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Abstract

We describe a toolset, consisting of a graphical editor, a simulator, and an assertion

checker, for prototyping distributed real-time systems that are speci�ed as Communi-

cating Real-time State Machines (CRSMs). CRSMs are timed state machines that

communicate synchronously over uni-directional channels. The system behavior of

CRSMs is characterized by a time-stamped trace of communication events. Safety

and timing assertions on the trace of communication events are expressed in a nota-

tion based on Real-Time Logic. We illustrate the novel aspects of the simulator and

assertion checker by specifying a tra�c-light controller and other real-time systems.

1 Introduction

Executable speci�cations have been advocated as a promising method for understanding

the requirements speci�cation of systems, and for developing systems incrementally [11, 18].

An executable speci�cation serves as a prototype of the �nal implementation. The main

advantage of prototyping systems is that it gives the designer feedback that what is being

speci�ed is indeed what is desired. In addition, the prototype can be checked for functional

and timing correctness before moving to design and implementation.

�
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In this paper, we describe an environment for prototyping real-time systems using Com-

municating Real-time State Machines (CRSMs). CRSMs, introduced in [14], are an exe-

cutable scheme for specifying the requirements of both a real-time system and its physical

environment. They are timed state machines that communicate synchronously over uni-

directional channels. Every CRSM has a partner clock machine that provides a timeout

mechanism and can be queried for the value of current time. System behavior is character-

ized by the time-stamped trace or history of communication events between the machines.

Desired properties of the system behavior, including safety and timing constraints, are ex-

pressed as assertions on the trace of communication events. The prototyping environment

consists of a graphical editor for describing CRSMs, a simulator to observe the execution of

the prototype, and an assertion checker for monitoring assertions during simulation.

This paper makes two contributions: First, the prototyping environment serves as a

validation of the execution algorithm and paper design of CRSMs described in [14]. Second,

the paper presents a novel and useful method of specifying safety and timing properties, and

checking them during simulation.

A substantial amount of research has been done on executable speci�cations and proto-

typing of real-time systems. We give a brief survey and comparison of speci�cation methods

that are state machine based, because these are most closely related to our work. Statemate

[10] is a tool for executing Statecharts [9]. Statecharts use broadcast for event commu-

nication, whereas CRSMs use message passing. Modechart is similar to Statecharts, but

emphasizes the timing properties of systems; a simulator for Modechart is presented in

[15]. Unlike CRSMs, Modechart does not allow events to have message components. Both

Statecharts and Modechart use a shared memory model, whereas CRSMs present a dis-

tributed model. Reference [13] describes the ROOM methodology and its associated toolset.

ROOM combines object-oriented methods (including inheritance) and Statecharts. Hier-

archical Multi-State Machines (HMS) [4] is an executable notation that blends ideas from

Petri-nets, Statecharts and temporal logic. Finally, the new model of time in CRSMs (both

for describing the passage of time and for specifying timeouts) also distinguishes our work

from the ones listed above.

Traces are used for reasoning about the behavior of general systems in [8], and for real-

time systems in [1, 14]. Our method of reasoning with traces is noteworthy because it is

based on Real-Time Logic (RTL) [5]. RTL is well suited for real-time systems because it

deals with event times and can di�erentiate multiple occurrences of the same event. We

believe that such use of timing assertions for analysis of executable speci�cations is novel.

The rest of the paper is organized as follows. In the next section, we present our system

model and the general prototyping approach. Sections 3, 4 and 5 give the details of our

two speci�cation languages and prototyping environment, and some experiments. Section 6

discusses some of the limitations of our approach and describes current and future work.
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2 Prototyping Approach and Model

A real-time speci�cation language must have features for describing the passage of time

and for specifying timing constraints. Since real-time systems operate in parallel with their

physical environment and are often distributed, the language must also have support for

concurrency. A graphical representation is desirable as it is natural for input and is highly

readable, thus serving as the documentation.

An important reason for specifying the requirements formally is that it permits analysis

of the speci�cation. It must be possible to check the speci�cation for functional and timing

correctness. An important class of functional properties are safety properties, which assert

that the system is never in a hazardous state. Timing properties that must be veri�able

include delays, deadlines, and periodic constraints. Finally, the methods for checking or

verifying the above properties must be computationally e�cient.

