
Improving the Performance of

Runtime Parallelization

Shun-Tak Leung and John Zahorjan

Department of Computer Science and Engineering

University of Washington

Technical Report 92-10-05

Revised February 1993

(This paper will appear in the Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming.)



Improving the Performance of Runtime Parallelization

Shun-tak Leung and John Zahorjan

�

Department of Computer Science & Engineering

University of Washington

Abstract

When the inter-iteration dependency pattern of the

iterations of a loop cannot be determined statically,

compile time parallelization of the loop is not possible.

In these cases, runtime parallelization [8] is the only

alternative. The idea is to transform the loop into two

code fragments: the inspector and the executor. When

the program is run, the inspector examines the iteration

dependencies and constructs a parallel schedule. The

executor subsequently uses that schedule to carry out

the actual computation in parallel.

In this paper, we show how to reduce the overhead of

running the inspector through its parallel execution.

We describe two related approaches. The �rst, which

emphasizes inspector e�ciency, achieves nearly linear

speedup relative to a sequential execution of the inspec-

tor, but produces a schedule that may be less e�cient for

the executor. The second technique, which emphasizes

executor e�ciency, does not in general achieve linear

speedup of the inspector, but is guaranteed to produce

the best achievable schedule. We present these tech-

niques, show that they are correct, and compare their

performance to existing techniques using a set of exper-

iments.

�

Support for this work was provided in part by the

National Science Foundation (Grants CCR-8619663, CCR-

9123308, and CCR-9200832), the Washington Technology

Center, and Digital Equipment Corporation (Systems Re-

search Center and External Research Program). Au-

thors' addresses: Department of Computer Science & En-

gineering, University of Washington, Seattle, WA 98195;

shuntak@cs.washington.edu, zahorjan@cs.washington.edu.

Because in this paper we are optimizing inspector time,

but leaving the executor unchanged, the techniques we

present have most dramatic e�ect when the inspector

must be run for each invocation of the source loop. In a

companion paper [3], we explore techniques that build

upon those developed here to also improve executor

performance.

1 Introduction

Parallelizing compilers o�er the parallel machine

programmer the best of both worlds: the program-

ming model is nearly identical to that of the familiar

sequential programming language, while program

execution makes use of the availability of multiple

processors, resulting in good parallel performance.

To achieve this goal, the compiler relies on a static

dependency analysis in order to compute a valid

parallel schedule for iteration execution. However,

programs with complicated or data dependent ar-

ray indexing expressions are not amenable to such

static analysis, and so cannot be parallelized in this

way. For these programs, runtime parallelization is

an attractive alternative.

In this section, we introduce the basic mechanisms

used to support runtime parallelization, as devel-

oped by Saltz and his colleagues [6, 7, 8]. We begin

by presenting the basic scheme, and then examine a

technique they have proposed for increasing its ef-

�ciency. Our improvements to these techniques are

presented in subsequent sections.

1.1 The Basic Inspector/Executor Scheme

of Saltz et al.

We call the loop being parallelized the source loop.

A simpli�ed representation of the form of the source

1



loops on which we focus is shown in Figure 1. In it,

each array element a[i] in order is assigned a value

that depends on other elements of a. Naturally,

the loop body may contain other statements which

do not lead to inter-iteration dependencies on a,

or may be nested inside other sequential loops.

These additional considerations are not shown for

simplicity.

do i = 1 to n

a[i] = F(a[g(i)], a[h(i)], ...)

enddo

Figure 1: Sequential Program Source Loop

The basic idea of runtime parallelization, as de�ned

by Saltz et al. [6, 7, 8], is for the compiler to produce

two pieces of customized code for each source loop .

The �rst, called the inspector, calculates the values

of the index functions used in each iteration of the

loop, and from these values determines the inter-

iteration dependencies. From these dependencies

the inspector can produce a parallel execution

schedule for the iterations. The second piece of

code, called the executor, uses this schedule to

achieve a parallel execution of the source loop.

The parallel schedule computed by the inspector

is based on partitioning the set of iterations into

subsets, called wavefronts. All iterations within the

same wavefront can be executed concurrently. The

wavefronts themselves are processed sequentially.

