
Timing Analysis of Concurrent Systems

1

An Algorithm for Determining Time Separation of Events

Tod Amon, Henrik Hulgaard, Gaetano Borriello, Steve Burns

Department of Computer Science and Engineering, FR{35

University of Washington

Seattle, WA 98195 USA

Abstract

A fundamental problem in the synthesis and optimization of concurrent systems is the deter-

mination of the separation time between system events. We present a theoretical framework

for solving this problem for arbitrary process graphs without conditional behavior and de-

velop an e�cient and exact algorithm based on this theoretical foundation. Examples are

used to demonstrate the operation and generality of the algorithm.

1 Introduction

The analysis of the timing behavior of concurrent systems is a fundamental problem in circuit

synthesis and optimization. E�cient solutions to the problem of determining the bounds on

the time separation between arbitrary pairs of events in the system will have wide-ranging

applications. Knowledge of time separation can be used to: simplify combinational and

sequential logic by extracting temporal don't care information, verify that a logic implemen-

tation meets speci�ed timing constraints, identify and remove hazards from combinational

circuits, focus optimization e�orts in data-path synthesis by generating useful scheduling

constraints, and tradeo� communication queue sizes and circuit performance in high-level

synthesis.

In this paper, we derive an exact algorithm that determines tight upper and lower bounds

on the separation in time of an arbitrary pair of system events. Our model is one of commu-

nicating processes represented as a cyclic connected graph. The nodes of the graph represent

events and the arcs dependencies between these events. This model permits the representa-

tion of both synchronous and asynchronous communication. In the synchronous case, two

interacting processes wait for a pair of synchronizing events (one in each process) to occur

and then both proceed past the synchronization point. In the asynchronous case, only the

receiving process waits while the sender can proceed. The synchronous model is popular in

the software community as well as in self-timed circuit synthesis. The asynchronous model

1

Slightly revised from a version submitted to DAC '93.

1

is popular in the hardware community and is used in interface and asynchronous circuit

speci�cation.

Depending on the level of abstraction in the speci�cation, events may represent low-level

signal transitions at a circuit interface or control
ow in a more abstract behavioral view.

If we are able to determine the separation in time (or the bounds on the separation) of two

events in these processes then we can use this information to improve our circuit realization.

Currently, our solution is limited to graphs without conditional behavior. However, that

still leaves a large and useful class of concurrent machine speci�cations to which our analysis

applies. Furthermore, the system can have arbitrary communication patterns between its

component processes.

The problem we address is how to determine the separation in time between system

events based on a start or reset state. Our approach is to unfold the process graph and

then determine the maximum possible separation between two events occurring anywhere in

the in�nite future. This motivates the need for an e�cient algorithm that can look over an

arbitrarily long unfolding of the process graph.

Many researchers have studied special cases of this problem. Most recently, Myers/Meng [8]

used timing analysis to simplify the implementation of self-timed sequential logic. The basic

idea is that if it is known that pairs of events will be separated by a certain amount then

it may not be necessary to include extra logic to safeguard against a hazard that can not

possibly occur. However, their approach does not generalize to arbitrary inter-process com-

munication and in fact does not yield the tightest possible bounds on the separation in time

of the events.

Similar restrictions apply to the work of Lavagno/Keutzer/Sangiovanni-Vincentelli [6]

who apply timing analysis to determine where hazards may occur in a combinational circuit.

The separation bounds allow them to insert the appropriate duration delays to eliminate the

hazards. A more general algorithm would permit this design style for asynchronous circuits

to apply to a more general class of speci�cations.

Interface logic veri�cation is an especially troublesome area of circuit design because of

the interactions of synchronous and asynchronous components that must meet speci�c tim-

ing requirements. Work by McMillan/Dill [7] and Vanbekbergen/Goossens/De Man [9] has

directly addressed this issue by considering graphs whose ranges of delays are determined

from the logic implementation. The veri�cation problem is then to determine the separa-

tion in time of constrained events and ensure that they fall within the speci�ed bounds.

Amon/Borriello [3] have taken a di�erent approach where the delays are manipulated sym-

bolically leading to a set of inequalities that must hold true for any valid implementation. In

all these cases, however, the process graph topology is restricted. [7] and [9] can only handle

acyclic graphs while [3] only supports a limited form of inter-process communication.

In the area of data-path synthesis there is a large body of work in allocation and

scheduling that considers minimizing hardware by multiplexing. To accomplish this, schedul-

ing constraints must be generated from the timing constraint speci�cations. The work of

Ku/De Micheli [5] is an example of this but is limited to extracting the possible slack be-

tween data-
ow events in a single process. Obtaining constraints from interactions between

2

processes enables more optimization of the respective data-paths and supports a modular

style of speci�cation. This will be especially useful when the implementation may include

hardware and software components.

At a higher level, the separation in time of communication actions between interacting

machines can be used to size the data bu�ers or queues between them [2]. The ability to

change circuit delays and re-evaluate the queue size permits synthesis tools to balance pro-

cesses and thereby bound the queue size to a desired value or eliminate it and its associated

bu�ering and handshaking overhead.

