
Time-Space Tradeo�s for

Graph s-t Connectivity

Gregory Barnes

Technical Report 92-10-02

October, 1992

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195





Time-Space Tradeo�s for Graph s-t Connectivity

by

Gregory Barnes

A dissertation submitted in partial ful�llment of

the requirements for the degree of

Doctor of Philosophy

University of Washington

1992

Approved by

(Chairperson of Supervisory Committee)

Program Authorized

to O�er Degree

Date





In presenting this dissertation in partial ful�llment of the requirements for the Doc-

toral degree at the University of Washington, I agree that the Library shall make

its copies freely available for inspection. I further agree that extensive copying of

this dissertation is allowable only for scholarly purposes, consistent with \fair use"

as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of

this dissertation may be referred to University Micro�lms, 1490 Eisenhower Place,

P.O. Box 975, Ann Arbor, Michigan 48106, to whom the author has granted \the right

to reproduce and sell (a) copies of the manuscript in micro�lm and/or (b) printed

copies of the manuscript made from micro�lm."

Signature

Date





University of Washington

Abstract

Time-Space Tradeo�s for Graph s-t Connectivity

by Gregory Barnes

Chairperson of Supervisory Committee: Walter L. Ruzzo

Department of Computer Science

and Engineering

The problem of graph s{t connectivity, determining whether two vertices s and t

in a graph are in the same connected component, is a fundamental problem in com-

putational complexity theory. Determining the space complexity of s-t connectivity

either for directed graphs (stcon) or for undirected graphs (ustcon) would tell

us a great deal about the relationships among deterministic, nondeterministic, and

probabilistic logarithmic space bounded complexity classes.

A fruitful intermediate step to determining the space complexity of stcon and

ustcon is to explore time-space tradeo�s for the problems: the simultaneous time

and space requirements of algorithms for connectivity. Prior to this work, all deter-

ministic connectivity algorithms that used less than linear space (the space bound for

well-known algorithms such as breadth-�rst and depth-�rst search) required super-

polynomial time (e.g. Savitch's algorithm, which uses O(log

2

n) space and n

O(logn)

time).

In this thesis, we explore various techniques for creating small-space, but

polynomial-time algorithms for undirected and directed graph connectivity. We

present sublinear space, polynomial time deterministic algorithms for both prob-

lems. No previous such algorithms were known for these problems; in fact, there was

some evidence that such algorithms could not exist for directed graphs. We present

a subproblem, the short paths problem, that could separate stcon and ustcon: we



present evidence that �nding the length of a simple path is intrinsic to solving stcon,

but not ustcon, in small space.



Table of Contents

List of Figures iii

List of Tables iv

Chapter 1: Introduction 1

1.1 Motivation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.1.1 s-t Connectivity in Complexity Theory : : : : : : : : : : : : : 1

1.2 Overview of This Thesis : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.3 Previous Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

1.3.1 Randomized Algorithms for Connectivity : : : : : : : : : : : : 7

1.3.2 Nonuniform Algorithms for Connectivity : : : : : : : : : : : : 8

1.4 Lower Bounds for s-t Connectivity : : : : : : : : : : : : : : : : : : : 8

1.4.1 Graph Encodings : : : : : : : : : : : : : : : : : : : : : : : : : 9

1.4.2 Time Lower Bounds : : : : : : : : : : : : : : : : : : : : : : : 10

1.4.3 Space Lower Bounds : : : : : : : : : : : : : : : : : : : : : : : 13

1.5 Logspace Reducibility : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

Chapter 2: Time-Space Tradeo�s for Undirected s-t Connectivity 18

2.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

2.2 The Simple Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : 19

2.2.1 Analysis of the Simple Algorithm : : : : : : : : : : : : : : : : 22

2.3 The Recursive Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : 24



2.3.1 Analysis of the Recursive Algorithm : : : : : : : : : : : : : : : 30

2.4 The Batched Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : 35

2.4.1 Analysis of the Batched Algorithm : : : : : : : : : : : : : : : 38

2.5 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42

Chapter 3: Time-Space Tradeo�s for Directed s-t Connectivity 43

3.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43

3.2 The Bounded Queue Tradeo� : : : : : : : : : : : : : : : : : : : : : : 44

3.3 The Breadth-First Search Tradeo� : : : : : : : : : : : : : : : : : : : 46

3.4 The Short Path Tradeo� : : : : : : : : : : : : : : : : : : : : : : : : : 49

3.4.1 Notes on the Algorithm : : : : : : : : : : : : : : : : : : : : : 53

3.5 Combining the Two Algorithms : : : : : : : : : : : : : : : : : : : : : 54

Chapter 4: Conclusions 57

4.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 57

4.2 Other Work on Undirected s-t Connectivity : : : : : : : : : : : : : : 57

4.2.1 A Variation of the O(log

1:5

n) Space Algorithm : : : : : : : : : 58

4.3 Undirected vs. Directed s-t Connectivity : : : : : : : : : : : : : : : : 59

4.3.1 The Importance of Finding Distances : : : : : : : : : : : : : : 61

4.4 Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 69

Bibliography 71

ii



List of Figures

2.1 The main routine of the simple algorithm : : : : : : : : : : : : : : : : 23

2.2 The cl function of the simple algorithm : : : : : : : : : : : : : : : : : 24

2.3 A graph where the search might fail : : : : : : : : : : : : : : : : : : : 28

2.4 The main routine of the recursive algorithm : : : : : : : : : : : : : : 31

2.5 The cl function of the recursive algorithm : : : : : : : : : : : : : : : : 32

2.6 The ri and nv functions of the recursive algorithm : : : : : : : : : : : 33

2.7 The batched algorithm's data structure : : : : : : : : : : : : : : : : : 37

2.8 Code to �nd landmarks in the batched algorithm. : : : : : : : : : : : 39

2.9 Code to �nd the \closest landmarks" in the batched algorithm. : : : : 40

2.10 The main routine of the batched algorithm : : : : : : : : : : : : : : : 41

3.1 Details of the bounded queue algorithm : : : : : : : : : : : : : : : : : 45

3.2 Details of the breadth-�rst search algorithm : : : : : : : : : : : : : : 47

3.3 Details of the short paths algorithm : : : : : : : : : : : : : : : : : : : 51

3.4 Details of the recursive short paths algorithm : : : : : : : : : : : : : 52

3.5 Combining the two algorithms e�ciently. : : : : : : : : : : : : : : : : 55

iii



List of Tables

1.1 The current knowledge about stcon and ustcon with respect to four

complexity classes. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

iv



Acknowledgments

This thesis owes much of its existence to two people: A few years ago, in a

meeting of a group of theory students at the University of Washington, Simon

Kahan asked if it was possible to search a graph in linear space. Together we

devised the algorithm that appears in Section 3.2. When we took the algo-

rithm to my advisor, Larry Ruzzo, he pointed us toward what he claimed was

a more interesting problem, �nding a sublinear space, polynomial time algo-

rithm for undirected s-t connectivity. Unlike most of the other problems Larry

has thrown my way in the past few years, I was able to solve this one. Together

we devised the algorithms that appear in Chapter 2. Most of this chapter ap-

peared in the 1991 ACM Symposium on Theory of Computing [BR91]. Later,

with the help of Jonathan Buss and Baruch Schieber, Larry and I came up

with the remainder of Chapter 3, which appeared in the 1992 Structure in

Complexity Theory Conference [BBRS92].

Throughout my graduate student career, Larry has been a good advisor,

a good listener, and a good friend. Without his direction and assistance, this

thesis would not have been written. I am also indebted to Paul Beame and

Martin Tompa, the other two members of my reading committee, who have

always been willing to listen to my ideas and answer my questions. Mar-

tin helped formulate the crossing sequences argument in Section 1.4, and the

padding arguments of Section 4.3.

I also owe thanks to Uri Feige, who helped discover the minimum space

bound of the algorithm in Section 3.5, and Allan Borodin, who helped point

me toward the importance of �nding simple paths in solving directed s-t con-

nectivity, the subject of most of Chapter 4.

v



In graduate school, personal support is as important as technical support.

Many people helped make my last �ve years as enjoyable as it was. I'd es-

pecially like to thank Donald Chinn, Eric Koldinger, Amy Martindale, Lisa

Munro, Naomi Nishimura, Raj Vaswani, and Elizabeth Walkup.

Portions of this research were supported by NSF Grants CCR-8703196 and

CCR-9002891. Portions of this thesis were written on the Cray�sh X1 Steam-

Powered Alternating Turing Machine.

vi



Dedication

For my family, Owen, Gwen, Steve and Tim.

vii





Chapter 1

INTRODUCTION

We are preoccupied with time. If we could learn to love space as deeply as

we are now obsessed with time : : : _Edward Abbey [Abb68]

1.1 Motivation

In the graph s-t connectivity problem, we are given a graph, G = (V;E), and two

distinguished vertices, s and t, and must determine whether there is a path from s to

t. s-t connectivity is an important problem in general, since it is the abstraction of

many general search problems. For example, many arti�cial intelligence problems are

simply searches of a large state space, where one wishes to know whether a goal state

is reachable from a start state. s-t connectivity is a basic problem in graph theory

and an important building block when constructing graph algorithms. Finally, s-t

connectivity is particularly important in complexity theory, since it provides complete

and hard problems for many small-space complexity classes. This thesis concentrates

on the importance of s-t connectivity in complexity theory.

1.1.1 s-t Connectivity in Complexity Theory

The fundamental open problem in computational complexity theory is the power of

nondeterminism: is a nondeterministic computing machine signi�cantly more power-

ful than a deterministic one? This is the motivation underlying the P

?

= NP question

| can one do more in nondeterministic polynomial time than deterministic polyno-

mial time? The P vs. NP problem is more than twenty years old [Coo71], and remains

a very di�cult open problem.



2

Consider the corresponding question for nondeterministic space | can one do

more with nondeterministic logarithmic space (NL) than deterministic logarithmic

space (DL)?

1

This is also a di�cult open problem, but we seem to know more about

the power of nondeterministic space than nondeterministic time. For example, it is

known that NL is closed under complementation [Imm88, Sze88], while the corre-

sponding question for NP is still open. Savitch [Sav70] shows that nondeterministic

space S is contained in deterministic space S

2

for any constructible S = 
(log n)

(note: throughout this thesis, log x will be used to denote the logarithm base 2 of

x). No such polynomial relationship is known for nondeterministic and determinis-

tic time. The power of nondeterministic space seems to be a more easily solvable

question than the power of nondeterministic time, while remaining at the core of the

nondeterminism question. If we could solve the question of DL vs. NL, we could be

well on the way to solving the question of the power of nondeterminism.

The complexity of s-t connectivity is central to this question. Both the s-t con-

nectivity problem for directed graphs (stcon) and the s-t connectivity problem for

undirected graphs (ustcon) are DL-hard under NC

1

reducibility. stcon is the

prototypical NL-complete problem [Sav70], just as satisfiability is the prototyp-

ical NP-complete problem. Settling the deterministic space complexity of stcon,

then, would solve the DL vs. NL question | if stcon 62 DL, then NL 6= DL, and

nondeterministic machines are more powerful than deterministic machines. If, on

the other hand, stcon 2 DL, then any problem solvable nondeterministically in log

space is solvable deterministically in log space. In addition, proving stcon 2 DL

would, by a padding argument, show that NSPACE(f(n)) = DSPACE(f(n)) for all

space-constructible f(n) = 
(log n) [Sav70, Theorem 3].

ustcon is complete for symmetric logarithmic space (SL) [LP82], a seemingly

weaker variant of NL where a con�guration A derives a con�guration B if and only

if B derives A. ustcon is known to be solvable by randomized logarithmic space,

polynomial expected time algorithms, even errorless ones [AKL

+

79, BCD

+

89]. De-

1

The choice of logarithmic here is somewhat arbitrary. The directly analogous classes of determin-

istic and nondeterministic polynomial space are very powerful, and it is not di�cult to show they

are equivalent. Logarithmic space is the most restrictive space class that remains interesting and

robust | machines in space classes below log space cannot write down their position in the input

string, for example.



3

Table 1.1: The current knowledge about stcon and ustcon with respect to four

complexity classes. Key: complete = complete for this class under NC

1

reducibility,

hard = hard for this class under NC

1

reducibility, member = a member of this class.

class ustcon stcon

DL hard hard

SL complete hard

ZPLP member hard

NL member complete

termining the deterministic space complexity of ustcon would help in settling the

relations between DL and these intermediate classes, particularly if, as has been con-

jectured, stcon 62 DL.

Table 1.1 summarizes the current knowledge about the membership, completeness

and hardness of stcon and ustcon for four complexity classes. ZPLP is the class

of languages solvable by randomized algorithms that run in logarithmic space and

polynomial expected time with zero-sided error. See Borodin et al. [BCD

+

89] for a

detailed breakdown of the various deterministic, randomized, and nondeterministic

log space complexity classes.

The classes in Table 1.1 are arranged from weakest to strongest, with the strongest

at the bottom. That is,

DL � SL � ZPLP � NL:

Determining the space complexity of stcon and ustcon is the key to showing

whether any of these containments is proper; it is not known whether any pair of

these four classes is separate or distinct. Showing whether ustcon and stcon are

equivalent or distinct would also be a signi�cant result | stcon �

log

ustcon()

SL = NL (where �

log

stands for \logspace reducible to"; see Section 1.5, below).

Time-Space Tradeo�s

Unfortunately, proving separation or equality between the classes in Table 1.1 is a

di�cult open problem. A fruitful intermediate step is to explore time-space tradeo�s



4

for ustcon and stcon: determining lower or upper bounds on the simultaneous

time and space complexity of these problems. For example, there are deterministic

stcon algorithms that use linear space, and deterministic stcon algorithms that

use O(log

2

n) time, so one might ask whether there is a deterministic algorithm that

solves stcon simultaneously in these time and space bounds (denoted as stcon

?

2

DTIME;SPACE(n+m; log

2

n)). As we shall see, simpler questions, such as whether

there is a deterministic stcon algorithm that runs in polylogarithmic space and

polynomial time (stcon

?

2 DTIME;SPACE(n

O(1)

; log

O(1)

n)), are also interesting.

In this thesis, we will be concerned largely with the minimum space needed for a

polynomial time stcon or ustcon algorithm. This is because a DL algorithm must

be a polynomial time algorithm. Since our ultimate goal is to show the existence or

impossibility of a DL algorithm for either problem, it makes sense to start with a

high space bound and polynomial time and see how far we can lower the space bound

while maintaining polynomial time.

1.2 Overview of This Thesis

This thesis presents time-space tradeo�s for undirected and directed s-t connectivity.

Using these tradeo�s, we construct algorithms for undirected and directed s-t con-

nectivity that use simultaneous polynomial time and sublinear space. Previously, no

such algorithms were known for either problem. We present a subproblem, the short

paths problem, that could separate stcon and ustcon: we present evidence that

�nding path lengths is intrinsic to solving stcon, but not ustcon, in small space.

More speci�cally, in Chapter 2, we present time-space tradeo�s for ustcon. We

begin with a simple algorithm for ustcon that uses space O(s), n

1=2

log n � s �

n log n, and runs in time O(((m+ n)n

2

log

2

n)=s). A generalization of this algorithm

gives a second algorithm using space O(�n

1=�

log n), for 2 � � � log n, and time n

O(�)

.

It can use as little as �(log

2

n) space, but its running time becomes superpolynomial

whenever its space is constrained to n

o(1)

. An optimization to the simple algorithm

gives a more time-e�cient third algorithm: for space O(s), n

1=2

log n � s � n log n, it

uses time O((m+n)((n=s)

2

log

3

n)(log((n log n)=s))). Together, these algorithms pro-

vide a nearly smooth tradeo� for ustcon between time-e�cient, space-intensive algo-

rithms, such as depth- and breadth-�rst, and time-intensive, space-e�cient algorithms



5

such as Savitch's (see Section 1.3 below). As noted in Bar-Noy, et al. [BNBK

+

89], no

previously known deterministic algorithm for ustcon achieved simultaneous polyno-

mial time and sublinear space.

In Chapter 3, we present three time-space tradeo�s for stcon. The �rst is a

variant of depth- and breadth-�rst search that can use between �(n log n) and �(n)

space. The second is another variant of breadth-�rst search, which, when combined

with the third, gives a sublinear space, polynomial time algorithm for stcon. Again,

no previously known deterministic algorithm for stcon achieved simultaneous poly-

nomial time and sublinear space. The result is somewhat surprising given the work

of Tompa [Tom82], who showed that such an algorithm is impossible for certain com-

mon approaches to solving stcon. The third tradeo� solves the short paths problem,

a variant of stcon where we assume the distance from s to t is \short" (at most

f(n) for some f(n) = o(n)). We are not aware of any previous algorithms that

solve this problem in sublinear space and polynomial time. The short paths trade-

o� turns out to be more powerful than it at �rst appears: it is a generalization of

two well-known stcon algorithms, breadth-�rst search and Savitch's algorithm (see

Section 1.3 below).

In Chapter 4, we conclude with some observations on the di�erence between

ustcon and stcon. In particular, we concentrate on the power of knowing a bound

on the length of a simple path from s to t. We show that many path length prob-

lems, including �nding the length of the shortest path from s to t in a directed or

undirected graph, and solving the short paths problem to a su�ciently long distance

in a directed or undirected graph, are NL-complete. We generalize this result to show

a close relationship between algorithms for the short paths problem and for stcon:

for a wide range of space bounds, an algorithm for the short paths problem to a su�-

ciently long distance yields an algorithm for stcon with the same asymptotic space

bound. The reverse is nearly true: an stcon algorithm implies an algorithm for the

short paths problem with nearly the same asymptotic space bound. None of these

observations about path lengths appears to hold for small space ustcon algorithms,

suggesting that knowing the length of a path is intrinsic to solving stcon, but not

ustcon.

Before presenting these results, it will be useful to review previously known upper

and lower bounds for ustcon and stcon.



6

1.3 Previous Algorithms

The well-known depth- and breath-�rst search algorithms give a time-optimal solution

for stcon and ustcon. For n vertex,m edge graphs, both algorithms run in optimal

time �(m+ n). If one is interested in space, though, these algorithms are ine�cient:

the size of the stack (in depth-�rst search) or queue (in breadth-�rst search) of visited

but unexplored vertices can become linear in the number of nodes, giving a space

bound of �(n log n) (�(n) vertex names, each taking �(log n) bits to store).

On the other end of the time-space spectrum, Savitch [Sav70] devised a deter-

ministic algorithm for stcon that uses little space but superpolynomial time. His

algorithm is conceptually simple: to discover whether there is a path from s to t,

look for a path of length at most n. To look for a path of length at most k, choose

a vertex, v, as the midpoint of the path, and look for a path of length at most dk=2e

from s to v, and a path of length at most bk=2c from v to t. If such a path cannot

be found, backtrack and try a di�erent vertex in place of v. This recursive algorithm

stores only a constant number of vertex names at each level of recursion, and recurses

to depth �(log n), since the path lengths are halved at each level. Therefore, it uses

space �(log

2

n). However, because it can try all possible choices of midpoints, it can

use time exponential in its space bound, or n

�(logn)

.

