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Abstract

Careful simulation-based evaluation plays an important role in the design of file and disk systems. We
describe here a particular approach to such evaluations that combines techniques in workload synthesis,
file system modeling, and detailed disk behavior modeling. Together, these make feasible the detailed
simulation of I/O hardware and file system software. In particular, using the techniques described here
is likely to make comparative file system studies more accurate.

In addition to these specific contributions, the paper makes two broader points. First, it argues that
detailed models are appropriate and necessary in many cases. Second, it demonstrates that detailed
models need not be difficult or time consuming to construct or execute.

KEY WORDS Simulation File Systems Performance

INTRODUCTION

Because file and disk systems are such critical components of modern computer systems, understanding and
improving their performance is of great importance. Several techniques can be used to assess the performance
of these systems, including abstract performance models, functional simulations, and measurements of a
complete implementation. All have their place; we concentrate here on the use of simulations for detailed
“What if?” performance studies.

The main advantage of using abstract models as opposed to detailed simulation is their ability to provide
adequate answers to many performance questions without the need to represent a great deal of system detail.
However, abstract models make simplifying assumptions about aspects of the system that may be important,
particularly in the later stages of a study when the design space has been narrowed and subtle issues are
being considered. The work we describe here came about when we were doing some design studies of
the interactions between current file system designs and new disk systems. In this environment, direct
measurement was of course not possible, and we felt that an analytic model would be inadequate for our
needs, at least partly because it would have difficulty representing the interactions between performance
non-linearities in the disk system and the file system layout and request-sequencing policies.

In this paper we argue that detailed simulation studies for file and disk systems are often appropriate,
and need not be difficult to perform. This paper describes a specific approach that can be used for such
detailed simulations. This approach simplifies their execution, broadens their applicability, and increases
the accuracy of their results.

y John Wilkes is with Hewlett Packard Laboratories, Palo Alto, CA.
This work was supported in part by the National Science Foundation under Grants No. CCR-8703049, CCR-8619663, and
CCR-8907666, and by the Washington Technology Center.
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The next section motivates the rest of the paper by describing a few earlier file system studies to show
why it might be appropriate to use some of our techniques. The section following that briefly introduces the
elements of our approach, which are elaborated upon in subsequent sections. We then present an application
of the approach to a particular problem and summarize the key contributions of the paper.

MOTIVATION

As processors, memories, and networks continue to speed up relative to secondary storage, file and disk sys-
tems have increasingly become the focus of attention. The Berkeley Log-structured File System (LFS),[17]
Redundant Arrays of Independent Disks (RAID),[15] and log-based fault tolerant systems[7, 10] are some
well-known examples of the newer innovative designs. Analysis of these systems has exposed many sub-
tleties that affect performance. Current technology trends lead us to believe that file system and disk system
design and analysis will continue to be one of the key areas in computer system design.

Typical performance studies of file systems involve the control of three distinct but related aspects: the
disk, the file system, and the workload. In each of these areas, simple models trade off accuracy for modeling
ease or tractability. Although useful early results can come from less detailed models with modest effort,
these are no longer sufficient when more careful comparisons are desired. Indeed, back-of-the-envelope
calculations or simple modeling of the software and/or the disk hardware can yield results that are contrary
to real-life performance. We cite below some cases in point, where lack of detail or accuracy in the models
led to predictions that turned out to be at variance with actual performance.

The selection of a rebuild policy for a RAID disk array is one example of the need for detailed and
complete disk models. Here, a simulation study[11] using a detailed disk model that included rotation
timing effects produced results that were contrary to an earlier study[13] that did not.

Another analytic model of a RAID controller[5] found that neglected factors such as contention within
the various elements in the array controller caused actual performance to be noticeably worse than that
predicted. Even simulations are not immune from over-simplification: a recent study on disk caching
behavior found that ignoring the effects of read-ahead and write-behind in a disk model can produce results
that are as much as a factor of two off from the actual disk.[19] Unfortunately, these and other real-life
details are often omitted from models for the sake of simplicity. In a later section, we describe our disk
model and suggest that neither accuracy nor modeling ease need be sacrificed.

The Log-structured File System is a file system whose performance characterization has evolved as more
detailed models and simulations have been developed. We use it here as an example of how this process
works. The earliest study[14] predicted a ten-fold improvement in performance based on a simple model
that was based on micro-benchmarks. A subsequent study[16] using synthetic workloads provided improved
accuracy, but over-estimated the cost of the segment cleaner by comparison with later measurements using
a more realistic workload.[17] Another group[4] looked at the effects of long running writes on read
performance, an effect that had previously not been analyzed in detail. Finally, a more careful comparison
of LFS and an improved regular file system that took cleaner costs into consideration found areas where
each file system was superior to the other.[21]

The point here is not to criticize log-structured file systems or simple models, but to demonstrate that
increasing the level of detail in the models used to study a file/disk system often reveals previously-hidden
behaviors. This is normal, and to be expected; the purpose of this paper is to present techniques that will
speed this process along.
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SIMULATOR OVERVIEW

This section introduces the components that comprise our simulation environment for file and disk systems.
Our approach is to derive workloads from I/O traces gathered from real systems, and feed these into real file
system code sitting on top of a detailed disk model that has been calibrated against real disks. Additional
software, which we refer to as scaffolding, holds all this together. Figure 1 shows how these components
interact.

We use the term “simulator” in this paper to refer collectively to all the components shown on the right
side of Figure 1, while we use the term “file system simulator” to refer to the component that mimics just
the behavior of the file system code.