In this paper, we present an e�cient solution to this problem for the case of processes

with arbitrary communication patterns and no conditional constructs. We begin with a

formalization of the problem and a review of the foundation provided by the solution for

acyclic graphs in section 2. Section 3 formulates the algorithm for the general case of

cyclic graphs by casting the problem in terms of an appropriate algebra and addresses the

optimization necessary to make the algorithm practical. In section 4, we use several examples

to highlight the di�culties of this type of timing analysis and the workings of our algorithm.

Finally, section 5 summarizes the contributions of this paper.

2 Problem Formalization

2.1 A Finite Event{Rule System

To formalize the problem we choose a simple modi�cation of the event{rule system developed

in [4]. ([8] introduced a similarly modi�ed system. The model can also be viewed as an

extension of [7] and [9], where we consider cyclic max-only or type-2 graphs.) Let the pair

hE

0

; R

0

i be a repetitive, interval, event{rule system composed of

� a �nite set of (repeatable) events E

0

.

� a �nite set of rule templates R

0

.

Each rule template in R

0

is a quadruple hu; v; [d;D]; "i where u denotes the source (or pre-

decessor) event, v denotes the target (or successor) event, [d;D] denotes the range of the

propagation delay (integers with d � D), and " denotes the occurrence index o�set (which

we restrict here to be either 0 or 1). We call the directed graph G

0

constructed from the

vertex set E

0

and the edge set R

0

, the process graph. Each edge is labeled with two objects,

the delay range [d;D], and the occurrence index o�set " (which if 1 we indicate by drawing

a line through the edge).

A process graph is well-formed if it is strongly-connected and "(c) > 0 for all cycles c in

the graph, where "(c) is the sum of the " values for all edges in cycle c. We also require that

for every event there exist a cycle c containing that event with "(c) = 1. Many process graphs

that are not well-formed can be easily analyzed; these restrictions simplify the presentation

of our solution. We thus restrict our analysis to well-formed graphs in the remainder of this

paper.

3

[1; 1]

b

a

[1; 1]

[4; 10] [5; 20]

Figure 1: A process graph, E

0

= fa; bg and R

0

=

fha; a; [4; 10]; 1i; ha; b; [1; 1]; 0i; hb; a; [1; 1]; 1i; hb; b; [5; 20]; 1ig

2.2 Execution Model

An execution of a timed event{rule system is the consistent assignment of time values to

each occurrence of the events in E

0

. We denote the k

th

occurrence of event u 2 E

0

as u

k

and

the set of all event occurrences (in�nite in one direction) as E. To model the initial startup

behavior of a process, we also include in E a single event occurrence named root. Thus,

E =

n

u

k

�

�

� u 2 E

0

; k � 0

o

[frootg :

The set R consists of the rules generated by instantiating each rule template of R

0

at each

occurrence index. We also include special startup rules for each rule in R

0

with " = 1. The

delay values for these rules are additional inputs that specify the initial timing behavior of

the model.

R =

n

hu

k

; v

k+"

; [d;D]i

�

�

� hu; v; [d;D]; "i 2 R

0

; k � 0

o

[

n

hroot; v

0

; [d;D]i

�

�

� hu; v; [d;D]; 1i 2 R

0

o

We call the in�nite directed graph constructed from the vertex set E and the edge set R

the unfolded process graph. We can view an edge in the process graph with " = 1 as a

starting point (holding a token in an initial marking) and the arcs from the root specify the

delay-o�sets between these starting points.

An assignment of time values to the events in E, denoted by the function t, is consistent

if the time of the event occurrence is as early as possible, given a speci�c assignment of

a delay value within the allowable delay range [d;D] for each instantiated rule. For each

rule u

k�"

[d;D]

7! v

k

coming into a particular event occurrence v

k

, it must be the case that

t(v

k

) occurs at least d units of time after t(u

k�"

). Furthermore, t(v

k

) must occur before D

units have elapsed after t(u

k�"

) for at least one of the incoming rules. This second property

embodies the earliest time nature of the time assignment t. This is analogous to type 2

constraints in [9] and is similarly motivated by circuit propagation delays.

Formally, we can de�ne constraints on the time values introduced by each event occur-

rence. The constraints on t(v

k

) are:

maxft(u

k�"

) + d j u

k�"

[d;D]

7! v

k

2 Rg � t(v

k

) � maxft(u

k�"

) +D j u

k�"

[d;D]

7! v

k

2 Rg (1)

4

Whenever all of the events in a process graph have indegree equal to outdegree the

process graph can be partitioned into edge disjoint simple cycles. These cycles are simple

synchronizing processes with delays between process synchronizations. The synchronization

is apparent if we consider an event w having indegree of two from events x and y (with

d = D = " = 0 for both rules). The constraints (from (1)) reduce to:

t(w

k

) = max(t(x

k

); t(y

k

)):

We do not insist that all events have indegree equal to outdegree as other interesting models

of processes/synchronization can be speci�ed and analyzed using our methodology.

2.3 Problem De�nition

The problem we address in this paper is: what are the strongest bounds � and � such that

� � t(t

�

)� t(s

���

) � �

for all � � max(0; �) (only events with non-negative indices are de�ned). We address only

the problem of �nding the maximum separation � since � can easily be obtained via the

transformation

�� � t(s

�

)� t(t

��(��)

) � ��

for all � � max(0;��).

2.4 Acyclic Algorithm

We build our solution to this problem on a graph algorithm developed by Dill/McMillan [7].