As an example to illustrate our speci�cation languages and prototyping environment we

will describe a real-time system for controlling tra�c lights. It was inspired by the tra�c-

light controller presented in [3], but is completely di�erent in detail from that example:

A computer system controls the tra�c lights at an intersection of an avenue and

street. The avenue and street tra�c lights have inputs avetored, avetoyellow, ave-

togreen and strtored, strtoyellow, strtogreen, respectively. These inputs are used

by the computer controller to set the state of the lights. The controller sequences

the avenue and street lights. The sequence for each light is red!green!yellow

and back to red, with the light being green for 45 seconds and yellow for 5 sec-

onds. An ambulance can signal (approaching) the controller about its impending

arrival and its direction. The controller then turns both the avenue and street

lights to red. When the ambulance nears the intersection (signal before), the

controller turns either the avenue or street light to green based on the direction

of the ambulance. After the ambulance leaves the intersection (signal after), the

controller turns the green light to red and returns to its normal sequence. (Note:

It is assumed that there is a single ambulance and that the ambulance does not

make a turn at the intersection).

The controller must satisfy certain safety constraints so that the tra�c lights

do not pose a hazard to the ambulance and to other vehicles on the road. One

obvious safety constraint is that vehicles on both roads must not be allowed to

enter the intersection simultaneously. Also, when the ambulance is crossing the

intersection, the lights on that road must be green and the other light must be

red.

We use two speci�cation languages. One language describes the behavior of the system

including the physical interfaces. The other speci�es the safety and timing constraints that

the system must satisfy.
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Figure 1: Global view of system

The system speci�cation language is based on CRSMs [14], which are timed state ma-

chines that run concurrently except when they need to communicate. Machines communicate

synchronously (as in CSP [7, 8]) and instantaneously through messages over uni-directional

channels. The set of machines and channels for the tra�c-light controller and its environ-

ment is shown in Figure 1. There are four machines: Controller (the real-time system),

and Avelight, Strlight, and Ambulance that describe the behavior of the physical avenue

light, street light, and ambulance respectively; and nine channels: avetored, avetoyellow,

avetogreen and so on. The CRSM model is a distributed one, except for a single shared

variable representing the current time. A channel can have message components, as in,

approaching(integer direction)

where direction is of type integer. Each communication instance (i.e. a message) on channel

approaching will have an integer data value associated with direction. The behavior of a

system is characterized by the history of time-stamped communication events on its channels,

i.e. a history of the messages transmitted.

The assertion language is based on Real-Time Logic (RTL) [5, 6], which views a com-

putation as a sequence of event occurrences. In our context, the only events of interest are

instances of communication on channels. Both safety and timing properties are expressed

as assertions about the relations between channel events. For example, there must be a

delay of at least 5 seconds between the ambulance signals approaching and before, to give the

Controller enough time to clear the intersection. This requires that corresponding events on

the approaching and before channels be at least 5 seconds apart.
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RTL uses the occurrence function @ to denote the time of events. For example,

@(approaching, i)

denotes the time of the i

th

communication on channel approaching (i > 0). RTL formulas

are composed from occurrence functions, equality/inequality relations, �rst order logic con-

nectives, and the universal (8) and existential (9) quanti�ers. The above delay constraint

can be speci�ed by the formula,

8i @(before; i) � @(approaching; i) + 5

The reason for choosing RTL is that its occurrence function can be used to distinguish

di�erent occurrences of the same event. In addition, earlier work on using RTL for run-time

monitoring [2, 12] motivated us to use similar ideas for checking executable speci�cations.

Our general approach is:

� to build a system of CRSMs and RTL assertions that represent the prototype and its

desired behavior,

� to simulate the prototype to observe system behavior, and

� to monitor the execution to check that no safety and timing assertions are being vio-

lated.

3 Speci�cation Language Constructs

3.1 CRSMs

Figures 2 and 3 show the CRSMs for Avelight, Strlight, Ambulance and Controller. A

machine has a �nite number of states, one of which is designated as the start state. State

transitions are guarded commands and consist of a guard, a command, and a time interval.

The guard is a Boolean expression constructed from constants and local variables of the

machine. A transition is ready for execution if its guard evaluates to true. If more than one

transition is ready to �re, then a selection is made non-deterministically. A command can

be one of input, output, or internal command.