There are two other algorithms that solve s-t connectivity deterministically with

essentially the same time and space performance as Savitch's algorithm: Cook and

Racko� [CR80] present an algorithm similar to Savitch's that solves stcon on their

more restrictive Jumping Automata on Graphs (JAG) model. Nisan [Nis90] uses

pseudorandom generators to \derandomize" the random walk algorithm of Aleliunas

et al. [AKL

+

79] (for more on the random walk algorithm, see Section 1.3.1 below).

Nisan's algorithm is unique among the algorithms discussed so far, because it works

only on undirected graphs.

Substantial progress on the time-space behavior of ustcon has been made since

the results of Chapter 2 appeared [BR91]. First, Nisan [Nis92] improved his earlier

pseudorandomness result to show that ustcon is solvable deterministically in poly-

nomial time and O(log

2

n) space. Nisan's result was a breakthrough, since it showed

that ustcon algorithms with small space bounds can perform asymptotically bet-

ter than Savitch's algorithm. Unfortunately, the running time is something like n

45

,



7

making the algorithm extremely impractical. More recently, Nisan et al. [NSW92]

show the �rst deterministic algorithm for ustcon with a space bound below Savitch's

algorithm. Their algorithm uses pseudorandom generators and a contraction tech-

nique similar to that of the algorithms in Chapter 2 to solve undirected connectivity

in space O(log

1:5

n). For a further discussion of these results, see Section 4.2.

Before the work in this thesis, there were no deterministic s-t connectivity algo-

rithms known between the time-space extremes of breadth- and depth-�rst search

and Savitch's algorithm. So, for example, it might have been true that any algorithm

using less space than depth-�rst search was forced to use as much time as Savitch's

algorithm. The recent results of Nisan, and Nisan et al. help �ll in some of the blanks

in the time-space spectrum for ustcon, particularly for space bounds of O(log

2

n)

or less. For space bounds above O(log

2

n) these results are less interesting, and, of

course, they say nothing about the time-space behavior of stcon.

1.3.1 Randomized Algorithms for Connectivity

More is known about the time-space complexity of probabilistic algorithms for

ustcon. The random walk algorithm of Aleliunas et al. [AKL

+

79] uses optimal

space �(log n) but is a factor of n slower than the time-optimal depth-�rst search

(�(mn) instead of �(m + n)). The algorithm works by repeatedly moving from a

vertex to a new vertex, where the new vertex is chosen at random from the neighbors

of the old vertex. Aleliunas et al. show that if s is connected to t, then such a walk

of length 2m(n� 1) taken from s will visit t with probability at least 1=2.

Broder et al. [BKRU89] show a nearly smooth time-space tradeo� between the

space-optimal random walk algorithm and the time-optimal depth- and breadth-

�rst search algorithms. Note that both algorithms have a time-space product of

�(nm log n). For space O(s), log n � s � n log n, Broder et al.'s algorithm uses

�(m

2

log

6

n=s) time. The algorithm scatters p pebbles (s = p log n) on the graph at

random according to the stationary distribution of the random walk, and repeatedly

takes random walks of length O(m

2

log

3

n=p

2

) from these pebbles, as well as from s

and t. If a walk from a pebble discovers another pebble, the algorithm notes that

the two pebbled vertices are in the same connected component. After �(log n) walks

from each pebble, if the algorithm has not determined that s and t are connected, the



8

pebbles are redistributed at random and new walks are taken. Broder et al. show that

if s and t are connected, the algorithm will discover this fact with high probability

within �(log n) repetitions of the pebble placement and random walk process.

1.3.2 Nonuniform Algorithms for Connectivity

Considerable e�ort has been expended studying universal traversal sequences (UTS's).

For simplicity, we will only consider UTS's for regular graphs | the de�nition can be

extended to non-regular graphs as well. Given a d-regular graph, G, we can give the

edges adjacent to each vertex a unique label from 0 to d� 1. Note that each edge is

labeled twice, once from each of its endpoints, and these two labels can be di�erent.

Given this labeling, a sequence of numbers between 0 and d � 1 can be interpreted

as a sequence of moves (a traversal sequence) between the vertices of G, where each

number gives the edge that should be traversed from the current vertex. If, for any

connected d-regular graph with n vertices, and any possible starting vertex, a given

traversal sequence visits all vertices in the graph, then the traversal sequence is said

to be universal.

While it is not di�cult to show that UTS's for directed graphs are of expo-

nential length, Aleliunas et al. [AKL

+

79] prove (nonconstructively) that univer-

sal traversal sequences of polynomial length exist for undirected graphs. Upper

and lower bounds on the length of UTS's are known for various types of graphs

[AAR90, BNBK

+

89, BRT89, HW89, Tom90]. Some authors show how to construct

superpolynomial length sequences [BNS89, BNBK

+

89, Bri87, KPS88, Nis90], and

Istrail shows how to construct polynomial length sequences for certain classes of

graphs [Ist88, Ist90]. If one could construct polynomial length UTS's for arbitrary

graphs in space O(log n), this would give an O(log n) space algorithm for ustcon,

since a UTS can easily be followed in O(log n) space. Currently, though, universal

traversal sequences show only that ustcon is in nonuniform O(log n) space.

1.4 Lower Bounds for s-t Connectivity

Only trivial lower bounds are known for the time-space behavior of s-t connectivity

on general machines. Before presenting these lower bounds, we must de�ne the most



9

common ways to encode a graph.

1.4.1 Graph Encodings

The two most common graph encodings are the edge list and the adjacency matrix.

� Adjacency matrix encoding | The edges in the graph are encoded using an n�n

matrix, A, where A(i; j) is 1 if there is an edge from i to j, and 0 otherwise.

This encoding is more e�cient for dense graphs (graphs with a large number of

edges). For undirected graphs, the matrix is symmetric about the diagonal, of

course.

� Edge list encoding | The graph is encoded using a vector of size n representing

the vertices. Each vertex has associated with it a linked list of its neighbors in

some arbitrary order. This encoding is more e�cient for sparse graphs.

Either encoding can be converted to the other in deterministic logarithmic space.

Given the edge list encoding of a graph, G, we can determine whether there is an edge

in G from i to j in O(log n) space by reading the encoding and looking for an entry

for j in i's edge list. The adjacency matrix for G can be constructed in O(log n) space

by repeating this process for all n

2

entries in the matrix in order. The conversion

from an adjacency matrix to an edge list encoding works in a similar way.

Other graph encodings besides adjacency matrix and edge list are possible, but not

all encodings seem reasonable. For example, consider a connectivity matrix encoding:

the graph is given as an adjacency matrix and an n�n matrix, C, where C(i; j) is 1 if

there is a path from i to j and 0 otherwise. Obviously, an algorithm which uses such

an encoding on a machine with random access to its input can solve s-t connectivity

in O(log n) time.

A de�nition of reasonable encodings for graphs seems di�cult. We can, neverthe-

less, give a lower bound on the size of a graph encoding for ustcon.

Theorem 1.1 Any graph encoding used to solve ustcon must be of size


(n log n), assuming the encoding is independent of the values of s and t.



10

Proof: For any graph, we can ask n

2

possible di�erent s-t connectivity questions.

Consider the possible (n

2

)-tuples of answers to these queries. Some tuples are im-

possible | for example, for any v, the query \Is v connected to v?" can never be

answered \no."

The number of valid tuples for an undirected graph with n vertices is equal to

the number of ways of dividing the vertices into connected components, which can

be expressed mathematically as:

n

X

r=1

(

n

r

)

;

where

n

n

r

o

is a Stirling number of the second kind [Coh78, pages 118-134], the number

of possible ways to partition a set of n elements into r subsets. Closed form expressions

for most Stirling numbers of the second kind are di�cult to evaluate for variable n,

but we can show the following useful lower bound:

(

n

r

)

� r

n�r

:

Consider the partitions with r subsets where we place the �rst r elements into r

di�erent subsets, and the remaining n� r elements in any subset. There is only one

way to partition the �rst r elements, and r

n�r

ways to place the remaining elements.

Any such partition is one of the valid partitions of n elements into r sets. Furthermore,

no valid partition is generated twice in this way, since the placement of the �rst r

elements e�ectively \distinguishes" each subset. r

n�r

is therefore a lower bound on

the size of

n

n

r

o

.

Letting r = n=2 in this bound, we can see that there are at least (n=2)

n=2

possi-

ble tuples of answers. Any graph encoding must be able to distinguish between all

possible tuples, so any encoding scheme for graphs with n vertices must use at least

log(n=2)

n=2

= 
(n log n) bits. 2

1.4.2 Time Lower Bounds

There has been some previous work on lower bounds to determine monotone graph

properties given an adjacency matrix encoding. See, for example, Rivest and



11

Vuillemin's and Kahn et al.'s work [RV76, KSS84]. This work is not directly ap-

plicable to s-t connectivity, since their bounds apply only to global graph properties

(properties that are independent of vertex numbering). So, for example, their work

gives an 
(n

2

) time lower bound to determine whether a graph contains a pair of con-

nected vertices, but not to determine whether a speci�c pair of vertices is connected.

The following proposition gives a lower bound on the time requirements of ustcon

for the adjacency matrix and edge list encodings. Note that the bounds given in this

proposition, as well as the bounds in the corollaries that follow, apply to Random

Access Machines (RAMs) as well as Turing machine.

Proposition 1.2 (a) Any deterministic algorithm that solves ustcon on n ver-

tex graphs uses time 
(n

2

) given an adjacency matrix encoding.

(b) Let m be a function of n such that �n � m � n

2

=4, for some constant � > 1.

Then, any deterministic algorithm that solves ustcon on n vertex, m edge

graphs uses time 
(m) given an edge list encoding.

Proof: The basic idea of the proof is that if the algorithm always fails to examine

a su�ciently large number of edges in every graph, it cannot distinguish between two

similar graphs: one in which an edge e exists and there is a path from s to t, and

another in which there is no edge e and therefore no path from s to t.

(a) Let G be the following graph with 4 or more vertices and n�2 edges: s is vertex

number 1, with edges to vertices in the set V

s

= f2; 3; : : : ; dn=2eg. t is vertex

number n, with edges to vertices in the set V

t

= fdn=2e + 1; : : : ; n� 2; n � 1g.

Note that there are at least b(n � 2)=2c

2

� n

2

=16 (because n � 4) possible pairs

of vertices, (u; v), such that u 2 V

s

and v 2 V

t

. Suppose M is an algorithm

for ustcon, and M runs in fewer than n

2

=32 steps on an adjacency matrix

encoding. Given G, M must reject, since s is not connected to t. Furthermore,

there must be one pair of vertices, (u; v); u 2 V

s

; v 2 V

t

, for which M failed

to examine both A(u; v) and A(v; u), the entries in the adjacency matrix that

determine whether there is an edge between u and v. Let G

0

be the same graph

as G, except with an edge from u to v. M will also reject G

0

, since G

0

and G

di�er only in two entries in the adjacency matrix, neither of which is examined

by M . But s is connected to t in G

0

, so we have a contradiction.



12

(b) Fix m to be a function of n such that �n � m � n

2

=4, for some constant

� > 1. Suppose M is an algorithm for ustcon, and M runs in fewer than

b(�� 1)m=2�)c =2 steps on n vertex, m graphs using an edge list encoding.

Let G be a graph similar to the graphs in part (a): it has 6 or more vertices,

with dn=2e � 1 edges from s to the vertices in V

s

, and bn=2c � 1 edges from t

to the vertices in V

t

. Add other edges to G, E

V

s

, between vertices in V

s

, and

E

V

t

, between vertices in V

t

, so that G has m edges in total, and so that jE

V

s

j

and jE

V

t

j di�er by at most one. The fraction of edges in E

V

s

and E

V

t

is at least

(� � 1)=�, since only n � 2 edges are not in these two sets. This means the

number of edges in either set is at least b(�� 1)m=2�)c. Given G, M must

reject, and furthermore, M will always read fewer than half the edges in E

V

s

and fewer than half the edges in E

V

t

. Therefore, there must be some pair of

edges e

1

= fv

1

; v

2

g 2 E

V

s

and e

2

= fv

3

; v

4

g 2 E

V

t

, such that M doesn't read

either entry of either edge (that is, it doesn't read v

1

's entry in v

2

's edge list,

v

2

's entry in v

1

's list, v

3

's entry in v

4

's list, or v

4

's entry in v

3

's list).

Let G

0

be the same graph as G, except that e

1

and e

2

are crossed. To cross the

edges, replace e

1

and e

2

with e

0

1

= fv

1

; v

4

g and e

0

2

= fv

3

; v

2

g, making sure to

put the entries for these new edges in the positions formerly held by e

1

and e

2

in the respective edge lists. M will also reject G

0

, since G

0

and G di�er only in

the entries for e

0

1

and e

0

2

in the edge lists of v

1

; v

2

; v

3

, and v

4

, none of which is

examined by M . But s is connected to t in G

0

, so we have a contradiction.

Note that this proof requires the ordering of the edge lists to be somewhat

arbitrary. For example, if all edge lists were sorted by the vertex number of

the neighbors, one could not guarantee that the entries for the crossed edges

occurred in the same positions in the edge lists as the old edges.

2

The same arguments can be used directly to give lower bounds for undirected s-t

nonconnectivity (the complement of ustcon) on nondeterministic machines:

Corollary 1.3 (a) Any nondeterministic algorithm that solves undirected s-t

nonconnectivity on n vertex graphs uses time 
(n

2

) given an adjacency ma-

trix encoding.



13

(b) Let m be a function of n such that �n � m � n

2

=4, for some constant � > 1.

Then, any nondeterministic algorithm that solves undirected s-t nonconnectivity

on n vertex, m edge graphs uses time 
(m) given an edge list encoding.

Proof:[of part (a)] Suppose M is a nondeterministic algorithm for undirected

s-t nonconnectivity that runs on an adjacency matrix encoding, and M uses fewer

than n

2

=32 steps. Given G from Proposition 1.2[a], M must accept. Let Q be an

accepting path in M on input G. On path Q there must be a pair of vertices,

(u; v); u 2 V

s

; v 2 V

t

, for whichM failed to examine both A(u; v) and A(v; u). Let G

0

be the same graph as G, except with an edge from u to v. s is connected to t in G

0

,

but M will also accept G

0

along the same path, Q, since G

0

and G only di�er in two

entries in the adjacency matrix, neither of which is examined along path Q. Again,

we have a contradiction.

The proof of part [b] is by a similar modi�cation to the proof of Proposition 1.2[b].

2

Note that the same lower bound cannot be shown for ustcon on nondeterministic

machines, since to show connectivity, an algorithm need only �nd a path, which takes

nondeterministic time O(n log n). Finally, note that these proofs for undirected s-t

connectivity and nonconnectivity extend to directed s-t connectivity and nonconnec-

tivity as well.

Corollary 1.4 (a) Any deterministic algorithm that solves stcon or nondeter-

ministic algorithm that solves directed s-t nonconnectivity on n vertex graphs

uses time 
(n

2

) given an adjacency matrix encoding.

(b) Let m be a function of n such that �n � m � n

2

=4, for some constant � >

1. Then, any deterministic algorithm that solves stcon or nondeterministic

algorithm that solves directed s-t nonconnectivity on n vertex, m edge graphs

uses time 
(m) given an edge list encoding.

1.4.3 Space Lower Bounds

It is easy to show a space lower bound of 
(log n) on a RAM | the above time lower

bound proofs show that an algorithm for ustcon must read a constant fraction of



14

its input, and therefore needs space 
(log n) on a RAM to index the registers holding

the input. For Turing machines, a space lower bound can be derived for the edge

list and adjacency matrix encodings using a crossing sequences argument. For an

introduction to crossing sequence arguments, see Hopcroft and Ullman [HU79, pages

38, 314-315] [HU69], and Hennie [Hen65].

Proposition 1.5 Any deterministic Turing machine that recognizes ustcon us-

ing the adjacency matrix or edge list encoding uses space 
(log n).

Proof: Assume without loss of generality that the graph has 4k + 2 vertices.

Consider the following family of graphs. Besides s and t, each graph contains vertices

u

1

; u

2

; : : : ; u

2k

and v

1

; v

2

; : : : ; v

2k

. Each graph has 4k edges. fu

i

; v

i

g is an edge for all

1 � i � 2k. In addition, s has edges to half of the u vertices, and t has edges to half

of the v vertices. Let C

s

= fijfs; u

i

g 2 Eg, and C

t

= fijft; v

i

g 2 Eg (in other words,

C

s

and C

t

contain the numbers of the u and v vertices that are neighbors of s and

t). There is a path from s to t if and only if C

s

\ C

t

6= ;.

With either encoding, we can arrange the vertices so that all edges involving s

appear before edges involving t: s will be vertex number 1, t will be vertex number

4k + 2, and, for all 1 � i � 2k, u

i

will be vertex number i + 1 and v

i

will be

vertex number 2k + i + 1. The input can then be written as he

s

e

t

i, where e

s

is a

substring of the input containing all information involving the k edges from s, and e

t

is a substring containing all information involving the k edges from t. Examine the

behavior of a Turing machine,M , that solves ustcon. In particular, we are interested

in the con�gurations of M when it crosses the boundary between e

s

and e

t

, either

by moving the input head right from the rightmost character of e

s

, or moving the

input head left from the leftmost character of e

t

. Each time such a crossing occurs,

we will write down the current con�guration ofM , including the contents of the work

tape, the positions of any heads, and the current state. The sequence of all these

con�gurations in a computation of M is a crossing sequence.

Intuitively, the crossing sequence must somehow encode all information about

each half of the input, and therefore gives a lower bound on the space (and the time)

requirements of the machine. Suppose we have two di�erent disconnected graphs in

the family, one encoded he

s

e

t

i and the other he

0

s

e

0

t

i. ThenM must produce di�erent



15

crossing sequences for each input. Suppose it did not. Then examine the behavior of

M on the graph he

s

e

0

t

i. M will generate the same crossing sequence on this input as

on the other two, so M will give the same answer for this s-t connectivity problem as

for the other two. But this graph is connected (for every C

s

there is only one possible

C

t

with an empty intersection, and this C

t

is di�erent for each C

s

). By contradiction,

then, M produces a di�erent crossing sequences for each disconnected graph.