Let �

�

be the strongest bound for the separation problem given an �, i.e.,

t(t

�

)� t(s

���

) � �

�

We can determine �

�

by analyzing an acyclic graph created by removing those vertices in

our unfolded process graph for which there is no path to either t

�

or s

���

(name the resulting

graph hE

�

; R

�

i).

The algorithm consists of two simple steps. First, we compute minimum weight path

values to s

���

for all event occurrences, i.e.,

m(v

k

) = min

n

�d(h)

�

�

� all paths v

k

h

; s

���

o

(2)

where d(h) is sum of the d values of the edges on the path h. We can compute these values

in linear time in the size of R

�

by a reverse topological traversal from s

���

. If there is no

path v

k

; s

���

we de�ne m(v

k

) = V, where V is an integer akin to 1. We choose V large

enough so that choosing any number larger than V would yield an identical �

�

.

5

1. Compute hE

�

; R

�

i by eliminating vertices from which there is there is no path to either

t

k

or s

���

.

2. Compute the m(v

k

) values by a single-source shortest path algorithm using edge

weights �d, reversing the direction of the arcs in R

�

, and starting at source s

���

.

Set m(v

k

) = V if there is no path v

k

; s

���

.

3. U (root) m(root)

4. In normal topological order, traverse nodes v

k

performing

U (v

k

) min(m(v

k

);maxfU (u

k�"

) +D j u

k�"

[d;D]

7! v

k

2 R

�

g)

5. �

�

 U (t

�

)

Figure 2: E�cient algorithm for computing �

�

.

We then compute �

�

= U(t

�

) by assigning U(root) = m(root) and then for all other

occurrences in (normal) topological order

U(v

k

) = min(m(v

k

); maxfU(u

j

) +D j u

j

[d;D]

7! v

k

2 R

�

g) (3)

To compute � we could simply maximize �

�

over every � � max(0; �). The problem,

of course, is that this requires an in�nite number of applications of this algorithm.

3 Functional Formulation of the Algorithm

In order to perform the in�nite analysis, we recast the algorithm for the acyclic case in a

slightly di�erent form. We �rst modify (3) by subtracting m(v

k

) from both sides:

U(v

k

) �m(v

k

) = min(0;maxfU(u

j

) +D �m(v

k

) j u

j

[d;D]

7! v

k

2 R

�

g) :

By renaming U(v

k

)�m(v

k

) as

~

U(v

k

) and U(u

j

)�m(u

j

) as

~

U (u

j

), and by pushing the min

inside the max, we get:

~

U(v

k

) = maxfmin(

~

U(u

j

) +D +m(u

j

)�m(v

k

); 0) j u

j

[d;D]

7! v

k

2 R

�

g (4)

This renaming simply o�sets each U value by its minimum weight path value to obtain

~

U .

Our equation now sums the di�erence in minimumweight path values,m(u

j

)�m(v

k

), instead

of the absolute value, m(v

k

). Later, we will show that this di�erence will eventually be a

constant for two similar portions of our acyclic graph. This will allow us to reuse portions

of our analysis and avoid an in�nite computation.

6

To compute �

�

we simply o�set

~

U (t

�

) by m(t

�

),

�

�

= U(t

�

) =

~

U(t

�

) +m(t

�

)

If there is no path t

�

; s

���

then m(t

�

) will be V. We did not de�ne m(t

�

) to be1 because

~

U(t

�

) may be �V + a, where a is an arbitrary integer, and we want (�V + a) +V = a. Also

observe that for each instance (i.e., each �) of the maximum separation problem m(t

�

) is

identical since the occurrence of t

�

and s

���

scale with �.

We can consider symbolically executing steps of the acyclic algorithm with unknown

values for

~

U at some of the incoming nodes. In so doing, we construct

~

U for later nodes as

a function of

~

U at earlier nodes. We develop the construction incrementally, constructing

the correct functional forms for simple, and then progressively more complex, portions of an

acyclic graph.

3.1 Series Composition

If a portion of our acyclic graph consisted of a single rule:

u

j

[d;D]

7! v

k

we could readily compute

~

U(v

k

) in terms of

~

U(u

j

) as follows:

~

U(v

k

) = f(

~

U (u

j

)) = min(

~

U(u

j

) +D +m(u

j

) �m(v

k

); 0)

where f is a function represented as a set containing the single ordered pair h`; 0i with

` = D +m(u

j

)�m(v

k

) and

f(x) = min(x+ `; 0) (5)

We represent our ability to perform this symbolic computation of

~

U (v

k

) given

~

U(u

j

) as

u

j

f=fh`;0ig

�! v

k

and now consider the series composition of two such symbolic computations:

u

j

g=fh`

1

;0ig

�! z

i

h=fh`

2

;0ig

�! v

k

In this case, we can compute

~

U(v

k

) as a function of

~

U (u

j

) by composing the two functions:

~

U (z

i

) = g(

~

U (u

j

)) = min(

~

U(u

j

) + `

1

; 0)

~

U (v

k

) = h(

~

U (z

i

)) = min(

~

U(z

i

) + `

2

; 0)

The result is:

~

U(v

k

) = h(g(

~

U(u

j

))) = f(

~

U(u

j

))

= min(min(

~

U (u

j

) + `

1

; 0) + `

2

; 0)

= min(

~

U(u

j

) + (`

1

+ `

2

));min(`

2

; 0))

7

The composed function f can be represented as the singleton set fh`; wig where ` = `

1

+

`

2

; w = min(`

2

; 0); and

f(x) = min(x+ `; w) (6)

This equation is identical to (5) except that non-zero w's are allowed. In general, series

composition is computed using functional composition:

u

j

g

�! z

i

h

�! v

k

) u

j

g�h

�! v

k

where if g = fh`

1

; w

1

ig and h = fh`

2

; w

2

ig then

g � h = fh`

1

+ `

2

;min(w

1

+ `

2

; w

2

)ig (7)

Here f = g �h is de�ned as the functional composition f(x) = h(g(x)). (Note that the order

of g and h are reversed.)

