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Abstract

Traditional main memory caches provide semantics that deal with memory locations rather

than the data they contain. By considering the cache as a repository of data, rather than

locations, it is possible to eliminate transfers associated with dead data, data that is guaranteed

not to be referenced again. The transfers eliminated correspond to fetches of cache lines that

will be completely overwritten without being read, and to writebacks of data that will never

again be read.

We describe the semantics and implementation of a set of cache control instructions that,

when added to a conventional instruction set, allow the elimination of dead data transfers.

We demonstrate how these instructions could be employed by a compiler, and give a quantita-

tive assessment of their bene�ts. This assessment is based on trace-driven cache simulations of

benchmarks from the Livermore Loops, SPEC, and Perfect Club suites. As part of this study, we

determine the maximum bene�t attainable through the use of these instructions; this is accom-

plished by simulating an \optimal" policy which makes infallible decisions regarding memory

accesses. Furthermore, in addition to evaluating application programs, we also monitor the

operating system kernel to estimate the impact of cache control instructions on the performance

of kernel operations.

Our simulations show that on today's architectures the average performance improvement

obtained using these techniques is quite modest, although some individual programs exhibit

more dramatic gains. Using a combination of a simple analytic model and measurements of

our benchmark programs, we show that the performance gains are expected to grow in the

future, but cannot grow beyond a certain limiting factor, regardless of assumptions about CPU

and memory speeds. Because the cache control instructions are inexpensive to implement, never

result in a degradation in performance for any application, and provide noticeable improvements

for some, we conclude that they provide a useful approach for helping to deal with the growing

disparity in processor and main memory speeds.

1 Background and Motivation

As processors continue to get faster relative to memory, the design and performance of the memory

hierarchy is becoming an increasingly crucial factor in system architecture. Caches are successful
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in reducing the e�ects of memory latency, but as latency continues to grow, naive caching is no

longer su�cient to meet the performance demands of applications. A great deal of research e�ort

has gone into the study of alternative caching techniques [Jouppi 90, McFarling 92, Gupta et al.

91].

Traditional main memory caches provide fetch and writeback semantics that are based on

memory locations, rather than on the data that those locations contain. However, by distinguishing

memory locations from their data, some transfers between main memory and the cache can be

eliminated. These transfers correspond to fetches or writebacks of dead data, data that will not be

read again.

In this paper, we evaluate a set of cache control instructions that can be used to eliminate

accesses involving dead data. We say a cache line is dead if all data in it are dead. One way to

improve performance is to eliminate cache misses and writebacks that access dead lines.

There are two situations in which dead data is transferred between a write-back cache and main

memory. First, a write to a dead line may cause a cache miss; the line is then needlessly loaded

into the cache. (Note that a read miss is never to a dead line | the fact that the access is a read

implies that the line is live.) Second, when a dead line is replaced in the cache, it may unnecessarily

be written back to memory. Cache control instructions can be used to eliminate memory accesses

in both of these situations. As discussed in section 3, opportunities to use these instructions arise

in the following situations: loops in scienti�c programs, procedure prologs and epilogs, operating

system and library code, and dynamic storage allocation.

We measure the impact of cache control instructions on the performance of a number of bench-

marks (Livermore Loops and some of the SPEC and Perfect Club benchmarks), using a variety of

techniques to insert our new instructions into the programs. In addition, we determine an upper

bound on the possible performance bene�t of such instructions by comparing against a design with

\optimal" performance. This last scheme eliminates all accesses to dead data, using knowledge

about the programs' future reference behavior; this is only a reference point since this knowl-

edge is not available in practice. We also evaluate the e�ect of cache control instructions on the

performance of kernel primitives. Finally, we use our data to extrapolate these e�ects to future

architectures.

Wittenbrink et al. have proposed a similar idea [Wittenbrink et al. 92], but their implementa-

tion, based on special page-table bits, is considerably more expensive than the one described below,

and their experiments used a smaller and more specialized benchmark suite than ours.

2 Instructions to Eliminate Dead Data Accesses

We envision two instructions to control the cache treatment of dead data. To eliminate write-misses

to dead data, we imagine a store&zero instruction. This instruction behaves like an ordinary store

instruction, except that it �rst zeroes the location's cache line. This allows the implementation to

generate the cache line directly rather than fetching it from memory. In principle, the cache line

could be �lled with any value | we assume the line is �lled with zeroes because this allows the use

of this instruction to zero-�ll memory quickly.

To eliminate writebacks of dead lines, we envision a clean instruction. clean is a hint to the

implementation that a cache line will overwritten before it is read again. For concreteness, we

assume the following implementation: if the location to be cleaned is in the cache, the cache line
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is marked as unmodi�ed; if the location is not in the cache, the instruction has no e�ect. This

implementation ensures that a cleaned cache line will not be written back to memory.

For simplicity, if the system uses a multi-level cache, we envision tying these instructions only

to the �rst-level cache. In principle, any level in the cache hierarchy could take advantage of these

instructions.

We now discuss the consequences of the instructions just described on both uniprocessor and

multiprocessor architectures. Cache control instructions exist in some current architectures, such

as the Hewlett-Packard PA-RISC [Hew 90]. Accordingly, we �rst contrast the PA-RISC's cache

control instructions with the abstract instructions de�ned above. We then consider multiprocessor

issues.