Workload

File system

Operating system

WorkloadWorkloadWorkloads

File system

Simulator scaffolding

Disk
model

Real system Simulation system

Capture metadata
snapshot at start of
trace of real system

Metadata
snapshot

Capture trace of
file-system
events from a
real workload

Trace derivation
(bootstrapping)

Figure 1: Simulator framework.

As Figure 1 suggests, we first gather traces from the real system running a real workload. At beginning
of the trace period, we take a snapshot of the file system metadata on the disk or disks being studied. This
is the information kept by the file system to map <file, offset> pairs into disk block addresses. The trace
is optionally used to derive a set of additional traces. Trace requests are supplied to the simulator. Within
the simulator, the scaffolding component replays these to create a workload for the file system simulator.
The file system simulator, in turn, emits requests to the disk model, which usually just performs timing
calculations. In addition, if the request is a read to the metadata, the scaffolding intercepts the request and
satisfies it from the previously-recorded snapshot; a metadata write is used to update the snapshot.

The remainder of this section provides an overview of each simulator component; they are discussed in
greater detail in the subsequent three sections.
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Workload traces

The accuracy of any performance study depends on both the quality of the model and on the quality of the
workload representation that is used. The two usual sources for simulation studies are traces and synthetic
workload models.

Synthetic workloads are considered more flexible than traces, and do not require significant storage
because they are generated on the fly. However, in order to be realistic, synthetic workload models tend
to be elaborate, difficult to parameterize, and specific to a single environment. One sample of a synthetic
NFS-workload generator[3] uses 24 parameters to describe the workload—a wealth of detail that is not easy
to gather.

Instead, our approach is to use trace-driven workloads, but to extend their utility through a technique
known as bootstrapping, which is described further in the next section. This allows us to collect a single
set of traces, and to generate additional sets while retaining certain statistical guarantees with respect to the
original.

For investigating file systems that do caching, the most useful results are obtained by tracing requests at
the system-call level: byte-aligned reads and writes, plus various control calls, such as file open and close,
change directory, and so on.

We did our work on the HP-UX operating system, a POSIX-compliant Unixy system that runs on
HP 9000 PA-RISC series 800 and series 700 systems.[6] The HP-UX system has a built-in measurement
facility that can be used selectively to trace system events; several other operating systems have similar
facilities, or one can be added relatively easily given access to the system’s source code.

For our case study, we asked the kernel measurement system to gather information about all file-system
related system calls, fork and exit system calls, and context switches. Together, these allowed our simulation
scaffold to replay essentially exactly the sequence of events that took place in the original system.

There are a few important attributes of such trace-gathering systems for work of this kind: the traces
must be complete (no records must be missed), they must be accurate (not contain invalid data), they must
have precise timestamps (resolution of a few microseconds is acceptable), and gathering them must not
disturb the system under test very much. The HP-UX trace facility met all these needs well: its timestamp
resolution is 1 �second, and the running time for the tests we conducted increased by less than 5%—at least
partly because we did trace compaction and analysis off-line.

The next section describes one of the contributions of this paper: a method called “bootstrapping” for
on-the-fly generation of additional traces from a previously collected set of traces. However, from the point
of view of the simulator itself, each derived trace is handled the same way, so we will defer further discussion
of this aspect for now.

Metadata snapshot

Before tracing is begun, a snapshot is made of the metadata on each of the file systems used by the workload
being traced. This snapshot includes a copy of the file systems’ naming hierarchy, i.e., the directories,
overall size information, and a copy of the layout information. In our case, the HP-UX file system uses
a slightly modified version of the original 4.2BSD Fast File System,[12] so this data included inode and
cylinder-group maps.

The metadata snapshot is a copy of the data needed by the file system itself. The snapshot allows the
scaffolding to provide the file system code under test the same data that it would have had access to, had it

yUnix is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.
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been running on the real system. In particular, the file system reads the directory data to do name lookups,
and uses the layout information to turn user-level reads and writes into disk operations. As the simulation
progresses, the file system under test modifies the metadata as a result of trace-driven user-level requests,
and the scaffolding faithfully performs the requested updates so that future requests to the metadata will
return the correct data.

Since the snapshot contains no data files, it is of modest size: a few percent of the total disk space being
simulated. This is possible because we do not simulate the contents of user-data blocks, just their movement.
Accesses to the metadata snapshot by the simulator scaffolding go though the real file system of the machine
used to run the simulation, and so are subject to caching, which improves the elapsed simulation time.

Scaffolding

The scaffolding is the glue that binds together the entire simulation. It provides the following facilities:

� Lightweight threads, i.e., execution contexts, which are used to simulate processes making file system
calls and the concurrent execution of activities inside our disk simulator.

� Time-advance and other mechanisms needed for the discrete-event simulation being performed.

� Emulation of the kernel procedures that are accessed by the real file system. For example, sleep and
wakeup calls are mapped onto synchronization primitives derived from the underlying lightweight
thread library.

� Software to access the metadata snapshot when requested by the file system code.

� Software to manage the correct replay of an input trace.

At a high level, the working of the scaffolding is quite straightforward. The scaffolding uses one
lightweight thread to simulate each independent process encountered in the trace. It then reads trace records
that are fed to threads simulating user processes until the trace is exhausted, or the simulation has reached a
sufficiently stable state that the desired confidence intervals have been achieved.

Each trace record is handed to the thread that is emulating the appropriate process. Most of these
requests are read or write operations, which turn into calls on the file system code, and perhaps generate
one or more simulated disk requests. Whenever the real process would have spent real time—e.g., while
waiting for a disk access to complete—the thread is blocked, and waits for simulated time to advance to
the appropriate point before it is allowed to proceed again. Once the request has been completed the thread
goes back to wait for the next request for it to simulate.