There are

�

2k

k

�

= 2


(n)

such disconnected graphs, so there must be 2


(n)

such

crossing sequences. If M uses space S, then there are only 2

O(S)

possible con�gura-

tions at each crossing: there are two possible input head positions, a constant number

of possible states, O(S) possible worktape head positions, and 2

O(S)

possibilities for

the contents of the worktape. Furthermore, M can cross c only 2

O(S)

times, since if

it repeated a con�guration while crossing either to the right or left, it would loop for-

ever. Therefore, the number of possible crossing sequences is 2

O(S)�2

O(S)

, which must

be more than the number of possible disconnected graphs. For suitable constants c

1

and c

2

, and n su�ciently large, this gives us:

2

c

1

S�2

c

1

S

� 2

c

2

n

c

1

S � 2

c

1

S

� c

2

n

S = 
(log n)

2

As in Section 1.4.3, the argument carries through for nondeterministic undirected

s-t nonconnectivity and for the directed versions of these problems:

Corollary 1.6 Any nondeterministic Turing machine that recognizes undirected

s-t nonconnectivity using the adjacency matrix or edge list encoding uses space


(log n).

Corollary 1.7 Any deterministic Turing machine that recognizes stcon using

the adjacency matrix or edge list encoding uses space 
(log n). Any nondeterminis-

tic Turing machine that recognizes directed s-t nonconnectivity using the adjacency

matrix or edge list encoding uses space 
(log n).



16

Some tighter lower bounds are known for s-t connectivity on restricted models

of computation. Cook and Racko� [CR80] show an 
(log

2

n= log log n) space lower

bound for stcon on their JAG model, closely matching Savitch's upper bound.

Berman and Simon [BS83] extend this result to give a similar lower bound on a

randomized version of the JAG. Beame et al. [BBR

+

90] give time-space lower bounds

for ustcon on more restricted versions of the JAG model. Finally, Tompa [Tom82]

shows that for certain natural approaches to solving stcon, performance degrades

sharply with decreasing space: space o(n) implies superpolynomial time, and space

n

1��

for �xed � > 0 implies time n


(logn)

, essentially as slow as Savitch's algorithm.

It has been conjectured [Coo79] that no deterministic stcon algorithm can run in

simultaneous polynomial time and polylogarithmic space. The results of Chapter 3

do not disprove this conjecture, but they do show that the behavior elicited from

certain algorithms by Tompa is not intrinsic to the problem.

1.5 Logspace Reducibility

Frequently in this thesis, we will want to show that a language (or function) is logspace

reducible to another language. The following section is based on Hopcroft and Ull-

man's discussion of logspace many-one reducibility [HU79, pages 322-324], and Ladner

and Lynch [LL76].

De�nition: A language, L

1

, is logspace many-one reducible to a language, L

2

,

(denoted L

1

�

log

L

2

) if there exists a deterministic machine, M , which, given an

input, y; jyj = n, can, using O(log n) space, produce an output, x, such that x 2

L

2

if and only if y 2 L

1

. The output x is written on a one-way, write-only output

tape that is not considered when determining the space bound.

De�nition: A function, f(x), (alternately, a language, L

1

) is logspace Turing

reducible to a language, L

2

, (denoted f(x) �

log;T

L

2

, or L

1

�

log;T

L

2

) if there exists

a deterministic machine, M , which, given an oracle for L

2

, can, for any y; jyj = n,

compute f(y) (decide whether y 2 L

1

) using O(log n) space, not counting the space

needed to write down the oracle queries or the function value. The function value is

written on a one-way, write-only output tape. The oracle queries are written on a

one-way, write-only query tape that is erased when a query is answered.



17

For our purposes, many-one and Turing reductions are almost always equivalent,

since most of our reductions will deal with languages in NL, and Immerman's and

Szelepcs�enyi's proofs that NL is closed under complementation [Imm88, Sze88] imply

that NL is also closed under logspace Turing reductions. Still, for simplicity, we will

try to use many-one reductions whenever possible. Unless otherwise speci�ed, for the

rest of this thesis, logspace reducibility will mean logspace many-one reducibility.

Intuitively, L

1

�

log

L

2

if we can compute L

1

in logarithmic space by calling a

subroutine for L

2

. As an example of a log space reduction, it's easy to see that

ustcon �

log

stcon. Simply take every edge fu; vg in the undirected graph and

replace it with a pair of directed edges, (u; v) and (v; u). The replacement can be done

in space O(log n), and there is a path from s to t in the directed graph if and only if

s was connected to t in the undirected graph. As pointed out in Section 1.1.1, page 3,

determining whether the converse (stcon �

log

ustcon) is true is an important open

problem.

Given a log space reduction, L

1

�

log

L

2

, we would like to be able to show that

a logarithmic space algorithm for L

2

implies the existence of a logarithmic space

algorithm for L

1

. The obvious approach is to use the machineM from the reduction

to transform an input to L

1

into an input to L

2

in O(log n) space, and feed this

input to the O(log n) space machine for L

2

(note that the length of the input to the

machine for L

2

is n

O(1)

, since M can only use polynomial time). Unfortunately, the

input to L

2

could be of length !(log n), as in the example above, where the length of

the input to the stcon algorithm is about the same length as the ustcon input.

To solve this problem, we will replace the machine for L

2

with a machine that

asks for one bit of its input at a time. It can, for example, read its input all the way

through, or read some fraction of the input, then start over again at the beginning, or

even skip about in the input. M can then be replaced by a similar machine,M

0

, that

generates any speci�ed bit of M 's original output. It is not di�cult to see that M

and the machine for L

2

can always be modi�ed to behave in this way. The modi�ed

machines can be merged to get a O(log n) space algorithm for L

1

| each machine

uses space O(log n), and they use only O(log n) space to communicate. Multiple

reductions can also be composed in the same way. See Hopcroft and Ullman [HU79,

Lemmas 13.2 and 13.3] for a detailed proof of this result. Chapter 4 uses this method

frequently to compose many space bounded reductions into a single reduction.



Chapter 2

TIME-SPACE TRADEOFFS FOR UNDIRECTED

S-T CONNECTIVITY

2.1 Introduction

This chapter presents three deterministic algorithms for undirected s-t connectivity

that achieve sublinear space and polynomial time simultaneously. The algorithms

provide a nearly smooth tradeo� for ustcon between time-e�cient, space-intensive

algorithms, such as depth- and breadth-�rst search, and time-intensive, space-e�cient

algorithms such as Savitch's, and Cook and Racko�'s (see Section 1.3). The �rst al-

gorithm, called the simple algorithm below, uses space O(s), n

1=2

log n � s � n log n,

and runs in time O(((m + n)n

2

log

2

n)=s). The second (the recursive algorithm)

is a generalization of the �rst, using space O(�n

1=�

log n), for 2 � � � log n, and

time n

O(�)

. It can use as little as �(log

2

n) space, but its running time becomes

superpolynomial whenever its space is constrained to n

o(1)

. The third algorithm

(the batched algorithm) is a more time-e�cient variant of the �rst: for space O(s),

n

1=2

log n � s � n log n, it uses time O((m + n)((n=s)

2

log

3

n)(log((n log n)=s))).

When s = �(n log n), the time bound is O((m+n) log n), only a factor of log n worse

than the time-optimal bound of depth- and breadth-�rst search.

The remainder of the chapter is organized as follows. Sections 2.2, 2.3 and 2.4

present the simple, recursive, and batched algorithms, respectively. Section 2.5

presents some notes and concluding remarks.

For simplicity, when discussing the space used by our algorithms below, we will

often give the space used in terms of registers, where each register holds O(log n)

bits, enough to specify the name of a vertex, for example.



19

2.2 The Simple Algorithm

The �rst algorithm depends upon a space-bounded breadth-�rst search subroutine

(bbfs) to �nd small sets of connected vertices. Such a routine is easy to implement;

basically, it is a standard breadth-�rst search routine modi�ed to quit as soon as

a certain number of vertices, b, have been found, or the component in which it is

started is exhausted. Using this routine, a single vertex, v, can be used to implicitly

mark a neighborhood of up to b vertices, namely, the vertices, including v itself,

found by starting the bbfs routine at v. Let bbfs(v; b) denote this set, and de�ne a

full neighborhood to be one that contains b vertices. All our algorithms depend on

repeatedly recomputing the neighborhoods of vertices; such recomputation is common

when attempting to use a limited amount of space. (See [Pip80], for example.)

Using the bbfs routine, a few special cases can be eliminated with a little initial

work. Begin by generating the neighborhoods of s and t. If they intersect, we are

�nished: s and t are connected. Next, check that both neighborhoods are full. If

bbfs fails to �nd b vertices connected to a given vertex, the vertex must belong to a

small connected component, i.e. one with fewer than b vertices. Thus, assuming s's

and t's neighborhoods are disjoint, if either neighborhood is not full, the two vertices

can not be connected. Furthermore, if both neighborhoods are full, then any other

vertex whose neighborhood is not full cannot be connected to s or t, and can safely

be ignored.

If the neighborhoods of s and t are full and disjoint, the algorithm identi�es and

stores the names of a certain set of vertices, L, called landmarks. One goal of the

algorithm is to �nd enough landmarks, l, so that their associated neighborhoods,

bbfs(l; b), nearly cover the graph, and so �nding connected components will be quick.

On the other hand, the set of landmarks must be small enough that the space con-

straint is not violated. To achieve these goals the algorithm constructs L satisfying

the following three conditions:

� s and t are both members of L.

� The neighborhoods of the landmarks in L are full and pairwise disjoint. That



20

is,

8 l 2 L; jbbfs(l; b)j = b; and

8 l

1

; l

2

2 L; (l

1

6= l

2

)) bbfs(l

1

; b) \ bbfs(l

2

; b) = ;:

This insures that there can be no more than n=b landmarks.

� L is a maximal set satisfying the above properties. Thus the neighborhood of

any vertex not in L either is not full, or has at least one vertex in common with

the neighborhood of some landmark. That is,

8 v 62 L (jbbfs(v; b)j < b) _ (9 l 2 L s.t. bbfs(v; b) \ bbfs(l; b) 6= ;):

The set L can be built in one pass through all the vertices. Begin by adding s

and t to L. For every other vertex, v, generate the neighborhood of v; if it is of size

b and disjoint from the neighborhoods of all previous landmarks, then add v to L.

Once the set of landmarks is constructed, we determine which landmarks are in

the same connected component. De�ne a function cl(v) on the vertices to denote

the \closest" landmark to a given vertex. If the vertex is in a small component, cl

simply returns a special value, \small", indicating that fact. Otherwise, it returns

the lowest numbered landmark whose neighborhood intersects the neighborhood of

the vertex:

cl(v) =

8

<

:

\small" if jbbfs(v; b)j < b;

min I otherwise, where

I = fl 2 L j bbfs(l; b) \ bbfs(v; b) 6= ;g:

By the de�nition of L, I 6= ; if jbbfs(v; b)j = b. Note that if v is a landmark, then

cl(v) = v.

The function cl induces a partition on the vertices, with one block per landmark,

plus one for all vertices in small components, which necessarily are not connected to

either s or t. Furthermore, we know that for each landmark, l, all vertices in the

block fv j cl(v) = lg are connected. We can use this information to discover which



21

landmarks are in the same connected component: if there is an edge fu; vg such that

u is in one block, and v is in another, then we know that the landmarks corresponding

to these two blocks are connected. By considering each edge in turn, the algorithm

is able to determine the connectivity information for all landmarks.

Connectivity is encoded by constructing sets of landmarks, where two landmarks

are members of the same set only if they are known to be in the same connected

component. The sets can be manipulated e�ciently using Union-Find subroutines;

although it does not improve the asymptotic running time of the algorithm, we will

use the very fast version of the Union-Find subroutines with weighted union and path

compression [Tar75]. We will call these sets union-�nd sets. Begin by constructing

a singleton set containing each landmark, plus an extra set containing the special

value, \small". For all the edges e = fu; vg, perform a Union on Find(cl(u)) and

Find(cl(v)). Using the reasoning in the previous paragraph, if the two vertices are

in separate blocks before the Union, we now know that the corresponding landmarks

are connected, and hence these sets should be joined. The following lemma asserts

that this process is su�cient to determine the connectivity between the landmarks:

Lemma 2.1 After following the above procedure, any two landmarks, in partic-

ular s and t, will end in the same union-�nd set if and only if they are in the same

connected component.

Proof: First, we will show by induction on k that, for any path of length k�1 in

a component with b or more vertices, v

1

; v

2

; : : : ; v

k

, after processing the k � 1 edges

fv

1

; v

2

g; fv

2

; v

3

g; : : : ; fv

k�1

; v

k

g, the landmarks cl(v

1

); cl(v

2

); : : : ; cl(v

k

) will all be in

the same union-�nd set. This is trivially true when k = 1. For k > 1, consider

the edge in the path that is processed last, fv

i

; v

i+1

g. By the induction hypothesis,

just before edge fv

i

; v

i+1

g is processed, cl(v

1

); : : : ; cl(v

i

) are all in one union-�nd set,

as are cl(v

i+1

); : : : ; cl(v

k

). Then Union(Find(cl(v

i

)),Find(cl(v

i+1

))) will join these two

sets (if necessary). Thus, any two connected landmarks will end in the same set.

For the other direction, we show by induction on the number k of edges processed

that for all pairs of vertices (u; v), if Find(cl(u)) = Find(cl(v)) then either u and v

are connected, or both are in small components. When k = 0 this easily follows from

the de�nition of cl and the initial construction of the union-�nd sets. For k > 0, let



22

fx; yg be the kth edge processed. If Find(cl(u)) = Find(cl(v)) holds after fx; yg is

processed, but not before, then it must be that Find(cl(u)) and Find(cl(v)) were the

two (distinct) sets joined when processing fx; yg. Without loss of generality, suppose

Find(cl(u)) = Find(cl(x)) and Find(cl(v)) = Find(cl(y)) before fx; yg is processed.

Then, by induction, u and x are connected, as are v and y, and hence u and v are

connected through edge fx; yg. 2

A detailed \pseudocode" version of the main routine algorithm is presented in

Figure 2.1. A pseudocode version of the cl function is presented in Figure 2.2.

2.2.1 Analysis of the Simple Algorithm

The bounded breadth-�rst search routine must check whether the endpoint of each

edge explored has been visited or not. Standard breadth-�rst search routines do

this in constant time using a 
ag for each vertex, but this requires too much space.

Instead, our bounded breadth-�rst search routine looks up the endpoint of the edge

in the list of vertices already known to be in the neighborhood. Lookup and insertion

in a list can be accomplished in time O(log b) by using a balanced search tree [Knu73].

Thus, overall, bbfs uses time O(b

2

log b) with O(b) registers | it can explore only b

vertices, which can have only O(b

2

) edges among them.

Constructing the intersection between two neighborhoods of size b can be done

in time O(b) using O(b) registers since the vertices are sorted in the neighborhoods'

balanced search trees. If l is de�ned to be the number of landmarks, then the cl

routine runs in time O(b

2

l log b) using O(b) registers.

The loop to �nd the landmarks in Figure 2.1 takes timeO(b

2

ln log b), using O(b+l)

registers. The Union-Find operations take time O(m�(m)) [Tar75] and use O(l)

registers. The cl routine is called 2m times, each call taking time O(b

2

l log b), so

connecting the union-�nd sets and �nding the landmark set dominates the algorithm's

running time, taking time O(b

2

l(m+ n) log b).

Since the bbfs procedure �nds b vertices associated with each landmark, at most

n=b landmarks can be found, giving a total space bound of O((b + n=b) log n) and a

time bound of O(bn(m+n) log b). When b =

p

n, space is minimized, and the running

time is O((m+n)n

1:5

log n). Increasing b from

p

n increases both the space and time



23

Algorithm Ustcon (integer: b);

f1 � b � ng

generate bbfs(s; b) and bbfs(t; b).

if s's neighborhood overlaps t's then return (Connected);

if either neighborhood is not full then return (Not Connected);

Initialize the set of landmarks to fs; tg;

for all vertices, v do begin f�nd the landmarksg

generate bbfs(v; b);

if v's neighborhood is not full then Not a landmark. Go to next vertex.

for all landmarks, l do begin

generate bbfs(l; b);

if v's neighborhood overlaps l's then Not a landmark. Go to next vertex.

end;

Add v to the set of landmarks.

end;

Create a singleton Union-Find set containing each landmark, plus one

containing the special value \small" for small components.

for all edges, e = fu; vg do begin

Union(Find(cl(u)), Find(cl(v)));

end;

if Find(s) = Find(t) then return (Connected);

else return (Not Connected);

end Ustcon.

Figure 2.1: The main routine of the simple algorithm

used, so that range is uninteresting. In the other direction, though, as b is decreased

from

p

n, the time of the algorithm decreases as the space increases. For 1 � b �

p

n,

the algorithm uses space s = O((n log n)=b) and time O((m+n)n

2

log n log b=s), for a

time-space product of O((m+n)n

2

log n log b). This is o� by a factor of at most n log n

from the best known algorithms (depth-�rst or breadth-�rst search, and random walk;



24

procedure cl (vertex v): vertex;

fReturn the \closest" landmark to vg

generate bbfs(v; b);

if v's neighborhood is not full then return (\small");

for all landmarks, l, in order do begin

generate bbfs(l; b);

if v's neighborhood overlaps l's then return (l);

end;

end cl.

Figure 2.2: The cl function of the simple algorithm

see Broder et al. [BKRU89]), and a factor of n when the space approaches its upper

bound (O(n log n)).

In summary, we have shown the following.

Theorem 2.2 For any n

1=2

log n � s � n log n, the simple algorithm, presented

above, solves ustcon for arbitrary n vertex, m edge graphs in space O(s), and time

O(((m+ n)n

2

log

2

n)=s).

2.3 The Recursive Algorithm

The simple algorithm points the way to a more general algorithm that uses less

space. Consider the bounded breadth-�rst search routine: it isn't necessary to use

breadth-�rst search at all; any deterministic graph searching algorithm that can �nd b

connected vertices within the same time and space constraints could be used instead.

Suppose the simple algorithm itself is used as the search routine. Super�cially, the

simple algorithm uses b registers to characterize b

2

vertices. Therefore, it might be

possible to use this algorithm, or one like it, to �nd n

2=3

neighbors of a vertex using

only n

1=3

registers. Then only n

1=3

landmarks, each characterizing n

2=3

vertices, would

be needed, and the space bound would be reduced to O(n

1=3

) registers. And, of course,



25

the technique could be repeated, to ultimately reduce the space to O(cn

1=c

log n) for

any �xed constant c while still maintaining a (possibly very high) polynomial running

time. (The factor of c covers the cost of the implied c levels of recursion.)