2.1 Comparison with PA-RISC

The PA-RISC's \cache hint" is similar to our store&zero instruction. The main di�erence is

that store&zero is assumed to be binding, while the PA-RISC directive is only a hint to the

implementation. The PA-RISC cache hint also does an alignment check: a cache line is not zeroed

unless the instruction accesses the �rst word in the line; this allows the line size to be changed

(within architecturally de�ned limits) without a�ecting correctness of programs. The PA-RISC

compiler need know only the maximum line size allowed by the architecture, whereas a compiler

for a machine with store&zero must know the actual line size.

The PA-RISC purge instruction, which invalidates a cache line, is similar to our clean. On

uniprocessors, the two instructions have the same e�ect | although clean leaves a valid copy

of the line in the cache, this is useless because the program has promised (by executing clean)

not to access this data before it is overwritten. However, clean has advantages over purge in a

multiprocessor environment, as discussed below.

As stated previously, the clean instruction only a�ects the number of writebacks; since write-

back latency can be hidden by a write bu�er, we expect clean to have little e�ect on uniprocessor

performance. Detailed simulations of some of our benchmarks con�rmed our assumption that write-

bu�er stalls are extremely rare. (Raw data concerning the number of writebacks saved by clean

instructions are given in Appendix B.)

Current implementations of the PA-RISC (in the HP9000/s700 and HP9000/s8x7 systems) do

not use the cache hint [Wilkes 92]; we do not know whether the current PA-RISC compilers and

assemblers generate the hint, or whether they use the purge instruction. In any case, we know of

no study that evaluates the e�ectiveness of cache control instructions in the PA-RISC.

2.2 Cache-Coherent Multiprocessors

On a cache-coherent multiprocessor, the store&zero instruction must perform a global invalidation

(or update), since store&zero must ensure that all processors see the line as containing zeroes.

However, since clean is only a hint, it can be implemented without a global invalidation | the

implementation can simply mark the local copy of the line (if any) as unmodi�ed

1

. The existence

of stale copies in other caches or main memory is not a problem, since the application program

is promising (as above) that it will not access the stale data. (In contrast, the semantics of the

PA-RISC's purge require a global invalidation.)

1

This assumes that this is allowed by the coherency protocol
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Further, cleanmight o�er a larger advantage on a multiprocessor than it does on a uniprocessor.

Although, as previously discussed, write bu�ers can mask writeback latency, they cannot prevent

bus contention caused by writebacks. Since clean marks a (dirty) cache line as unmodi�ed, it

prevents that line from being written back, thereby reducing bus contention. As appendices A and

B show, writebacks and cache misses are about equally frequent. Thus, on a multiprocessor, the

impact of clean might approach that of store&zero.

3 How Can the Instructions Be Used?

Having described the implementation and semantics of store&zero and clean, we now consider

how they might be used. Cache control instructions can be useful in several situations. Among

them are:

� Loops in scienti�c programs: Some scienti�c programs contain loops that write to the elements

of an array in sequential order. A compiler that unrolls the loop by a factor equal to the

number of array entries per cache line can generate a new loop that writes an entire cache

line per iteration. It can then change the �rst store instruction touching the cache line into

a store&zero. Similarly, consider an application that accesses some region of memory in two

distinct, identi�able sections of the program. If the compiler can deduce that the memory

region is dead between these accesses, it can insert clean instructions after the �rst section,

avoiding writebacks.

� Procedure prologs and epilogs: At the beginning of the execution of a procedure, space is

allocated on the stack for procedure arguments and local variables. The allocated area is

dead, since it is either uninitialized or contains stale stack data; therefore store&zero can be

used to initialize it. Similarly, clean can be used on procedure exit to ensure that the freed

stack area is not written back to memory. These instructions can be inserted by the compiler;

in order to make this tractable, the compiler should align procedure activation records on

cache-line boundaries.

� Operating system and runtime library code: Certain procedures in the operating system and

runtime library can be sped up by incorporating cache control instructions. These instructions

could be inserted by systems programmers. Procedures that could be improved include bcopy

(which copies memory), bzero (which zeroes memory), and the procedures that copy system

call arguments between user and kernel space. One noteworthy area in which this technique

could be applied is the virtual memory system: requests for zero-�lled pages can be cheaply

handled by using the augmented bzero to initialize the allocated page.

� Dynamic storage allocation: When a program dynamically allocates storage, it can assume

that the data in the newly-allocated memory is dead. store&zero instructions can therefore

be used to \pre-allocate" the region in the cache. Pre-allocating space in the cache may hinder

performance in some cases, because currently useful cache lines may be replaced by generated

lines that are not immediately useful. (Using cache control instructions in concert with

storage allocation may be compared to prefetching: both schemes are inherently predictive,

and performance can su�er if the prediction proves erroneous.) Thus, the storage allocation

system must use store&zero with care. When space is deallocated, clean can safely be used
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to ensure that the (now invalid) data in the region is never written back to memory. These

instructions would be inserted into the storage allocation system by hand.

4 Experimental Procedure

We used trace-driven simulation to measure the e�ect of using cache control instructions on the

performance of a set of benchmark programs. Our benchmarks included some of the Livermore

Loops [McMahon 72], and members of the SPEC [SPE 89] and Perfect Club [Berry et al. 89]

suites. The SPEC programs are intended to model a general-purpose workload, while Perfect Club

programs are typical of scienti�c computations. Livermore Loops are small programs that model

the inner loops of scienti�c programs.

Although we expect that cache control instructions would be inserted by a compiler, for the

purpose of our experiments we simulated the compiler's activity. An assembly-language prepro-

cessor inserted the instructions into procedure prologs and epilogs. The programs were linked to

a library containing special hand-written bzero and bcopy procedures. Cache control instructions

were inserted into loops by hand. Since unrolled loops are a prerequisite to inserting cache control

instructions, we also unrolled some loops by hand

2

.