If the operation being simulated is a fork, a new thread is created and associated with the child process,
which then proceeds to accept and process requests, while the parent continues. Asynchronous disk requests
do not cause the thread to delay.

Occasionally, the metadata snapshot needs to be consulted, and real data needs to be transferred between
the snapshot and the buffer cache used by the file system code being run in the simulation. This is usually
the result of a directory lookup or inode update. Note that the file system only invokes this mechanism when
the needed metadata is not already in the simulated buffer cache. As a result, most reads and writes only do
simulated data movement.
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Disk simulator

Since we were interested in exploring the interaction between file systems and future disk designs, we chose
to construct a disk model that could easily be tuned to reflect design changes extrapolated from current
performance characteristics. We took some pains to calibrate this model against current real disks, and in
particular, to include the effects of caching in the disk drive, which prior work had shown to be an important
part of getting good agreement between a model and reality.[19, 18] As a result, we were able to achieve
differences between the real disk and the modeled one, i.e., the model demerit figure, of only 5%.[19]

The first component of our disk model is a buffer cache, which is used to keep track of data that has
been read, read-ahead, or written. Appropriate replacement policies allow us to alter the behavior of this
cache for different experiments. In addition, we modeled the physical disk mechanism—the rotating media
and the moving disk head and arm—and the DMA engine used to transfer data from the disk cache to and
from the disk-to-host bus. By making each of these lightweight tasks, we were able to model the overlap
between disk accesses and data transfers to and from the host system that occurs in real disks.

Our model uses replaceable modules for each of these components, so it is relatively easy to make
changes to explore different design choices. For example, enhancing the disk model to predict the effects
of making its buffer cache non-volatile, to be described in the case study, took less than a day.

File system simulator

The other important component we were interested in modeling was the file system. One approach to
modeling a file system is to construct a simplified simulation of the file system code. By making suitable
assumptions, the resulting complexity and development time could be kept within reasonable bounds.
However, this is a process fraught with difficulties, as our examination of the LFS development process
suggests. Ensuring that the right simplifications are made is difficult, doubly so because the expectations of
the experimenter can often bias the choices in favor of the set of assumptions made during the design of the
file system that is being investigated.

We believe that it is possible to do better. In fact, our approach is to use the real file system code
instead of an imperfect model of it, thereby eliminating any possibility of incorrect assumptions. To do
this, we bring the file system out of its normal execution environment, which is the operating system kernel
or a trusted address space. We do this by providing a set of scaffolding that looks—as far as the file
system is concerned—just like the kernel environment in which it normally runs, down to and including the
synchronization primitives the code is written to invoke. The entire ensemble runs as a regular, untrusted,
user-level application.

File system designers have used this technique before to run kernel-level code at user-level to simplify
debugging during program development,[12] but not, to our knowledge, explicitly for performance studies.

Our approach allows the file system implementation and an understanding of its performance to develop
together. For example, in addition to providing functionality stubs for incomplete portions of the code,
we can provide performance stubs as well. Running the new design in a user-space scaffolding, as in
our approach, combines the advantages of easier development, faster turnaround time, and more flexible
debugging with early access to performance data.

In the case study we conducted, we used the production HP-UX file system code as the file system
simulator.
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Analysis: detail and complexity versus efficiency

We argue here for the use of detailed models for file system and disk system components. Our contention
is that such models lead to increased confidence and increased accuracy, without an excessive increase in
execution time or complexity.

Consider first the degree of detail that is desired in modeling the system. Obviously, if the real system
is available to test, it is usually best to measure that system, since this minimizes the uncertainty. One of
the strengths of our approach is the use of real file system code as the file system simulator, which removes
one major cause of uncertainty; another is the use of real traces rather than synthetic ones; a third is the
calibration of the disk system against real disks.

Consider next the degree of detail that is required to model the system. Work in disk drive modeling
has shown that detailed models are a necessity there: ignoring caching effects, which in turn depends on
modeling rotation position in the disk, can result in mean simulated times as much as a factor of two larger
than they should be.[19] So, sufficient detail is essential if useful results are to be acquired.

Of course, it is not always possible to determine which features of the model will prove to be the most
important—indeed, these may change as a function of what is being modeled. For example, a file system
that did not make rotational-position layout optimizations or use the disk’s aggressive write caching would
be much less sensitive to caching effects in the disk. Thus, we believe it prudent to err on the side of caution.

Finally, consider the cost of detailed models. We believe that the approach we advocate is not particularly
costly: our disk simulator is able to process about 2000 requests per second on a 100 MHz PA-RISC
processor; the file system code runs at full processor speed; and—just as in real life—the metadata snapshot
information is frequently cached by the underlying real file system that the simulator is hosted on. The
result is that the elapsed time for executing the simulations is much less than that required to execute the real
system executing the traced workload. Furthermore, as processors speed up relative to I/O, this disparity in
performance is likely to increase.

A significant benefit of our approach is confidence in the results. In the final stages of design, omitting a
crucial detail may be potentially dangerous. Our approach makes it easy to construct a detailed model that
avoids this pitfall.

We feel the accuracy and confidence offered by our approach far outweigh the small investment in time
to build the scaffolding. This is a one-time cost that can be amortized over many studies. In our experience,
the code to implement a detailed disk model and the bootstrap generator proved fairly straightforward. By
simply dropping the real file system code into the simulator, our development time for this portion of our
model was zero.

On the other hand, a potential drawback to our scheme is that it assumes the availability of the file system
code. Sometimes this might not be case, e.g., when designing a new file system from scratch. However,
even in these cases, many aspects of the our system, e.g., the disk model, workload characterization, and
parts of the scaffolding, may be used independently.