A schedule's depth is the number of wavefronts

it has. There are many valid schedules for the

same source loop, some with more wavefronts than

others. As a rule of thumb, we prefer a schedule

with minimal depth, as such a schedule is likely

(but not guaranteed) to lead to minimal parallel

execution time.

/* wf is initially all zeros */

do i = 1 to n

wf[i] = max(wf[g(i)],wf[h(i)],...) + 1

enddo

Figure 2: Basic Inspector Structure

Figure 2 shows the structure of the basic Saltz et

al. inspector, which is responsible for producing

a schedule that respects ow (read-after-write)

dependencies. If iteration l reads a value produced

by iteration k, then because of the restrictions on

the form of the source loop, l must be greater than

k. Thus, when running the inspector, iteration k

must have already been placed in a wavefront by

the time iteration l is considered. The inspector

looks up k's wavefront from wf and places l in a

later wavefront, leading to a schedule that is correct

with respect to ow dependencies.

On the other hand, because the inspector disregards

both anti- (write-after-read) and output (write-

after-write) dependencies, these must be enforced

by the executor. The executor shown in Figure 3,

�rst proposed by Saltz et al. [6, 8] and adopted for

all work presented here, is su�cient to do this for

the class of source loops under consideration. (Im-

provements to both executor e�ciency and domain

of applicability are developed in a companion paper

[3].)

do w = 1 to depth

pardo all i such that wf[i] = w

if (g(i) < i) then a1 = anew[g(i)]

else a1 = aold[g(i)]

endif

...

anew[i] = F(a1, a2, ...)

enddo

enddo

aold = anew

Figure 3: Basic Executor Structure

As written in Figure 2, the inspector is sequential.

Because it processes as many iterations as the

source loop itself, it requires time commensurate

with that of a sequential source loop execution,

defeating the purpose of runtime parallelization.

Saltz et al. have identi�ed two techniques for

reducing the overhead associated with running the

inspector. The �rst is applicable when the source

loop is contained inside one or more sequential

loops, and when its dependency pattern does not

change across iterations of these outer loops. In this

case, a single execution of the inspector produces

a parallel schedule that can be applied repeatedly,

thus amortizing inspector overhead across repeated

source loop executions.

2



The second technique used to reduce inspector

overhead is to parallelize its execution. Saltz et

al. do this using an alternative general runtime

loop parallelization procedure, which they call

the preprocessed doacross [7]. We explain this

technique briey in the following subsection.

1.2 Doacross Parallelization

Doacross parallelization [7] is a general runtime

parallelization technique that is not in the class of

inspector/executor approaches. Doacross is based

on the use of an auxiliary array that speci�es

whether or not each data array element has already

been written in the current invocation of the

source loop. Processors are assigned iterations

in a wrapped manner, and each spin waits until

all operands necessary for its execution have been

produced.

The advantages of doacross parallelization are that

no inspector step is required for loops like the source

loop we are considering, reducing overhead, and

that a somewhat more general class of loop can

be handled by introducing a preprocessing step.

The disadvantages of doacross, though, are that it

applies to only a restricted class of loop, and that

it has potentially signi�cantly suboptimal parallel

e�ciency. In fact, Saltz et al. �nd that while the

doacross parallelization is preferable to sequential

execution [7], it is not a viable alternative to the

inspector/executor approach for loops amenable to

the latter technique [8]. Thus, we will not consider

doacross parallelization further for general runtime

parallelization.

However, there is one case in which doacross

parallelization can be applied usefully: parallelizing

the computation of wavefronts in the inspector. As

shown in Figure 2, the inspector is sequential, and

so is very expensive. In [8] this expense is reduced

by parallelizing the sequential inspector loop using

the doacross technique.

There are in fact two variants of the parallel

inspector used in [8]. Each employs doacross

to parallelize the computation of the wavefronts.

They di�er, however, in how the iterations in each

wavefront are assigned to processors for execution

by the executor. The �rst method, doacross-

global, appears to be inherently sequential [8],

and so is expensive. However, it produces an

iteration assignment that is as balanced as possible.