3.2 Parallel Composition

The parallel composition of two series paths can be represented as follows:

u

j

fh`

1

;w

1

ig

�!

fh`

2

;w

2

ig

�!

v

k

) u

j

fh`

1

;w

1

i;h`

2

;w

2

ig

�! v

k

Via symbolic execution of the acyclic algorithm (i.e., (4)) we must take the max of the

functions corresponding to the two series paths:

~

U (v

k

) = max(min(

~

U(u

j

) + `

1

; w

1

);min(

~

U(u

j

) + `

2

; w

2

)) (8)

We denote this max operation in our ordered pair form as set union and in general if the

function f is represented as a set of ordered pairs

fh`

1

; w

1

i; h`

2

; w

2

i; : : : ; h`

n

; w

n

ig (9)

then

f(x) = maxfmin(x+ `

i

; w

i

) j 1 � i � ng (10)

This equation is identical to (6) except that now a set can contain more than one ordered

pair. We now introduce an important e�ciency optimization:

Pruning Rule If `

1

� `

2

and w

1

� w

2

, we do not need to keep around the pair h`

2

; w

2

i

since for all x, min(x+ `

1

; w

1

) � min(x+ `

2

; w

2

). By proper application of this pruning rule,

we can always write our sets of ordered pairs (9) such that

`

1

< `

2

< : : : < `

n

and w

1

> w

2

> w

3

> : : : > w

n

(11)

8

3.3 Series Composition of Parallel Paths

When we compose together two functions which may have been constructed from parallel

composition,

u

j

g

�! z

i

h

�! v

k

) u

j

g�h

�! v

k

we must perform the max of all the pair-wise functional compositions. That is,

g = g

1

[g

2

[: : : [g

n

h = h

1

[h

2

[: : : [h

m

g � h = fg

i

� h

j

j 1 � i � n; 1 � j � mg (12)

This is identical to equation (7) except that now the functions being composed are repre-

sented as one or more ordered pairs (representing the maximization of (10)). This operation

is potentially expensive computationally since nm pairs may be generated. In practice, the

pruning rule eliminates many of these pairs.

3.4 Decomposition

Given a particular acyclic graph, we are now in a position to construct a function that

relates

~

U (root) and

~

U(t

�

). This is done by composing primitive functions using the rules

for series and parallel composition. We can also perform this construction in segments, that

is, determine the functional relationship between

~

U (root) and values at some interior nodes,

and compose those functions with the functions relating the values at the interior nodes with

~

U(t

�

). We will see that this process is akin to matrix multiplication. We start by de�ning a

legal set of interior nodes.

De�nition 1

A cutset is a set of event occurrences such that every backward path from t

�

goes through

an element of the cutset. Given cutsets X and Y , we say that X � Y if every backward

path from t

�

goes through all the elements of Y (that it is going to go through) before it

goes through an element of X. (Alternatively, X � Y if there is no backward path from t

�

that visits an element of X and then visits an element of Y .) 2

Clearly, both frootg and ft

�

g are cutsets. Let X and Y be two cutsets such that X � Y .

We name the value of

~

U for the i

th

element of X, x

i

. Similarly, we name the value of

~

U for

the j

th

element of Y , y

j

. We seek to �nd a function that will determine the y

j

's in terms

of the x

i

's. The construction is as follows: pick a u

j

2 X and a v

k

2 Y . Throw out all

edges that do not occur on a path connecting u

j

and v

k

. By symbolic execution (series and

parallel composition), compute the function f such that f(

~

U (u

j

)) =

~

U(v

k

). By our naming

9

above, this is the same as f(x

i

) = y

j

for some i and j. Compute this function for every pair

in X � Y . We can write the result as a n�m = jXj � jY j matrix of functions.

0

B

B

B

B

@

f

11

f

12

� � � f

1m

f

21

f

22

� � � f

2m

.

.

.

.

.

.

.

.

.

.

.

.

f

n1

f

n2

� � � f

nm

1

C

C

C

C

A

(13)

3.5 Matrix Multiplication

We can now restate the �

th

occurrence maximum separation problem in matrix form. Say

we want to compute �

�

and we can �nd a cutset X such that frootg � X � ft

�

g. We can

then compute the 1 � jXj matrix of functions (name this matrix R) that maps

~

U (root) to

the

~

U values of the elements of X. We can also compute the jXj � 1 matrix of functions

(name this matrix T) that maps the

~

U values of the elements of X to

~

U(t

�

).