CONSTRUCTING A WORKLOAD

As mentioned in the introductory section, traces and synthetic workloads each have advantages and disad-
vantages. Traces are more realistic but tend to be very voluminous. Synthetic workloads offer flexibility at
the loss of verisimilitude. We use a technique that combines the good elements from both approaches.

Our method is derived from a statistical technique called bootstrapping,[8] which can be used to increase
the confidence and reliability of scientific inferences. The basic idea is as follows. Given a sample of size
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N of some population with an unknown distribution, we generate some number of new samples of size N
by selecting elements at random from the original sample. The elements are selected with replacement,
which means that copies of the same element can occur more than once in the new sample. Note that we
can generate NN different samples of size N .

For each sample, called a bootstrap, assume we calculate some sample statistic, say, the average. The
calculated statistic from each of the bootstraps constitutes a distribution, called the “bootstrap distribution”.
Bootstrap theory says that the bootstrap distribution can be treated as if it were a distribution created from
samples drawn from the real population. Thus, it can be used to estimate the accuracy of the statistic, in
this case the average, that was calculated from the original sample.

A useful pragmatic aspect of bootstrapping is that a new sample of size N can be created on-the-fly.
This can be done by numbering the elements in the original sample sequentially from 1 to N ; generating
N random numbers in the range; and then selecting element i to be in the bootstrap whenever the random
number generator comes up with the number i.

Bootstrapping is a well-established technique in statistics that has not, to our knowledge, been used in
computer systems analysis. The technique can be applied to file system traces in a straightforward way to
generate many trace sets given a single trace. To a first order, we use the individual processes that show
up in our traces as the “elements” for the bootstrapping process. The truth is slightly more complicated,
and elaborated on below. Selection of a process element implies inclusion of all the I/Os it issued in the
resulting bootstrap trace.

We generate bootstraps—as many as required for the experiment; the number available is effectively
unlimited for any realistic value of N—and run it against the simulator. With high probability, the bootstrap
distribution has statistical properties that are similar to the real-life population. Thus the behavior of a
system when run against the bootstraps is likely to approximate its behavior in real life. Note that bootstrap
theory does not imply that the behavior of the simulator on individual bootstraps will be be the same as
the original trace. However, the average behavior of the simulation on a set of bootstraps approximates the
average behavior of the simulator if it were run on a set of real traces.

Independence of sample elements

In bootstrapping theory, the elements of a sample are assumed to be independent of each other. Consequently,
the degree of dependence between sample elements in a bootstrap will affect the final results. This affects
practical file system studies in two ways.

There are two kinds of inter-dependence that matter: functional dependence, e.g., a file system will
not allow write operations on a file that has not been opened, and behavioral dependence, e.g., if process
P1 writes once to the file, process P2 will read six things from it. We need to be concerned with both;
bootstrapping theory is strictly only concerned with the latter.

Functional dependence requires that the elements used in the bootstrap be large enough to include the
necessary system state. For example, an element that includes a read from a file must also include the system
call that opened that file. In practice, when a file-system study of the type we conducted is being done, this
means that elements are at least as large as processes, and may sometimes have to be groups of processes
forked by a common ancestor if the ancestor performs file open operations that the child processes rely on.

If processes exhibit behavioral dependence, e.g., they communicate using pipes or synchronize on a
common file, it is necessary to aggregate these processes into larger units that are then treated as independent
sample elements.

Together, these adjustments can decrease the number of elements for the bootstrapping. However, it
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is important to note that the quality of input to the simulator is not degraded. First, even with a modest
number of elements in a sample, there is no practical limit to the number of bootstraps that can generated.
For example, even if N is only 5, 3125 (= 5

5) possible bootstraps can be generated. Second, since we are
only aggregating the amount of file system activity, and not discarding samples, each bootstrap continues to
offer roughly the same load to the file system as the original trace. This is true even if only a single bootstrap
can be built because all the input has to be aggregated into one element.

Implementation and validation

In our implementation, bootstrap generation is done as a three stage software pipeline. The first stage rolls
a die multiple times to choose a set of processes that are to be included in the bootstrap. The second stage
deletes the traces of the processes that are not part of the bootstrap. The final stage duplicates the traces
of processes as necessary; new process identifiers and sequence numbers are created at this stage. Recall
that creating a bootstrap involves selection with replacement. This process allows the individual elements
to execute independently of one another.

Duplicated records have the same time-stamps as the original records they are derived from. This could
lead to increased contention for file and disk resources. In our experiments, this has not been a significant
issue for the average case behavior because of the filtering performed by the user-level file cache in the file
system simulation.

For a given trace, we generate multiple bootstraps and run the simulator on each bootstrap, and then
aggregate the performance data that results across these runs. Bootstrapping theory tells us that bootstrap
distribution of a particular statistic closely approximates the true, but not directly measurable, distribution of
the statistic in the real population. Thus on the average, the performance of the simulator on the bootstraps
will be similar to what would have been seen if it had been run on real traces, i.e., samples from the real
population.

The entire process of generating bootstraps can be done on-the-fly. It is also repeatable, if the same
pseudo-random number generator is used for the selection process. This means that exactly the same
bootstraps can be generated several times if so desired, e.g., for runs with different simulation parameters.

The main value of using bootstrapping in simulation studies is to extend existing trace data on-the-
fly while retaining certain statistical guarantees. As long as the original trace data was a representative
sample of the original system, bootstrapping theory tells us that the aggregate of the bootstraps will also
be representative of the real system. That is, rather than collecting and storing multiple traces, on-the-fly
bootstrapping allows you to achieve the same effect as if multiple traces were collected—but with much
less effort.