In contrast, the second approach, doacross-local,

is easily parallelized, but makes no guarantees

about how balanced the resulting schedule will be.

In the worst case, doacross-local can produce a

schedule that is sequential in a situation where

doacross-global would produce a schedule with

perfect speedup.

1.3 Paper Goals and Organization

While the doacross technique does parallelize the

inspector to some degree, performance may still

be poor [8]. Saltz et al. reports an experiment in

which, using sixteen processors, the inspector took

100 ms. while the executor required only 23 ms.

In comparison, the source loop took 241 ms. when

run sequentially, indicating that the e�ciency of the

inspector was less than 15%. While parallelizing the

source loop in this case does signi�cantly reduce

the time to perform the computation (from 241 ms.

to 123 ms.), the poor e�ciency achieved by the

inspector, which accounted for over 80% of the

parallel execution time, indicates that there is much

room for improvement. Our aim in this paper

is to develop alternative inspector parallelization

techniques that come as close as possible to the goal

of perfect inspector speedup.

In Section 2 we present sectioning, a technique for

parallelizing the inspector that achieves nearly lin-

ear speedup. In Section 3 we present bootstrapping,

which is not quite as e�cient but is guaranteed to

produce a minimal depth schedule. In Section 4 we

evaluate the performance of these techniques, and

compare them to the doacross executions of the in-

spector. Finally, Section 5 summarizes our conclu-

sions.

2 Parallelizing the Inspector:

Sectioning

2.1 The Sectioning Algorithm

One way of parallelizing the inspector is by section-

ing. The basic idea is simple. The entire range of

iterations is partitioned into consecutive sub-ranges,

which we call sections. Each section is assigned to

a di�erent processor. Each processor computes a

valid parallel schedule for the iterations in its sec-

tion by applying the sequential inspector algorithm

3



and ignoring any dependencies on iterations outside

of its section.

After all processors have �nished, we have a

schedule for each section. Every such schedule,

which we call a sub-schedule, is a mapping from

the iterations in the corresponding section to the

wavefronts of that section. The overall schedule

is formed by concatenating the sub-schedules in

the order of the sections. In other words, in the

overall schedule, the last wavefront of section s

is immediately followed by the �rst wavefront of

section s+ 1.

Figure 4 illustrates how �fteen iterations are divided

into three sections and how the three sub-schedules

are concatenated to form the overall schedule. (For

simplicity, we have not shown the data depen-

dencies that induce the particular sub-schedules

shown.) This schedule is valid but, like all sched-

ules computed by sectioning, it does not necessarily

have the fewest possible wavefronts.

It is easy to show that sectioning produces a

valid schedule. In particular, a valid schedule

must satisfy the following condition: if there is

a ow dependence from iteration k to iteration l

(remember that the inspector needs to consider only

ow dependencies), then l's wavefront is after k's.

There are two cases to consider. If iterations k and

l belong to di�erent sections, the concatenation of

sub-schedules guarantees this condition by putting

all the wavefronts of l's section behind those of k's

section. If the two iterations are in the same section,

they are handled by a single processor running

the sequential inspector algorithm. The algorithm

ensures that the condition is satis�ed.

Given the mapping from iterations to wavefronts,

the �nal step is to assign iterations to processors

in a way that respects these wavefronts. This

assignment is done in the inspector. Each processor

is responsible for scheduling its own section, thus

yielding good parallelism. The iterations of each

wavefront are assigned in a wrapped manner among

the processors, thus giving good executor load

balance.

2.2 Comparison with the Doacross

Inspector

There are two criteria by which we can compare the

di�erent inspectors: execution time and quality of

the schedule produced.

In terms of execution time, the key consideration is

how e�ciently each approach is able to make use of

multiple processors. In this respect, both of the

doacross-based techniques are at a disadvantage.

To begin with, the e�ciency of the basic doacross

scheme is data dependent. While it is probably

fairly good in many cases, there are certain to be

a large number of others in which it is quite poor.

Additionally, doacross-global has a large, basically

sequential component in forming the schedule for

the executor from the wavefront information.