Using ([; �) matrix multiplication (that is, using set union for scalar addition, and func-

tion composition for scalar multiplication) we can form RT, a 1 � 1 matrix containing a

single function f . We then compute

~

U(t

�

) by simply computing f(

~

U (root)) which is the

same as f(0) since

~

U(root) = 0. Finally,

�

�

= U(t

�

) =

~

U(t

�

) +m(t

�

) = f(0) +m(t

�

)

3.6 Shifted Cutsets

If we are able to choose the cutsets X and Y such that for some
,

v

k�

2 X if and only if v

k

2 Y (14)

then we could construct the square matrix S that maps the

~

U values at the events in X to

the

~

U values at these same events
 occurrences later. We say that X is Y shifted to the

left by
 if (14) holds. Using X and Y , we can generate matrices R, S, and T so that the

matrix product RST contains the function that computes

~

U(t

�

0

+

) for the �

�

0

+

problem.

Consider, now solving the �

�

0

problem. By using the same cut set, X, we can form the

matrix product R

0

T that will compute

~

U (t

�

0

). Notice that the T here is identical to that

in the previous case, since the occurrences indices of t

�

0

+

, s

�

0

��+

, and all the elements of

Y have decreased by exactly
. R

0

, however, may di�er from R since the m(v

k

) values are

now computed from s

�

0

��

instead of s

�

0

��+

. Furthermore, the m(v

k

) may di�er because

the paths through the section of the graph between X and Y have not been considered.

We can also compute

~

U (t

�

0

+2

) in the �

�

0

+2

problem by decomposing using cutset sets

X, Y , and Z, where Z is Y shifted to the right by
. We get the matrix product R

00

S

00

ST

where S and T are the same as above (this time the occurrence indices increased by
), but

R

00

and S

00

may di�er from R and S respectively, again, because the m(v

k

) values may have

changed. However, if,

m(u

j

)�m(v

k

) = m(u

j+

)�m(v

k+

) (15)

10

holds for every rule u

j

[d;D]

7! v

k

, used to construct R

00

and S

00

, then, in fact, R

00

= R and

S

00

= S. This is why we transformed U(v

k

) into

~

U(v

k

). Recall that for a particular rule,

u

j

[d;D]

7! v

k

, f = fh`; 0ig where ` = D + m(u

j

) � m(v

k

). It is thus the relative di�erence

between these minimum weight paths that needs to be identical.

We can illustrate this decomposition in Figure 3. By using the cutsets X = fa

0

; c

0

g,

[1;2]

[1;2]

c

0

b

0

a

0

a

1

c

1

b

1

b

2

c

2

a

2

a

3

c

3

root

� 2 � 1 0 V

� 3 � 2 � 1 0

� 3 � 2 � 1 0

R S S T

a

b

c

Figure 3: Simple process graph unfolded three times. Here,

t = a, s = c, � = 3, and � = 0. The annotation at each node

represents the m(v

k

) values computed from c

3

. Use [0; 0] as the

delay range for the edges where none is speci�ed.

Y = fa

1

; c

1

g, and Z = fa

2

; c

2

g, we can split the computation into RSST.

3.7 Repetition of the m(v

k

) values

Since the minimumweight path values (m(v

k

)) are constructed from a repetitive system they

possess the following property|the path, if long enough, will always contain a subpath that

corresponds to a cycle in the process graph whose ratio (d(c)="(c)) is equal to the maximum

ratio r

?

:

r

?

= max

c a simple cycle in G

0

d(c)

"(c)

(16)

The values are repeating because paths that are further away simply walk this cycle one

or more additional times. If there are multiple cycles with maximum ratio then di�erent

minimum weight paths may contain subpaths that follow di�erent maximum ratio cycles.

Formally, this observation states that there exists integers k

?

and "

?

such that for all k,

"

?

� k � � � k

?

and all v 2 E

0

m(v

k�"

?

) = m(v

k

)� r

?

"

?

(17)

11

Both k

?

and "

?

are values speci�c to a particular process graph. k

?

is the number of unfoldings

of the process graph (relative to t

�

) before the m(v

k

) values repeat. "

?

is the occurrence

period of this repetition. A simple upper bound on "

?

is the least common multiple of "(c)

for each maximum ratio cycle c. From the example shown in Figure 4, it should be apparent

that k

?

is a function of the actual delay values. For example, if s = a and d

2

> d

1

then

m(a

����n

) = min(�d

1

n;�d

2

(n� 1)� 2) for all �� � � n � 1

and the m(v

k

) values will repeat when the second term of the minimization �nally becomes

smaller than the �rst term.

[1; 1]

b

a

[1; 1]

[d

1

; D

1

] [d

2

; D

2

]

b

96

b

97

a

97

a

98

b

98

a

99

b

99

a

100

a

96

0�4�8�12�17

�16 �11 �6 �1

a

95

b

95

�21

�22

Figure 4: A process graph and a portion of its unfolded process

graph labeled with m(v

k

) values (s

���

= a

100

and d

1

= 4 and

d

2

= 5). The m(v

k

) values repeat when m(a

96

)�m(a

97

) = �5.

3.8 Identical Matrices

Let the matrix product RST solve the �

�

0

+"

?

problem where the decomposition was per-

formed at cutsets X and Y and where X is Y shifted to the left by "

?

and for all v

k

2 Y ,

k � �

0

+ "

?

� k

?

, By (15) and (17), we can insert q � 1 additional S matrices between R

and T, and thus compute the function for the �

�

0

+q "

?

problem.