MODELING THE DISK

Although there are some exceptions, much of the prior work on disk modeling has not accurately reflected
the considerable concurrency that occurs in modern disk drives, nor the actual operational characteristics
of the disk itself, including non-linear seek versus distance times, bus transfer effects, and caching. We
endeavored to address these issues in our model. Its calibration has been described elsewhere;[19] here, we
concentrate on a description of the elements that go to make up the model.

Figure 2 shows the components of our model. The major components are as follows; in our implemen-
tation, each is a C++ object:
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Figure 2: Major components of the disk model.

� The disk controller is a data structure that binds together the other elements, and provides a placeholder
for them. It also provides the management code for the disk’s actions, and a number of parameters
used to control modeling of aspects like controller overhead.

� The disk cache represents the on-board cache memory in the disk. It can be managed as a simple
speed-matching buffer, or segmented and used to cache data before or after it is explicitly referred
to by the host. Here are two examples of the caching policies that our model supports. If the disk
is idle, and the last request was a read, the controller may choose to continue doing a speculative
read-ahead into the cache in case the host is making sequential transfers. If the last request is a write,
the controller may allow data transfer across the bus into the disk in parallel with the execution of
the last request; this is known as immediate reporting, and allows efficient writes to consecutive disk
addresses.

� The disk mechanism task models the rotating media and the disk heads attached to a moving arm. In
practice, most of the code is concerned with translating logical addresses into physical ones, taking
into account details of the disk drive geometry such as zoning, which allows more sectors on the outer
tracks than the inner ones spare sectors, and head- and track-sector skew, which minimize rotation
delays on head and track-switches.

� The DMA engine task models the transfer of data across the interface between the disk and the bus
connecting it to the host system. The bus is acquired and released according to policies determined
by the design of the disk controller, parameters that can be set by the host system, and the availability
of data or space in the disk cache. This allows contention between multiple disks on the same bus to
be modeled correctly.

� The request-scheduling policy determines, in combination with the cache-management policies, which
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request will be executed next if the disk drive has been passed more than one. For example, this
allows the command queueing of SCSI-2 to be modeled.

We found it convenient to have each task call into the disk controller code to request work for it to do,
blocking if there was none. This allowed each task to be a simple get-work—execute-it loop, and let us
concentrate the complexities of handling the interactions between the cache management and the request
scheduling in one place.

While this model might appear complex, it is in fact quite easy to implement. Our scaffolding provides
lightweight threads, synchronization objects such as semaphores, and queue abstractions. The disk elements
are implemented as independent threads that send messages to each other through queues and synchronize as
needed using semaphores. The model has been parameterized for several different disks using a combination
of manufacturer-supplied data and direct measurements. The simulation is tuned to minimize error in the
transfer size range, typically 4–8 kbytes, commonly used by current file system designs. Calibration against
real disk performance under a range of workloads yields excellent agreement, within 5%. The total code
required to achieve this level of accuracy is modest—a little over 3000 lines of C++.

The particular disk model that we describe here has been extensively used in other studies. A separate
paper[19] contains quantitative information of how different portions of the model contribute to its accuracy
and how it compares with typical simple models. Undoubtedly, an accurate model like ours is more
complicated than a simpler, less accurate, model. On the other hand, we can quantify and bound its
deviations from the behavior of real disks, and we know that it does a good job of modeling components of
disk behavior that are growing in importance as file system designs attempt to adapt to, and take advantage,
of exactly these performance non-linearities.

MODELING THE FILE SYSTEM

Since we were particularly interested in exploring the effects of changing disk technology on file system
behavior and performance, we developed techniques that allowed us to use the actual file system code rather
than an imperfect abstract model of it. By comparison with an abstract model, our approach increased our
confidence in the results, and also ensured that we did not have to continually adjust the parameters of the
file system model as a result of different workloads or disk behaviors.

We found it straightforward to adapt the file system code running in the kernel to run as an untrusted
user application within the simulator. The infrastructure requirements of a file system are typically straight-
forward: some multitasking, simple memory management, and access to physical devices and user memory
space—usually through a very stylized, well-controlled interface. The multitasking support usually has
to include some form of threads and a set of synchronization primitives. All these are relatively easy to
emulate in a user-space scaffolding. For example, the device-driver routines can easily be provided by a
set of procedures that invoke the interface provided by the disk simulator. Processes in the original system
can be treated as independent threads each with per address space structures imitating those of the original
system. Though we happened to use the HP-UX file system as a base for our case study, these techniques
are applicable in exporting code from other systems to run at user level.

As a specific example, for the case study to be described later, the entire HP-UX file system,[6] which is
derived from the 4.2BSD Fast File System,[12] was run at user level without modification. In this case study,
almost all the code in the file system simulator was taken from a copy of the HP-UX product source code.
Additional code that was needed to make it execute correctly at user level was quite minimal—about 3000
lines of C. This represents code that is implemented once; the actual code for the various file systems under
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test runs unchanged. This represents a huge saving in work, because typical file system implementations
are quite large. Most of the code we added is required to provide the right kernel-level abstractions and the
correct device interface at user level and can be reused without any change to simulate other file systems.

To validate our file system simulator implementation against a real kernel, we compared the block
requests issued by the real file system running inside the operating system kernel and the simulator. There
were no significant differences between the two systems on a set of several different programs. This is not
too surprising: we were executing the same code in both cases, but we found that it inspired our confidence
in our results.