To use the simple algorithm in this way, it needs to be changed from a global

search routine to a local one. That is, instead of �nding any b landmarks, it should

�nd b landmarks in the same connected component. One way to accomplish this is to

add an extra step to the algorithm when it is searching for new landmarks: a vertex

can only be added to the landmark set if its set of vertices is disjoint from the other

landmarks' sets and if it can be shown to be in the same connected component as one

of the other landmarks. We actually impose a stronger condition, very roughly that

the new landmark's set must be \close enough" to some old landmark's set that they

both overlap the set of some third vertex. Since this test for connectivity is e�cient,

this modi�ed version of the simple algorithm can be called recursively to build large

sets of connected vertices from smaller sets using a small amount of space and time.

The recursive algorithm is parameterized by an integer, �, 2 � � � log n, which

indicates the approximate depth of recursion the algorithm should use (the actual

depth of recursion will turn out to be � � 1). The bound on space for any given

routine (i.e., exclusive of recursive calls) will be O(b) registers, where b =

l

n

1=�

m

, and

therefore the total space bound for the algorithm will be O(b�) registers.

Generalizing the notion of a neighborhood in the simple algorithm, for each k � 0,

each vertex v has a (k)-neighborhood, denoted nv(v; k), of size at most b

k

. A (k)-

neighborhood is full if it is of size exactly b

k

. For k = 0, we de�ne nv(v; k) = fvg.

To represent a (k)-neighborhood succinctly for k � 1, the (k)-neighborhood of v

has associated with it a (k)-landmark set, a set of at most b vertices, denoted L

v;k

;

the (k)-neighborhood of v is the union of the (k � 1)-neighborhoods of the members

of L

v;k

. Informally, the (k)-landmark set for v is bbfs(v; b) when k = 1, and when

k > 1, it is a maximal set of landmarks of disjoint (k � 1)-neighborhoods connected

to v, where connectivity is tested based on the following property. We say u is (k)-

adjacent to v if there is an edge fu;wg such that w's (k)-neighborhood overlaps v's

(k)-neighborhood.

More formally, the (k)-landmark set for v has the following properties, similar to

the properties of L in the simple algorithm (Section 2.2, page 19).



26

In the base case, when k = 1, L

v;k

= bbfs(v; b). When k > 1,

L

v;k

= fl

1

= v; l

2

; : : : ; l

j

g is an ordered set of vertices containing v that is maximal

in that it satis�es the following properties, but no vertex l

j+1

can be added without

violating one of these properties:

� L

v;k

contains at most b landmarks, i.e.

jL

v;k

j � b:

� The (k � 1)-neighborhoods of the vertices in L

v;k

are pairwise disjoint. That is,

8l

i

; l

i

0

2 L

v;k

; (l

i

6= l

i

0

)) nv(l

i

; k � 1) \ nv(l

i

0

; k � 1) = ;

� Every landmark l

i

in L

v;k

(except v) is (k � 1)-adjacent to an earlier landmark

l

i

0

; i

0

< i.

This last property guarantees that the landmarks are all in the same connected

component.

Constructing L

v;k

is a simple task: cycle through the edges, searching for one with

an endpoint that satis�es the above properties for L

v;k

(i.e., an edge fu;wg such that

u's neighborhood is disjoint from the previously chosen landmarks' neighborhoods,

and w's neighborhood overlaps one of them). When such an edge is found, add u to

L

v;k

and repeat the process until either enough landmarks have been discovered or

another cannot be found.

To understand the discussion below, it will be helpful to remember that v's (k)-

neighborhood is always a subset of v's (k + 1)-neighborhood.

At the topmost level, the algorithm proceeds much like the simple algorithm:

after eliminating certain special cases, it constructs a maximal set of (not necessar-

ily connected) global landmarks having full, pairwise disjoint (�� 1)-neighborhoods,

then examines the edges of the graph to discover which landmarks are in the same

connected component. Initially, s and t are in this landmark set; every other vertex

is tested in turn, and added to the landmark set if its (�� 1)-neighborhood is full

and disjoint from the previous landmarks' sets. There can be at most b such global



27

landmarks. The main di�erence between this and the simple algorithm is that instead

of using bbfs to �nd the neighborhoods, the algorithm uses nv( � ; � � 1). Note that

we could simplify the algorithm conceptually by using nv at the topmost level to �nd

a global landmark set that is guaranteed to be connected, e.g. nv(s; �). However,

guaranteeing connectivity turns out to take more time asymptotically, so the faster

method of building union-�nd sets is used at the top level. This also insures that the

simple algorithm is a special case of this algorithm, i.e., the case � = 2.

The search procedure, nv, raises a problem that was not present with a simple

breadth-�rst search: what if the search for a vertex's (�� 1)-neighborhood fails to

�nd enough (b

��1

) vertices? All our algorithms dismiss a vertex whose search is un-

successful, because a lower bound on the size of the global landmarks' neighborhoods

is necessary to insure an upper bound on the number of global landmarks. As men-

tioned in Section 2.2 (page 19), when using breadth-�rst search, it is clear that any

vertex whose bbfs set is too small belongs to a small component, and is therefore not

connected to s or t. With this more complex search procedure, however, we cannot

be certain that the failure of the search routine for a given vertex, v, implies that

v belongs to a small component and can therefore be disregarded. In fact, it seems

likely that, for any given k, a certain number of vertices in v's component will never

be part of the (k)-neighborhood of v, and also that searches begun at di�erent vertices

could have wildly varying results.

Consider Figure 2.3 depicting a connected graph, with S

v

the (�� 2)-

neighborhood of v, S

1

a set of size less than b

��2

, and S

2

the rest of the graph,

not directly connected to S

1

. Suppose the algorithm is trying to �nd the (�� 1)-

neighborhood of v, has generated S

v

, and is now looking for b � 1 other (�� 2)-

neighborhoods. It will not �nd a large enough set in S

1

, and may never be able

to use these vertices, which may mean that v's (� � 1)-neighborhood might not be

full. Intuitively, though, a search for a (�� 1)-neighborhood begun at another vertex

\closer to" or \farther from" S

1

might succeed because it is able to use some or all

of S

1

's vertices. It seems that the search at v, then, might be unsuccessful, while

the search at a nearby vertex could have the opposite result. If v is dismissed as

irrelevant by the algorithm, how can we be sure this is correct?

To solve this problem, we prove the following lemma, which shows that the process

of building L

v;k

does not fail prematurely. Intuitively, the lemma says that if a vertex



28

�

�

�

�

'

&

$

%

'

&

$

%

d

d d

d

d

d

d

d d

d

d

d

d

dd

d

d

d

d

d

d

S

2

S

1

S

v

v

Figure 2.3: A graph where the search might fail

v's connected component isn't \big" enough to allow v a full (k + 1)-neighborhood,

then it isn't big enough to contain even a (k)-neighborhood, full or not, disjoint from

v's (k + 1)-neighborhood. This lemma can be used to show that vertices at which a

search fails are not actually a problem.

Lemma 2.3 For any vertex v, if v's (k + 1)-neighborhood is not full, then it

overlaps the (k)-neighborhood of every vertex in v's connected component.

Proof: The proof proceeds by induction on k. Let C be the connected component

containing v. For the basis, k = 0, observe that if v's (1)-neighborhood isn't full, then

by the properties of bbfs, v's (1)-neighborhood contains all of C. For the induction

step, k > 0, for the sake of contradiction suppose that v's (k + 1)-neighborhood is

not full, and there are vertices in C whose (k)-neighborhoods are disjoint from v's

(k + 1)-neighborhood. There are two possible ways in which v's (k + 1)-neighborhood

could fail to be full. First, it could be that L

v;k+1

, the (k + 1)-landmark set of v, has

b elements, but one of the (k + 1)-landmarks, l, has a (k)-neighborhood that is not

full. But this cannot be true, since, by induction, the (k)-neighborhood of l would

overlap the (k � 1)-neighborhoods of all other members of L

v;k+1

, contradicting the

disjointness property of the (k + 1)-landmark set. Second, L

v;k+1

may have fewer

than b elements. Consider all vertices in C whose (k)-neighborhoods are disjoint

from v's (k + 1)-neighborhood. Among all such vertices there must be a vertex w

whose distance, d, from v is minimal. Consider a path of length d between v and



29

w. By the minimality of d, w's predecessor on the path has a (k)-neighborhood that

overlaps v's (k + 1)-neighborhood, so w is (k)-adjacent to some member of L

v;k+1

.

But this contradicts the maximality of L

v;k+1

, since w could be added to L

v;k+1

: 2

Given this lemma, we can show the algorithm is correct. As in the simple algo-

rithm, we �rst generate the (�� 1)-neighborhoods for s and t, returning Connected

if the sets overlap, and Not Connected if they do not overlap and one or both is

too small. Next, we cycle through the vertices, building the set of global landmarks,

whose elements have full, pairwise disjoint (� � 1)-neighborhoods. Finally, we exam-

ine all the edges as in the simple algorithm to determine which landmarks are in the

same connected component. For the algorithm to work correctly, the following three

conditions must be true:

� If the (� � 1)-neighborhoods of s and t are disjoint, and either is not full, then s

and t are not connected. Proof: If s and t were connected, then by Lemma 2.3,

their neighborhoods would intersect.

� If the (�� 1)-neighborhoods of s and t are disjoint, and both are full, then

after the landmark set is constructed, the following is true: for all vertices, v,

v is in the global landmark set, or v's (� � 1)-neighborhood overlaps a global

landmark's (�� 1)-neighborhood, or v is connected to neither s nor t. Proof: If

v's (�� 1)-neighborhood is full, then by construction it must either be a global

landmark or its neighborhood must overlap the (� � 1)-neighborhood of one of

the global landmarks. If v's neighborhood is not full, then by Lemma 2.3 it

cannot be connected to s or t without overlapping their neighborhoods.

� After all edges are examined, any two landmarks that are in the same connected

component are in the same Union-Find set. The proof is the same as the proof

of Lemma 2.1.

Finally, we sketch how the algorithm, in the proper amount of space, determines

whether two (k)-neighborhoods intersect. The nv routine generates the lists of land-

marks for a neighborhood, not the vertices themselves, so the intersection routine

receives two sets of size at most b. Given two such sets, S

1

and S

2

, and an integer j,

for each possible pair (v;w), v 2 S

1

, w 2 S

2

, the intersection routine generates the



30

(j)-landmark sets of v and w, and calls itself recursively, with these two sets and the

integer j � 1 as parameters. For the base case, j = 0, the sets are just bbfs sets, and

can be compared directly.

The code for the recursive algorithm is given in Figures 2.4, 2.5, and 2.6. The

main routine and cl function for the recursive algorithm (Figures 2.4 and 2.5) are

nearly identical to their counterparts in the simple algorithm (see Figures 2.1 and

2.2). The only changes are as follows:

� The algorithm is parameterized by � instead of b, where 2 � � � log n. The

constant b is de�ned, where b =

l

n

1=�

m

.

� All references to bbfs(x; b) are replaced by nv(x; �� 1). Similarly, all references

to the intersection routine are calls to ri(�; �; �� 2).

Lemma 2.3 allows us to make two optimizations to the code.

1. When generating the (k)-neighborhood of a vertex, v, if we �nd that v's (k � 1)-

neighborhood is not full, we can immediately quit, since, by Lemma 2.3, we will

not be able to �nd any other disjoint (k � 1)-neighborhoods in v's connected

component.

2. To test whether a (k)-neighborhood is full, we need only test whether the cor-

responding (k)-landmark set has b members: If the (k)-landmark set has fewer

than b members, it clearly is not full. If the (k)-landmark set has b mem-

bers, then the (k � 1)-neighborhoods of each element in the set must be full,

otherwise, by Lemma 2.3, the (k � 1)-neighborhoods would not be disjoint.

2.3.1 Analysis of the Recursive Algorithm

Analysis of the space complexity of the algorithm is easy: Since the (� � 1)-

neighborhoods of the global landmarks are full, there are only O(n

1=�

) global land-

marks. Exclusive of recursive calls, each routine uses O(n

1=�

) registers, and the

maximum recursion depth is O(�), hence at most O(�n

1=�

) registers are needed.



31

Algorithm RUstcon (�);

f2 � � � log ng

b =

l

n

1=�

m

;

L

s;��1

= nv(s; �� 1); L

t;��1

= nv(t; �� 1)

if ri(L

s;��1

; L

s;��1

; �� 2) then return (Connected);

if jL

s;��1

j < b or jL

t;��1

j < b then return (Not Connected);

fOne or both neighborhoods not full. See page 30g

Initialize the set of landmarks to fs; tg;

for all vertices, v do begin f�nd the landmarksg

L

v;��1

= nv(v; �� 1);

if jL

v;��1

j < b then Neighborhood not full. Go to next vertex. fSee page 30g

for all landmarks, l do begin

L

l;��1

= nv(l; �� 1);

if ri(L

v;��1

; L

l;��1

; � � 2) then Not a landmark. Go to next vertex.

end;

Add v to the set of landmarks.

end;

Create a singleton Union-Find set containing each landmark, plus one

containing the special value \small" for small components.

for all edges, e = fu; vg do begin

Union(Find(cl(u)), Find(cl(v)));

end;

if Find(s) = Find(t) then return (Connected);

else return (Not Connected);

end RUstcon.

Figure 2.4: The main routine of the recursive algorithm



32

procedure cl (vertex v): vertex;

fReturn the \closest" landmark to vg

L

v;��1

= nv(v; �� 1);

if jL

v;��1

j < b then return (\small"); fNeighborhood not full. See page 30g

for all landmarks, l, in order do begin

L

l;��1

= nv(l; �� 1);

if ri(L

v;��1

; L

l;��1

; � � 2) then return (l);

end;

end cl.

Figure 2.5: The cl function of the recursive algorithm

The following time analysis is based on the code for the recursive algorithm given

in Figures 2.4, 2.5, and 2.6. R(�) is an expression bounding the running time of the

algorithm (including the time for the cl function) for parameter �, and N(k) is a

recurrence relation bounding the running time of nv(�; k). ri is called in two di�erent

ways: outside ri, it is usually called with a set of size one as its �rst parameter, to

test whether the neighborhood of a single vertex overlaps the neighborhoods of a set

of landmarks. It can also be called with a set of size up to b as its �rst parameter,

to test for intersection between the neighborhoods of two sets of landmarks. Because

the sizes of the set parameters to ri can vary, two recurrence relations, I(k) and I

1

(k)

are de�ned, where I(k) bounds the running time of ri(�; �; k) when the sets are of size

at most b, and I

1

(k) bounds the special case where the �rst set is of size 1, and the

second of size at most b. For suitable c

i

; 0 � i � 11, we have:

R(�) = O(n(N(� � 1) + bN(�� 1) + bI(�� 2) + b)

+2m(N(� � 1) + bN(� � 1) + bI(�� 2) + b) +m�(m))



33

procedure ri (set of vertices S

1

; S

2

; integer k;): boolean;

ftest if the (k)-neighborhoods of a vertex in S

1

and a vertex in S

2

intersectg

if k = 0 then return (S

1

\ S

2

6= ;); fBase caseg

for all pairs of vertices, v 2 S

1

; w 2 S

2

do begin

if ri(nv(v; k); nv(w; k); k � 1) then return (true);

end;

return (false);

end ri.

procedure nv (vertex v; integer k): set of vertices;

fFind the (k)-landmark set of vg

if k = 1 then return (bbfs(v; b)); fBase case. Use bbfsg

if jnv(v; k � 1)j < b then return (fvg); fnv(v; k � 1) not full. See page 30g

L

v;k

= fvg;

for i = 2 to b do begin fFind landmarksg

for all vertices, u do begin

if ri(fug; L

v;k

; k � 1)) then

Not a landmark. Go to next vertex.

for all neighbors, w, of u do begin

if ri(fwg; L

v;k

; k � 1) then fu is a landmarkg

L

v;k

= L

v;k

[ fug. goto (L1);

end;

end;

return (L

v;k

); fNot full, but no other landmarksg

L1:

end;

return (L

v;k

); fFullg

end nv.

Figure 2.6: The ri and nv functions of the recursive algorithm



34

I(j) =

8

<

:

O(b log b) if j = 0

b

2

(I(j � 1) + c

1

) + b(b+ 1)(N(j) + c

2

) + c

3

if j > 0

I

1

(j) =

b (I(j � 1) + c

1

) + (b+ 1)(N(j) + c

2

) + c

3

j > 0

N(k) =

8

>

>

>

<

>

>

>

:

O(b

2

log b) if k = 1

N(k � 1) + (b� 1)(n(I

1

(k � 1) + c

4

) +

2m(I

1

(k � 1) + c

5

) + c

6

) + c

7

if k > 1

The �rst step in the algorithm is to compute b, which can be done in time

O(� log

3

n). b must be between 1 and n, so we can do a binary search among these

integers to �nd b: If we know b is in the range p : : : q, guess that r = b(p+ q)=2c is the

value of b. If r

�

� n we know b is in the range p : : : r. If r

�

< n, we know b is in the

range r+1 : : : q. Even using the naive multiplication algorithm, �nding r

�

takes time

only O(� log

2

n), so the entire process will take time O(� log

3

n), which is dominated

by the other terms in the expression for the running time of the algorithm.

The equation for I(j) uses a slight optimization. When testing for intersection

between the (k)-neighborhoods of all possible ordered pairs of vertices, (u; v), we

assume any particular u is �xed until all possible values of v have been tried for that

u. This way, we need only generate u's (k)-landmark set once instead of b times,

which gives us b(b+ 1) total calls to N(k).

Let c = n=m. Then, for j > 0; k > 1, we have:

N(k) � N(k � 1) + (b� 1)(2 + c)m(I

1

(k � 1) + c

8

)

� N(k � 1) + (b� 1)(2 + c)m(b(I(k � 2) + c

1

)

+(b+ 1)(N(k � 1) + c

2

) + c

3

+ c

8

)

N(k) � b

2

(2 + c)m(I(k � 2) +N(k � 1) + c

9

)

I(j) � (b

2

+ b)(I(j � 1) +N(j) + c

10

)

Let NI (k) = N(k) + I(k � 1) for k � 1. Then, for k > 1,

NI (k) � (b

2

(2 + c)m+ b

2

+ b)(NI (k � 1) + c

11

)



35

= O((b

2

((2 + c)m+ 1) + b)

k�1

(N(1) + I(0)))

= O((b

2

((2 + c)m+ 1) + b)

k�1

b

2

log b)

Recall that b =

l

n

1=�

m

. Since � � log n, note that b � n

1=�

+ 1 = O(n

1=�

), and

therefore

NI (�� 1) = O((n

2=�

(n + 2m))

��2

n

2=�

log n

1=�

):

Thus

R(�) = O((n + 2m)(N(� � 1) + bN(�� 1) + bI(�� 2) + b) +m�(m))

= O((n + 2m)bNI (�� 1))

= O((n + 2m)n

1=�

(n

2=�

(n+ 2m))

��2

n

2=�

log n

1=�

)

R(�) = O(

1

�

(n+ 2m)

��1

n

2�1=�

log n)

Summarizing the results of this section, we have shown the following.