Given this, we can compute the maximum of �

�

for all � � �

0

such that "

?

divides

�� �

0

by computing the countable union of matrix products:

RT [RST [RSST [RSSST [: : : (18)

The resulting 1�1 matrix contains a single function f which we evaluate at 0 and sum with

m(t

�

) to obtain our bound. By matrix algebra, we can rewrite (18) as

R (I [S [S

2

[S

3

[: : :)T (19)

where I is the identity matrix (the elements, 0 and 1, will be subsequently de�ned) and recall

that matrix addition ([) uses set union for scalar addition.

12

3.9 Matrix Closure

In order to e�ectively compute (19) we will use thematrix closure of S, that is, the countably

in�nite union:

S

�

= I [S [S

2

[S

3

[: : : (20)

The Floyd-Warshall algorithm [1] can be used to compute S

�

because, in this context, set

union and function composition form a closed semi-ring.

De�nition 2

A closed semi-ring hS;�;
; 0; 1i satis�es the following properties:

1. hS;�; 0i is a commutative, idempotent monoid. � is associative, commutative, and

idempotent over countable sums.

2. hS;
; 1i is a monoid

3. 0 is an annihilator, i.e., a
 0 = 0
 a = 0

4.
 distributes over � (including countable sums), i.e., a
 (b� c) = a
 b� a
 c and

(b� c)
 a = b
 a� c
 a.

2

For our case, let S be the set of all functions represented by sets of ordered pairs h`; wi.

Let � = [be set union (with pruning), 0 = fh�1;�1ig, 1 = fh0;1ig, and
 = � , that

is function composition de�ned as:

f

1

� f

2

= fh`

1

+ `

2

;min(w

1

+ `

2

; w

2

)i j h`

1

; w

1

i 2 f

1

; h`

2

; w

2

i 2 f

2

g

The scalar closure operation

f

�

= 1 [f [f � f [f � f � f [: : : = 1 [f [f

2

[f

3

[: : : (21)

can be e�ciently computed by:

fh`

1

; w

1

i; : : : ; h`

n

; w

n

ig

�

=

(

f1; h1; w

q

ig if `

n

> 0

f1g if `

n

� 0

(22)

where the pairs are ordered as in (11) and q is chosen so that `

q

> 0 and if q > 1 then

`

q�1

� 0. It is easy to show that the properties of a closed semi-ring are ful�lled by our

system. The Floyd-Warshall algorithm will form the closure of an n � n matrix in O(n

3

)

scalar semi-ring operations.

13

3.10 Finishing Touches

RS

�

T is used to compute the maximum of the �

�

values for only a subset of the integers

� � max(0; �). If "

?

= 1, we need only compute the maximum of a �nite number of

additional �

�

, precisely for those � < �

0

, since RT is used to compute �

�

0

. If "

?

> 1, we

need to also compute those � such that "

?

does not divide ���

0

. This can be accomplished

by choosing "

?

di�erent initial matrices, named R

0

, R

1

, : : :, R

"

?

�1

, corresponding to 0, 1,

: : :, "

?

� 1 additional unfoldings of the process graph. Thus we can compute the maximum

of �

�

for all � � �

0

by creating the function

f = (R

0

[R

1

[: : : [R

"

?

�1

)S

�

T (23)

and evaluating f at 0 and adding m(t

�

).

3.11 E�ciency Considerations

There are two potential ine�ciencies associated with this algorithm.

1. Both "

?

and k

?

depend on the delay ranges and are not polynomial in the size of the

process graph.

2. The number of ordered pairs corresponding to a particular function may be as many

as the number of paths between the two points related by the function.

Although of theoretical interest, point 1 is not likely to be of practical concern. In most

process graphs derived from circuits, "

?

= 1 ([4]). k

?

can be large if there exists a cycle

c such that d(c)="(c) is almost equal to r

?

. Point 2 would be serious if it weren't for the

pruning rule, which in practice, greatly reduces the number of necessary pairs. Furthermore,

the initial and �nal matrices in (23) can be computed using topological traversals of a �nite

graph. It is only in the construction of the matrix S that we need to use the functional

formulation of the problem. The maximum number of paths used in a computation of an

element of S is the just the number of paths from u

j

2 X to a v

k

2 Y in "

?

unfoldings

of the process graph. This number is bounded by an exponential in jE

0

j"

?

. At most jXj

series function compositions are needed to generate a particular element of S

�

. This limit

on the number of such compositions shows that these sets grow at most exponentially in a

polynomial of jE

0

j"

?

.

4 Examples

In this section we present a few small examples which illustrate several important aspects of

both the problem and our solution.

Our �rst example is a process graph that represents two coupled pipelines (see Figure 5).

