calcula-
tion/communication overlap. Writing the natural “block-
ing” program with more than one thread per node provides
both good structure and the performance benefits of over-
lap.

Supporting multithreading in software imposes some
overhead, but this overhead can be made very small. We
have demonstrated that for a typical scientific algorithm,
a multithreaded program performs significantly better than
an equivalent single-threaded program.

Multithreading has other advantages, including im-
proved load balance. By putting several threads with uncor-
related loads on the same physical processor, we can even
out fluctuations in load, and achieve better performance.

9 Acknowledgments

The authors are grateful to Tom Anderson, Jeff Chase,
Alex Klaiber, Ed Lazowska, Hank Levy, Rik Littlefield,



Steve Otto, Burton Smith,David Walker, and John Zahorjan
for useful conversations and comments on earlier drafts of
this paper. We also thank the early users of NewThreads
for their feedback.

This material is based upon work supported by the Na-
tional Science Foundation (Grants DCR-8352098, CCR-
8619663, and CCR-8703049), the Washington Technology
Center, Digital Equipment Corporation (the External Re-
search Program and the Systems Research Center), and
Apple Computer Company. Felten was supported in part
by a Mercury Seven Fellowship and an AT&T Ph.D. Schol-
arship.

References

[1] Thomas E. Anderson, Brian N. Bershad, Edward D.
Lazowska, and Henry M. Levy. Scheduler activations:
Effective kernel support for the user-level management
of parallelism. In Proceedings of 13th ACM Sympo-
sium on Operating Systems Principles, pages 95–109,
1991. Also in ACM Transactions on Computer Systems
(February 1992).

[2] Andrew D. Birrell and Bruce Jay Nelson. Implement-
ing remote procedure calls. ACM Trans. Comp. Sys.,
2(1):39–59, Nov. 1984.

[3] Intel Corporation. Paragon XP/S product overview,
1991.

[4] Geoffrey C. Fox, Mark A. Johnson, Gregory A.
Lyzenga, Steve W. Otto, John K. Salmon, and David W.
Walker. Solving Problems on Concurrent Processors.
Prentice Hall, 1988.

[5] Intel Corp. i860 64-bit Microprocessor Programmer’s
Reference Manual, 1990.

[6] Gerry Kane. MIPS R2000 RISC Architecture. Prentice
Hall, Englewood Cliffs, NJ, 1987.

[7] Monica S. Lam, Edward E. Rothberg, and Michael E.
Wolf. The cache performance and optimizations of
blocked algorithms. In Proceedings of 4th Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
63–74, 1991.

[8] Colin Whitby-Strevens. The transputer. In Proceedings
of 12th International Symposium on Computer Archi-
tecture, pages 292–300, 1985.