SCAFFOLDING

The scaffolding is perhaps the most important piece of the simulator framework. Apart from providing the
basic framework for a discrete-event simulator, it binds together the various pieces of the simulator and
provides interfaces that are appropriate to each. The preceding sections have touched upon the facilities
provided by the scaffolding to the file system simulator and the disk simulator. This section expands on
those, and describes some of the details related to the discrete-event simulation.

Threads

The central element of the scaffolding is its coroutine or threads package. We happened to pick one built
upon the base provided by a standard, off-the-shelf library from AT&T,[1] modified slightly to support time
calculations using double-precision floating point instead of integer arithmetic. Our choice of the thread
library was dictated by what was most conveniently available to us. Other packages such as PRESTO[2]
could probably also be used with minimal modifications. Such coroutine packages typically provide a set of
objects including lightweight threads, synchronization objects, and communication channels such as queues.
They need not implement preemptive multitasking, but should at least support the notion of simulated time,
in which a thread can delay for a while to represent passage of real time, and then be resumed once simulated
time has advanced sufficiently.

Trace replay

The trace records we used contained file system calls made by programs, in addition to records for process
creation and deletion. Each trace record contained the process identifier of the caller, parameters to the
system call, and two time-stamps—one indicating when the system call was initiated, and the other when it
completed.

For trace records that indicate a process creation, the scaffolding creates a new thread, complete with
whatever kernel level state that the original process had. For instance, in the Unix model, open file descriptors
and the current working directory have to be inherited from the parent process.

After each system call is performed, the thread goes back to waiting for more work. When a process
deletion record is encountered, the thread emits some statistics, and is then terminated.

For trace records that denote normal file system events, the scaffolding hands off the request to the
previously-created thread associated with the process that issued the request. The thread then delays for a
while to represent application compute- or think-time. This period is the interval between completion of
the last real request and this one, as recorded in the trace. A faster CPU can be conveniently modeled by
decreasing the duration of this pause. Notice that the simulated time at which the new request is issued
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may not be the same as the real time recorded in the trace: the file system and disk subsystem models may
execute the request in more or less simulated time as a result of many factors, including design changes.

After the delay has expired, the thread executes the system call described in the trace record—typically
by calling into the file system, which executes its code exactly as if it had been invoked by a process
executing in the kernel.

When the file system call returns, it is necessary to advance the simulation time by the amount of real
time it would have taken to execute the file system code. A convenient way to do this is to measure the time
taken to execute the file system simulation code, which is, after all, the real code, and then reduce this, if
necessary, by a constant factor representing the difference in CPU speeds of the processor being modeled
and the one on which the simulation is running.

As part of executing the file system code, disk requests that might be made are also charged against
the thread. Notice that other requests can enter the file system code, subject only to the synchronization
constraints imposed by the scaffolding, which is in turn a faithful model of the real system’s rules. This
usually allows concurrent outstanding requests from different processes to be executing inside the file
system. If the scaffolding failed to support this, it would underestimate the effect of contention in the file
and disk system and could lead to erroneous results.

As a practical matter, maintaining the appropriate level of concurrency in the simulation was one of the
thorniest issues that we had to deal with. We got it wrong several times, eventually settling on the following
scheme.

Each thread has a private input queue of requests, i.e., trace records, that it is expected to process, sorted
by their start time. When a thread finishes its current request, it attempts to get the next record to execute
from this input queue. If there is something there, it executes it. If not, and the thread has not yet been
terminated, the scaffolding reads down the trace input until it finds the next request for this thread. Since
the input trace is sorted by completion time of the original system calls, not by process number, it is quite
likely to read several records before it finds one for this thread. These records are appended to the ends of
the work queues for the relevant threads.

This scheme could potentially require reading ahead arbitrary amounts of trace input: consider a thread
that does a “sleep forever”. Thus, the degree of read-ahead has to be controlled in each simulation. This
limit is set high enough, typically a few thousand requests, so that the amount of lost concurrency is very
small, and the performance effects negligible.

Correct sequencing of process creation and deletion is achieved by having the threads themselves perform
the fork and exit calls that alter the scaffolding state.

File system support

Our scaffolding provides the necessary support environment for the kernel-level file system used in HP-UX
to run in user mode. It supports the notion of the UNIX system’s per-process u-area, provides support for
sleep and wakeup synchronization calls, and emulates the kernel trap/return mechanism.

Some aspects of the original kernel implementation are simplified in the simulator. For instance, the
kernel-level routines used to transfer data safely between user and kernel spaces, as well as the memory
allocator, have been simplified without affecting their interfaces. We were also able to simplify interrupt
handling by eliminating the kernel mechanism for vectoring and dispatching the interrupt to the device
driver.

The file system code is presented with the same disk interface that it would see in the kernel. However,
when a call is made to read or write a disk, the scaffolding intercepts it, and passes it on to a disk simulator
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read/write routine. The disk simulator routines neither produce nor consume any real data. Data from
the calling process is usually discarded unless it is metadata that might be needed later. In this case, it is
added to the snapshot data by invoking real system calls. Similarly, data given back to a process is usually
meaningless, unless it is metadata or directory information that has to be used by the file system. In such
cases, the snapshot is consulted for the data.

In our implementation, we did this check by comparing the block number issued by the file system
against a lookup table hashed by metadata block numbers. This structure also provided a pointer to where
in the metadata snapshot the block was stored. Simulated time was not advanced while the snapshot is
consulted: as far as the file system could tell, the request took just as long as the disk timing model said it
should.

CASE STUDY

The previous sections have described a collection of techniques for file system simulation. In this section
we describe a case study that employs these techniques. Through our case study, we wish to demonstrate
that:

� Our disk model is detailed enough to study the effect of important and practical changes that would
be difficult or impossible to study otherwise.