We used the pixie tool [MIPS Computer Systems 86] to generate data-reference traces for

the benchmark programs on a MIPS R3000 [Kane & Heinrich 92] based workstation. The traces

were fed to a cache simulator that simulates a direct-mapped, virtually-addressed data cache with

variable cache size and line size.

Given a trace, the simulator determines the performance under three scenarios:

1. original: without inserting cache control instructions,

2. enhanced: with the cache control instructions we inserted, and

3. optimal: with an (unrealizable) implementation which uses future information to eliminate

all misses and writebacks on dead data.

The enhanced version of each program contains store&zero instructions inserted as described

above. Unfortunately, we were unable to �nd many opportunities to insert the clean instruction.

It may be equally di�cult for a compiler to use clean e�ectively. In addition, as discussed in

subsection 2.1, write bu�ers reduce the advantage of the clean instruction on uniprocessors. For

these reasons, we chose to concentrate on the performance advantages of store&zero; however,

clean is deserving of further study, especially on multiprocessor systems (see subsection 2.2).

Our �nal set of experiments evaluate the impact of store&zero on operating system perfor-

mance. Since pixie does not trace the operating system, we instrumented the operating system

kernel on our main departmental machine to estimate the bene�t of cache control instructions in

the operating system. We measured the number of bzero and bcopy calls and the average size of

their arguments. For more details on the operating system measurements, see section 5.2.

4.1 Performance Measures

Our simulator measures the cache miss frequency of each benchmark (the number of misses per

instruction executed). We can then calculate the performance loss due to cache misses by mul-

2

To make our comparisons fair, all simulations were run on programs with loops unrolled.
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tiplying the miss frequency by the miss penalty. The miss penalty P is the average number of

instructions that could have been issued during the time the processor was stalled due to a cache

miss. We count the number of instructions lost rather than the number of cycles lost, because this

allows us to account for the e�ects of superscalar implementations, pipeline interlocks, instruction

cache misses, and so on. On an \ideal" CPU that executes exactly one instruction per cycle, the

miss penalty is just equal to the number of cycles required for a cache miss. On an ideal dual-issue

machine (that executes exactly two instructions per cycle in the absence of cache misses), the miss

penalty is twice the number of cycles lost due to a miss.

In general, if a cache miss costsM

cyc

cycles, and the system executes an average of I instructions

per cycle in the absence of data cache misses, then the baseline CPI C is 1=I , and the miss penalty

P =M

cyc

=C. Note that the miss penalty may vary from benchmark to benchmark because I (and

therefore the baseline CPI C) may vary.

Suppose we are comparing the performance advantage of an improved program (with miss

frequency f

improved

) with that of the original, unimproved program (which has miss frequency

f

original

). If M

cyc

, I , and C are de�ned as above the relative performance improvement is

� =

Time

original

� Time

improved

Time

improved

=

(C +M

cyc

f

original

)� (C +M

cyc

f

improved

)

C +M

cyc

f

improved

(1)

which reduces algebraically to

� =

P (f

original

� f

improved

)

1 + Pf

improved

: (2)

Throughout this paper, performance results are given in terms of �, the relative performance

improvement due to cache control instructions.

An interesting feature of equation 2 is that the performance improvement � does not grow

arbitrarily as the miss penalty increases; as P goes to in�nity, � asymptotically approaches the

constant value

�

1

=

f

original

� f

improved

f

improved

: (3)

Regardless of assumptions about the speeds of CPUs and memory, the performance improvement

due to a reduction in cache misses cannot exceed �

1

.

4.2 Simulating the Optimal Implementation

To get an upper bound on the bene�t due to cache control instructions, our simulator predicts the

performance of a hypothetical optimal implementation. The optimal implementation handles dead

cache lines perfectly | it never fetches a dead line from memory, and never writes a dead line

back to memory

3

. Of course we cannot hope to build such a system, since identifying dead lines

requires looking into the future.

Our simulator, in addition to gathering cache statistics on the executing program, determines

how many cache misses and writebacks would have been avoided by the optimal system. This

determination works in exactly the same way for misses as for writebacks. When the simulated

program has (say) a cache miss, the simulator inserts a record describing the miss into a hash table.

3

Note that because we assume a direct-mapped cache, the optimal implementation cannot choose a replacement

policy. However, our methodology extends to set-associative caches, provided that the replacement policy is treated

as a given, and is not under the control of the optimal implementation.
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This record of the miss stays in the table until we are able to deduce whether the cache line was

dead or alive at the time of the miss.

To determine whether a line was dead, we keep a bitmap in the miss record, with one bit per

word in the line. A bit in the bitmap is 0 if there has been no reference to that word since the

cache miss described by the record. A bit in the bitmap is 1 if the next reference to that word

(after the miss) was a write; this implies the word was dead at the time of the cache miss. When

a record is created, its bitmap is set to all 0's, indicating that the status of all words in the line

is unknown. When the simulated program writes a word in the line, the corresponding bit is set;

if all bits become set, we deduce the line was dead, and remove the entry from the table. When

the simulated program reads a word in the line, and the corresponding bit is 0, we deduce the line

was live, and remove the entry from the table. When the simulated program terminates, all entries

remaining in the table are deduced to be dead.