Theorem 2.4 The recursive algorithm, described above, solves ustcon for

arbitrary n-vertex, m-edge graphs in space O(�n

1=�

log n) and time O(

1

�

(n +

2m)

��1

n

2�1=�

log n) = n

O(�)

, for any integer �, 2 � � � log n.

Note that when � = 2, the time and space bounds match those of the simple algo-

rithm.

2.4 The Batched Algorithm

The batched algorithm is a variant of the simple algorithm that is faster for space

!(n

1=2

log n). Note that as the space bound increases, the simple algorithm uses

more and more space to store landmarks and less and less to generate and store

neighborhoods. The idea of the batched algorithm is to use as much space for neigh-

borhoods as landmarks, by storing multiple neighborhoods. In the simple algorithm,

most neighborhoods are generated for one reason only: to test them for intersection

with the landmarks' neighborhoods. If we can check a landmark's neighborhood for

intersection with multiple neighborhoods almost as quickly as the simple algorithm



36

takes to check for intersection with one, then, as the number of landmarks increases,

the batched algorithm's performance compared to the simple algorithm's will become

better and better.

As before, b will be the size of the neighborhoods generated, and l the number of

landmarks. When building the landmark set, and when evaluating the cl function,

the batched algorithm generates the neighborhoods for a batch of bl=bc vertices, B.

The algorithm then sorts all vertices in the bl=bc neighborhoods into one list of O(l)

vertices. Using this list, it can e�ciently test which vertices in the list are also in the

neighborhood of a landmark; it performs a binary search in the list for each member

of the landmark's neighborhood, labeling those vertices that match with the name of

the landmark whose neighborhood they are in.

After repeating this step for all landmarks' neighborhoods, the batched algorithm

must compute the intersection information for each member of B. To evaluate the cl

function, it must �nd the lowest numbered landmark whose neighborhood intersected

a given vertex's neighborhood; to build the landmark set, it need only check whether

the intersection was empty. In the latter case, if a neighborhood of a vertex in B

does not intersect any landmarks' neighborhood, the vertex must be added to the

landmark set, and, in addition, the algorithm must mark any vertices in the list that

are in the new landmark's neighborhood.

A special data structure for the sorted list is necessary to insure that all these

operations can be performed e�ciently. The sorted list we use is simply a list of

pointers to members of the neighborhoods, plus a cl �eld for each entry, to store the

name of a landmark whose neighborhood contains it. Each member of a neighborhood

in turn has a pointer to its entry in the sorted list. However, the pointers are not in a

one-to-one correspondence, because the sorted list does not contain duplicate entries

for a vertex that appears in multiple neighborhoods. The pointers into the list from

the neighborhoods provide e�cient lookup for the vertices, but the pointers back to

the neighborhoods are used only to �nd the vertex name for an entry in the list.

As a simple example, see Figure 2.7 (page 37), depicting two neighborhoods, n

u

and n

v

, and a list that might be constructed for them. In this example, b = 5, and

the two neighborhoods have two vertices in common, so the sorted list has only 8

entries. Five entries point to vertices in the �rst neighborhood, and three to vertices



37

n

u

n

v

vertex list ptr vertex list ptr

u

1

11 1 v

1

12 2

u

2

13 3 v

2

13 3

u

3

15 4 v

3

15 4

u

4

17 6 v

4

16 5

u

5

19 8 v

5

18 7

sorted list

neighborhood ptr cl

1 u

1

2 v

1

3 u

2

4 u

3

5 v

4

6 u

4

7 v

5

8 u

5

Figure 2.7: The batched algorithm's data structure

in the second neighborhood. Note that the indices for the neighborhoods and the list

are for reference purposes only, and are not actually stored in the structure.

Given this data structure, we can perform the needed operations e�ciently. The

list is sorted, so lookup of a single vertex will take time O(log l) using binary search.

The pointers to the list from the neighborhoods allow constant access time per ver-

tex, so discovering which landmarks' neighborhoods overlap a given neighborhood or

marking all list entries for a neighborhood requires time O(b).

The code for constructing the landmark set and computing the cl function in the

batched algorithm is given in Figures 2.8 and 2.9, respectively. The code for both is

similar | the main di�erences are as follows:



38

� The cl code must process all edges, while the landmark code processes all ver-

tices. In the �nal phase, the landmark code processes each vertex separately,

while the cl code processes two vertices together (the two endpoints of each

edge).

� During the loop labeled check intersection, the cl function determines the name

of the lowest numbered landmark that intersected this vertex's neighborhood,

while the landmark code merely checks for intersection.

� After the loops labeled check intersection, the cl function joins the Union-Find

sets of the closest leaders to each endpoint. The landmark code must execute

an extra loop to mark the vertices in v's neighborhood if v is added to the set

of landmarks.

The code for the main routine of the batched algorithm is given in Figure 2.10.

The code for constructing the landmark set and computing the cl function (see Figures

Figures 2.8 and 2.9) should be inserted in the indicated places to yield the complete

algorithm. Note that the cl function is now no longer a separate routine | the

batched nature of the algorithm means that we evaluate the cl function for many

vertices at once, so the code for the function is incorporated into the main routine.

2.4.1 Analysis of the Batched Algorithm

The batched algorithm requires more space than the simple algorithm to store mul-

tiple neighborhoods and the sorted list of vertices, but these structures only use

space �(l log n), asymptotically as much as the simple algorithm (O((n log n)=b),

since l = bn=bc).

Finding the neighborhood of a vertex requires time O(b

2

log b), so �nding O(l=b)

neighborhoods takes time O(lb log b). The special data structure can be constructed

in time O(l log l), the time required for sorting the O(l) vertices.

After �nding the neighborhood of a landmark, time O(b log l) is needed to search

for its vertices in the sorted list. The total time needed for the mark overlapping

vertices loop is therefore O(l(b

2

log b+ b log l)).



39

for i = 0 to dn= bl=bce � 1 do begin

B = f1 + i bl=bc ; 2 + i bl=bc ; : : : ; bl=bc+ i bl=bcg fthe next set of l=b verticesg

Initialize the batched algorithm's data structure.

for all vertices, v 2 B do begin

generate bbfs(v; b), and add the neighborhood to the data structure;

end;

Create a sorted list, Q, of all vertices in the neighborhoods of vertices in B,

and store it in the data structure. Set each vertex's cl �eld to +1

for all landmarks, l do begin fmark overlapping verticesg

for all vertices, w 2 bbfs(l; b) do begin

if w is in Q and w's cl �eld > l then w's cl �eld = l.

end;

end;

for all vertices, v 2 B do begin fevaluate vertices in Bg

if v's neighborhood is not full then v is not a landmark. Go to next vertex.

for all vertices, u 2 v's neighborhood do begin fcheck intersectiong

if u's cl �eld in Q 6= +1 then

v is not a landmark. Go to next vertex.

end;

Add v to the set of landmarks. fnew landmarkg

for all vertices, u 2 v's neighborhood do begin

u's cl �eld in Q = v.

end;

end;

end;

Figure 2.8: Code to �nd landmarks in the batched algorithm.



40

for i = 0 to d2m= bl=bce � 1 do begin

E = edges fe

1+ibl=bc

; e

2+ibl=bc

; : : : ; e

bl=bc+ibl=bc

g fthe next set of l=b edgesg

B = The endpoints of the edges in E.

Initialize the batched algorithm's data structure.

for all vertices, v 2 B do begin

generate bbfs(v; b), and add the neighborhood to the data structure;

end;

Create a sorted list, Q, of all vertices in the neighborhoods of vertices in B,

and store it in the data structure. Set each vertex's cl �eld to +1

for all landmarks, l do begin fmark overlapping verticesg

for all vertices, w 2 bbfs(l; b) do begin

if w is in Q and w's cl �eld > l then w's cl �eld = l.

end;

end;

for all edges, e = fu; vg 2 E do begin fprocess edges in Eg

if u's neighborhood is not full then Go to next edge.

fu and v in a small componentg

l

u

= n+ 1; l

v

= n+ 1; finitialize \closest landmarks"g

for all vertices, w 2 u's neighborhood do begin fcheck intersectiong

if w's cl �eld is less than l

u

then l

u

= w's cl �eld.

end;

for all vertices, w 2 v's neighborhood do begin fcheck intersectiong

if w's cl �eld is less than l

v

then l

v

= w's cl �eld.

end;

Union(Find(l

u

), Find(l

v

));

end;

end;

Figure 2.9: Code to �nd the \closest landmarks" in the batched algorithm.



41

Algorithm BUstcon (integer: b);

f1 � b �

p

ng

generate bbfs(s; b) and bbfs(t; b).

if s's neighborhood overlaps t's then return (Connected);

if either neighborhood is not full then return (Not Connected);

Initialize the set of landmarks to fs; tg;

fInsert code to �nd landmarksg

Create a singleton Union-Find set containing each landmark, plus one

containing the special value \small" for small components.

fInsert code to evaluate the cl functiong

if Find(s) = Find(t) then return (Connected);

else return (Not Connected);

end BUstcon.

Figure 2.10: The main routine of the batched algorithm

Each operation in the check intersection and new landmark loops requires constant

time, so the evaluate vertices in B loop in Figure 2.8 takes time O(l=b � b) = O(l).

Similar analysis applies to the code used to evaluate the cl function.

The outermost loop is executed O(n=(l=b)) times to build the landmark set, and

O(m=(l=b)) times to process the edges. The total running time for the algorithm is:

O((m + n)b=l)(lb log b+ l log l + lb

2

log b+ lb log l+ l) +m�(m))

= O((m + n)b(b

2

log b+ b log l) +m�(m))

= O((m + n)(b

3

log b+ b

2

log n))

When b = n

1=2

, the batched algorithm runs as quickly as the simple algorithm,

but for b = o(n

1=2

), the batched algorithm is asymptotically faster. When b = 1, the

batched algorithm uses time O((m + n) log n), only a factor of O(log n) slower than

the time-optimal depth- or breadth-�rst search. As in the simple algorithm, it is not

necessary to use the extremely e�cient version of the Union-Find subroutines with



42

both weighted unions and path compression to reach this asymptotic time bound.

Unlike the simple algorithm, however, we must use either one optimization or the

other | with neither weighted unions or path compression, the Union-Find operations

take total time O(ml), which will dominate the running time for small values of b.

If only one optimization is used, the operations take total time O(m log l), which is

always dominated by the other terms.

Thus we have the following.

Theorem 2.5 The batched algorithm, presented above, solves ustcon for arbi-

trary n-vertex, m-edge graphs in space O((n log n)=b) and time O((m+ n)(b

3

log b+

b

2

log n) for any 1 � b �

p

n.

2.5 Conclusions

These algorithms provide a deterministic time-space tradeo� for ustcon. With space

s = �(n log n), the batched algorithm's performance is only a factor of log n worse

than depth- or breadth-�rst search, and for space s = 
(n

1=2

log n), the algorithms

are no more than a factor of n log n worse than the best-known algorithms, deter-

ministic and probabilistic. However, as the space is decreased further, things rapidly

become worse, with an added factor of roughly m to the running time of the recursive

algorithm every time � is increased by one.

When the recursive algorithm is taken to extremes, its time and space bounds

resemble those for Savitch's result [Sav70]. The lower limit for the space used by

the algorithm is reached when � = log n. With this value for �, the algorithm uses

space O(log

2

n) and time n

O(logn)

, similar to Savitch's space and time bounds [Sav70].

Recent work by Nisan [Nis92] has shown that polynomial time and O(log

2

n) space

are simultaneously achievable, but his algorithm has a very high polynomial running

time | he estimates O(n

45

). If this is the actual time bound, the recursive algorithm

is asymptotically faster than Nisan's for space down to O(n

1=22

log n).



Chapter 3

TIME-SPACE TRADEOFFS FOR DIRECTED

S-T CONNECTIVITY

3.1 Introduction

This chapter presents time-space tradeo�s for directed s-t connectivity. We �rst

introduce a simple variant of depth- and breadth-�rst search that can use space

between �(n log n) and �(n). We then present two di�erent time-space tradeo�s

that can be combined to give a deterministic algorithm for directed s-t connectivity

that achieves polynomial time and sublinear space simultaneously. The algorithm

can use as little as n=2

�(

p

logn)

space while still running in polynomial time. One of

the tradeo�s is an algorithm that �nds short paths in a directed graph in polynomial

time and sublinear space. The short paths problem is a special case of stcon that

retains many of the di�culties of the general problem, and seems particularly central

to designing small space algorithms for stcon. Interestingly, our algorithm for the

short paths problem is a generalization of two well-known algorithms for stcon. In

one extreme it reduces to a variant of the linear time breadth-�rst search algorithm,

and in the other extreme it reduces to the O(log

2

n) space, superpolynomial time

algorithm of Savitch.

The rest of this chapter is organized as follows: In Section 3.2, we present a

simple modi�cation to breadth- or depth-�rst search that allows us to use less space

while maintaining a near-optimal running time. In Section 3.3, we present another

tradeo� based on a breadth-�rst search of the graph, and in Section 3.4, we present an

algorithm to �nd short paths in a directed graphs. Section 3.5 shows how these last

two tradeo�s can be combined to yield an algorithm that solves stcon in polynomial

time and sublinear space. Alone, neither algorithm can solve stcon in simultaneous

polynomial time and sublinear space.



44

3.2 The Bounded Queue Tradeo�

As a simple example, we �rst present a variant of depth- and breadth-�rst search that

can run in any space bound from �(n log n) (the space bound of these two algorithms)

to �(n). For space O(s), n � s � n log n, the algorithm uses timeO(m+n

2

(log n)=s).

Note that the algorithm's running time is always within a log n factor of the optimal

time, and if m = 
(n log n), the algorithm is asymptotically as fast as depth- or

breadth-�rst search. For simplicity, we will describe the algorithm as a variant of

breadth-�rst search only. The generalization to depth-�rst search is straightforward

| simply substitute \stack" for \queue" and \depth-�rst" for \breadth-�rst" in the

following discussion.

The algorithm works as follows: execute a standard breadth-�rst search, but don't

allow the queue of visited but unexplored vertices to hold more than s= log n vertices.

The standard breadth-�rst search algorithm maintains a status vector of n bits to

indicate which vertices have been visited. We modify the status vector to hold two

bits for each vertex, thus allowing a third status besides visited and unvisited.

The third status, unexplored, indicates the vertex has been visited, but not added

to the queue. When an unvisited or unexplored vertex is visited, if the queue is

not full, it is added to the queue and its status changed to visited. If the queue is

full, its status is set to unexplored. When the queue becomes empty, the status

vector is scanned sequentially, and, assuming the queue has not become full again,

any vertex with status unexplored is added to the queue and its status changed to

visited. Pseudocode for the algorithm appears in Figure 3.1.

As long as the queue is allowed to grow to size at least n= log n, the size of the

queue dominates the space bound of the algorithm. Making the queue smaller than

n= log n does not signi�cantly reduce the space bound, since the status vector uses

space �(n). If k is the size of the queue, and k � n= log n, then the space bound is

s, where s = k log n.

The key to the time analysis is to note that the status vector is not scanned

for unexplored vertices very often. In particular, no vertices can have status

unexplored unless the queue was full at some time since the status vector was

last scanned. If this occurs, then at least s= log n vertices were added to the queue

and visited since the last scan, and since a vertex can only be visited once, this gives



45

Algorithm Bqueue (integer: k);

fBreadth-�rst search from s with a bounded queue of size k, n= log n � k � ng

Create a queue, Q, and a status vector, S, with n 2-bit entries.

Initialize each entry in S to unvisited.

S[s] = visited; insert(Q; s); Qsize = 1; finsert s into Qg

while Qsize 6= 0 do begin

v = delete(Q); Qsize = Qsize � 1; fget a vertex from Qg

for all neighbors, w, of v do begin fmark neighborsg

if S[w] 6= visited and Qsize < k then

S[w] = visited; insert(Q;w); Qsize = Qsize + 1; finsert neighbor into Qg

else

if S[w] 6= visited then S[w] = unexplored; fQueue fullg

end;

if Qsize = 0 then fScan the bit vector, looking for unexplored verticesg

for i = 1 to n do begin

if S[i] = unexplored then

S[i] = visited; insert(Q; i); Qsize = Qsize + 1;

if Qsize = k then exit scan loop. fQueue fullg

end;

end;

if S[t] = visited then return (Connected);

else return (Not Connected);

end Bqueue.

Figure 3.1: Details of the bounded queue algorithm

an upper bound on the number of scans of n(log n)=s. Each scan takes time O(n),

giving a total time for scans of O(n

2

(log n)=s). The rest of the algorithm is dominated

by the mark neighbors loop, which is executed O(m) times. The total time bound for

the algorithm, then, is O(m+ n

2

(log n)=s).

Summarizing the results of this section, we have the following:



46

Theorem 3.1 The bounded queue algorithm, presented above, solves stcon in

time O(m+ n

2

(log n)=s) for any space bound, O(s), n � s � n log n.

3.3 The Breadth-First Search Tradeo�

The second tradeo� is also a variant of breadth-�rst search. Consider the tree con-

structed by a breadth-�rst search beginning at s. The tree can contain n vertices,

and thus requires O(n log n) space to store. Instead of constructing the entire tree,

our modi�ed breadth-�rst search generates a fraction of the tree.

Suppose we want our modi�ed tree to contain at most n=� vertices. We can do

this by only storing (the vertices in) every �th level of the tree. Number the levels

of the tree 0, 1, : : : , n � 1, where a vertex is on level l if its shortest path from s is

of length l. Divide the levels into equivalence classes C

0

; C

1

; : : : ; C

��1

based on their

number mod �. Besides s, the algorithm stores only the vertices in one equivalence

class, C

j

, where j is the smallest value for which C

j

has no more than the average

number of vertices, n=�.

The algorithm constructs this partial tree one level at a time. It begins with level

0, which consists of s only, and generates levels j, j + �, j + 2�, : : : , j + � � bn=�c.

Given a set, S, of vertices, we can �nd all vertices within distance � of S in time

n

O(�)

and space O(� log n) by enumerating all possible paths of length at most � and

checking which paths exist in G. This can be used to generate the levels of the partial

tree. Let V

i

be the vertices in levels 0, j, j+�, : : : , j+i�. Consider the set of vertices,

U , that are within distance � of a vertex in V

i

. Clearly, U contains all the vertices

in level j + (i+ 1)�. However, U may also contain vertices in lower numbered levels.

The vertices in level j + (i+ 1)� are those vertices in U that are not within distance

� � 1 of a vertex in V

i

. Thus, to get V

i+1

we add to V

i

all vertices that are within

distance � but not �� 1 of V

i

.