The Controller can get input from the Ambulance by the input command,

approaching(dir) ?

and the Ambulance can use the output command
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approaching(direction) !

to interact with the Controller. The communication occurs when both Controller and Am-

bulance are ready. The semantics of IO is the assignment,

dir = direction

at the receiving machine (Controller). IO on a channel with no message components (e.g.

strtored) denotes a pure synchronization signal. State n

11

of the Controller has two exiting

transitions with guards (dir==0) and (dir==1). For example, the transition from n

11

to n

1

is only executed if (dir==1).

The time interval associated with IO transitions denotes the earliest and latest time IO

can occur after entering the state. Suppose Ambulance enters the state bef at time t

bef

.

Then Controller must accept input on channel before somewhere in the time interval

[t

bef

+ 8; t

bef

+ 10]

Otherwise, the Ambulance machine will be deadlocked and can make no further progress.

The common cases of a true guard and the time interval [0,1] are omitted for the sake of

brevity. Also, the interval [t,t] is represented simply as [t].

An internal command can be a sequential program

1

that changes the values of local

variables, and/or it can denote a physical activity. The time interval of an internal command

represents the best and worst case execution time of the command. All internal commands

in the two lights take 1 second to execute. The commands set local variables whose values

designate the intended state of the light. Internal commands have a label, such as turn red,

which serves to identify the sequential code.

Every CRSM has a real-time clock machine that can be queried for the value of current

time over the timer channel. The Controller uses

timer ? [45]

to obtain a timeout after spending 45 seconds in states where a light is green. Current time

can be retrieved, say in the variable x, by a call: timer(x) ?

The machines for the two lights accept a signal to change the light state, and then carry

out an internal command that sets the new state. The Ambulance machine uses the internal

command, getapptime, to get the time of next approach (nexttime) of the ambulance and the

direction of approach from the user. If direction is 0, then the direction of travel is along the

avenue; if 1, it is along the street. Nexttime is used as the time interval on the succeeding

transition to schedule the approaching signal.

1

The current implementation uses a C/C++ procedure.
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AMBULANCE

red green

yel

red

yel

green

strtoyellow ?

turn_red
   { r=1; y=0; g=0;} [1]

turn_yellow
   {r=0; y=1; g=0;} [1]

turn_red turn_green
   {r=0; y=0; g=1;} [1]

turn_yellow
   {r=0; y=1; g=0;} [1]

getapptime

avetoyellow ?

   {r=0; y=0; g=1;} [1]
turn_green

  { printf("enter time, direction: "); 
     scanf("%d %d", &nexttime, &direction); } [0]

before ! [8,10]

strtored ? strtogreen ?

avetored ? avetogreen ?

befaft

after ! [6,8]

start

start

approaching(direction) !
[nexttime]

AVELIGHT

STRLIGHT

   { r=1; y=0; g=0;} [1]

{r=1; y=g=0;} [1]

{r=1; y=g=0;} [1]

Figure 2: CRSMs for the physical environment
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CONTROLLER
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Figure 3: CRSM for real-time system
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The Controller can be thought of as being in two modes: normal and interrupted. States

n

1

through n

10

comprise the normal mode. In this mode, Controller sequences the lights

through red!green!yellow and back to red, with the light being green for 45 seconds and

yellow for 5 seconds. The Controller moves to the interrupted mode when it receives the

signal approaching. If the avenue light is green, it is turned to yellow and then to red; if

it is yellow it is turned to red (similarly for the street light). When the ambulance signals

that it is before the crossing, the Controller uses the value of dir in the guard to turn

the appropriate light to green. After the ambulance leaves the crossing (signal after), the

Controller reverts to its normal mode. The slashes (\/") on the two transitions from n

11

are

used as an abbreviation to separate elements in a linear chain of transitions.

3.2 Assertions

In our implementation, the assertion for a minimum delay of 5 seconds between the events

approaching and before is speci�ed as:

when before

{

int time_before, time_app;

time("before", -1, &time_before);

time("approaching", -1, &time_app);

assert(time_before >= time_app + 5);

}

An assertion consists of two parts: a when clause and a C/C++ procedure. The when

clause speci�es when the assertion is to hold, i.e., be checked. An assertion can be checked

when a channel event occurs, or at a given time o�set from a channel event occurrence. The

above assertion will be checked after every communication on channel before. (An example

of assertion checking at a time o�set from a channel event is given in Section 5.1). The

second part of the assertion, the user-de�ned C/C++ procedure, gives the constraint. The

constraint checking procedure in the above assertion uses the prede�ned function time to

retrieve times of channel events from the channel history, and then tests the values (using

function assert) to see if the desired relation holds. Assert checks if its parameter evaluates

to true.