In practice, the unresolved miss table becomes very large, and the simulation time is unaccept-

able. To avoid this problem, we do not monitor all misses and writebacks, but only a statistical

sample. The sample is chosen randomly and uniformly from the set of all misses and writebacks

generated by the program; when a miss or writeback occurs, we choose to include it in the sample

with some �xed probability. The result is not an exact count of the number of misses and writebacks

that could be avoided, but a statistical estimate with con�dence intervals. We chose the sample

probability large enough to ensure small con�dence intervals, but not so large that simulation time

was unacceptable. All numbers in this paper are accurate to the last decimal place given, with 95%

con�dence. (Numbers for the original and enhanced scenarios are exact.)

5 Results

We now present the results of our simulations and measurements. Subsection 5.1 presents perfor-

mance results for benchmark programs, and subsection 5.2 discusses our measurements of operating

system behavior. Subsection 5.3 summarizes our results.

5.1 Performance of Benchmark Programs

We used trace-driven cache simulation to predict the performance of benchmark programs from the

Livermore Loops, SPEC, and Perfect Club suites. We were unable to simulate some benchmarks

because the programs either did not compile on our system or did not run correctly. We also

chose not to simulate seven of the twenty-four Livermore Loops, because we saw no opportunity

for improvement | these loops had either non-unit stride or unpredictable stride, and thus could

not bene�t from cache control instructions. The complete list of programs we did simulate (with

the raw data) appears in appendix A.

The �rst set of simulations we ran were on the Livermore Loops. Each loop was generated as a

separate program and run on a large dataset, typically 50,000 elements. Each loop was unrolled four

times (four double precision 
oating point numbers �t in a 32 byte cache line, the size simulated)

and the �rst store in the loop was replaced with a store&zero instruction. The results of this

simulation, run on a cache of 16 kbytes (with a 32-byte line size), are shown in �gure 1.

The results of this test were encouraging. Twelve of the benchmarks showed some improvement.

Improvements due to cache control instructions approached 35% for kernel 12. As shown in �gure 5,

the mean improvement over all kernels was 8.62 % for the enhanced scenario, and 9.20 % for the
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Figure 1: Improvement due to cache control instructions for the Livermore Loop benchmarks. For

each program, we show the improvement of the enhanced and optimal programs, compared to the

original program, when the cache miss penalty is 15 instruction-times.

optimal scenario. (These means include an assumption of no improvement for those loops which

we did not measure. This is appropriate since, as stated above, we chose to ignore those loops

precisely because we expected no improvement.)

Although the overall improvements are modest, several individual programs show excellent

improvement. This improvement can be understood by examining the structure of these programs.

For example, in the �rst Livermore kernel, a \Hydro Fragment", shown in �gure 2, a single iteration

of the loop can cause three cache misses: one to the array element Y(k), one to array element

ZX(k+11), and one to array element X(k). The reference to array element ZX(k+10) typically

will not cause a cache miss because it was the element ZX(k+11) on the previous iteration of the

loop, and so will already be in the cache. The scalar variables Q, R and T can all be allocated to

registers by the compiler. The references to Y(k) and ZX(k+11) are read misses, so they cannot be

eliminated. However, X(k) is dead data, so its cache miss can be eliminated; thus one-third of all

cache misses for kernel 1 can be eliminated. Some of the other kernels have similar structures, so

many of their cache misses can likewise be eliminated.

DO 1 k = 1,n

1 X(k)= Q + Y(k)*(R*ZX(k+10) + T*ZX(k+11))

Figure 2: Livermore Loops kernel 1 { \Hydro Fragment"
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The second experiment we conducted measured the impact of cache control instructions on the

performance of complete benchmark programs. We used two standard benchmark suites, SPEC and

Perfect Club. We modi�ed our simulator to identify sections of code where avoidable misses were

actually occurring. We examined these sections, and looked for opportunities to use store&zero

(unrolling loops if necessary). As described above, we also used a preprocessor to insert cache

control instructions into procedure prologs and epilogs.

SPEC Benchmark
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Figure 3: Improvement due to cache control instructions for the SPEC benchmarks. For each

program, we show the improvement of the enhanced and optimal programs, compared to the

original program, when the cache miss penalty is 15 instruction-times.

The results of these experiments are shown in �gures 3 and 4. (Mean improvements over

each suite are again shown in �gure 5.) The performance gains due to cache control instructions

were less dramatic for the SPEC and Perfect Club programs than for the Livermore Loops. This

is not surprising, since the Livermore Loop programs are well-suited for cache optimizations |

they contain a single loop, which writes an output array once, usually with unit stride. Realistic

benchmarks have more complex behavior.

For example, most of the avoidable misses in the SPEC program xlisp occurred in a loop in

one procedure, xlsave. Although this loop writes an array with unit stride, the loop terminates

unpredictably. The compiler is therefore unable to insert store&zero instructions, because it

cannot decide whether the remainder of a cache line will be overwritten by subsequent iterations.

Similarly, in the Perfect Club benchmark cs, most of the avoidable misses occur in a loop

that uses indirection through a second array to determine the output location (ie, A[J[k]] =

expression). While this loop often writes an entire cache line over the course of several iterations,

the compiler is unable to determine this in advance, and is therefore unable to insert store&zero

instructions.
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Perfect Club Benchmark
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Figure 4: Improvement due to cache control instructions for the Perfect Club benchmarks. For

each program, we show the improvement of the enhanced and optimal programs, compared to the

original program, when the cache miss penalty is 15 instruction-times.

enhanced improvement optimal improvement

Livermore Loops 8.62 % 9.20 %

SPEC 0.85 % 3.26 %

Perfect Club 1.44 % 3.42 %

Figure 5: Mean improvement for each benchmark suite, for a 16 kbyte cache with 32 byte lines.