Pseudocode for the algorithm appears in Figure 3.2. Note that to �nd an equiv-

alence class with at most n=� vertices, the algorithm just tries all classes in order,

discarding a class if it generates too many vertices.

Referring to Figure 3.2, the algorithm's space bound is dominated by the number

of vertices in S and S

0

, and the O(� log n) space needed to generate all possible paths



47

Algorithm Bfs (integer: �);

fremember every �th level of the breadth-�rst search treeg

for j = 0 to � � 1 do begin f�rst level to remember (apart from level 0)g

S = fsg.

for all vertices, v do begin fFind vertices on the �rst level.g

if v within distance j of s and v not within distance j � 1 of s then

if jSj > n=� then try next j.

fDon't store more than n=� vertices, + vertex sg

else add v to S.

end;

for i = 1 to bn=�c do begin

S

0

= ;.

for all vertices, v do begin fFind vertices on the next level.g

if v within distance � of some vertex in S and

v not within distance � � 1 of any vertex in S then

if jSj+ jS

0

j > n=� then try next j.

else add v to S

0

.

end;

S = S [ S

0

.

end;

if t within distance � of a vertex in S then return (Connected);

else return (Not Connected);

end;

end Bfs.

Figure 3.2: Details of the breadth-�rst search algorithm

of length � from S. There are never more than n=� + 1 vertices in S and S

0

, so the

algorithm uses space O((

n

�

+ �) log n). The time bound is dominated by repeatedly

testing whether a vertex is within distance � of a vertex in S. This test is performed

O(n

3

=�) times | the innermost loop to �nd the vertices on the next level of the tree



48

makes O(n � n=�) such tests (testing for a path from the O(n=�) vertices in S to all

other O(n) vertices), and is executed O(� � n=�) times.

In summary, we have shown the following:

Theorem 3.2 For any n vertex directed graph and any integer �; 1 � � � n,

the breadth-�rst search algorithm presented above solves s-t connectivity in space

O(n(log n)=� + S(PATH(�))) and time O(n

3

=� � T (PATH(�))), where S(PATH(�))

and T (PATH(�)) denote the space and time bounds, respectively, of the algorithm we

use to test for a path of length at most � between two vertices.

Note that we assume that testing for a path of length at most j, j � 1 or � � 1

will not take asymptotically more time than testing for a path of length at most �.

This is because the former problems are trivially reducible to the latter. To test for a

path of length at most �

0

< �, connect �� �

0

new vertices v

1

; v

2

; : : : ; v

���

0

in a chain

to s, by adding the edges (v

1

; v

2

); : : : ; (v

���

0

�1

; v

���

0

); (v

���

0

; s). There will be a path

in the new graph from v

1

to t of length at most � if and only if there was a path in

the original graph from s to t of length at most �

0

.

Using a straightforward enumeration of all paths, testing whether a vertex is

within distance � requires n

O(�)

time and O(� log n) space. This algorithm is not

su�cient for our purposes. In particular, if � is asymptotically greater than a con-

stant, the algorithm uses superpolynomial time. If we restrict our input to graphs

with bounded degree, there is a slight improvement: in a graph where the outdegree

is bounded by d, the number of paths of length � from a vertex is at most d

�

, so for

these graphs, � can be O(log n), and the algorithm will run in polynomial time. Note

that the overall algorithm still does not use sublinear space in this case, even though

the subroutine for �nding paths of length � does.

The problem with this algorithm is its method of �nding vertices within distance

�: explicitly enumerating all paths is not very clever, and uses too much time. There

is hope for improvement, though, in the fact that this method uses little space:

O(� log n), compared to O(

n

�

log n) for the rest of the algorithm. Indeed, in the next

section we give an algorithm that uses more space but runs much faster.



49

3.4 The Short Path Tradeo�

Consider the short paths problem:

De�nition: Given a directed graph, G, and two distinguished vertices, s and t,

the short paths problem for function f(n) (denoted shortp(f(n)) is to determine

whether there is a path in G from s to t of length less than or equal to f(n).

The short paths problem is a special case of stcon that seems to encapsulate

many of the di�culties of the general problem. It is particularly interesting given

the breadth-�rst search algorithm above, because a more e�cient method of �nding

short paths would clearly lead to an improvement in that algorithm's time bound.

Our second tradeo� is an algorithm that solves the short paths problem for many

f(n) in sublinear space and polynomial time. As will become clear, we will eventually

want f(n) = 2

�(

p

logn)

, but to simplify the following discussion, we begin with the

more modest goal of �nding a sublinear space, polynomial time algorithm for the

short paths problem with f(n) = log

c

n, for some integer constant c � 1.

As noted before, we already have a sublinear space, polynomial time algorithm

that searches to distance log n on bounded degree graphs: because there are a constant

number of ways to leave each vertex, we can enumerate and test all paths of length

log n in polynomial time. In a general graph, this approach will not work, because

there can be up to n�1 possible edges from each vertex, and explicit enumeration can

yield a superpolynomial number of paths of length log n. We can avoid this problem

by using a labeling scheme that limits the number of possible choices at each step of

the path.

Suppose we divide the vertices into k sets, according to their vertex number mod

k. Then, every path of length L (L = f(n)) can be mapped to an (L + 1)-digit

number in base k, where digit i has value j if and only if the ith vertex in the path

is in set j. Conversely, each such number de�nes a set of possible paths of length L.

Given this mapping, our algorithm is straightforward: generate all possible (L+1)-

digit k-ary numbers, and check for each number whether there is a path in the graph

that matches it. For a given k-ary number, the algorithm uses approximately 2n=k

space to test for the existence of a matching path in the graph, as follows. Suppose

we are looking for a path from s to t, and want to test the (L + 1)-digit number



50

hs mod k; d

1

; d

2

; : : : ; d

L�1

; t mod ki. We begin with a bit vector of size dn=ke, which

corresponds to the vertex set d

1

. Zero the vector, and then examine the outedges of

s, marking any vertex v in set d

1

(by setting the corresponding bit in the vector) if

we �nd an edge from s to v. When we are �nished, the marked vertices in the vector

are the vertices in d

1

that have a path from s that maps to the �rst two digits of

the number. Using this vector, we can run a similar process to �nd the vertices in

d

2

that have a path from s that maps to the �rst three digits of the number, and

store them in a second vector of size dn=ke. In general, given a bit vector of length

dn=ke representing the vertices in d

i

with a path from s that maps to the �rst i+ 1

digits of the number, we use the other vector to store the vertices in d

i+1

with a path

from s that maps to the �rst i + 2 digits. Pseudocode for the algorithm appears in

Figure 3.3.

The algorithm uses space O(n=k) to store the vectors, and O(L log k) to write

down the path to be tested. Let C be the maximum number of edges from one set of

vertices d

i

to another d

j

(note: i and j can be the same). For all steps in each path,

we do at most O(n=k+C) work zeroing the vector and testing for edges from d

i�1

to

d

i

. Since C = O((n=k)

2

), the algorithm uses O(k

L

L(n=k)

2

) = O(k

L

n

3

) time to test

all L steps on each of the k

L

paths.

Unfortunately, this does not reach our goal of polynomial time and sublinear

space when L = log

c

n. With a distance as small as log n, k

L

is only polynomial if k

is constant, and if k is constant, the algorithm does not use sublinear space. We can

achieve polynomial time and sublinear space by reducing the distance the algorithm

searches. For example, if L = log n= log log n, k can be log

c

n for any constant c, and

the algorithm will run in O(n= log

c

n) space and O((log n)

c logn= log logn

n

3

) = O(n

c+3

)

time.

The algorithm can be improved by invoking it recursively. Consider the loop in

the algorithm that tests for edges between one set of vertices and the next. This

loop, in e�ect, �nds paths of length one from marked vertices in the �rst set to

vertices in the second set. Instead of �nding paths of length one, we can use the

short paths algorithm to �nd paths of length L, yielding an algorithm that uses twice

as much space, but �nds paths of length L

2

. In general, using r levels of recursion,

the improved algorithm can �nd paths of length L

r

using O(r(n=k + L log k)) space.

If we make a recursive call for every possible pair of vertices in d

i�1

�d

i

, we get a time



51

Algorithm SP (integer: k, L; vertex s, t);

fTest for a path of length L between s and t using space O(n=k)g

Create V

0

and V

1

, two dn=ke bit vectors.

for all (L + 1)-digit numbers in base k,

hd

0

= s mod k; d

1

; : : : ; d

L�1

; d

L

= t mod ki do begin

Set all bits in V

0

to zero, and mark s (set the corresponding bit to 1).

for i = 1 to L do begin

Set all bits in V

imod 2

to zero.

fFind edges from d

i�1

to d

i

g

for all u in d

i�1

marked in V

(i�1) mod 2

and all v in d

i

do begin

if (u; v) is an edge then

mark v in V

imod 2

.

end;

end;

if t is marked in V

L mod 2

then return (Connected);

end;

return (Not Connected);

end SP.

Figure 3.3: Details of the short paths algorithm

bound of O((k

L

L(n=k)

2

))

r

) = O(n

2r+1

k

rL

), since L

r

= O(n). A further re�nement

improves the time bound: one recursive call will �nd all vertices in d

i

reachable from

any reachable vertex in d

i�1

.

Pseudocode for the recursive version of the algorithm is given in Figure 3.4

Given the discussion above, the time used by the recursive algorithm is bounded

by the following recurrence relation, where T (j) is the time used by the algorithm

with j levels of recursion. For an appropriately chosen constant c:

T (j) =

8

<

:

O(n=k + C) if j = 1

k

L

L(T (j � 1) + cn=k) if j > 1



52

Algorithm SPR (integer: k, L, r, d

s

, d

t

; vector V

s

): vector;

fReturn the vector of vertices in set d

t

that are reachable by paths

of length L

r

from vertices in set d

s

that are marked in vector V

s

.g

Create V

0

, V

1

, and V

t

, three dn=ke-bit vectors. Set all bits in V

t

to zero.

for all (L+ 1)-digit numbers in base k, hd

0

= d

s

; d

1

; : : : ; d

L�1

; d

L

= d

t

i do begin

V

0

= V

s

.

for i = 1 to L do begin

fFind edges from d

i�1

to d

i

g

if r = 1 then fbase caseg

Set all bits in V

imod 2

to zero.

for all u in d

i�1

marked in V

(i�1) mod 2

and all v in d

i

do begin

if (u; v) is an edge then

mark v in V

imod 2

.

end;

else

V

imod 2

= SPR(k; L; r � 1; d

i�1

; d

i

; V

(i�1) mod 2

).

end;

Set all bits in V

t

that are set in V

L mod 2

. f?g

end;

return (V

t

);

end SPR.

Figure 3.4: Details of the recursive short paths algorithm

In the base case, the algorithm does O(n=k+C) work. At other levels, the algorithm

makes k

L

L recursive calls to itself, as well as doing some auxiliary work, such as

setting all vector entries to zero. Solving the recurrence relation for j = r gives time

O((k

L

L)

r

(n=k + C)) = O(n

3

k

rL

).

Thus, we have shown the following:

Theorem 3.3 The recursive short paths algorithm, presented above, can search to

distance L

r

in time O(k

rL

L

r

(n=k+C)) (= O(n

3

k

rL

)) and space O(r(n=k +L log k)),



53

for arbitrary integers r, k, and L, such that n � k � 1; r � 1; L � 1; and L

r

� n.

3.4.1 Notes on the Algorithm

� This recursive algorithm meets our goal of �nding a sublinear space, polynomial

time algorithm that detects paths of polylogarithmic length. For example, for

L = log n= log log n, k = log

r

n, and constant r � 2, the algorithm searches to

distance L

r

= !(log

r�1

n) in timeO(n

3

k

rL

) = O(n

r

2

+3

) and spaceO(rn= log

r

n).

� As mentioned in the introduction, this algorithm does not give a polynomial

time, sublinear space algorithm for stcon by itself. The algorithm searches to

distance L

r

by testing k

rL

numbers. If L

r

= n, then k

rL

is polynomial only if

k = O(1). But if k = O(1), the algorithm does not use sublinear space.

� As given, the algorithm does not solve the short paths problem, since it discovers

only paths of length exactly L

r

, but no shorter. To solve the short paths

problem, we can use the same algorithm with one small change | the line that

marks the bits in V

t

that are marked in V

L mod 2

(denoted with a ? in Figure 3.4),

should be moved inside the for loop that it currently follows, and changed to

the following:

if d

L

= d

i

then Set all bits in V

t

that are set in V

imod 2

.

This checks whether the �rst i digits in the number being tested map to a path

to a vertex in d

t

| if so, then the algorithm has discovered a path from a vertex

in d

s

marked in V

s

to a vertex in d

t

, one possibly shorter than L

r

. If there is

such a path of distance < L

r

, then the number that corresponds to the path

will be generated by the algorithm (multiple times) as an initial substring of

the longer numbers it generates, and this test will detect the path.

� This so-called \short paths" algorithm is actually a general algorithm for s-t

connectivity, with behavior and performance similar to the best-known previous

algorithms. If we let k = 1, L = n, and r = 1, the algorithm is a somewhat

ine�cient variant of breadth-�rst search that uses O(n) space and O(n(n+m))

time: the algorithm �rst �nds all vertices at distance 1 from s, then distance



54

2, etc., until it has searched to distance n. At the other end of the time-space

spectrum, Savitch's algorithm (see Section 1.3) is just the special case of this

algorithm where k = n, L = 2, and r = dlog ne | this is also the minimum

space bound for the algorithm.

For more on the short paths problem, see Section 4.3.1.

3.5 Combining the Two Algorithms

As an immediate consequence of the previous two sections, we have an algorithm

for stcon using sublinear space and polynomial time: use the modi�ed breadth-�rst

search algorithm to �nd every (log

c

n)-th level of the tree (for integer constant c � 2),

with the recursive short paths algorithm (the version that checks for paths of length

up to L

r

) as a subroutine to �nd the paths between levels. With careful choices of

the parameters k, L and r, however, the algorithm can use even less space while still

maintaining polynomial time.

In general, the breadth-�rst search algorithm �nds every (L

r

)-th level of the tree,

and the short paths algorithm searches to distance L

r

. Substituting the space bound

for the short paths algorithm (see Theorem 3.3) for the term S(PATH(�)) in the

breadth-�rst search algorithm (see Theorem 3.2), we get a space bound for this algo-

rithm of

O(n(log n)=L

r

+ r(n=k + L log k)); (3:1)

where the �rst term corresponds to the space used by the partial breadth-�rst tree,

and the second to the space used to �nd short paths. Substituting the short paths

time bound for the term T (PATH(�)) in the breadth-�rst search time bound gives a

time bound of

O(n

3

=L

r

� k

rL

L

r

(n=k + C)) = O(n

5

k

rL�2

):

The above time bound applies when we call the short paths algorithm every time

the breadth-�rst search algorithm needs to know whether one vertex is within distance

L

r

of another. The two algorithms can be combined more e�ciently by noticing that

the short paths algorithm can answer many short paths queries in one call | for any

pair of sets, (Q, R), such that R is one of the k sets of vertices in the short paths



55

for i

1

= 0 to k � 1 do begin

S

i

1

= fall vertices whose vertex number mod k = i

1

g.

P = ;. fP will be all vertices in S

i

1

on the next tree level.g

for i

2

= 0 to k � 1 do begin

S

i

2

= fall vertices whose vertex number mod k = i

2

g.

Q = S \ S

i

2

. fQ is all vertices in S

i

2

on previous tree levels.g

A = fall vertices in S

i

1

within distance L

r

of a vertex in Qg.

B = fall vertices in S

i

1

within distance L

r

� 1 of a vertex in Qg.

end;

P = P [A�B.

if jSj+ jS

0

j+ jP j > n=k then try next j.

else S

0

= S

0

[ P .

end;

Figure 3.5: Combining the two algorithms e�ciently.

algorithm, and Q is a subset of one of the k sets, the short paths algorithm can �nd

all vertices in R within distance L

r

of a vertex in Q. Thus, the short paths algorithm

need only be called O(k

2

) times to generate the next level of the tree, once for each

possible pair of the k sets in the short paths algorithm. Figure 3.5 gives the code

that should be used in place of the loop in Figure 3.2 that �nds vertices on the next

level of the breadth-�rst search tree. Similar code should replace the earlier loop in

Figure 3.2 that �nds the vertices on the �rst level.

This improvement gives a total of O(k

2

n=L

r

) calls to the short paths algorithm,

for a time bound of

O(k

2

n=L

r

� k

rL

L

r

(n=k + C)) = O(n

3

k

rL

):

We want to �nd the minimum amount of space required by the algorithm while

still maintaining a polynomial running time. Let x = log k. Then, to maintain

polynomial time we must have xLr = O(log n).



56

For simplicity, we bound expression (3.1) from below as


(n=L

r

+ n=2

x

): (3:2)

(That is, we omit the log n factor in the �rst summand and the r factor in the second

summand, and leave out the third summand altogether.) Increasing either x, L, or r

in expression (3.2) will decrease the value of the expression, but we have the further

restriction that xLr = c

1

log n for some constant c

1

. In other words, the higher the

value of one of the three variables, the lower the value of at least one of the other two.

Since x and r are both in exponents in Expression (3.2), increasing these variables

will decrease the expression more e�ectively than increasing L, so we must choose L

to be a constant to minimize the expression. It can therefore be written as


(n=2

(c

2

logn)=x

+ n=2

x

) (3:3)

for some constant c

2

. By taking the derivative with respect to x, we �nd that the

minimum of this expression is given when x

2

= �(log n), and the space is n=2

�(

p

logn)

.

Substituting these same values,

p

log n for r, 2

�(

p

logn)

for k, and a constant for L,

into the actual space bound expression (3.1) yields the same asymptotic space bound

of n=2

�(

p

logn)

. Since this matches the minimum for the simpli�ed expression, which

was a lower bound for this expression, we cannot do any better, and this must be the

minimum space bound for the algorithm when using polynomial time.

The results of this section are summarized in the following theorem and its corol-

lary:

Theorem 3.4 The combined algorithm, described above, solves stcon in space

O(n(log n)=L

r

+r(n=k+L log k)) and time O(nk

rL+2

(n=k+C)), for arbitrary integers

r; k; and L, such that n � k � 1; r � 1; L � 1; and L

r

� n.

Choosing r =

p

log n, k = 2

�(

p

logn)

, and L = 2 in the above theorem, we obtain:

Corollary 3.5 The combined algorithm solves stcon in space n=2

�(

p

logn)

and

time n

O(1)

.