To check assertions, it may be necessary to record the times and data values (if any) of the

previous occurrences of a channel event. For example to check a minimum delay constraint

between two consecutive events on a channel, the times of the current and previous channel

event must be known. We maintain a �xed length history for every channel that records

the last n occurrences of channel events, where n is the history size. A �xed history size

(user-de�ned) was chosen because keeping the entire history is too large to be practical. The
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time

history
values

dir

Figure 4: Channel history data structure

history data structure is a circular queue; the data structure for approaching is shown in

Figure 4. As IO occurs on channels, the time and data values of the IO are stored in the

history data structure.

Histories can be read by the following functions:

int time(char *channel, int ind, int *result);

int value(char *channel, char *�eld, int ind, int *result);

int value(char *channel, char *�eld, int ind, oat *result);

int value(char *channel, char *�eld, int ind, char *result);

int index(char *channel, int ind);

A similar history data structure and interface was used in [2]. Function time retrieves the

communication time and function value retrieves the data value. The �rst parameter channel

is the channel name. Parameter �eld in the value function speci�es the desired message �eld.

Ind is the event occurrence index. When ind is positive, it refers to the ind

th

occurrence of

the event; when negative, it refers to the ind

th

most recent occurrence of the event. Thus,

ind value of -1 refers to the last occurrence of an event. Result contains the returned result;

its type can be: integer, oating point or character. Function index

2

returns the absolute

index of an event occurrence corresponding to ind. The functions return a value err if the

desired event has not yet happened or if it has expired (dropped from history). The return

code plays a useful role in specifying constraints (see Section 5).

The assertion code presented at the beginning of this section reads the times of the last

occurrences of the signals approaching and before. Since the assertion checking is invoked

when communication on before occurs, the value of time before is the current simulator time.

The assertion code uses assert to check that the two time values are at least 5 seconds apart.

2

The relationship between RTL and these functions is:

� for i > 0: time(e, i, v) = @(e, i)

� for i < 0: time(e, i, v) = @(e, index(e,i))

� for i = 0: time(e, i, v) returns err, @(e, i) is unde�ned
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When the parameter to assert evaluates to false, it prints an error message saying that the

assertion has been violated. No recovery action is taken. Our assert is di�erent from the

C language's assert macro because the C language's assert macro terminates the program

when its parameter evaluates to false.

As a measure of the expressiveness of our assertion speci�cation language, note that

the constraint checking code can be any computable function of history. In this sense, the

assertion speci�cation language is universal. It is also important to note that histories are

maintained for channel events only. However, the user can ensure history maintenance for

states and local variables of a machine by making them the message components of a channel.

Since CRSMs are a universal speci�cation methodology, the user can also de�ne CRSMs

that implement the assertion checking. There are two advantages with keeping the normal

computation and assertion checking separate. First, it improves the readability as the as-

sertion checking does not clutter the normal computation with extra states and transitions.

Second, CRSMs o�er a distributed model and hence checking global properties, such as a

timing constraint that spans two CRSMs, is not easy.

4 Design of the Prototyping Environment

The prototyping environment consists of three integrated tools: graphical editor, simulator,

and assertion checker. The tools have been implemented in C/C++ on a Decstation 5000

running UNIX. The relation between the tools is shown in Figure 5.

The graphical editor is an extension of an existing graph editor called Xsim [17]. Xsim

runs on the X-window system and uses Athena widgets [16]. The graphical editor has two

modes: global and local. The global mode is used for creating the global system of CRSMs

and the interconnecting channels. The local mode is used for creating the state diagram

of a machine. The graphical representation is translated into a text form that is in turn

translated and compiled into a simulator. The text form is a straightforward enumeration

of the states and transitions of the various machines in the system. The text form can also

be used for entering the description of CRSMs and assertions directly.