In contrast, our parallel inspector should exhibit

nearly perfect speedups

1

: each processor works on a

subproblem in a way that is completely independent

of the others. There is no need for any kind of

locking as no shared data structures are modi�ed.

Nor is there any need for synchronization, other

than a barrier to detect when all the processors have

�nished.

In terms of the quality of the schedule produced, the

situation is less clear. Intuitively, a good schedule is

one that has minimum depth and is load balanced.

Of the three inspectors we are considering, only

doacross-global has this property: doacross-local

produces a minimum depth schedule, but it may

be very load imbalanced, while sectioning produces

a load balanced schedule, but its depth may be

somewhat greater (up to a factor of the number of

sections) than the minimum possible.

In Section 4, we use experimental results to assess

the impact of schedule depth on performance. In

the next section, we show how to compute a

minimal depth schedule in a highly parallelizable

way, but at the cost of a second pass over the

iterations.

3 Parallelizing the Inspector:

Bootstrapping

When we parallelize the inspector by sectioning, we

achieve perfect speedup at the cost of a schedule

that is deeper than necessary. In this subsection we

1

Technically, speedup is an inappropriate term as the

output of our inspector, like that of doacross-local, depends

on the number of processors assigned to the problem.

However, the intuitive notion of speedup captures the

running time considerations important here.

4



section 1 2 3

iterations 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) Partitioning iterations into sections

section 1 2 3

wavefront number in sub-schedule 1 2 1 2 1 2 3

wavefront number in overall schedule 1 2 3 4 5 6 7

iterations in wavefront 1 3 6 8 11 12 13

2 4 7 10 14 15

5 9

(b) Concatenating sub-schedules

Figure 4: Example of Parallelizing the Inspector by Sectioning

present a method of parallelizing the inspector that

costs more inspector execution time but that guar-

antees that the schedule generated is identical to the

minimal depth schedule produced by the sequential

inspector. We call this method bootstrapping.

Bootstrapping is based on the observation that the

sequential inspector (Figure 2) is itself a loop, and

that it has the same inter-iteration dependency

pattern as the source loop (Figure 1). Comparing

the two loops, we see that the inspector loop is

simply the source loop with the general function

F (:) replaced by max(:) + 1 and a by wf . It

therefore follows that any parallel schedule valid

for the source loop is also valid for the inspector

loop. This observation forms the basis of the

boostrapping technique.

To bootstrap, we �rst generate a valid source

loop schedule using sectioning. Then we use this

schedule to run the sequential inspector loop in

a wavefront-by-wavefront (i.e., parallel) manner.

We call this second step re�nement. The �nal

schedule thus computed is the same as what a

sequential inspector would compute, for the same

reason that the executor yields the same results as

the sequential source loop. Thus, bootstrapping

must produce the same minimum depth schedule

as the sequential inspector.

Having computed the minimum depth schedule,

the inspector must assign iterations to processors

for execution in the executor. This is done in

two steps. First, when a processor running the

inspector assigns an iteration to a wavefront, it

tentatively assigns execution of that iteration to

itself. The schedule resulting from this procedure

could be imbalanced. Therefore, in the second

step, overloaded processors reassign iterations to

underloaded ones. This too is done in parallel.

4 Performance Comparison

In this section, we compare the speeds of the various

inspector algorithms and their performance impacts

on the executor. We use successive over-relaxation

as a concrete example.

4.1 Successive Over-Relaxation

Successive over-relaxation (SOR) [1, 5] is a numer-

ical technique that can be used to obtain the solu-

tion of a sparse linear system. Given a non-singular

n � n matrix A and an n-dimensional vector b, we

want to solve the system of linear equations Ax = b

for the unknown n-dimensional vector x. The SOR

algorithm starts with an initial guess of the solu-

tion vector, x

0

, and repeatedly computes a new es-

timate x

t+1

from the previous estimate x

t

using the

formula:

x

t+1

i

= (1�)x

t

i

�



A

ii

(

X

j<i

A

ij

x

t+1

j

+

X

j>i

A

ij

x

t

j

�b

i

)

where the subscripts represent indexing and where

 is a manually chosen non-zero scalar called the

5



relaxation parameter. The algorithm terminates

when the estimates converge or after some pre-

determined number of iterations have been per-

formed.