Chapter 4

CONCLUSIONS

4.1 Introduction

This chapter presents some observations on the di�erence between ustcon and

stcon. In Section 4.2, we discuss some ustcon algorithms that appeared after

the results of Chapter 2. These algorithms seem to provide evidence that ustcon

is an easier problem than stcon. In Section 4.3, we discuss the techniques used by

these ustcon algorithms and why they do not seem applicable to solving directed

s-t connectivity. We point out what may be a di�erence between stcon algorithms

and ustcon algorithms: stcon algorithms always seem to �nd a simple path from

s to t. This does not seem to be true for small-space ustcon algorithms. We show

that many path length problems, including �nding the length of the shortest path

from s to t in a directed or undirected graph, and solving the short paths problem to

a su�ciently long distance in a directed or undirected graph, are NL-complete. We

generalize this result to show a close relationship between algorithms for the short

paths problem and for stcon: for a wide range of space bounds, an algorithm for the

short paths problem to a su�ciently long distance yields an algorithm for stcon with

the same asymptotic space bound. The reverse is nearly true: an stcon algorithm

implies an algorithm for the short paths problem with nearly the same asymptotic

space bound. We conclude in Section 4.4 with a list of open problems in the area of

time-space tradeo�s for graph s-t connectivity.

4.2 Other Work on Undirected s-t Connectivity

As mentioned in Section 1.3, substantial progress has been made toward determining

the deterministic complexity of ustcon since the results of Chapter 2 were �rst

published [BR91]. First, Nisan [Nis92] showed that ustcon was in simultaneous



58

polynomial time and O(log

2

n) space by improving his earlier pseudorandom generator

algorithm [Nis90]. More recently, Nisan et al. [NSW92] show how to solve ustcon

in space O(log

1:5

n) and time O(n

p

logn

). The basic idea of this last result is similar

to the recursive algorithm of Section 2.3 | the graph is repeatedly contracted by

associating a set of vertices with one vertex. The set of vertices is found using the

original pseudorandom generator of Nisan [Nis90]

4.2.1 A Variation of the O(log

1:5

n) Space Algorithm

Karger et al. [KNP92] and Sinha and Tompa [ST] show that the resemblance between

Nisan et al.'s O(log

1:5

n) space algorithm and the recursive algorithm of Section 2.3

is more than super�cial. They adapt the recursive algorithm's scheme of landmarks

and neighborhoods to devise an algorithm with the same time and space bounds as

Nisan et al.'s. The following paragraphs give a sketch of this algorithm.

Given a graph, G

0

, with n vertices, we construct a graph, G

1

, with O(n=2

p

logn

)

vertices that encodes the connectivity information of G

0

. Let the neighborhood of a

vertex v be the vertices found by taking the pseudorandom walks generated by the

original pseudorandom generator of Nisan [Nis90] when given log n space. It can be

shown that these walks hit at least c2

p

logn

distinct vertices, for some constant c > 0

(or all the vertices in v's component, if v's component contains fewer than c2

p

logn

vertices). The vertices of G

1

are the vertices, v, in G

0

such that

1. v's neighborhood is of size c2

p

logn

.

2. v's neighborhood does not overlap the neighborhood of any other vertex w;w <

v.

It isn't di�cult to see that there are only n=(c2

p

logn

) vertices in G

1

. Vertices that are

in components that are too small can safely be ignored, assuming s and t are not in

such components. If s's or t's component is too small, the pseudorandom walks from

s and t will discover such a fact, and can easily determine whether the two vertices

are connected.

To de�ne the edges of G

1

, we must introduce the notion of extended neighborhoods.

Every vertex, w, in G

0

is in an extended neighborhood. The extended neighborhood



59

is determined (recursively) as follows: If w is a vertex in G

1

, then w is in its own

extended neighborhood. Otherwise, let x be the lowest numbered vertex such that

x's neighborhood in G

0

overlaps w's. Then w is in the same extended neighborhood

that x is in.

There is an edge between two vertices in G

1

, v

1

and v

2

, if and only if there is an

edge in G

0

between a vertex in the extended neighborhood of v

1

and a vertex in the

extended neighborhood of v

2

.

This contraction can be repeated on G

1

to get G

2

, a graph with O(n=c

2

2

2

p

logn

)

vertices with the same connectivity information, and so on. After O(

p

log n) contrac-

tions, G

c

0

p

logn

has only a constant number of vertices, and s-t connectivity can easily

be determined. Furthermore, the intermediate graphs do not need to be explicitly

constructed; referring back to Section 1.5, computing the connectivity information for

G

i

is logspace reducible to computing the connectivity information for G

i�1

, for any

integer 0 < i � c

0

p

log n. The algorithm can therefore be thought of as c

0

p

log n + 1

separate logarithmic space algorithms, A

0

; : : : ; A

c

0

p

logn

, where the output of each al-

gorithm is available to the next algorithm on a bit by bit basis: A

i

answers questions

of the form \Is v a vertex in G

i

?", or \Is there an edge between vertex v and vertex w

in G

i

?" If i = 0, the answers can be determined directly, and if i > 0, the answer can

be determined by asking a series of similar questions to A

i�1

about G

i�1

. Each A

i

requires only space O(log n), so the entire algorithm uses space O(log

1:5

n). Because

no more than O(

p

log n) query results are retained at a time, the same query could be

asked repeatedly (up to a superpolynomial number of times), and the running time

is exponential in the space bound, or n

O(

p

logn)

.

4.3 Undirected vs. Directed s-t Connectivity

Before this recent work on small space algorithms for ustcon, it was not clear that

there was any substantial di�erence between directed and undirected s-t connectivity.

The only algorithms that were asymptotically faster for undirected graphs were the

random walk algorithm of Aleliunas et al., and the nonuniform universal traversal se-

quences. The deterministic algorithms, depth- and breadth-�rst search, and Savitch's

algorithm, are all asymptotically as fast for directed as undirected graphs. Ajtai and

Fagin [AF90] show that stcon is harder than ustcon in symbolic logic, but their



60

result does not seem to translate into a computational complexity lower bound.

The algorithms of Chapter 2, however, along with those of Nisan [Nis92], and

Nisan et al., seem to provide evidence that ustcon is an easier problem than stcon.

Note that the only known sublinear space, polynomial time algorithm for stcon, the

algorithm of Section 3.5, does not even achieve space O(n

1��

), for constant � > 0, a

far cry from the polylogarithmic space, polynomial time algorithm of Nisan.

A natural question, then, is why these algorithms work so well for undirected, but

not directed graphs. The key to all these algorithms is that they exploit the symmetry

of the connectivity relation in undirected graphs | in an undirected graph, if there

is a path from u to v, then there is a path from v to u. This can be a useful property

if we have only a limited amount of space, as these algorithms show. For example,

consider the actions of a random walk on a graph. If the walk has a goal of hitting

a distant vertex, t, then it seems inevitable that the walk will make an error and

stray o� the direct path to t. If the graph is undirected, this is not too bad, since

the walk can always retrace its steps and return to the proper path. If the graph is

directed, then the mistake is much more serious, since the walk may not be able to

easily return to the proper path. Many of the small space algorithms for ustcon

exploit the symmetry of undirected graphs by taking random or pseudorandom walks

(see, for example, [AKL

+

79, BKRU89, Nis90, Nis92, NSW92]).

The other common way of exploiting the symmetry of the connectivity relation on

undirected graphs is to contract the graph by grouping a set of connected vertices into

one (see the algorithms of Chapter 2, and [NSW92]). In such a scheme, the symmetry

is important, because every vertex in such a set is connected to every other vertex in

the set. In a directed graph, it may not be possible to �nd large strongly connected

sets (sets where every vertex is reachable from every other member) | there may not

be any large strongly connected components in the graph at all | and contraction

may be ine�ectual. If one tries to build sets with a weaker connectivity property, the

grouping is not nearly as powerful | if two such sets overlap, one cannot conclude

that all the vertices in the two sets are connected to each other.

There is another, more subtle di�erence between the small-space algorithms for

ustcon and the algorithms for stcon: the stcon algorithms all �nd the distance

from s to t. Breadth-�rst search, depth-�rst search, Savitch's algorithm, and the four



61

algorithms described in Chapter 3 can all be easily modi�ed to give the distance from

s to t along a simple path in G (and, with the exception of depth-�rst search, all these

algorithms can easily be modi�ed to �nd the shortest path from s to t). It is not easy

to see how to do the same for the small-space undirected algorithms. For those that

use random walks, extracting distances along simple paths seems impossible given the

space bounds of the algorithms. For those that contract the graph, the information

about simple paths is lost in the contraction. In the simple algorithm of Section 2.2,

for example, we learn s is connected to t by discovering that they are in the same

Union-Find set at the end of the algorithm. We could �nd a simple path from s to

t if we knew the series of Unions that contributed to putting s and t into the same

set, but this information is not discernible from the Union-Find data structure, and

the straightforward scheme that retains such information during the execution of the

Union-Find phase of the algorithm uses too much space.

This di�erence between small-space algorithms for ustcon and algorithms for

stcon is not coincidental, and is related to the symmetry of connectivity in undi-

rected graphs. Both stcon and ustcon algorithms try to �nd paths from s to t,

but, in general, it doesn't seem pro�table for an stcon algorithm to �nd anything

but a simple path (particularly since that may be the only path from s to t). For

ustcon algorithms, straying o� the path doesn't seem so costly. In fact, the small-

space algorithms for ustcon seem to show that it's sometimes much less costly to

�nd an indirect, possibly circuitous route, than to con�ne oneself to the direct route.

4.3.1 The Importance of Finding Distances

Given the above observation, we might make the following hypothesis:

Conjecture 4.1 Finding the length of a simple path between s and t is intrinsic

to solving stcon, but not to solving ustcon.

As worded, the conjecture is somewhat vague. What does it mean that �nding

a path is \intrinsic" to one problem, but not the other? For the moment, we will

leave the meaning of the conjecture fuzzy. Throughout the remainder of this section,

we will investigate di�erent interpretations of the conjecture, and see if we can prove



62

them true. This can give us insight into the relationship between �nding distances

and solving stcon and ustcon.

Intuitively, when we say �nding the length of a simple path is intrinsic to stcon,

we mean that one cannot solve stcon without �nding a simple path. If we have an

algorithm for stcon, we ought to be able to make a few trivial changes, and get an

algorithm that �nds a simple path. Again, this concept is somewhat vague | what

constitutes a \trivial" change? If we de�ne a logspace Turing reduction to be trivial,

we get the following mathematically precise version of the conjecture:

Conjecture 4.2 Finding the length of a simple path between two vertices in a

graph is logspace Turing reducible to stcon, but not ustcon.

If one could prove Conjecture 4.2, it would show that stcon is harder than

ustcon, and therefore that NL 6= SL. Unfortunately, it is unlikely that Conjec-

ture 4.2 can be proved directly. Observing that a particular ustcon algorithm

doesn't trivially yield the length of a simple path from s to t is much easier than

showing that no algorithm can do so. Note, however, that we can prove the �rst half

of the conjecture:

Lemma 4.3 Finding the length of a simple path between two vertices in a graph

is logspace Turing reducible to stcon.

Proof: Without loss of generality, assume the graph is directed. The reduction

for undirected graphs is similar. The proof is based on a simple transformation of a

graph to a layered graph. Given a directed graph, G, we can convert it to a layered

directed graph with n

2

vertices, G

0

. G

0

has n levels, level 0 to level n� 1, and every

vertex v has a copy, v

l

, on every level l of G

0

. G

0

has edges only from level i to level

i+1: (u

i

; v

i+1

) is an edge in G

0

if and only if (u; v) is an edge in G. In addition, there

is an edge (u

i

, u

i+1

) for all vertices u 2 G, and all i; 0 � i < n � 1. Because edges

only go from level i to level i+ 1, there is a path from u

0

to v

d

in G

0

if and only if

there is a path from u to v of length d or less in G. Note that this transformation

can be done in logarithmic space.

Given G

0

, we can �nd the length of the shortest path from s to t in G. Since the

shortest path is a simple path, this will prove the lemma. To �nd the length of the



63

shortest path, test for all possible path lengths, k, 0 � k � n � 1, whether there is

a path from s

0

to t

k

. The length of the shortest path is the least k for which such a

path exists. 2

Note that the construction in the proof cannot be used to show that �nding the

length of a simple path is logspace Turing reducible to ustcon. If one builds a

layered undirected graph, then, if s and t are in the same connected component in G,

a ustcon algorithm can always �nd a path from s

0

to t

1

or t

0

using edges between

levels 0 and 1.

We now investigate another aspect of Conjecture 4.1. Consider the following

problem:

De�nition: Given a directed graph, G, two vertices in G, s and t, and an integer

k, the length of the shortest path problem (denoted lsp) is to determine whether the

shortest path from s to t in G is of length k.

lsp is the \language" version of a natural problem | given two vertices in a di-

rected graph, �nd the length of the shortest path between them. If, as Conjecture 4.1

maintains, �nding the length of a simple path is intrinsic to an stcon algorithm,

then the lsp problem, which �nds the length of a simple path, may be closely related

to stcon. It could be that a few changes to an lsp algorithm will yield an stcon

algorithm. This turns out to be true.

Proposition 4.4 lsp is NL-complete.

Proof: An NL algorithm that solves lsp can be constructed using the layered

graph of Lemma 4.3. First, verify that s

0

is connected to t

k

in the layered graph using

a standard NL stcon algorithm. This proves that the shortest path is of length k

or less. Then, check that there is no path from s

0

to t

k�1

in the layered graph using

the NL s-t nonconnectivity algorithm of Immerman or Szelepcs�enyi [Imm88, Sze88].

This proves that the shortest path is not of length k � 1 or less.

Given an algorithm for lsp, we can solve stcon in deterministic logarithmic space

by constructing the corresponding layered graph, G

0

, from G, and testing whether

there is a path of length n� 1 in G

0

from s

0

to t

n�1

. 2



64

Like lsp, the short paths problem (see Section 3.4) tries to �nd the distance from

s to t, but it seems easier than lsp: while an lsp algorithm must determine whether

the length of the shortest path is a certain number, a short paths algorithm needs only

to determine whether the length of the shortest path is less than a su�ciently large

bound. Still, if �nding the distance from s to t is important when solving stcon,

as Conjecture 4.1 suggests, perhaps the short paths problem is also closely related

to stcon. We have already seen circumstantial evidence that this is true: the short

paths algorithm described in Section 3.4 is actually a general stcon algorithm (see

the note on page 53). The following theorem shows that, like the lsp problem, the

short paths problem for certain functions is in some sense as hard as stcon:

Theorem 4.5 Let f(n) be a function such that f(n) = 
(n

�

), for some constant

� > 0, and f(n) is computable in logarithmic space. Then shortp(f(n)) is NL-

complete.

Proof: Without loss of generality, we prove the theorem for shortp(n

�

), constant

� > 0. First, shortp(n

�

) is in NL. Simply guess a path of length at most n

�

edge by

edge, checking that the guessed edges exist.

To show that shortp(n

�

) is NL-hard, let A be an algorithm that �nds short paths

of length up to n

�

. We show that stcon �

log

shortp(n

�

) by recursively invoking A

on itself to solve stcon. Given A and a graph, G, we can construct a graph, G

1

,

that has the same vertices as G, and an edge from u to v if and only if there is a

path from u to v in G of length up to n

�

. We can repeat this process d1=�e times and

generate d1=�e graphs, G

1

; : : : ; G

d1=�e

, where G

i

is a graph with the same vertices as

G and an edge from u to v if and only if there is a path from u to v in G of length

up to n

i�

. G

d1=�e

tells us whether there is a path from s to t in G.

As in the algorithm described in Section 4.2.1, we do not explicitly construct these

intermediate graphs. We assume a chain of algorithms, A

1

; : : : ; A

d1=�e

, each operating

on one of the G

i

graphs. A

i

's job is to answer questions such as \Is there an edge

from u to v in G

i

?", which it answers by running A, periodically either querying A

i�1

whether there is an edge from u

0

to v

0

in G

i�1

(if i > 1), or reading the input graph, G

(if i = 1). Each algorithm uses space O(log n), and there are only d1=�e algorithms,

so the entire reduction uses space O(log n). 2



65

A theorem similar to Theorem 4.5 can be proved using a padding argument.

Given an algorithm for shortp(f(n)), suppose for all values of n and a suitable

constant c, we could always easily �nd an n

0

; n < n

0

< n

c

, such that f(n

0

) � n. Then

stcon �

log

shortp(f(n)). To solve stcon on a graph G with n vertices, construct

a graph G

0

with n

0

vertices by adding n

0

� n unconnected vertices to G. Then there

is a path of length f(n

0

) or less in G

0

from s to t if and only if there is a path in G

from s to t. It is not clear, however, that �nding such an n

0

is always possible. If

f(n) = n

�

, constant � > 0, such an n

0

can be found by brute force:

l

n

1=�

m

is a valid

n

0

, so if we test all numbers starting at n, we can �nd a suitable n

0

in polynomial

time using O(log n) space.

The preceding two results show that �nding the length of a shortest path in a

directed graph, or even �nding whether the length is less than a certain bound, is

in some sense equivalent to solving stcon. We can try to extend Conjecture 4.1

further | if �nding the length of a simple path between two vertices is so intrinsic

to stcon, then perhaps �nding the distance between two vertices in an undirected

graph is closely related to stcon as well. The following two theorems show that

this conjecture is, somewhat surprisingly, true. Let ulsp and ushortp(f(n)) be the

versions of the lsp and shortp(f(n)) problems for undirected graphs. According to

Borodin et al. [BCD

+

89, page 561], Theorem 4.6 was originally discovered by Ladner.

Theorem 4.6 ulsp is NL-complete.

Theorem 4.7 For constant 1 > � > 0, ushortp(n

�

) is NL-complete.

Proof:[of Theorem 4.6] Given a directed graph, G, we can convert it to a layered

undirected graph with n

2

vertices, G

0

, similar to the layered graph constructed in the

proof of Lemma 4.3. fu

i

; v

i+1

g is an edge in G

0

if and only if (u; v) is an edge in G,

and fu

i

; u

i+1

g is an edge for all u 2 G and all i; 0 � i < n � 1. Because edges only

go from level i to level i+ 1, there is an undirected path from u

0

to v

d

of length d in

G

0

if and only if there is a path from u to v of length d or less in G.

ulsp, like lsp, is clearly in NL. We will show stcon �

log

ulsp. Construct the

undirected layered graph, G

0

, for G. There is a path in G

0

between s

0

and t

n�1

of

length n � 1 if and only if there is a path in G from s to t. 2



66

Proof:[of Theorem 4.7] ushortp(n

�

), like shortp(n

�

), is easily shown to be in

NL. To show the problem is NL-hard, we use a padding argument similar to the one

presented above (page 65) to show that stcon �

log

ushortp(n

�

).

The basic idea of the reduction is to build the layered undirected graph, G

0

, from

G, as in the proof of Theorem 4.6 above, and then add extra, unconnected vertices

to give n

0

total vertices, such that b(n

0

)

�

c = n. Then there is path in the new graph

from s

0

to t

n�1

of length n

�

or less if and only if there is a path from s to t in G.