There are two issues in the design of the simulator. One is whether to use discrete

ticks for time or some approximation to continuous time. The CRSM scheme as described

in [14] uses continuous time. We chose to use discrete time as it simpli�es some of the

implementation details. The second issue is whether to have a compiled or an interpreted

simulator. We implemented a compiled simulator because it permits the use of a general-

purpose language (C/C++ in this case) for specifying the guards, lower/upper bounds of

time intervals, internal commands, and assertion checking code.

For example, the use of arbitrary expressions

3

in time intervals allows for a simple,

straightforward speci�cation of a periodic process (see Section 5.2). The use of C statements

3

Expressions must be free from side e�ects.
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C++ program
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CRSM  description Assertion
description

Graphical editor

translate

compile and link

Figure 5: Relation between the tools

for internal commands allows interactive parameterization. This feature has been exploited

in the speci�cation of the Ambulance machine (Figure 2). In Ambulance, getapptime uses

C input/output routines for getting the arrival time and direction of the ambulance. This

time is used as the time interval on the succeeding transition to generate the approaching

signal. The user can easily experiment with a variety of input times and directions.

The ability to use C in internal commands has also been capitalized on to provide a

graphical display of tra�c lights (Figure 6). The code for internal commands of lights

(turn red, turn yellow and so on in Figure 2) use the X-window system to draw/clear the

appropriate �lled circle. The state of tra�c lights is reected visually on the screen. The

advantages of such graphic output for understanding and debugging prototypes is obvious.

The text form is translated into a C++ program that is then compiled and linked with

the simulator/assertion checking library to form an executable �le. The major classes in the

C++ program correspond naturally to CRSM, channel, and assertion. The simulator uses

an event-driven algorithm as described in [14]. The simulator steps through the execution

under user control (either a single step or a sequence of steps). The output of the simulator is

a trace of the channel events and internal commands along with their occurrence times, plus

any special interaction, such as the printf statement in the getapptime command (Figure 2).

Figure 7 shows a skeleton of the C++ class that is generated for the Strlight machine.

Strlight is a derived class of a prede�ned crsm class. The local variables of the Strlight

machine (integers r, y and g) are de�ned in the private part of the class. The list of states
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Figure 6: Graphical display of tra�c lights

is bundled into an enumerated type.

Each exiting transition from a state is compiled into four functions/procedures, one each

for guard, lower bound of time interval, upper bound of time interval, and the command.

The procedures for strtored transition are: start 0 guard, start 0 lbound, start 0 ubound, and

start 0 input. The code for start 0 guard returns 1, because it is always true (default case).

To evaluate the guard on a transition at runtime, the function corresponding to the guard is

called and the returned value is checked. For the functions corresponding to lower and upper

time bounds (start 0 lbound and start 0 ubound) the code returns the default time values.

More complex expressions for guards and time bounds are simply copied into the function

body after syntax checking.

The code for input command (start 0 input) �rst inserts the occurrence time of the event

into the channel history. Then it updates the state of the Strlight machine. If a channel has

message components, then code to assign the data values to the appropriate local variables is

generated. The next four procedures in Figure 7 correspond to the transition turn red. The

internal code that is enclosed within curly braces is copied verbatim into the function body

of red 0 internal. The procedures for an output transition are not shown. A procedure for an

output command takes a parameter that is a pointer to the corresponding input procedure

of its communicant machine (machine with which it is going to do IO). The code for the

output command coerces the pointer to a procedure type

4

, and then calls the procedure.

Class crsm has a data-structure called transition table that stores pointers to the various

4

The pointer is coerced to type PROC, where,

typedef int (crsm::*PROC)(...);
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class strlight : public crsm {

....

int r, y, g;

enum strlight_states {start, red, yel, green};

strlight_states curstate;

public:

int start_0_guard() { return 1; }

int start_0_lbound() { return 0; }

int start_0_ubound() { return infinity;}

int start_0_input()

{

channel *chan = chlist->getchannel("strtored");

int ind = chan->get_next_index();

chan->set_value("time", simulator_time, ind);

curstate = red;

}

....

int red_0_guard() { return 1; }

int red_0_lbound() { return 1; }

int red_0_ubound() { return 1; }

int red_0_internal()

{

r = 1; y = 0; g = 0;

curstate = start;

}

....