If the pipelines were not coupled at c the maximum separation between a and e would be

unbounded. This is because the �rst pipeline (with a choosing delay 2) could be arbitrarily

14

b

a

[1; 2]

e

d

c

all other delays are [0; 0]

[1; 2]

Figure 5: A process graph that represents two coupled pipelines

slower than the second pipeline (with e choosing delay 1). The coupling of the pipelines

forces one pipeline to wait for the other if it gets too far ahead. We start the pipeline by

rooting all of the initial occurrences at 0, i.e., we have startup rules

hroot; a

0

; [0; 0]i; hroot; b

0

; [0; 0]i; hroot; d

0

; [0; 0]i; hroot; e

0

; [0; 0]i

For all � � 0 our analysis shows that t(a

�

)� t(c

�

) � 4

t(a

�

)� t(c

�

) � �

�

�

0

�

1

�

2

�

3

�

4

�

�5

0 1 2 3 4 4

This arises because we can have t(a

0

) = 0, t(a

1

) = 2, t(a

2

) = 4, t(a

3

) = 6, t(a

4

) = 8,

t(a

5

) = 10 along with t(e

0

) = 1, t(e

1

) = 2, t(e

3

) = 3, t(e

4

) = 4 but we cannot have t(e

5

) = 5

because of the dependency requiring t(e

5

) to occur no earlier than t(a

3

) = 6. Adding more

stages to both pipelines (before the synchronization) would allow e to get even further ahead

of a.

f

e

[d

1

; D

1

]
d

c

b

[3; 3]

a

[3; 3]

[3; 3]

[3; 3]

all other delays are [1; 1]

Figure 6: A process graph with unusual timing behavior

Our next example (see Figure 6) exhibits interesting behavior. We again root all of the

initial occurrences at 0. If d

1

= D

1

= 5 then

t(a

�

)� t(a

��1

) � �

�

�

1

�

2

�

3

�

4

�

odd

�

even

4 8 4 8 4 8

15

If we change d

1

= D

1

= 8 then

t(a

�

)� t(a

��1

) � �

�

�

1

�

2

�

3

�

4

�

5

�

6

�

7

�

8

�

�9

4 8 4 8 4 8 8 9 9

b

a

d

e

c

[10; 10] [10; 10]

[5; 5] [5; 5]

[1; 3] [1; 3]

[1; 2] [1; 2]

Figure 7: Two processes synchronizing at c

Our third example corresponds to two simple processes that are forced to synchronize at

the event c (see Figure 7). This example demonstrates how the initial startup rules can a�ect

our result. Of course a startup rule can delay the 0

th

occurrence of an event by an arbitrary

amount, so startup rules can easily a�ect the initial timing behavior of the processes. In

this example, we have two startup rules: hroot; b

0

; [D

1

;D

1

]i and hroot; d

0

; [D

2

;D

2

]i and they

determine every �

�

t(e

�

)� t(a

�

) � �

�

�

�0

D

2

�D

1

� 3 D

2

�D

1

= 2 D

2

�D

1

= 1 D

2

� D

1

3 2 1 0

This example is interesting because if D

2

> D

1

then every occurrences of e and a can always

be separated by a number larger than zero. If, however, some choice of delay values (at any

point in the execution) results in b and d occurring at the same time, then from that point

on, e and a will always occur at the same time. In this example, the delay values actually

determine the maximum attainable separation at every point in the execution, not just in

the beginning.

Our last example (see Figure 8) is a simple pipeline. All initial occurrences are rooted at

0 except e and g for which we have startup rules: hroot; e

0

; [21; 21]i; hroot; g

0

; [31; 31]i. For

all � � 2 our analysis yields t(b

�

) � t(e

��2

) � 9,

t(b

�

)�t(e

��2

) � �

�

�

2

�

3

�

4

�

5

�

6

�

7

�

8

�

9

�

10

�

11

�

12

�

13

�

�14

0 5 6 6 6 7 7 7 8 8 8 9 9

This example is of interest because we need to use the matrix closure of S to calculate � |

k

?

= 7, and choosing � smaller than k

?

will not yield the solution.

16

[1; 1]

b

a

[1; 9] [1; 5]

c

[1; 1] [1; 1]

[1; 1] [10; 20]

g

[1; 1]

d

[1; 1]

e

[1; 1]

f

[8; 11] [1; 1]

Figure 8: A simple pipeline

The cutsets X = fa

0

; b

0

; c

0

; d

0

; e

0

; f

0

; g

0

g and Y = fa

1

; b

1

; c

1

; d

1

; e

1

; f

1

; g

1

g were used to

generate the matrices R, S, and T. In this case, RT computes �

7

.

R =

�

fh�25; 0ig fh�25; 0ig fh�25; 0ig fh�25; 0ig fh�8; 0ig fh�8; 0ig fh0; 0ig

�

S =

0

B

B

@

fh�1;�1ig fh�1;�1ig fh�1;�1ig fh1; 0ig fh1; 0ig fh10; 0ig fh10; 0ig

fh�1; 0ig fh�1; 0ig fh�1; 0ig fh1; 0ig fh1; 0ig fh10; 0ig fh10; 0ig

fh�1;�1ig fh�5; 0ig fh�5; 0ig fh1; 0ig fh1; 0ig fh10; 0ig fh10; 0ig

fh�1;�1ig fh�1;�1ig fh�9; 0ig fh1; 0ig fh1; 0ig fh10; 0ig fh10; 0ig

fh�1;�1ig fh�1;�1ig fh�1;�1ig fh1; 0ig fh1; 0ig fh10; 0ig fh10; 0ig

fh�1;�1ig fh�1;�1ig fh�1;�1ig fh�1;�1ig fh�9; 0ig fh10; 0ig fh10; 0ig

fh�1;�1ig fh�1;�1ig fh�1;�1ig fh�1;�1ig fh�1;�1ig fh10; 0ig fh10; 0ig

1

C

C

A

T

0

=

0

B

B

@

fh21; 17i; h25; 5ig

fh21; 17i; h25; 5ig

fh17; 17i; h25; 5ig

fh9; 17i; h11; 9i; h13; 8i; h15; 7i; h17; 6i; h25; 5ig

fh11; 9i; h13; 8i; h15; 7i; h17; 6i; h25; 5ig

fh3; 8i; h5; 7i; h16; 6i; h25; 5ig

fh16; 6i; h25; 5ig

1

C

C

A

S

�

=

0

B

B

@

fh0;1i; h1;�15ig fh�1;�1i; h1;�14ig fh�1;�1i; h1;�9ig fh1; 0ig fh1; 0ig fh1; 0ig fh1; 0ig