As these examples demonstrate, many misses that would be avoidable given perfect knowledge

of the future are not avoidable in practice.

5.2 Operating System Measurements

To estimate the e�ect of cache control instructions on operating system performance, we instru-

mented the operating system kernel on our department's main computer. We chose to measure

this machine because it represents a typical time-sharing workload. The machine is a DECsystem

5500 running Ultrix 4.1, and is the hub of our department's electronic mail system; it also acts

as a �leserver and is used for document preparation and other miscellaneous tasks. On a typical

afternoon, about 100 users are logged in (most of them inactive), several hundred processes exist,

and the machine rarely pages to disk. Most CPU-intensive jobs in our department are run on other

machines.
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9am { 5pm 5pm { 1am 1am { 9am overall

bzero calls/sec 1422 1239 870 1183

bzero bytes/sec 179389 100119 51849 112552

bzero bytes/call 126 80 59 95

bcopy calls/sec 4783 3748 2676 3764

bcopy bytes/sec 394972 201945 111607 241230

bcopy bytes/call 82 53 41 64

copyin calls/sec 1707 1500 1084 1436

copyin bytes/sec 26878 20165 11538 19715

copyin bytes/call 15 13 10 13

copyout calls/sec 2119 1754 1364 1756

copyout bytes/sec 80078 44941 24753 50852

copyout bytes/call 37 25 18 28

total calls/sec 10031 8241 5994 8139

total bytes/sec 681317 367170 199747 424349

total bytes/call 67 44 33 52

Figure 6: Results of operating system measurements. We show the number of calls per second by

the operating system kernel to each of four procedures, and the number of bytes per second handled

by each procedure as a result of these calls. Results are averaged over a three-day measurement

period. The kernel uses bzero to zero-�ll memory and bcopy to copy memory. copyin and copyout

are used to copy system call arguments and return values between user and kernel address spaces.
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We added code to monitor all calls to bzero and bcopy within the kernel, as well as calls to

the procedures that copy the arguments and return values of system calls between user and kernel

address spaces. We measured the number of calls to each procedure, and the total number of bytes

copied or zeroed by the procedure. Results averaged over several days are shown in �gure 6.

Assuming a cache line size of L bytes, rewriting the four traced procedures to use store&zero

would save at most one cache miss for every L bytes handled. (It might save less, because the

region zeroed or copied might not be aligned on a cache line boundary, or might already be in the

cache.) During the period with heaviest load, the four procedures handled 681317 bytes per second,

so at most 681317=L cache misses per second would be saved. If we take a reasonable value for L,

say 32, about 21000 misses per second might be saved; if the miss penalty is 500 nanoseconds, this

translates to a maximum of 10.5 milliseconds saved per second of real time. Thus we expect that

using cache control instructions in the operating system would lead at best to a 1% improvement

in system performance. This �gure is independent of the miss rate of the operating system as a

whole, which is di�cult to estimate.

5.3 Summary

On average, cache control instructions have only a small impact on performance | we measured

a 0.85 % mean improvement on the SPEC benchmarks, and a 1.44 % mean improvement on the

Perfect Club programs. We note, though, that none of the benchmarks slowed down as a result of

adding these instructions, and some benchmarks sped up signi�cantly. This last fact suggests that

cache control instructions may be worthwhile, especially since they are so cheap to implement.

The e�ect on operating system performance was also small. We estimate our department's

workhorse computer would speed up by less than 1% as a result of using cache control instructions

in the operating system kernel.

6 Predicting Future Performance

We have seen that the average bene�ts of cache control instructions are modest on today's ar-

chitectures. One might expect these bene�ts to be larger in the future, since memory latency is

ever-increasing, and cache behavior will therefore become a more signi�cant factor. We can use

the data from our experiments to predict the usefulness of cache control instructions on future

architectures. We assume that technology trends in the next few years will have three main e�ects:

� CPUs will get faster relative to memory. We can account for this e�ect by increasing the

cache miss penalty in our simulations.

� First-level caches will get larger. As the transistor budget of chip designers increases, and

cache misses become more costly, designers will respond by increasing the amount of on-chip

cache. We can account for this e�ect by simulating larger caches.

� Applications will use larger data sets, as programmers and users respond to improvements in

system performance. This e�ect is harder to model, but we can approximate it by running

today's benchmarks with smaller caches.
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Figure 7: Predicted performance gain due to cache control instructions, under the enhanced sce-

nario, as a function of miss penalty, averaged over the SPEC benchmark suite.

As this suggests, we used the results of our simulations for cache sizes ranging from 2 kbytes to

512 kbytes. From these numbers, we can predict the percentage improvement in running time as a

function of the cache miss penalty (discussed in section 4.1).

Figures 7 and 8 show the predicted performance gain for the SPEC benchmarks, under the

enhanced and optimal assumptions, respectively. Even for large values of the miss penalty P , the

performance gains of the enhanced implementation are quite modest. The optimal implementation

shows larger gains, as large as 17% for a 16 kbyte cache with P = 200.

Figures 9 and 10 show the results of the same experiment for the Perfect Club benchmarks. The

enhanced implementation shows the same modest improvement we saw for the SPEC benchmarks,

but the optimal implementation shows a larger improvement for the Perfect Club benchmarks than

it did for SPEC.

7 Discussion

Our data suggest �ve main conclusions.