};

Figure 7: Compiled code for strlight machine
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procedures of the translated transitions. Class crsm exports a high level abstraction of

transition table. For example, it exports a method called get nel() that returns the next

event list, i.e., the list of transitions that are ready for execution in the current state (the

corresponding guards evaluate to true).

The assertion checker maintains a list of currently enabled assertions. Assertions are

assigned unique id's. The user can enable/disable checking of any assertion by specifying

the particular id. To help the user with debugging violations of assertions, a trace feature

has been provided. When the tracing is enabled, each time a function that reads the history

is called, the result and the returned value are printed. As mentioned earlier, violation of an

assertion simply prints an error message; no recovery action is taken.

The graphical editor only generates the input for the simulator tool. There is no provision

for incorporating the output of the simulator into the graphical front-end; i.e. there is no

animated simulation. The simulator and assertion checker have been integrated into a single

program. The simulator updates the history when executing the channel events. After all

channel events in a particular time instant (or after the speci�ed time o�set) have occurred,

the assertion checker is invoked. If any assertions are triggered, the corresponding constraint

checking code is invoked.

We have not analyzed the performance of the simulator and assertion checker in detail yet.

For the speci�cation examples described in this paper and in [14], the simulator/assertion

checker responds to single-step commands from the user in real-time.

5 Experiments

We used the simulator and assertion checker described in the previous section to experi-

mentally validate most of the example speci�cations described in [14]. These included a

real-time bounded bu�er; a mouse clicker recognizer that distinguishes among single clicks,

double clicks and selections; and a train crossing gate controller. In each case, we validated

the examples by observing simulator output and by checking relevant assertions during ex-

ecution.

In this section we present more example assertions for the tra�c-light controller, and give

partial speci�cations of a computer calendar and a real-time dining philosophers problem.

We also show how the histories can be used for monitoring performance.

5.1 Tra�c-light Controller

Suppose that it takes as little as 4 seconds for the ambulance to reach the intersection after

it signals before. This imposes a deadline of 3 seconds from the signal before to the signal

avetogreen or strtogreen in order that the light be green when the ambulance arrives at the
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intersection (the internal action to change the light takes one second). An RTL formula for

specifying a deadline of 3 seconds between the i

th

occurrences of two events e

1

and e

2

is:

8i @(e

2

; i) � @(e

1

; i) + 3

The deadline assertion for the tra�c-light controller is more complicated as the direction

of the ambulance must be taken into account. The assertion is

when before + 3

{

int time_before, dir_value, time_green;

time("before", -1, &time_before);

value("approaching", "dir", -1, &dir_value);

if (dir_value == 0) {

assert(time("avetogreen", -1, &time_green) != err);

} else {

assert(time("strtogreen", -1, &time_green) != err);

}

assert(time_green >= time_before && time_green <= time_before + 3);

}

The constraint checking code is invoked 3 time units after an event on channel before.

The value of direction (dir value) is read from history. The check that the return value is not

err is to make sure that the event has indeed occurred in the past. Otherwise, the assertion

has been violated. A stricter assertion is to check that the light remains green until the after

signal is given by the ambulance.

Another safety constraint that the speci�cation must satisfy is that vehicles on both roads

must not be allowed to enter the intersection simultaneously, i.e, the green/yellow lights on

the two roads must be mutually exclusive. The safety requirement is speci�ed with two

assertions:

when strtogreen

{

int t0, t1, t2;

time("strtogreen", -1, &t0);

if (time("avetogreen", -1, &t1) != err) {

assert(time("avetored", -1, &t2) != err);

assert(t1 < t2 && t2 <= t0);

}

}
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when avetogreen

{

int t0, t1, t2;

time("avetogreen", -1, &t0);

if (time("strtogreen", -1, &t1) != err) {

assert(time("strtored", -1, &t2) != err);

assert(t1 < t2 && t2 <= t0);

}

}

The above assertion relies on the implicit assumption that the lights sequence is

red!green!yellow and back to red. This is true from the speci�cation, but the cautious

user can check the assumption by another assertion

5

.

5.2 Computer Calendar

Figure 8 shows a Calendar machine that maintains time and date. A user machine (not

shown) can access the current time and date by IO on channel curtime. Ctime contains the

message components for time and date. The Calendar machine receives ticks from Periodic

Ticker and updates the time and date through an internal command. Periodic Ticker is

a periodic process that sends ticks every 10 seconds. The periodic process makes use of

its real-time clock machine (section 3.1). Timer(y) ? assigns the current global time to y.