There is a slight problem with this idea: the layered undirected graph already has

more than n vertices. If the number of vertices in G

0

is large enough, then b(n

0

)

�

c

could be more than n. It is important that b(n

0

)

�

c be exactly n. If b(n

0

)

�

c is less than

n, the ushortp(n

�

) algorithm will not �nd a path in G

0

corresponding to a long path

in G. If b(n

0

)

�

c is more than n, the ushortp(n

�

) algorithm may �nd a path in G

0

that does not correspond to a path in G.

If � � 1=2, the original idea can be used, as follows. We add vertices to the

layered graph for a total of n

0

vertices, b(n

0

)

�

c = n. Note that because n

�

is a strictly

increasing function, and because k

�

� (k � 1)

�

< 1 for 0 < � < 1=2, there is always

an n

0

� n

2

such that b(n

0

)

�

c = n. We know that n

0

is approximately n

1=�

, and while

calculating 1=� and n

1=�

may not be easy in logarithmic space, we can again use

brute force. If we test all numbers starting with n

2

, we �nd the correct value of n

0

in

polynomial time using O(log n) space.

Suppose � > 1=2. Then we use a di�erent idea to lengthen the path to t

n�1

while

increasing the size of the graph. We connect k new vertices, v

1

; v

2

; : : : ; v

k

, in a chain

to s

0

, by adding the edges fv

1

; v

2

g; fv

2

; v

3

g; : : : ; fv

k�1

; v

k

g; fv

k

; s

0

g. The chain must

be the proper length, so that b(n

2

+ k)

�

c = n + k. Then there is a path from v

1

to

t

n�1

in G

0

of length b(n

2

+ k)

�

c or less if and only if there is a path from v

1

to t

n�1

of length n+ k, which can only be true if there is a path from s to t in G.

Note that as k increases, n + k grows faster than (n

2

+ k)

�

, but j(n + k � (n

2

+

k)

�

) � (n + k + 1 � (n

2

+ k + 1)

�

)j < 1. Therefore, there is always a k such that

b(n

2

+ k)

�

c = n + k. For su�ciently large values of n, k � n

2+�

, for any constant

� > 0, so we can again �nd the correct value of k using brute force in polynomial

time using O(log n) space.



67

Note that the above construction cannot be extended to all f(n) = 
(n

�

). For

example, if f(n) = n, adding extra unconnected or connected vertices will not make

the reduction work, since f(n) grows as fast as the number of vertices added. 2

The reductions in the proofs above show that if we could derive path length

information from a small space algorithm for ustcon, we would have a corresponding

small space algorithm for stcon. The space bound of the stcon algorithm may not

be the same as the space bound of the ustcon algorithm, because the layered graph

construction squares the size of the graph.

The Short Paths Problem and stcon

The following two propositions use the reductions above to show that stcon and

shortp(f(n)) are nearly equivalent for a wide range of space bounds. This informa-

tion could be useful when trying to improve the results of Chapter 3.

Proposition 4.8 If shortp(n

�

) 2 DTIME;SPACE(T (n); S(n)), for any 0 <

� < 1, T (n) = n


(1)

, then stcon 2 DTIME;SPACE(T (n)

O(1=�)

; S(n)=�).

Proof: Given an algorithm for shortp(n

�

), A, that runs in the appropriate time

and space bounds, we can use the reduction in Theorem 4.5 to obtain an stcon

algorithm. This algorithm is essentially the recursive application of A on itself to

depth up to d1=�e, so it uses space O(S(n)=�) and time at most T (n)

O(1=�)

. 2

Note that if � is constant, then the resulting stcon algorithm has the same

asymptotic space bounds as the short paths algorithm. Furthermore, if the short

paths algorithm runs in polynomial time, so does the resulting stcon algorithm.

Proposition 4.9 If stcon 2 DTIME;SPACE(T (n); S(n)), then

shortp(f(n)) 2 DTIME;SPACE(T (n � f(n)

�

)

O(1=�)

; S(n � f(n)

�

)=�), for any

0 < � � 1, and any f(n) computable in DTIME;SPACE(T (n � f(n)

�

)

O(1=�)

; S(n �

f(n)

�

)=�).

Proof: Consider the undirected layered graph, G

0

, constructed from G (see the

proofs of Lemma 4.3 and Theorem 4.6). Let A be an algorithm for stcon that runs



68

in DTIME;SPACE(T (n); S(n)). If we construct the �rst k levels of G

0

, we can use

A to detect paths of length k in G. We (implicitly) construct the �rst f(n)

�

levels

of G

0

, which allows us to solve the short paths problem to distance f(n)

�

. Using the

construction from the proof of Theorem 4.5, we can call this algorithm recursively

d1=�e times to solve the short paths problem to distance f(n). As in Proposition 4.8,

this translates into a series of recursive calls to depth d1=�e. Note, however, that

the size of the intermediate graphs is n � f(n)

�

, which slightly increases the time and

space requirements of the stcon algorithm at each level of recursion. The complete

algorithm runs in time T (n � f(n)

�

)

O(1=�)

and space S(n � f(n)

�

)=�. 2

For certain space bounds, S(n), (for example, n

�

, for constant � > 0) the resulting

short paths algorithm uses asymptotically more space than the stcon algorithm, so

this result is not quite as good as the result of Proposition 4.8. Still, these results show

that s-t connectivity and the short paths problem are equivalent in many respects.

Consider the following class of languages:

De�nition: Let DPNE be the class of languages, L, such that L is computable

in deterministic polynomial time and O(n

�

) space for some constant 0 � � < 1.

Corollary 4.10 (to Propositions 4.8 and 4.9) stcon 2 DPNE ()

shortp(n

c

) 2 DPNE, for constant c; 0 < c � 1.

Note that Proposition 4.9 says something slightly stronger: stcon 2 DPNE )

shortp(f(n)) 2 DPNE for any function f(n) = n

O(1)

computable in the given time

and space bounds.

Corollary 4.11 (to Propositions 4.8 and 4.9) For S(n) = log

O(1)

n, stcon

2 DTIME;SPACE(n

O(1)

; S(n)) () shortp(n

c

) 2 DTIME;SPACE(n

O(1)

;

S(n)), for constant c; 0 < c � 1.

Again, if stcon 2 DTIME;SPACE(n

O(1)

; S(n)), then there is a polynomial

time, S(n) space short paths algorithm for any function f(n) = n

O(1)

computable in

the given time and space bounds.

A plausible next step in settling the space complexity of stcon might be to show

that stcon is solvable in polynomial time and O(n

�

) space. Corollary 4.10 says that



69

this is equivalent to showing that the short paths problem for distance n

c

is solvable

in polynomial time and O(n

�

) space. Corollary 4.11 shows that Cook's conjecture

(stcon is not solvable in simultaneous polynomial time and polylogarithmic space

[Coo79]) is true if and only if the short paths problem for distance n

c

is also not

solvable in simultaneous polynomial time and polylogarithmic space.

4.4 Future Work

The obvious open problems in this area are to improve the bounds on the current

best algorithms. The algorithm of Nisan et al. [NSW92] seems to suggest that a

deterministic �(log n) algorithm for undirected s-t connectivity is possible. One

more insight in this area could settle the deterministic space complexity of ustcon.

It might be useful to look slightly higher than the algorithm of Nisan et al. to

Nisan's polynomial time, O(log

2

n) algorithm. Currently, it is not known whether

one can improve the � n

45

running time of this algorithm by, for instance, giving

the algorithm more space. If one could devise such a scheme, perhaps the algorithm

could be extended in the other direction to use less space and more time.

In contrast, the deterministic space complexity of directed s-t connectivity seems

far from settled. The current bound of simultaneous n=2

�(

p

logn)

space and polyno-

mial time does not seem natural. The algorithm in Chapter 3 was devised using a

small collection of simple but useful ideas for trading time for space while searching a

graph. Any new tradeo�, when combined with the old ones, may yield a substantial

improvement in the space bound.

Section 4.3.1 shows that the short paths problem is central to solving stcon

in small space. The other tradeo� used in the algorithm, the breadth-�rst search

tradeo�, does not seem nearly as important. If we view our algorithm as operating

on the breadth-�rst search tree of s, then it becomes apparent that it uses breadth-�rst

search to slice the graph into pieces, and the short paths algorithm to explore these

pieces. Partitioning the graph into sets of vertices with a certain property seems a

reasonable approach to solving stcon in small space (in our case, the property relates

to the length of the shortest path from s to the vertices in the set). However, it is not

clear that viewing the graph as a breadth-�rst search tree yields the best algorithm.

Even if we do �x on the breadth-�rst search tree, it is not clear that remembering a



70

fraction of the levels in the tree is the most e�cient way to partition the vertices.

While it has barely been touched upon in this thesis, the probabilistic complex-

ities of ustcon and stcon are also interesting. The time bound of Broder et al.'s

algorithm seems open to improvement | it probably should be O(mn log

c

n=s) for

some constant c, instead of O(m

2

log

c

n=s) [Ruz]. More interesting would be time

and space bounds for probabilistic algorithms for directed s-t connectivity. While

randomness seems to help with ustcon, it is not clear that it helps to solve stcon.

Section 4.3.1 shows that �nding the length of a shortest path between two ver-

tices in an undirected graph is NL-complete. While existing small space ustcon

algorithms do not easily give such a path length, they could give an approximation

of the path length. It may be fruitful to investigate approximation problems for NL.

For example, how well can existing small space ustcon algorithm be made to esti-

mate the path length from s to t? Is estimating the length of an undirected shortest

path to a certain accuracy equivalent to knowing the exact path length? The recent

work on approximation algorithms for NP-complete problems by Arora and Safra,

and Arora et al. [AS92, ALM

+

92] gives a new characterization of NP. Perhaps work

on approximation problem for NL could yield a similar new understanding of NL.

Finally, it is worthwhile to consider the apparent di�erences between undirected

and directed s-t connectivity, as outlined in Section 4.3. While it does not appear

likely that one can prove directly that stcon is harder than ustcon, the approaches

of the di�erent algorithms are worth considering for the insight one can gain. For

example, it seems self-evident that any algorithm that solves s-t connectivity must

somehow consider all possible paths from s to t, and test for their existence. How,

then, does one explain the success of the random walk process at solving undirected

s-t connectivity? The deterministic pseudorandom algorithms of Nisan show that,

in some sense, the random walk does consider all possible paths. Understanding the

structure of random walks on undirected graphs would be a breakthrough indeed.



Bibliography

[AAR90] N. Alon, Y. Azar, and Y. Ravid. Universal sequences for complete

graphs. Discrete Applied Mathematics, 27:25{28, 1990.

[Abb68] E. Abbey. Desert Solitaire; A Season in the Wilderness. McGraw-Hill,

1968.

[AF90] M. Ajtai and R. Fagin. Reachability is harder for directed than for

undirected graphs. Journal of Symbolic Logic, 55:113{150, 1990.

[AKL

+

79] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lov�asz, and C. Racko�. Ran-

dom walks, universal traversal sequences, and the complexity of maze

problems. In 20th Annual Symposium on Foundations of Computer Sci-

ence, pages 218{223, San Juan, Puerto Rico, October 1979. IEEE.

[ALM

+

92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof

veri�cation and hardness of approximation problems. In 33rd Annual

Symposium on Foundations of Computer Science, Pittsburgh, PA, Oc-

tober 1992. IEEE.

[AS92] S. Arora and S. Safra. Probabilistic checking of proofs. In 33rd An-

nual Symposium on Foundations of Computer Science, Pittsburgh, PA,

October 1992. IEEE.

[BBR

+

90] P. Beame, A. Borodin, P. Raghavan, W. L. Ruzzo, and M. Tompa.

Time-space tradeo�s for undirected graph connectivity. In 31st Annual

Symposium on Foundations of Computer Science, pages 429{438, St.

Louis, MO, October 1990. IEEE.

[BBRS92] G. Barnes, J. F. Buss, W. L. Ruzzo, and B. Schieber. A sublinear space,

polynomial time algorithm for directed s-t connectivity. In Proceedings,



72

Structure in Complexity Theory, Seventh Annual Conference, Boston,

MA, June 1992. IEEE. To appear.

[BCD

+

89] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa.

Two applications of inductive counting for complementation problems.

SIAM Journal on Computing, 18(3):559{578, June 1989. See also 18(6):

1283, December 1989.

[BKRU89] A. Z. Broder, A. R. Karlin, P. Raghavan, and E. Upfal. Trading space

for time in undirected s-t connectivity. In Proceedings of the Twenty

First Annual ACM Symposium on Theory of Computing, pages 543{549,

Seattle, WA, May 1989.

[BNBK

+

89] A. Bar-Noy, A. Borodin, M. Karchmer, N. Linial, and M. Werman.

Bounds on universal sequences. SIAM Journal on Computing, 18(2):268{

277, April 1989.

[BNS89] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols and logspace-

hard pseudorandom sequences. In Proceedings of the Twenty First An-

nual ACM Symposium on Theory of Computing, pages 1{11, Seattle,

WA, May 1989.

[BR91] G. Barnes and W. L. Ruzzo. Deterministic algorithms for undirected s-t

connectivity using polynomial time and sublinear space. In Proceedings

of the Twenty Third Annual ACM Symposium on Theory of Computing,

pages 43{53, New Orleans, LA, May 1991.

[Bri87] M. F. Bridgland. Universal traversal sequences for paths and cycles.

Journal of Algorithms, 8(3):395{404, 1987.

[BRT89] A. Borodin, W. L. Ruzzo, and M. Tompa. Lower bounds on the length of

universal traversal sequences. In Proceedings of the Twenty First Annual

ACM Symposium on Theory of Computing, pages 562{573, Seattle, WA,

May 1989. To appear in Journal of Computer and System Sciences.



73

[BS83] P. Berman and J. Simon. Lower bounds on graph threading by proba-

bilistic machines. In 24th Annual Symposium on Foundations of Com-

puter Science, pages 304{311, Tucson, AZ, November 1983. IEEE.

[Coh78] D.I.A. Cohen. Basic Techniques of Combinatorical Theory. John Wiley

& Sons, 1978.

[Coo71] S. A. Cook. The complexity of theorem proving procedures. In Proceed-

ings of the Third Annual ACM Symposium on Theory of Computing,

pages 151{158, Shaker Heights, OH, May 1971.

[Coo79] S. A. Cook. Deterministic CFL's are accepted simultaneously in polyno-

mial time and log squared space. In Proceedings of the Eleventh Annual

ACM Symposium on Theory of Computing, pages 338{345, Atlanta, GA,

April-May 1979.

[CR80] S. A. Cook and C. W. Racko�. Space lower bounds for maze threadability

on restricted machines. SIAM Journal on Computing, 9(3):636{652,

August 1980.

[Hen65] F. C. Hennie. One-tape o�-line Turing machine computations. Informa-

tion and Control, 8(6):553{578, 1965.

[HU69] J. E. Hopcroft and J. D. Ullman. Formal Languages and their Relation

to Automata. Addison-Wesley, 1969.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison-Wesley, 1979.

[HW89] S. Hoory and A. Wigderson. Universal sequences for expander graphs.

Hebrew University, Jerusalem, December 1989.

[Imm88] N. Immerman. Nondeterministic space is closed under complementation.

SIAM Journal on Computing, 17(5):935{938, October 1988.



74

[Ist88] S. Istrail. Polynomial universal traversing sequences for cycles are con-

structible. In Proceedings of the Twentieth Annual ACM Symposium on

Theory of Computing, pages 491{503, Chicago, IL, May 1988.

[Ist90] S. Istrail. Constructing generalized universal traversing sequences of

polynomial size for graphs with small diameter. In 31st Annual Sym-

posium on Foundations of Computer Science, pages 439{448, St. Louis,

MO, October 1990. IEEE.

[KNP92] D.R. Karger, N. Nisan, and M. Parnas. Fast connected components

algorithms for the EREW PRAM. In Proceedings of the 1992 ACM

Symposium on Parallel Algorithms and Architectures, pages 373{382,

San Diego, CA, June 1992.

[Knu73] D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer

Programming. Addison-Wesley, 1973.

[KPS88] H. J. Karlo�, R. Paturi, and J. Simon. Universal traversal sequences of

length n

O(logn)

for cliques. Information Processing Letters, 28:241{243,

August 1988.

[KSS84] J. Kahn, M. Saks, and D. Sturtevant. A topological approach to eva-

siveness. Combinatorica, 4:297{306, 1984.

[LL76] R. E. Ladner and N. A. Lynch. Relativization of questions about log

space computability. Mathematical Systems Theory, 10(1):19{32, 1976.

[LP82] H. R. Lewis and C. H. Papadimitriou. Symmetric space-bounded com-

putation. Theoretical Computer Science, 19(2):161{187, August 1982.

[Nis90] N. Nisan. Pseudorandom generators for space-bounded computation. In

Proceedings of the Twenty Second Annual ACM Symposium on Theory

of Computing, pages 204{212, Baltimore, MD, May 1990.



75

[Nis92] N. Nisan. RL � SC . In Proceedings of the Twenty-Fourth Annual ACM

Symposium on Theory of Computing, pages 619{623, Victoria, B.C.,

Canada, May 1992.

[NSW92] N. Nisan, E. Szemer�edi, and A. Wigderson. Undirected connectivity in

O(log

1:5

n) space. In 33rd Annual Symposium on Foundations of Com-

puter Science, Pittsburgh, PA, October 1992. IEEE.

[Pip80] N. Pippenger. Pebbling. In Proceedings of the Fifth IBM Symposium on

Mathematical Foundations of Computer Science. IBM Japan, May 1980.

[Ruz] W. L. Ruzzo. Personal Communication.

[RV76] R. C. Rivest and J. Vuillemin. On recognizing graph properties from

adjacency matrices. Theoretical Computer Science, 3(3):371{384, De-

cember 1976.

[Sav70] W. J. Savitch. Relationships between nondeterministic and deterministic

tape complexities. Journal of Computer and System Sciences, 4(2):177{

192, 1970.

[ST] R. Sinha and M. Tompa. Personal Communication.

[Sze88] R. Szelepcs�enyi. The method of forcing for nondeterministic automata.

Acta Informatica, 26:279{284, 1988.

[Tar75] R. E. Tarjan. On the e�ciency of a good but not linear set merging

algorithm. Journal of the ACM, 22(2):215{225, 1975.

[Tom82] M. Tompa. Two familiar transitive closure algorithms which admit no

polynomial time, sublinear space implementations. SIAM Journal on

Computing, 11(1):130{137, February 1982.

[Tom90] M. Tompa. Lower bounds on universal traversal sequences for cycles and

higher degree graphs. Technical Report 90-07-02, Department of Com-

puter Science and Engineering, University of Washington, July 1990. To

appear in SIAM Journal on Computing.