First, signi�cant gains are possible on some scienti�c applications. For example, we calculate a

34% improvement on Livermore Loop 12, a 6.5% improvement on fpppp, and a 6% improvement

on tf. These improvements are mostly due to loops that write an output array, one entry per loop

iteration, with unit stride. If the compiler can recognize these, many cache misses can be avoided.

Second, average gains were quite modest for most of the benchmarks. With a 16 kbyte cache

and 4 words per line, the average gain on the SPEC benchmarks was 0.85 %; for the Perfect Club

benchmarks the average gain was 1.44 %.
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Figure 8: Predicted performance gain due to cache control instructions, under the optimal scenario,

as a function of miss penalty, averaged over the SPEC benchmark suite.

Third, under current architectural assumptions, the average gain for SPEC and Perfect Club

benchmarks is limited to about 3.3%. It is possible, though, that alternative programming method-

ologies may allow greater potential bene�ts.

Fourth, the e�ect of cache control instructions on operating system performance is small. Our

measurements indicate that our department's workhorse computer would speed up by at most 1%

due to the improved performance of operating system primitives.

Finally, the predicted increase in CPU speed relative to memory has a signi�cant but bounded

e�ect on the bene�t due to cache control instructions. The bound stems from the fact that only a

�xed fraction of cache misses are eliminated; the bulk of the cache misses still remain, and must

be paid for. For current cache sizes, the performance gain is limited to about 30% for the SPEC

benchmarks, regardless of assumptions about CPU and memory speeds.

In the �nal analysis, we believe cache control instructions are a useful feature. Although their

average performance bene�t is smaller than one might hope, it easily outweighs the small cost of

adding these instructions. Furthermore, in no case did the addition of these instructions cause a

performance loss. In combination with other techniques such as prefetching and compiler optimiza-

tions, cache control instructions can help to reduce the cost of memory access.
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A Detailed Data: Miss Frequency

This appendix shows the cache miss frequencies of all simulator runs. (Miss frequency is the number

of cache misses per instruction executed.) Although the main paper gives performance �gures in

terms of improvement over the original scenario, this appendix quotes miss frequency, since that

is a direct output of our simulator. For each benchmark, and each cache size, the data tables

give three miss frequencies. The top number is the miss frequency under the original scenario,

the middle number is the miss frequency for the enhanced scenario, and the bottom number is for

the optimal scenario. We used a 32-byte line size in all our simulations. (Note to reviewers: N/A

entries will be �lled in for the �nal paper.)

Recall that, as explained in section 5.1, we were unable to run all of the SPEC and Perfect Club

benchmarks, and we omitted some of the Livermore Loops because they presented no opportunity

for improvement.
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2K 4K 8K 16K 32K 64K 128K 256K 512K

Kernel 1 0.139 0.139 0.139 0.060 0.060 0.060 0.060 0.060 0.060

0.119 0.119 0.119 0.040 0.040 0.040 0.040 0.040 0.040

0.119 0.119 0.119 0.040 0.040 0.040 0.040 0.040 0.040

Kernel 2 0.070 0.068 0.067 0.067 0.067 0.065 0.065 0.065 0.057

0.057 0.055 0.054 0.054 0.054 0.052 0.052 0.052 0.044

0.056 0.055 0.054 0.053 0.053 0.052 0.052 0.052 0.043

Kernel 5 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070

0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047

0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046

Kernel 6 0.038 0.034 0.029 0.023 0.020 0.018 0.017 0.017 0.017

0.038 0.034 0.029 0.023 0.020 0.018 0.017 0.017 0.017

0.038 0.034 0.029 0.023 0.020 0.018 0.017 0.017 0.017

Kernel 7 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023

0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017

0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017

Kernel 8 0.066 0.058 0.055 0.053 0.052 0.052 0.051 0.051 0.050

0.059 0.051 0.048 0.046 0.045 0.045 0.044 0.044 0.043

0.057 0.051 0.047 0.046 0.045 0.044 0.044 0.044 0.043

Kernel 9 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044

0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040

0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040

Kernel 10 0.080 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030

0.077 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027

0.069 0.028 0.028 0.027 0.028 0.028 0.028 0.028 0.028

Kernel 11 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069

0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035

0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034

Kernel 12 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072

0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036

0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036

Kernel 13 0.041 0.039 0.038 0.007 0.006 0.006 0.006 0.006 0.006

0.022 0.021 0.020 0.001 0.000 0.000 0.000 0.000 0.000

0.022 0.020 0.019 0.001 0.000 0.000 0.000 0.000 0.000

Kernel 14 0.059 0.039 0.037 0.036 0.036 0.035 0.031 0.031 0.030

0.049 0.029 0.027 0.026 0.026 0.025 0.023 0.023 0.022

0.040 0.023 0.021 0.019 0.020 0.020 0.018 0.017 0.017

Kernel 18 0.120 0.120 0.120 0.120 0.120 0.116 0.110 0.110 0.110

0.117 0.117 0.117 0.117 0.117 0.113 0.107 0.107 0.107

0.116 0.116 0.116 0.116 0.116 0.113 0.107 0.107 0.107

Kernel 19 0.067 0.067 0.066 0.066 0.066 0.065 0.063 0.059 0.052

0.056 0.056 0.055 0.055 0.055 0.054 0.052 0.048 0.041

0.055 0.055 0.055 0.055 0.055 0.054 0.052 0.048 0.041

Kernel 20 0.046 0.040 0.037 0.036 0.035 0.035 0.028 0.027 0.027

0.042 0.036 0.033 0.032 0.031 0.031 0.024 0.023 0.023

0.041 0.036 0.033 0.032 0.031 0.031 0.024 0.024 0.024

Kernel 21 0.041 0.030 0.025 0.023 0.022 0.020 0.020 0.020 0.020

0.041 0.030 0.025 0.023 0.022 0.020 0.020 0.020 0.020

0.041 0.030 0.025 0.023 0.022 0.020 0.020 0.020 0.020

Kernel 22 0.040 0.036 0.035 0.034 0.033 0.033 0.033 0.033 0.033

0.027 0.023 0.022 0.021 0.020 0.020 0.020 0.020 0.020

0.026 0.023 0.021 0.020 0.020 0.020 0.020 0.020 0.020

Figure A.1: Cache miss frequencies for the Livermore Loop benchmarks.
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2K 4K 8K 16K 32K 64K 128K 256K 512K