Periodic Ticker uses the expression [x � y] to achieve a delay until the start of the next

period. The periodic timing constraint can be described and checked by,

when tick

{

int t1, t2;

if (index("tick", -1) >= 2) {

time("tick", -1, &t1);

time("tick", -2, &t2);

assert(t1 - t2 == 10);

}

}

The function index returns the absolute index corresponding to the most recent tick, i.e.,

the number of ticks since startup. So, the periodic check is done when at least 2 ticks have

occurred. The last two occurrences of tick event need to be kept in history in order to check

5

We spotted an error in an earlier speci�cation of the Controller because it had violated this assertion.
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tick ?

update

timer (x) ?

tick !

timer (y) ?{x = x + 10} [0]

timer ? [x-y]
{/* update calendar time */} [2]

curtime (ctime)  !

PERIODIC TICKERCOMPUTER CALENDAR

Figure 8: Computer calendar

the periodic timing constraint. Note that this assertion would not catch the violation if the

Ticker halted and stopped generating ticks. A stronger/additional assertion would be to

check for the existence of a tick event at 10 time units o�set from every tick event.

If Calendar is inundated with requests on channel curtime, then Calendar may not receive

ticks on time. One can impose a maximum capacity check on curtime of say 3 requests per

tick interval as follows,

when tick

{

extern int count;

count = 0;

}

when curtime

{

extern int count;

count++;

assert(count <= 3);

}

where count is de�ned in a separate C �le that is compiled and then linked with the other

simulator �les.
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p1_enter ! f1_p1_up !

f3_p1_down !

getthinktime [0] think [thinktime] 

geteattime [0]eat [eattime] f1_p1_down !

f3_p1_up !p1_leave !

getthinktime : { thinktime = (int) ((((float) random()) /4.29e+09) * 11.0); }

geteattime:  {eattime = (int) ((((float) random()) / 4.29+e09) * 14.0); }

Figure 9: CRSM for philosopher 1

5.3 Real-time Dining Philosophers

The following example shows how the information stored in histories can be used to measure

resource usage. The basic idea is that code that is invoked in response to channel events

gathers statistics. We use a real-time version of the well-known dining philosophers prob-

lem [7] to illustrate the idea by measuring the fraction of total time that each philosopher

spends on eating.

The example has 3 philosophers, 3 forks and a room. The CRSM for philosopher 1 is

shown in Figure 9. First the philosopher requests to enter the room by signaling p1 enter.

Only 2 philosophers are allowed inside the room at any time to prevent deadlock. Get-

thinktime generates a random think time from the interval 0 to 11 seconds (random() is a

UNIX library call). After thinking, the philosopher tries to acquire forks f1 (signal f1 p1 up)

and f3 (signal f3 p1 up). The forks are shared with other philosophers and the philosopher

waits until they are available. After both forks have been acquired, the philosopher spends

a random amount of time eating. Then the philosopher puts down the two forks and leaves

the room. This cycle is repeated. The fraction of time philosopher 1 spends eating can be

computed as

when f3_p1_down

{

extern int sum_eattime1;
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int starteat, endeat;

time("f3_p1_up", -1, &starteat);

time("f3_p1_down", -1, &endeat);

sum_eattime1 += endeat - starteat;

printf(" philosopher 1 eat_fraction = %g\n",

((float)sum_eattime1)/ ((float)simulator_time));

}

Simulator time is a prede�ned variable that denotes current global time. In our simula-

tions of the entire speci�cation, we observed that the eat fraction for philosopher 3 is 0, which

shows that the philosopher is being starved. The speci�cation can be modi�ed to avoid this

unfortunate situation. Note: As shown here an eat fraction of 0 would not be printed as

philosopher 3 would never put down a fork. In the actual speci�cation, the printing of the

resource usage is done at a more convenient time.

6 Discussion

Checking Consistency between Speci�cation and Implementation

Assuming that a CRSM speci�cation has been implemented in software, the question arises:

how does one check the consistency between the speci�cation and the implementation ? One

approach is to execute the speci�cation and implementation using the same test cases and to

compare the results. Our assertion methodology permits an alternate and perhaps simpler

approach: monitor the same assertions in both the speci�cation and implementation.