� Bootstrapping is an efficient and useful technique and can be used instead of extensive trace generation
or synthetic workload models.

� Our scaffolding mechanism is powerful and robust enough to handle code from a real file system.

We demonstrate the first two of these goals directly through quantitative experiments. We demonstrate the
last goal indirectly by running the production-quality HP-UX file system within the scaffolding.

We do not present detailed comparative measurements of file systems, e.g., FFS and LFS, because our
goal is to demonstrate that the methodology works and is “real”, rather than to conduct an extensive and
definitive performance analysis. Instead, we have chosen to present a simple study that underscores the use
of the separate techniques rather than a large, complicated case study where it might be difficult to isolate
the advantages of using each of our techniques.

Modification analysis

The baseline system we measured consists of the standard Fast File System from HP-UX version 8.0
running a multiprogramming benchmark designed to be typical of a program development environment.
The benchmark is quite I/O intensive and includes program editing,compilation, and miscellaneous directory
and file operations. The multiprogramming level was set to 20 users, to approximate the situation when
20 programmers are working. The files used by the benchmark were stored on a disk that is essentially
identical to the model shown in Figure 2.

The modification analysis that we undertook is related to disk system design. We studied the performance
changes in the original system when the track buffer was made non-volatile. This has the effect of speeding
up writes, which now complete as soon as the data is in the buffer without waiting for the disk mechanism.
Synchronous writes, which slow the performance of many file systems, are no longer on the critical path
with this design. The write back policy used to clear the buffer to disk is similar to C-SCAN,[20, 9] modified
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so that read requests take precedence over write requests so as not to introduce delay to user-level requests.
We expected that introducing a non-volatile RAM into the disk would improve throughput and would allow
the disk to keep pace with increased CPU speeds up to a point. This type of modification analysis is
very useful in disk system design and allows cost/performance comparisons between hardware-based and
software-based logging solutions to the problem of synchronous writes.

The significance of using our detailed disk model lies primarily in being able to undertake the mod-
ification analysis. Accounting for the effect of the track buffer and the writeback policy would be quite
difficult with a more abstract model. In addition, the quantitative result of the analysis also has a high
degree of confidence because of the fidelity of the disk model. Accuracy tends to be a significant factor as
cost-performance margins narrow in the later stages of design.

Figure 3 graphs the peak throughput of the baseline system and the modified system, executing traces
from the original sample.
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Figure 3: Comparison of the baseline disk system with one that adds an asynchronous write-back cache,
using the original trace.

Throughput is measured as the rate of data transfer between the file system and the disk. The X axis
shows relative CPU speed, i.e., it models the performance effects of increased CPU speeds without any
change in the disk speed. Predictably, the throughput levels off as CPU speed increases, because the
bottleneck becomes the disk service time. The graph shows that saturation occurs when the CPU speed
increases by about 100% over the baseline value.

The new organization has roughly 50% better overall throughput and saturates at about 50% higher
CPU speed than the original. Thus, this approach would indeed be a feasible improvement for existing file
systems if the hardware costs were reasonable.

Effectiveness of bootstrapping

Here we demonstrate the behavior of bootstraps compared to the original trace data. As mentioned earlier,
the theory behind bootstraps guarantees certain statistical properties on the resulting data set. In particular,
the distribution of a particular statistic got by running multiple bootstraps is as good as that generated by
running different traces, i.e., samples, from the real population.

Each element in our sample is a process generated on behalf of a synthetic user in our 20-user benchmark
run. Each of these processes is represented by several, possibly many, trace records; in turn, each synthetic
user is represented by many processes generated on their behalf.
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A complication that applies to this simple labeling of processes as elements is that some processes depend
on the work done by others: for example, consider the situation where process P1 creates a directory, P2
reads files from the directory, and finally P3 deletes the directory. If a particular bootstrap included processes
P2 and P3 but not P1, its execution would fail because it would not contain the “create directory” trace
record. Similar problems would arise if we took individual trace records as the element for the bootstrap.

We solved this problem by exploiting our knowledge of the benchmark. We identified interdependent
processes, like P1, P2, and P3 above, and aggregated them into a single sample element. Because we
understood the benchmark, we were able to do this manually; it would be straightforward to generate a tool
that determined these interdependencies from the input trace, since it contains all the information needed.

As mentioned previously, aggregation does not affect our ability to generate large number of bootstraps
or the number of requests placed on the simulator. Based on our experience with our benchmark, this
aggregation has not been a serious problem. Further, if the elements of the trace were individual disk block
accesses, such aggregation would not be required because we could treat the requests as independent from
the viewpoint of the disk system being studied.
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Figure 4: Simulation performance resulting from several sample bootstraps.

We performed a first-order evaluation of how well the bootstrapping technique generated workloads by
comparing the simulated performance of the original baseline case from Figure 3 against several different
bootstraps generated from it. The results are shown graphically in Figure 4 and in tabular form in Table 1.
In this case, the results are in good agreement to that produced from the real trace. Even if they happened
not to be, recall that bootstrapping theory says that the average behavior on a large number of bootstraps is
a good indicator of behavior on a large trace.

Percentage variation in
throughput with CPU speedup

Sample 1.0 2.0 3.0 4.0 5.0 6.0 Mean Std. Dev.