Kernel 12 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072

0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036

0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036

Kernel 13 0.041 0.039 0.038 0.007 0.006 0.006 0.006 0.006 0.006

0.022 0.021 0.020 0.001 0.000 0.000 0.000 0.000 0.000

0.022 0.020 0.019 0.001 0.000 0.000 0.000 0.000 0.000

Kernel 14 0.059 0.039 0.037 0.036 0.036 0.035 0.031 0.031 0.030

0.049 0.029 0.027 0.026 0.026 0.025 0.023 0.023 0.022

0.040 0.023 0.021 0.019 0.020 0.020 0.018 0.017 0.017

Kernel 18 0.120 0.120 0.120 0.120 0.120 0.116 0.110 0.110 0.110

0.117 0.117 0.117 0.117 0.117 0.113 0.107 0.107 0.107

0.116 0.116 0.116 0.116 0.116 0.113 0.107 0.107 0.107

Kernel 19 0.067 0.067 0.066 0.066 0.066 0.065 0.063 0.059 0.052

0.056 0.056 0.055 0.055 0.055 0.054 0.052 0.048 0.041

0.055 0.055 0.055 0.055 0.055 0.054 0.052 0.048 0.041

Kernel 20 0.046 0.040 0.037 0.036 0.035 0.035 0.028 0.027 0.027

0.042 0.036 0.033 0.032 0.031 0.031 0.024 0.023 0.023

0.041 0.036 0.033 0.032 0.031 0.031 0.024 0.024 0.024

Kernel 21 0.041 0.030 0.025 0.023 0.022 0.020 0.020 0.020 0.020

0.041 0.030 0.025 0.023 0.022 0.020 0.020 0.020 0.020

0.041 0.030 0.025 0.023 0.022 0.020 0.020 0.020 0.020

Kernel 22 0.040 0.036 0.035 0.034 0.033 0.033 0.033 0.033 0.033

0.027 0.023 0.022 0.021 0.020 0.020 0.020 0.020 0.020

0.026 0.023 0.021 0.020 0.020 0.020 0.020 0.020 0.020

Figure A.2: Cache miss frequencies for Livermore Loops 13{24.
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2K 4K 8K 16K 32K 64K 128K 256K 512K

cs 0.051 0.032 0.025 0.013 0.009 0.008 0.005 0.000 0.000

0.051 0.032 0.025 0.013 0.009 0.008 0.005 0.000 0.000

0.043 0.027 0.021 0.011 0.008 0.007 0.004 0.000 0.000

lg 0.011 0.006 0.006 0.004 0.003 0.002 0.002 0.002 0.002

0.010 0.006 0.006 0.004 0.003 0.002 0.002 0.002 0.002

0.009 0.005 0.005 0.004 0.003 0.002 0.002 0.002 0.001

lw 0.021 0.000 0.008 0.003 N/A N/A N/A N/A N/A

0.021 0.000 0.008 0.003 N/A N/A N/A N/A N/A

0.018 0.000 0.007 0.003 N/A N/A N/A N/A N/A

na N/A N/A 0.013 0.013 N/A N/A N/A N/A N/A

N/A N/A 0.013 0.013 N/A N/A N/A N/A N/A

N/A N/A 0.012 0.012 N/A N/A N/A N/A N/A

oc 0.055 0.035 0.028 0.026 0.024 0.008 0.000 N/A N/A

0.051 0.031 0.024 0.022 0.020 0.004 0.000 N/A N/A

0.049 0.030 0.024 0.022 0.020 0.005 0.000 N/A N/A

sd 0.025 0.021 0.012 0.006 0.001 0.000 0.000 0.000 0.000

0.025 0.021 0.012 0.006 0.001 0.000 0.000 0.000 0.000

0.024 0.020 0.012 0.005 0.001 0.000 0.000 0.000 0.000

sr 0.075 0.065 0.047 0.046 0.037 0.030 0.028 0.027 0.024

0.073 0.063 0.045 0.044 0.035 0.028 0.026 0.025 0.022

0.069 0.058 0.041 0.040 0.031 0.024 0.022 0.021 0.018

tf 0.041 0.030 0.024 0.021 0.018 0.015 0.012 0.007 0.005

0.037 0.026 0.020 0.017 0.015 0.012 0.009 0.005 0.003

0.035 0.024 0.019 0.016 0.013 0.011 0.008 0.004 0.003

ti 0.000 N/A 0.020 0.007 N/A N/A N/A N/A N/A

0.000 N/A 0.020 0.007 N/A N/A N/A N/A N/A

0.000 N/A 0.019 0.006 N/A N/A N/A N/A N/A

Figure A.3: Cache miss frequencies for the Perfect Club benchmarks we simulated.
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2K 4K 8K 16K 32K 64K 128K 256K 512K