Figure 5 shows a sequential implementation of SOR

when the matrix A is sparse. (For concreteness, it

is shown in actual C code rather than pseudo-code.)

Because A is sparse, only non-zero coe�cients are

stored: nzCoeffs holds the coe�cients used by the

algorithm (not elements of A), while nzColumns

records the columns to which they belong. Element

firstNz[i] indicates where the information for row

i starts in nzCoeffs and nzColumns.

For this program, the outer loop is our source

loop. Each iteration reads and writes elements of

x. Only iteration i writes x[i] and hence there

are no inter-iteration output dependencies. The

ow dependencies and anti-dependencies cannot be

determined at compile time because the contents

of nzColumns depend on input data and are not

known until runtime. However, the dependencies

do not depend on computation performed within

the source loop, and so runtime parallelization is

possible.

In our experiments, the source loop was manually

transformed into its corresponding inspector and

executor because we did not have compiler support

for this conversion.

4.2 Results

We applied the SOR technique to solve the global

balance equations [2] corresponding to a queueing

network model with blocking [4]. The model itself

consists of a number of service centers in series, each

with a �nite capacity queue. This sort of model

is commonly used to evaluate the performance of

communication networks built from switches with

�nite bu�er space.

Measurements were taken on a Sequent Symmetry

shared memory multiprocessor running Mach 3.0.

All programs were written in C using Cthreads

and compiled with the gcc compiler. In each

case studied, we made several measurements and

observed only insigni�cant variations among the

measured times.

We tried a number of di�erent parameterizations

of the queueing model, leading to di�erent sets of

linear equations to be solved. We present two exam-

ples here. Problem A has a 17577�17577 coe�cient

matrix with about 100000 non-zero elements. A se-

quential execution of a single iteration of SOR for

this problem takes 1.58 seconds. Problem B has a

45676� 45676 matrix with about 250000 non-zero

elements. A sequential execution of a single itera-

tion of SOR for this problem takes 4.03 seconds.

Figure 6 shows the achieved inspector and executor

e�ciencies for the two problems. For the inspec-

tor, e�ciency is measured against the sequential in-

spector of Figure 2. For the executor, e�ciency is

measured against a true sequential execution of the

loop.

Considering the inspectors �rst, we see that only the

sectioning approach achieves good e�ciency

2

. For

the doacross inspectors, e�ciency drops o� rapidly

with number of processors. For bootstrapping,

e�ciency is more nearly constant, but is half that

of sectioning, reecting the two pass nature of this

technique.

Examining executor e�ciency, we note �rst they are

uniformly much lower than would be desired (al-

though they still represent a considerable improve-

ment over the sequential execution that would be

the only option if compile time parallelization were

employed). This is due in part to the overheads

involved in the executor (Figure 3) relative to the

sequential loop, as evidenced by the poor executor

e�ciency when running on a single processor. Be-

cause our focus in this paper is on improving the

inspector phase, we have not attempted to address

these executor ine�ciencies here, but leave them for

a companion paper [3].

Since we ran identical executor code with each in-

spector, any di�erences observed in their e�ciencies

must stem from di�erences in the schedules the in-

spectors produce. We make two observations in this

regard. First, the doacross-local technique distin-

guishes itself with slightly lower e�ciency than the

others. This is a reection of that policy's imbal-

anced assignment of iterations to processors within

each wavefront.

2

Because the various inspectors in fact compute di�erent

results than the sequential inspector, the term \e�ciency"

does not strictly apply. However, the e�ciencies as we have

computed them do convey the proper sense of reduction in

elapsed time due to parallelization.

6



for (i = 0; i < n; i++) {

sum = constant[i];

for (nz = firstNz[i]; nz < firstNz[i+1]; nz++) {

sum += nzCoeffs[nz] * x[nzColumns[nz]];

}

x[i] = sum;

}

Figure 5: Sequential Implementation of SOR for Sparse Linear Systems

Second, we note that, perhaps surprisingly, the

increase in schedule depth caused by sectioning does

not necessarily have a great impact on performance.