fh�1; 0i; h1;�15ig fh0;1i; h1;�14ig fh�1; 0i; h1;�9ig fh1; 0ig fh1; 0ig fh1; 0ig fh1; 0ig

fh�6;�1i; h1;�15ig fh�5; 0i; h1;�14ig fh0;1i; h1;�9ig fh1; 0ig fh1; 0ig fh1; 0ig fh1; 0ig

fh�15;�6i; h1;�15ig fh�14;�5i; h1;�14ig fh�9; 0i; h1;�9ig fh0;1i; h1; 0ig fh1; 0ig fh1; 0ig fh1; 0ig

fh1;�15ig fh1;�14ig fh1;�9ig fh1; 0ig fh0;1i; h1; 0ig fh1; 0ig fh1; 0ig

fh1;�15ig fh1;�14ig fh1;�9ig fh1; 0ig fh1; 0ig fh0;1i; h1; 0ig fh1; 0ig

fh1;�15ig fh1;�14ig fh1;�9ig fh1; 0ig fh1; 0ig fh1; 0ig fh0;1i; h1; 0ig

1

C

C

A

RS

�

T

0

=

�

fh�4; 17i; h1; 9ig

�

Here T

0

is the matrix T multiplied with the 1 � 1 matrix (fhm(t

�

);1ig). (This performs

the �nal o�set by m(t

�

).) We can evaluate RS

�

T

0

at zero to get the maximum separation

for all � � 7. The result is max(min(�4; 17);min(1; 9)) = max(�4; 9) = 9.

5 Conclusion

We have presented an e�cient exact solution to a fundamental problem in circuit synthesis

and optimization, namely, the determination of bounds on the separation in time of events

in concurrent systems. Our presentation is somewhat theoretical but our results have appli-

cations that range widely and include: extraction of temporal don't care information in logic

synthesis, elimination of hazards and optimization in asynchronous circuits, interface timing

veri�cation, scheduling constraint generation for high-level synthesis, and communication

queue sizing. Our algorithm is cast in algebraic terms so that we can make a critical opti-

mization that allows us to compute the bounds over an arbitrarily unfolded process graph. In

practice, our algorithm is very e�cient and yields an exact solution for graphs with arbitrary

communication patterns between the processes (but without conditional behavior).

17

We are looking into adaptations of this technique to solve other timing analysis prob-

lems such as the determination of bounds on separation times after the system reaches

steady-state. This information can be useful in ordering transistors within gates to improve

performance in asynchronous circuits. In the future, we plan to generalize this approach to

graphs with conditional behavior and further consider trading tightness of the bounds for

computation speed.

Acknowledgements

This work was supported by an NSF PYI Award (MIP-8858782), an NSF YI Award (MIP-

9257987), by the DARPA/CSTO Microsystems Program under an ONR monitored contract

(N00014-91-J-4041), by an IBM Graduate Fellowship, and by the Technical University of

Denmark. The authors wish to thank Chris Myers for several stimulating technical discus-

sions.

References

[1] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, Reading, MA, 1974.

[2] T. Amon and G. Borriello. Sizing synchronization queues: A case study in higher level synthesis.

In 28th ACM/IEEE Design Automation Conference, June 1991.

[3] T. Amon and G. Borriello. An approach to symbolic timing veri�cation. In 29th ACM/IEEE

Design Automation Conference, June 1992.

[4] Steven M. Burns. Performance Analysis and Optimization of Asynchronous Circuits. Ph.D.

thesis, California Institute of Technology, 1991. CS-TR-91-1.

[5] Ku D. C and G. De Micheli. Relative scheduling under timing constraints: Algorithms for high-

level synthesis of digital circuits. IEEE Transactions on Computer-Aided Design of Integrated

Circuits, May 1991.

[6] K. Keutzer L. Lavagno and A. Sangiovanni-Vincentelli. Synthesis of veri�ably hazard-free

asynchronous control circuits. In Proceedings of the 1991 University of California at Santa

Cruz Conference on Advanced Research in VLSI, March 1991.

[7] Kenneth McMillan and David L. Dill. Algorithms for interface timing veri�cation. In 1992 IEEE

International Conference on Computer Design: VLSI in Computers and Processors, October

1992.

[8] Chris Myers and Teresa H.-Y. Meng. Synthesis of timed asynchronous circuits. In 1992 IEEE

International Conference on Computer Design: VLSI in Computers and Processors, October

1992.

18

[9] Peter Vanbekbergen, G. Goossens, and Hugo De Man. Speci�cation and analysis of timing

constraints in signal transition graphs. In European Design Automation Conference, March

1992.

19