dnasa7 0.000 N/A 0.101 0.033 N/A N/A N/A N/A N/A

0.000 N/A 0.101 0.033 N/A N/A N/A N/A N/A

0.000 N/A 0.098 0.033 N/A N/A N/A N/A N/A

doduc 0.043 0.027 0.017 0.008 0.003 0.001 0.000 0.000 0.000

0.041 0.026 0.016 0.008 0.003 0.001 0.000 0.000 0.000

0.035 0.022 0.013 0.005 0.002 0.000 0.000 0.000 0.000

eqntott 0.017 0.011 0.009 0.008 0.007 0.006 0.004 0.003 0.002

0.017 0.011 0.009 0.008 0.007 0.006 0.004 0.003 0.002

0.016 0.011 0.009 0.008 0.007 0.006 0.004 0.003 0.001

espresso 0.028 0.017 0.013 0.006 0.003 0.002 0.001 0.000 0.000

0.027 0.017 0.013 0.006 0.003 0.002 0.001 0.000 0.000

0.026 0.015 0.011 0.005 0.002 0.001 0.001 0.000 0.000

fpppp 0.061 0.027 0.022 0.017 0.016 0.015 0.000 0.000 0.000

0.060 0.027 0.022 0.017 0.016 0.015 0.000 0.000 0.000

0.051 0.020 0.017 0.012 0.011 0.011 0.000 0.000 0.000

tomcatv 0.118 0.098 0.052 0.030 0.026 0.026 0.026 0.025 0.025

0.114 0.094 0.048 0.026 0.022 0.022 0.022 0.021 0.021

0.112 0.091 0.047 0.025 0.022 0.021 0.021 0.021 0.020

xlisp 0.030 0.018 0.010 0.006 0.003 0.001 0.000 0.000 0.000

0.028 0.017 0.009 0.006 0.003 0.001 0.000 0.000 0.000

0.027 0.016 0.009 0.005 0.002 0.001 0.000 0.000 0.000

Figure A.4: Cache miss frequencies for the SPEC benchmarks we simulated.
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2K 4K 8K 16K 32K 64K 128K 256K 512K

cs 0.018 0.011 0.009 0.004 0.003 0.002 0.002 0.000 0.000

0.013 0.008 0.006 0.003 0.002 0.002 0.001 0.000 0.000

lg 0.005 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000

0.004 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

lw 0.007 0.000 0.003 0.001 N/A N/A N/A N/A N/A

0.005 0.000 0.002 0.001 N/A N/A N/A N/A N/A

na N/A N/A 0.004 0.004 N/A N/A N/A N/A N/A

N/A N/A 0.002 0.003 N/A N/A N/A N/A N/A

oc 0.036 0.026 0.022 0.021 0.019 0.005 0.000 N/A N/A

0.035 0.026 0.022 0.021 0.019 0.005 0.000 N/A N/A

sd 0.005 0.004 0.003 0.001 0.000 0.000 0.000 0.000 0.000

0.005 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000

sr 0.028 0.025 0.018 0.018 0.015 0.013 0.012 0.011 0.011

0.028 0.024 0.018 0.018 0.014 0.012 0.011 0.011 0.010

tf 0.017 0.014 0.012 0.010 0.009 0.008 0.006 0.004 0.003

0.016 0.013 0.011 0.010 0.008 0.007 0.005 0.003 0.002

ti 0.000 N/A 0.007 0.003 N/A N/A N/A N/A N/A

0.000 N/A 0.007 0.003 N/A N/A N/A N/A N/A

Figure B.1: Writeback frequencies for the Perfect Club benchmarks we simulated.

B Detailed Data: Writeback Frequency

This appendix shows the writeback frequencies of all simulator runs. (Writeback frequency is the

number of writebacks per instruction executed.) For each benchmark, and each cache size, the

data tables give two writeback frequencies. The top number is the writeback frequency under the

original scenario, and the bottom number is the writeback frequency for the optimal scenario. We

used a 32-byte line size in all our simulations. (Note to reviewers: N/A entries will be �lled in for

the �nal paper.)

As above, we give results for only the programs that we simulated. We omit results for the

Livermore Loops; since these programs do not re-use their data, essentially all their writebacks

could be eliminated.
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2K 4K 8K 16K 32K 64K 128K 256K 512K

dnasa7 0.000 N/A 0.045 0.019 N/A N/A N/A N/A N/A

0.000 N/A 0.044 0.018 N/A N/A N/A N/A N/A

doduc 0.014 0.010 0.006 0.004 0.002 0.000 0.000 0.000 0.000

0.010 0.007 0.004 0.002 0.001 0.000 0.000 0.000 0.000

eqntott 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

espresso 0.008 0.007 0.006 0.003 0.001 0.001 0.000 0.000 0.000

0.007 0.006 0.005 0.003 0.001 0.001 0.000 0.000 0.000

fpppp 0.020 0.011 0.009 0.008 0.007 0.007 0.000 0.000 0.000

0.016 0.006 0.006 0.004 0.004 0.004 0.000 0.000 0.000

tomcatv 0.030 0.027 0.017 0.008 0.008 0.007 0.007 0.007 0.007

0.028 0.025 0.017 0.008 0.007 0.007 0.007 0.007 0.007

xlisp 0.015 0.010 0.006 0.005 0.002 0.001 0.000 0.000 0.000

0.013 0.008 0.005 0.004 0.002 0.001 0.000 0.000 0.000

Figure B.2: Writeback frequencies for the SPEC benchmarks we simulated.
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