Table 1 shows the number of wavefronts produced

by the sectioning inspector. The minimum possible

depth schedule (which is produced by the other

three inspectors) corresponds to the sectioning

result when run on a single processor. Examining

Figure 6, we observe that a doubling of the

schedule depth has little or no e�ect on executor

performance.

Number of Number of Wavefronts

Processors Problem A Problem B

1 9 12

2 14 18

4 15 18

8 16 20

16 21 24

Table 1: Number of Wavefronts in Schedule Pro-

duced By Sectioning

A look at the parallel schedules tells us why

sectioning does not necessarily slow down the

executor. Take problem B (the larger problem) as

an example. The sequential inspector generates a

schedule with 12 wavefronts, giving an average of

about 3800 iterations per wavefront. In contrast,

the schedule computed using 16 sections has 24

wavefronts, for an average of 1900 iterations each.

Although the schedule is deepened by a factor

of two, there is more than enough work in each

wavefront to keep all 16 processors busy. Thus,

the di�erence in schedule depth does not translate

into a di�erence in execution time. Clearly, if

the minimal depth schedule had been much deeper

because of the dependencies, doubling the schedule

depth could have meant under-utilized processors

and added synchronization overhead, leading to

degraded executor performance.

As a �nal test of the e�ect that a deeper schedule

obtained by sectioning has on performance, we

examined a single queueing model and varied the

number of customers in it, producing a set of related

systems of linear equations of varying sizes. In

Figure 7 we plot the number of invocations of the

executor required for sectioning and bootstrapping

to have identical total execution times against

the average number of iterations per processor

per sectioning wavefront. If SOR takes more

than the plotted number of iterations to converge,

the greater e�ciency of the executor under the

bootstrapping schedule more than compensates for

the added expense of the re�nement step required

to produce that schedule; below the line, sectioning

is cheaper overall.

We see from Figure 7 that when the average number

of iterations executed by each processor per section-

ing wavefront is small, bootstrapping is advanta-

geous even for very small numbers of invocations of

the executor. However, this breakeven point grows

quite rapidly, and in general it appears that sec-

tioning is the method of choice for loops where the

number of iterations per wavefront greatly exceeds

the number of processors.

4.3 Combining Bootstrapping with

Sectioning

The relationship of schedule depth to executor exe-

cution time motivates the following heuristic tech-

nique. We �rst generate a schedule by sectioning.

Given this schedule, we can easily determine how

many iterations there are on average in each wave-

front. If this number is not much greater than the

7



0 4 8 12 16

Number of Processors

0.0

0.2

0.4

0.6

0.8

1.0

In
sp

ec
to

r 
E

ff
ic

ie
n

cy

Sectioning
Bootstrapping
Doacross-Global
Doacross-Local

0 4 8 12 16

Number of Processors

0.0

0.2

0.4

0.6

0.8

1.0

In
sp

ec
to

r 
E

ff
ic

ie
n

cy

Sectioning
Bootstrapping
Doacross-Global
Doacross-Local

0 4 8 12 16

Number of Processors

0.60

0.70

0.80

0.90

E
xe

cu
to

r 
E

ff
ic

ie
n

cy

Sectioning
Bootstrapping
Doacross-Global
Doacross-Local

0 4 8 12 16

Number of Processors

0.60

0.70

0.80

0.90

E
xe

cu
to

r 
E

ff
ic

ie
n

cy

Sectioning
Bootstrapping
Doacross-Global
Doacross-Local

Model A (17577 � 17577) Model B (45676 � 45676)

Figure 6: Observed Inspector and Executor E�ciencies

number of processors that the executor can use, it

is likely that the processors will be under-utilized.

In this case, the re�nement step is performed to

obtain a schedule with a minimum number of wave-

fronts. Otherwise, there is no need to do so. How

many times the executor will be run can also be

taken into account, if it is known or can be reason-

ably estimated: the larger the estimated number of

executor invocations, the greater the tendency to

choose boostrapping over sectioning.