If certain assumptions about the coding of the speci�cation are made, then it is possible

to compile the assertions into a run-time monitor that checks the assertions in the imple-

mentation. This is analogous to automatic code generation from the speci�cation, except

that, the code is being generated for the assertions only. The assumptions are:

� the external interface of CRSMs is preserved in the implementation

� the message components of channels and the interface between the corresponding mod-

ules in the implementation are the same.

A run-time monitor for checking timing constraints in distributed real-time systems is de-

scribed in [12]. The run-time monitor is based on RTL formalism, and histories are main-

tained for events. The assertions that can be checked are delays and deadlines only, unlike

the arbitrary constraints in our assertion language. Our assertions can be translated, in a

straightforward manner, into a similar monitor. The main change to the monitor described

in [12] will be to have it execute user-de�ned assertion code in response to events. Many
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issues have not been addressed, such as the potential interference caused by monitoring, and

more research is needed on this topic.

Limits of Assertion Checking

The major drawback with our assertion checking method is that the assertion may not be

checked for all possible executions of the speci�cation, i.e., it is not a veri�cation method.

There is always the possibility that further simulations will uncover an unknown bug in

the speci�cation. However, automatic veri�cation of models as powerful as CRSMs (equiv-

alent to Turing machines) is usually intractable. We are currently developing veri�cation

methods for a restricted model of CRSM | in which the timed reachability graph is �nite.

Exhaustive testing is a possibility for small but critical parts of the system. For example,

in the tra�c-light controller, the getapptime command can be replaced with a procedure

that systematically selects all possible values of arrival time (assume a maximum value) and

direction, and runs the simulation (perhaps for days) with the assertion checking enabled.

Clearly, such testing can only increase one's con�dence in the speci�cation.

A second drawback is that the assertion language cannot express liveness requirements,

such as a requirement that states eventually a light will turn green. This is because checking

of liveness properties requires in�nite histories, and our assertions only check �nite simulation

histories. If there is a deadline on a liveness requirement, for example, a requirement that

a light should turn green within 2 minutes, then the liveness requirement becomes a safety

requirement, and hence it can be checked in our assertion language. In real-time systems

safety, not liveness, is of paramount concern; the system should not enter a state where

damage can be caused to people or environment. A partial solution for checking liveness is

to monitor the usage of resources as described in the real-time dining philosophers example

(Section 5.3). In that example, an eat fraction of 0 suggests an absence of liveness.

Current and Future Work

The simulator and assertion checker have proved useful in understanding and debugging

speci�cations. Based on our experience with the current environment, we plan to extend the

above work in several directions.

A short term task is to integrate the graphical front end and the simulator, so that during

execution the state changes of CRSMs and channel events are reected visually in the front

end.

We are currently developing automatic veri�cation methods for a restricted model of

CRSMs. The restrictions, which enable the construction of a �nite timed reachability graph,

are: limiting the values of variables to a �nite set, and allowing only constants (including 0

and 1) for time bounds of intervals. Most of the speci�cation of the tra�c-light example

belongs to the restricted category of CRSM, except for the getapptime command and the
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arrival time (Figure 2). A reachability graph allows veri�cation of properties that can be

cast as invariants, such as the mutual exclusion of green/yellow lights and absence from

deadlock.

We also intend to re�ne the CRSM scheme to allow sequential and parallel composition

of individual CRSMs into higher-level machines, and to permit the de�nition of a variety of

higher-level paradigms for \speci�cation-in-the-large", such as abstract data types and more

general objects. For example, the Controller machine (Figure 3) can be decomposed into two

sequential machines: one for normal mode, and another for interrupted mode. Issues in this

topic include specifying the communication between component machines, and providing

facilities for handling faults or interrupts.

Finally, we hope to use the environment for larger and more practical examples.

7 Conclusions

We have described a prototyping environment for specifying, executing and checking CRSMs.

The environment serves as a validation of the simulator algorithm and the CRSM examples

described in [14]. The environment has also proved useful in understanding and debugging

speci�cations. We de�ned a novel assertion language for specifying timing assertions, and

illustrated its use by specifying common timing constraints and some safety properties. It

has also been shown that the assertions can be checked in a practical and e�cient manner.

Directions for future work include improving the prototyping environment and re�ning the

CRSM scheme.
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