Original - - - - - - - -
Bootstrap 1 0.0 0.0 0.9 1.3 -0.9 -1.2 0.0 1.0
Bootstrap 2 0.0 0.0 2.2 0.0 2.2 1.7 1.0 1.1
Bootstrap 3 0.0 0.1 2.2 0.2 0.0 1.7 0.7 1.0

Table 1: Variations of the sample bootstraps from the original trace.
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The exercise here was one that was designed to explore the use of bootstraps in practical simulations.
In reality, the point of using bootstraps is not to repeat a given experiment but to extend the trace data. That
is, rather than generate and store multiple traces, bootstrapping is used to extend the trace, and the results
from these are used as indicators of the behavior of the system on a set of real traces.

CONCLUSIONS AND CONTRIBUTIONS

Technology trends suggest that the design of file and disk systems will continue to be a very important area.
To this end, this paper has described a set of techniques that can be used to improve file and disk system
performance studies by increasing both the accuracy and the efficiency of careful simulation studies.

The techniques presented in the paper fall into three areas: workload generation, file system modeling,
and disk modeling. In each of these areas, the paper makes novel contributions, some of which are
enumerated below:

� The use of bootstrapping in creating traces with known statistical properties appears to be novel in the
computer science community, even though it is a well-known approach in the statistics community.

� The file system model and scaffolding demonstrate that by employing simple primitives and a modest
amount of programming effort, it is possible to generate a faithful file system model that incorporates
the detail and subtlety of the actual system under test. As a basis for comparison, we spent roughly
2–3 person weeks implementing this portion of the code.

� Our use of the scaffolding for the file system code in a way that emphasizes obtaining performance
information is an extension to prior work, which emphasizes code debugging.

� Our detailed disk model shows that it is possible to capture the nuances of behavior of complex
modern disk drives, while retaining good execution speed for the simulator.

Notice that each of the techniques we describe can be used independently of the others. For instance,
bootstrapping can be used to generate workloads without using the file system scaffolding or the disk
simulator.

We believe that detailed simulations and simple analytic models both have an important place in
understanding the behavior of complex systems. The simple models are crucial in narrowing the design
space to manageable proportions, at which stage additional detail is required for realistic evaluations. The
approach and techniques we present here allow this detailed simulation step to be applied more readily,
across a greater set of workloads, and with greater confidence in the results than would otherwise be the
case.

References

[1] AT&T. Unix System V AT&T C++ language system release 2.0. Selected readings, 1989.

[2] Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. PRESTO: A system for object-oriented
parallel programming. Software – Practice and Experience, 18(8):713–732, August 1988.

[3] Roberta A. Bodnarchuk and Richard B. Bunt. A synthetic workload model for a distributed system file
server. In Proceedings of the 1991 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pages 50–59, May 1991.

17



[4] Scott Carson and Sanjeev Setia. Optimal write batch size in log-structured file systems. In Proceedings
of the USENIX Workshop on File Systems, pages 79–91, May 1992.

[5] Ann L. Chervenak and Randy H. Katz. Performance of a disk array prototype. In Proceedings of
the 1991 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages
188–197, May 1991.

[6] Frederick W. Clegg, Gary Shiu-Fan Ho, Steven R. Kusmer, and John R. Sontag. The HP-UX operating
system on HP Precision Architecture computers. Hewlett-Packard Journal, 37(12):4–22, December
1986.

[7] David J. DeWitt, Randy H. Katz, Frank Olken, L.D. Shapiro, Mike R. Stonebraker, and David Wood.
Implementation techniques for main memory database systems. In Proceedings of SIGMOD 1984,
pages 1–8, June 1984.

[8] Persi Diaconis and Bradley Efron. Computer-intensive methods in statistics. Scientific American,
248(5):116–130, May 1983.

[9] Robert Geist and Stephen Daniel. A continuum of disk scheduling algorithms. ACM Transactions on
Computer Systems, 5(1):77–92, February 1987.

[10] Robert B. Hagmann. A crash recovery scheme for a memory-resident database system. IEEE Trans-
actions on Computers, 35(9):839–843, September 1986.

[11] Mark Holland and Garth A. Gibson. Parity declustering for continuous operation in redundant disk
arrays. In Proceedings of the 5th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 23–35, October 1992.

[12] Marshal Kirk McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry. A fast file system
for UNIX. ACM Transactions on Computer Systems, 2(3):181–197, August 1984.

[13] Richard R. Muntz and John C.S. Lui. Performance analysis of disk arrays under failure. In Proceedings
of the 16th Conference on Very Large Databases, pages 162–173, 1990.

[14] John K. Ousterhout and Fred Douglis. Beating the I/O bottleneck: A case for log-structured file
systems. Operating System Review, 23(1):11–27, January 1989.

[15] David Patterson, Garth Gibson, and Randy Katz. A case for redundant arrays of inexpensive disks
(RAID). ACM SIGMOD 88, pages 109–116, June 1988.

[16] Mendel Rosenblum and John K. Ousterhout. The LFS storage manager. In Proceedings of the Summer
1990 USENIX Conference, pages 315–324, June 1990.

[17] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-structured file
system. ACM Transactions on Computer Systems, 10(1):26–52, February 1992.

[18] Chris Ruemmler and John Wilkes. Unix disk access patterns. In Proceedings of the Winter 1993
USENIX Conference, pages 405–420, January 1993.

[19] Chris Ruemmler and John Wilkes. An introduction to disk drive modeling. IEEE Computer, 27(3):17–
28, March 1994.

18



[20] P. H. Seaman, R. A. Lind, and T. L. Wilson. On teleprocessing system design: Part IV: An analysis of
auxiliary-storage activity. IBM Systems Journal, 5(3):158–170, 1966.

[21] Margo Seltzer, Keith Bostic, Marshall Kirk McKusick, and Carl Staelin. An implementation of a
log-structured file system for UNIX. In Proceedings of Winter 1993 USENIX, pages 307–326, January
1993.

19