5 Conclusions

Saltz et al. [6, 8, 7] have made important contri-

butions to the area of runtime parallelization. Our

work builds on theirs. The purpose of the work

described here is to improve the e�ciency of the in-

spector phase of runtime parallelization through its

parallel execution.

We have discussed two approaches to achieving

this: sectioning and bootstrapping. Sectioning

is a divide-and-conquer strategy that has nearly

perfect speedup. On the other hand, the schedule

it produces may contain more wavefronts than

necessary. While it is unlikely that this would

result in a noticeable degradation in executor

e�ciency unless the average number of iterations

per wavefront per processor is quite low, this cannot

be guaranteed.

Our second technique, bootstrapping, addresses

this potential drawback of sectioning, trading some

inspector time for a schedule that is guaranteed to

have minimal depth. Bootstrapping is based on

the observation that the sequential inspector loop

itself can be parallelized using the same schedule as

8



0 20 40 60

Iterations / Processor / Sectioning Wavefront

0

20

40

60

80

100

N
um

be
r 

of
 E

xe
cu

to
r 

In
vo

ca
ti

on
s

Sectioning is preferable

Bootstrapping is preferable

Figure 7: Number of Executor Invocations Required

for Equal Sectioning and Boostrapping Total Exe-

cution Time

the source loop. Thus, we �rst compute a schedule

by sectioning, producing a potentially suboptimal

parallel schedule, and then use this schedule to

execute the parallelized version of the sequential

inspector, which is known to produce a minimal

depth schedule.

We performed a number of experiments to compare

these methods. We saw that our new techniques

can signi�cantly reduce the overhead of running

the inspector. We noted that while sectioning

can increase the depth of the schedule, that this

has little impact on executor performance if there

are enough iterations per wavefront to keep all

processors busy. Finally, we noted that in cases

where the number of iterations per wavefront is

modest relative to the number of processors, and the

executor will be executed many times with the same

schedule, that the additional cost of bootstrapping

can be paid for by a reduction in executor times.

The techniques presented in this paper and the

old techniques represent an array of options from

which the compiler can choose when it generates

code for the inspector. Which one is best in terms

of overall execution time (which is the ultimate

bottom line) depends on the size and dependency

pattern of the source loop, as well as the number

of times it is executed. We believe that in

many situations, sectioning and bootstrapping are

appropriate choices.

Acknowledgements

Derek Eager, Ed Felten, Ed Lazowska, and Radika

Thekkath provided valuable comments on the con-

tent and presentation of this material.

References

[1] Dimitri P. Bertsekas and John N. Tsitsiklis.

Parallel and Distributed Computation: Numer-

ical Methods. Prentice Hall, Englewood Cli�s,

NJ, 1989.

[2] Edward D. Lazowska, John Zahorjan, G. Scott

Graham, and Kenneth C. Sevcik. Quantitative

System Performance. Prentice Hall, Englewood

Cli�s, NJ, 1984.

[3] S. Leung and J. Zahorjan. Extending the do-

main and improving the execution performance

of runtime parallelization. Technical Report , in

preparation, Department of Computer Science

& Engineering, University of Washington, Oc-

tober 1992.

[4] Raif O. Onvural. Survey of closed queueing

networks with blocking. ACM Computing

Surveys, 22(2):83{121, June 1990.

[5] William H. Press, Brian P. Flannery, Saul A.

Teukolsky, and William T. Vetterling. Numer-

ical Recipes: The Art of Scienti�c Computing.

Cambridge University Press, Cambridge, 1986.

[6] J. Saltz, H. Berryman, and J. Wu. Multipro-

cessors and runtime compilation. In Proc. In-

ternational Workshop on Compilers for Parallel

Computers, Paris, 1990.

[7] J. Saltz and R. Mirchandaney. The preprocessed

doacross loop. In Proc. 1991 International

Conference on Parallel Processing, August 1991.

[8] J. Saltz, R. Mirchandaney, and K. Crowley.

Runtime parallelization and scheduling of loops.

IEEE Transactions on Computers, 40(5):603{

612, May 1991.

9


